JP2001328950A - Method for decomposition of halide - Google Patents

Method for decomposition of halide

Info

Publication number
JP2001328950A
JP2001328950A JP2000150088A JP2000150088A JP2001328950A JP 2001328950 A JP2001328950 A JP 2001328950A JP 2000150088 A JP2000150088 A JP 2000150088A JP 2000150088 A JP2000150088 A JP 2000150088A JP 2001328950 A JP2001328950 A JP 2001328950A
Authority
JP
Japan
Prior art keywords
gas
halide
combustion
decomposition
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000150088A
Other languages
Japanese (ja)
Other versions
JP3869184B2 (en
Inventor
Shigero Shibayama
柴山  茂朗
Shinsuke Nakagawa
伸介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2000150088A priority Critical patent/JP3869184B2/en
Publication of JP2001328950A publication Critical patent/JP2001328950A/en
Application granted granted Critical
Publication of JP3869184B2 publication Critical patent/JP3869184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for the decomposition of halides effective for efficiently decomposing various halide gases such as organic halides and inorganic halides to a harmless decomposition product. SOLUTION: An organic halide and/or inorganic halide is decomposed in a combustion flame containing an alkali metal compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クロロフルオロカ
ーボン,パーフルオロカーボン,クロロカーボン等のフ
ッ素、塩素、臭素あるいは水素を含有する有機ハロゲン
化物、NF3、SF6等の無機ハロゲン化物等の各種ハロ
ゲン化物ガスを効率よく分解無害化するハロゲン化物の
分解方法に関する。
The present invention relates to various halides such as organic halides containing fluorine, chlorine, bromine or hydrogen such as chlorofluorocarbon, perfluorocarbon and chlorocarbon, and inorganic halides such as NF 3 and SF 6. The present invention relates to a halide decomposition method for efficiently decomposing and detoxifying a gas.

【0002】[0002]

【従来の技術】クロロフルオロカーボン(CFC)は、
毒性が低くドライクリーニング剤、各種用途の溶剤、発
泡剤、冷媒等のエネルギー変換作動流体等の用途にきわ
めて有用である反面、大気中に放出されたクロロフルオ
ロカーボンは、成層圏に達すると太陽光の紫外線で分解
し、これがオゾン層を破壊することが問題となってい
る。そのために、中でもオゾンの破壊性の高い特定フロ
ンは、段階的な使用の規制をうけ1996年以降全廃と
なっている。
2. Description of the Related Art Chlorofluorocarbon (CFC) is
It has low toxicity and is extremely useful for applications such as dry cleaning agents, solvents for various applications, foaming agents, and energy conversion working fluids such as refrigerants.On the other hand, chlorofluorocarbons released into the atmosphere emit ultraviolet rays from sunlight when they reach the stratosphere. And destruction of the ozone layer is a problem. For this reason, specific fluorocarbons, which are particularly destructive to ozone, have been totally abolished since 1996 due to the phased use regulations.

【0003】このクロロフルオロカーボンの大気中での
挙動は、さらに地球温暖化という大きな問題にも広がっ
ており、物質としては、クロロフルオロカーボンの他パ
ーフルオロカーボン(PFC)の問題も指摘されてい
る。パーフルオロカーボンは、工業的には半導体工業に
おけるエッチング剤、乾式クリーニング剤等の用途に次
第にその消費量が増えている。温室効果を惹起するパー
フルオロカーボンの熱放射特性は、クロロフルオロカー
ボンのそれと同程度でありながら、使用量としてはクロ
ロフルオロカーボンよりも少ないパーフルオロカーボン
が問題視されているのは、大気中での寿命が長いためで
ある。パーフルオロカーボンは、化学的に非常に安定で
あり、大気中でこれらを分解する作用を有するものは、
大気のごく高層でのみ照射している波長130nm以下
の紫外線だけであると言われている。大気中に放出され
た後の寿命は、クロロフルオロカーボンが数百年である
のに対してパーフルオロカーボンのそれは数千年から数
万年という試算もなされており、温室効果に及ぼす影響
は大きいといわれている。
[0003] The behavior of chlorofluorocarbons in the atmosphere has been further extended to a major problem of global warming, and the problem of perfluorocarbons (PFCs) as well as chlorofluorocarbons has been pointed out as a substance. The consumption of perfluorocarbon is gradually increasing industrially for uses such as an etching agent and a dry cleaning agent in the semiconductor industry. The thermal emission characteristics of perfluorocarbons that cause the greenhouse effect are similar to those of chlorofluorocarbons, but less perfluorocarbons are used as chlorofluorocarbons because of their long lifetime in the atmosphere. That's why. Perfluorocarbons are very stable chemically and have the action of decomposing them in the atmosphere.
It is said that there is only ultraviolet light having a wavelength of 130 nm or less which is irradiated only in a very high layer of the atmosphere. It has been estimated that the lifetime of chlorofluorocarbons after being released into the atmosphere is several hundred years, while that of perfluorocarbons is estimated to be thousands to tens of thousands of years, and it is said that the effect on the greenhouse effect is large. ing.

【0004】大気中に放出されるとオゾン層を破壊する
クロロフルオロカーボン、半永久的に破壊されないで地
球温暖化の原因となるパーフルオロカーボンは、したが
って、それを使用する設備の最終段階で破壊してしまう
ことが求められている。
[0004] Chlorofluorocarbons that, when released into the atmosphere, destroy the ozone layer, and perfluorocarbons that are not permanently destroyed but cause global warming, are therefore destroyed in the final stages of equipment that uses them. Is required.

【0005】クロロフルオロカーボン、パーフルオロカ
ーボンの分解については、現在、プロパンやメタンな
どの燃焼ガスとともに燃焼させて分解する方法(燃焼
法)、400〜700℃の温度域で高い水蒸気圧下で
触媒を用いて接触させ分解する方法(触媒法)、50
0℃〜900℃の温度域で、アルカリなどを接触させて
分解する方法(熱化学分解法)、高周波プラズマ中で
分解する方法(プラズマ法)、などの方法が検討されて
いる。
As for the decomposition of chlorofluorocarbon and perfluorocarbon, at present, a method of burning and decomposing with a combustion gas such as propane or methane (combustion method), using a catalyst under a high steam pressure in a temperature range of 400 to 700 ° C. Contact and decomposition method (catalytic method), 50
Methods such as a method of decomposing by contacting an alkali or the like in a temperature range of 0 ° C. to 900 ° C. (thermochemical decomposition method) and a method of decomposing in high-frequency plasma (plasma method) are being studied.

【0006】しかしながら、いずれの方法も欠点を抱え
るものである。の燃焼法は、分解に必要な高温が容易
に得られ、大容量のハロゲン化物ガスが分解できるが、
一方で、燃焼による窒素酸化物の生成や二酸化炭素の生
成による環境の負荷が大きい。また、難分解性ガスに対
しては、さらに高い燃焼温度を必要とするために、より
多量の燃料ガスを必要とする。の触媒法は、比較的低
温でPFCやCFCを分解できるが、触媒の劣化による
交換が必要であり、また、多くの触媒が酸性物質を生成
させるため、酸による反応器の腐食が問題となる。の
熱化学分解法は、ハロゲン化物を固定化して酸の生成な
どを伴わないが、反応剤の交換が不可欠である。のプ
ラズマ法は、一度に大容量のガスを分解することが難し
く、多くのエネルギーを必要とする。
However, both methods have drawbacks. Combustion method can easily obtain the high temperature required for decomposition, and can decompose a large volume of halide gas.
On the other hand, the burden on the environment due to the production of nitrogen oxides and carbon dioxide by combustion is large. In addition, since a higher combustion temperature is required for a hardly decomposable gas, a larger amount of fuel gas is required. Can decompose PFC and CFC at a relatively low temperature, but it requires replacement due to deterioration of the catalyst, and since many catalysts generate acidic substances, corrosion of the reactor by acid poses a problem. . The thermochemical decomposition method does not involve the production of an acid by immobilizing a halide, but the exchange of a reactant is indispensable. In the plasma method, it is difficult to decompose a large volume of gas at a time, and requires a lot of energy.

【0007】[0007]

【発明が解決しようとする問題点】このような中で、現
在、CFC、PFCのようなハロゲン化物を分解するシ
ステムとして工業的に実用化が検討されている方法の1
つとして燃焼法があげられる。燃焼法により、多くのC
FC、PFCは分解されるが、例えばCF4のような化
学的安定性が大きい物質は燃焼法においても分解するこ
とが困難である。分解を促進する方法としては、燃焼火
炎の温度を高くすることが挙げられ、支燃ガスとして空
気に比べ酸素濃度の高いガスを用いる方法が採られる。
しかしながら、支燃剤として酸素を用いた燃焼火炎にお
いてもCFに対しては100%に近い分解率を得るの
は困難である。また、一般に燃焼温度が高いとPFCの
希釈ガスとして用いられているN2と支燃ガスの酸素と
が反応して、N2Oなど有害な窒素酸化物の生成率が高
くなり環境への負荷が大きくなる。加えて、空気より酸
素濃度が高いガスを支燃剤として用いるためには付加設
備として、酸素を供給する設備、酸素を製造する設備等
が必要となる。このため、環境に負荷がかからず、効率
の良いCF4、C26等のPFCの分解方法の開発が望
まれていた。
Under these circumstances, one of the methods that are currently being industrially studied as a system for decomposing halides such as CFC and PFC is considered.
One is the combustion method. Due to the combustion method, many C
Although FC and PFC are decomposed, it is difficult to decompose substances having high chemical stability, such as CF 4 , even by the combustion method. As a method of accelerating the decomposition, increasing the temperature of the combustion flame can be cited, and a method using a gas having a higher oxygen concentration than air as a supporting gas is adopted.
However, it is difficult to obtain a decomposition rate close to 100% for CF 4 even in a combustion flame using oxygen as a combustion supporting agent. In general, when the combustion temperature is high, N 2 used as a diluent gas of PFC and oxygen of the supporting gas react with each other, so that the generation rate of harmful nitrogen oxides such as N 2 O is increased and the load on the environment is reduced. Becomes larger. In addition, in order to use a gas having an oxygen concentration higher than that of air as a combustion supporting agent, equipment for supplying oxygen, equipment for producing oxygen, and the like are required as additional equipment. For this reason, development of a method for decomposing PFCs such as CF 4 and C 2 F 6 efficiently without imposing a burden on the environment has been desired.

【0008】[0008]

【問題点を解決するための具体的手段】本発明者らは、
燃焼法により有機ハロゲン化物または/および無機ハロ
ゲン化物を効率的に分解する方法について鋭意検討した
結果、燃焼火炎中に分解助剤を添加することが有効であ
ることを見いだし、特にアルカリ金属化合物を燃焼火炎
中に分解助剤として添加することが有効であることを見
いだし、本発明に到達した。
[Specific means for solving the problem]
As a result of intensive studies on a method for efficiently decomposing organic halides and / or inorganic halides by the combustion method, it was found that it is effective to add a decomposition aid to the combustion flame, and particularly to combust alkali metal compounds. The present inventors have found that it is effective to add as a decomposition aid in a flame, and have reached the present invention.

【0009】すなわち、本発明は、燃焼火炎中にアルカ
リ金属化合物を共存させ、有機ハロゲン化物または/お
よび無機ハロゲン化物を分解すること、特にアルカリ金
属化合物が、アルカリ金属水酸化物であることを特徴と
するハロゲン化物の分解方法を提供するものである。
That is, the present invention is characterized in that an alkali metal compound coexists in a combustion flame to decompose an organic halide and / or an inorganic halide, and in particular, the alkali metal compound is an alkali metal hydroxide. And a method for decomposing a halide.

【0010】本発明における有機ハロゲン化物とは、C
Cl22、CCl3F、CCl2FCClF2、CClF2
CF3、CClF3等の炭素、塩素、フッ素からなるクロ
ロフルオロカーボン化合物、CH3F、CH22、CH
3、C224、C242等の炭素、水素、フッ素か
らなるハイドロフルオロカーボン化合物、CF4、C2
6、C38、C410、C512、C614、C58等の炭
素、フッ素からなるパーフルオロカーボン化合物、CC
4、C2Cl6等のクロロカーボン化合物を指す。ま
た、無機ハロゲン化物とは、NF3、SF6等の無機フッ
化物ガス等を指す。本発明において、これらの化合物
は、N2、He等の希釈ガスを混合した状態でもよい。
In the present invention, the organic halide is C
ClTwoFTwo, CClThreeF, CClTwoFCClFTwo, CCIFTwo
CFThree, CCIFThreeChromium consisting of carbon, chlorine, fluorine, etc.
Lofluorocarbon compound, CHThreeF, CHTwoFTwo, CH
FThree, CTwoHTwoFFour, CTwoHFourFTwoSuch as carbon, hydrogen, fluorine
Consisting of a hydrofluorocarbon compound, CFFour, CTwoF
6, CThreeF8, CFourFTen, CFiveF12, C6F14, CFiveF8Etc charcoal
Perfluorocarbon compound consisting of nitrogen and fluorine, CC
lFour, CTwoCl6And the like. Ma
In addition, the inorganic halide is NFThree, SF6Inorganic hood such as
Refers to compound gas. In the present invention, these compounds
Is NTwo, He or the like may be mixed.

【0011】また、本発明で用いられる分解助剤は、ア
ルカリ金属化合物が望ましい。アルカリ金属化合物とし
ては、周期律表Ia族の元素(Li、Na、K、Rb、
Cs)からなる水酸化物、酸化物、水素化物、炭酸塩、
塩素酸塩、過塩素酸塩、ハロゲン化物、亜硫酸塩、硫酸
塩、過硫酸塩、亜硝酸塩、硝酸塩、リン酸塩、有機酸塩
等が挙げられ、該化合物の中から1または2以上を組み
合わせて使用できる。
The decomposition aid used in the present invention is preferably an alkali metal compound. Examples of the alkali metal compound include elements of Group Ia of the periodic table (Li, Na, K, Rb,
Hydroxides, oxides, hydrides, carbonates comprising Cs)
Chlorates, perchlorates, halides, sulfites, sulfates, persulfates, nitrites, nitrates, phosphates, organic acid salts, and the like. One or more of these compounds are combined. Can be used.

【0012】また、アルカリ金属化合物の中でもアルカ
リ金属の水酸化物がもっとも望ましい。その理由は、ア
ルカリ水酸化物は、温度の低い燃焼炎においてもハロゲ
ン化物と反応性が高いこと。また、ハロゲン化物が分解
した後、温暖化ガスである炭酸ガスを生成するが、その
炭酸ガスと水酸化物が反応して温暖化ガスの排出を低減
できることにある。特に、水酸化カリウムが最も好まし
い。
[0012] Among the alkali metal compounds, an alkali metal hydroxide is most desirable. The reason is that alkali hydroxides are highly reactive with halides even in combustion flames with low temperatures. Further, after the halide is decomposed, carbon dioxide gas, which is a greenhouse gas, is generated. The carbon dioxide gas and the hydroxide react with each other to reduce greenhouse gas emissions. Particularly, potassium hydroxide is most preferred.

【0013】次に、燃焼ガスに分解助剤を供給する方法
としては、分解助剤の粉末をあらかじめ燃料または支燃
剤に分散混合して供給するか、あるいは該粉末、その水
溶液、または有機溶媒に溶解・分散させた溶液等を噴霧
して吹き付けるという方法をとることができる。
Next, as a method of supplying a decomposition aid to the combustion gas, a powder of the decomposition aid is dispersed and mixed in advance with a fuel or a supporting agent and supplied, or the powder, an aqueous solution thereof, or an organic solvent is supplied. A method of spraying and spraying a dissolved or dispersed solution or the like can be used.

【0014】また、900℃以上の温度においては、上
記アルカリ金属の多くはKPaオーダー以上の蒸気圧を
有する。例えば、1.33KPaの蒸気圧を示す時の各
化合物の温度をそれぞれの化学記号に続くカッコ内に表
記すると、KF(1039℃)、KI(887℃)、K
OH(863℃)、KBr(982℃)、KCl(96
8℃)、NaF(1240℃)、NaI(903℃)、
NaOH(897℃)、NaCl(1017℃)、Li
Br(888℃)、LiCl(932℃)、LiF(1
211℃)、LiI(841℃)等である。また、K
COは1000℃にて1.10KPaの解離圧を有す
る。これら火炎中で気化する化合物については、火炎近
傍か火炎中に該化合物を入れた耐熱容器を設置し、火炎
の熱で気化した分解助剤を火炎中に拡散せしめるような
実施方法も有効である。
At a temperature of 900 ° C. or higher, most of the alkali metals have a vapor pressure on the order of KPa or higher. For example, when the temperature of each compound when showing a vapor pressure of 1.33 KPa is shown in parentheses following each chemical symbol, KF (1039 ° C.), KI (887 ° C.), K
OH (863 ° C), KBr (982 ° C), KCl (96
8 ° C), NaF (1240 ° C), NaI (903 ° C),
NaOH (897 ° C), NaCl (1017 ° C), Li
Br (888 ° C.), LiCl (932 ° C.), LiF (1
211 ° C.) and LiI (841 ° C.). Also, K 2
CO 3 has a dissociation pressure of 1.10 KPa at 1000 ° C. With respect to the compounds that evaporate in the flame, it is also effective to install a heat-resistant container containing the compound in the vicinity of or in the flame and to diffuse the decomposition aid vaporized by the heat of the flame into the flame. .

【0015】さらに、上記アルカリ金属の水酸化物は、
融点が270〜450℃と低温でも融解する。これら水
酸化物については、該化合物を入れた容器を火炎近傍に
設置し火炎の予熱もしくは容器をヒーター等で加熱して
分解助剤を融解させ、その液化した分解助剤を火炎中に
添加して拡散せしめるような実施方法も有効である。
Further, the alkali metal hydroxide is
It melts even at a low melting point of 270-450 ° C. For these hydroxides, a container containing the compound is placed near the flame, the flame is preheated or the container is heated with a heater or the like to melt the decomposition aid, and the liquefied decomposition aid is added to the flame. It is also effective to use an implementation method that spreads the data.

【0016】本発明において、用いる燃料、支燃剤とし
ては、特に制約はなく、燃料としては、水素、メタン、
プロパン、天然ガス、CO等の気体燃料、メタノール、
ガソリン、軽油、重油、灯油等の液体燃料が利用できる
が、特に水素やメタンが望ましく、水素が最も望まし
い。その理由として、アルカリ金属の水酸化物は強力な
二酸化炭素吸収剤として知られており、二酸化炭素を多
く発生させるような燃焼ガス、例えばLPGを燃料とし
て用いた燃焼ガスにアルカリ金属水酸化物を添加すると
きは、アルカリ金属の水酸化物が炭酸塩となって、空気
炎などの温度の低い燃焼炎中では、ハロゲン化物との反
応活性が低下するからである。
In the present invention, there are no particular restrictions on the fuel and the supporting agent used.
Propane, natural gas, gaseous fuels such as CO, methanol,
Although liquid fuels such as gasoline, light oil, heavy oil, and kerosene can be used, hydrogen and methane are particularly desirable, and hydrogen is most desirable. For that reason, alkali metal hydroxides are known as strong carbon dioxide absorbents, and alkali metal hydroxides are added to combustion gases that generate a large amount of carbon dioxide, for example, combustion gases using LPG as fuel. This is because, when added, the hydroxide of the alkali metal becomes a carbonate, and in a low-temperature combustion flame such as an air flame, the reaction activity with the halide decreases.

【0017】また、支燃剤としては空気、酸素、酸素濃
度が高い空気や他の酸化性ガスも利用できる。特に、水
素を燃料として用いた場合は、酸素より空気を用いた方
が好ましい。その利点としては、燃焼温度を低くでき、
2O等の窒素酸化物の発生を抑制できることと特別な
供給設備が不要であるからである。これらの燃料、支燃
剤を混合して点火し燃焼火炎を得るが、燃料と支燃剤の
混合比には特に制約はなく、燃焼可能混合比であれば、
予混合燃焼でも拡散燃焼でもよい。
In addition, air, oxygen, air having a high oxygen concentration, or other oxidizing gas can be used as the combustion supporting agent. In particular, when hydrogen is used as fuel, it is preferable to use air rather than oxygen. The advantage is that the combustion temperature can be lowered,
This is because generation of nitrogen oxides such as N 2 O can be suppressed and special supply equipment is not required. The fuel and the supporting agent are mixed and ignited to obtain a combustion flame, but there is no particular limitation on the mixing ratio of the fuel and the supporting agent.
Premixed combustion or diffusion combustion may be used.

【0018】[0018]

【実施例】以下、本発明を実施例によって詳細に説明す
るが、かかる実施例に限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1〜27 燃焼試験装置の概略を説明する。燃焼装置として、水素
ガス用のガスバーナー(吹き出し口の内径:10mm)
を用いた。ガス供給口には、燃料ガス配管、支燃ガス配
管、分解ガス用の供給配管を組み込み、ガスの流量を制
御するためそれぞれの配管に流量計を設置した。また、
ガスバーナーの吹き出し口が垂直上向きになるように固
定し、分解助剤を供給するためにガス吹き出し口の上方
に白金製の皿を設置した。
Examples 1 to 27 The outline of the combustion test apparatus will be described. Gas burner for hydrogen gas as combustion device (inner diameter of outlet: 10 mm)
Was used. Fuel gas pipes, supporting gas pipes, and supply pipes for cracked gas were incorporated in the gas supply ports, and flow meters were installed in each of the pipes to control the gas flow rate. Also,
The outlet of the gas burner was fixed vertically upward, and a platinum plate was placed above the gas outlet to supply a decomposition aid.

【0020】次に試験方法について説明する。まず、燃
料ガスと支燃ガスをラインに供給してバーナーに点火
し、続いて、ハロゲン化物ガスの供給を開始する。分解
助剤の供給が安定して火炎が十分に安定した後、燃焼ガ
スのサンプリングを行う。サンプリング方法は、真空の
金属容器に接続されたSUS製のサンプリング管を火炎
の最上部にセットして、管に備えた弁を開き、燃焼ガス
を容器中に採取し、採取した燃焼ガスは、FT−IR及
びガスクロマトグラフィーにより分析してハロゲン化物
ガスの分解率を求める。
Next, the test method will be described. First, the fuel gas and the supporting gas are supplied to the line to ignite the burner, and then the supply of the halide gas is started. After the supply of the decomposition aid is stabilized and the flame is sufficiently stabilized, the combustion gas is sampled. The sampling method is that a SUS sampling tube connected to a vacuum metal container is set at the top of the flame, the valve provided on the tube is opened, and the combustion gas is collected in the container. Analysis is performed by FT-IR and gas chromatography to determine the decomposition rate of the halide gas.

【0021】試験の条件・結果は表1に示した。なお、
ハロゲン化物の分解率の算出は、以下の式により算出し
た。
The test conditions and results are shown in Table 1. In addition,
The calculation of the decomposition rate of the halide was calculated by the following equation.

【0022】分解率(%)=(1−[燃焼ガス中のハロ
ゲン化物ガス量(流量)]/[バーナー入口のハロゲン
化物ガス量(流量)])×100 ただし、燃焼ガス中のハロゲン化物ガス量(流量)は、
燃焼ガス量(流量)×燃焼ガス中のハロゲン化物ガス濃
度、である。
Decomposition rate (%) = (1− (amount of halide gas in combustion gas (flow rate)) / [amount of halide gas at burner inlet (flow rate)]) × 100 where halide gas in combustion gas The quantity (flow rate)
Combustion gas amount (flow rate) x halide gas concentration in combustion gas.

【0023】比較例1〜4 上記に示した実施例と同様の試験装置を用いて、白金製
の皿に反応助剤を仕込まずに実施例と同様の操作で試験
を行った。その試験の条件・結果を表1に示した。
Comparative Examples 1 to 4 Using the same test apparatus as in the above-described examples, tests were conducted in the same manner as in the examples, without charging the reaction aid into platinum dishes. Table 1 shows the conditions and results of the test.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】燃焼ガス中に分解助剤を添加しハロゲン
化物を燃焼分解する本発明方法により、ハロゲン化物を
効率よく分解することができオゾン層破壊や地球温暖化
を防止することが可能となる。
According to the method of the present invention in which a decomposition aid is added to a combustion gas to burn and decompose a halide, the halide can be decomposed efficiently and the ozone layer destruction and global warming can be prevented. Become.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2E191 BA01 BA15 BC01 BD12 4H006 AA05 AC24 BA02 BA28 BA29 BA30 BA32 BA34 BA35 BA36 BA37 BC10 BE20 BE30 EA02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2E191 BA01 BA15 BC01 BD12 4H006 AA05 AC24 BA02 BA28 BA29 BA30 BA32 BA34 BA35 BA36 BA37 BC10 BE20 BE30 EA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼火炎中にアルカリ金属化合物を共存
させ、有機ハロゲン化物または/および無機ハロゲン化
物を分解することを特徴とするハロゲン化物の分解方
法。
1. A method for decomposing a halide, comprising decomposing an organic halide and / or an inorganic halide in the presence of an alkali metal compound in a combustion flame.
【請求項2】 アルカリ金属化合物が、アルカリ金属水
酸化物であることを特徴とする請求項1記載のハロゲン
化物の分解方法。
2. The method according to claim 1, wherein the alkali metal compound is an alkali metal hydroxide.
JP2000150088A 2000-05-22 2000-05-22 Method for decomposing halides Expired - Fee Related JP3869184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000150088A JP3869184B2 (en) 2000-05-22 2000-05-22 Method for decomposing halides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150088A JP3869184B2 (en) 2000-05-22 2000-05-22 Method for decomposing halides

Publications (2)

Publication Number Publication Date
JP2001328950A true JP2001328950A (en) 2001-11-27
JP3869184B2 JP3869184B2 (en) 2007-01-17

Family

ID=18655853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150088A Expired - Fee Related JP3869184B2 (en) 2000-05-22 2000-05-22 Method for decomposing halides

Country Status (1)

Country Link
JP (1) JP3869184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513480A (en) * 2005-08-26 2009-04-02 クナツプ,ジヨン・エル Energy generation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107466B2 (en) 2012-06-28 2017-04-05 セントラル硝子株式会社 Method for purifying trans-1,3,3,3-tetrafluoropropene
JP6107467B2 (en) 2012-06-29 2017-04-05 セントラル硝子株式会社 Process for producing 1-chloro-3,3,3-trifluoropropene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513480A (en) * 2005-08-26 2009-04-02 クナツプ,ジヨン・エル Energy generation method

Also Published As

Publication number Publication date
JP3869184B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
KR100766749B1 (en) An apparatus and method for treatment waste gas contains perfluoro compounds
US5026464A (en) Method and apparatus for decomposing halogenated organic compound
US6905663B1 (en) Apparatus and process for the abatement of semiconductor manufacturing effluents containing fluorine gas
JPH11166705A (en) Method and apparatus for combusting emulsion of water/ fossil fuel mixture
CN100416162C (en) Freon treated by premixed combustion and method for producing said resource
US6482367B1 (en) Method and apparatus for removing harmful components in an exhaust gas
TW592797B (en) Exhaust gas treatment process and treatment system
JPH09880A (en) Method and device for treating organic halide
FR2724806A1 (en) Novel method for the non-catalytic vapour cracking of hydrocarbon(s) and halogen-organic cpds.
JP4323737B2 (en) Removal of hazardous substances from gas streams
JP3869184B2 (en) Method for decomposing halides
Qin et al. Highly efficient decomposition of CF4 gases by combustion
JPH09273727A (en) Method for decomposing organic halogen compound
KR100347746B1 (en) Freon gas decomposition apparatus used high temperature plasma
JPH02131116A (en) Decomposition of organohalogen-compound
JP3342513B2 (en) Detoxifying and decomposing harmful substances using detonation waves
JP2004278879A (en) Exhaust gas combustion treatment device
JP7137597B2 (en) Decomposition method of environmental pollutant gas
JPH0759970B2 (en) CFC decomposition method
JP2681034B2 (en) How to make CFCs harmless
JP2006305410A (en) Method for decomposing hardly decomposable chlorofluocarbon gas
JP3606574B1 (en) Method and apparatus for treating organohalogen compounds
JP3486702B2 (en) Detoxification method of CFC
JP2024026040A (en) Processing method and equipment for fluids containing organic compounds
JP4004859B2 (en) Detoxification method for organic halogen compounds

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees