JP2001328846A - Method for preparation of transparent non-glare face and transparent non-glare touch screen - Google Patents

Method for preparation of transparent non-glare face and transparent non-glare touch screen

Info

Publication number
JP2001328846A
JP2001328846A JP2000148229A JP2000148229A JP2001328846A JP 2001328846 A JP2001328846 A JP 2001328846A JP 2000148229 A JP2000148229 A JP 2000148229A JP 2000148229 A JP2000148229 A JP 2000148229A JP 2001328846 A JP2001328846 A JP 2001328846A
Authority
JP
Japan
Prior art keywords
glare
particles
silica
glass substrate
polymer liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000148229A
Other languages
Japanese (ja)
Other versions
JP3935658B2 (en
Inventor
Minoru Takahama
實 高浜
Takaaki Sakurai
貴昭 櫻井
Tomonori Ishikawa
智規 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Shoji Ltd
Original Assignee
Nitto Shoji Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Shoji Ltd filed Critical Nitto Shoji Ltd
Priority to JP2000148229A priority Critical patent/JP3935658B2/en
Publication of JP2001328846A publication Critical patent/JP2001328846A/en
Application granted granted Critical
Publication of JP3935658B2 publication Critical patent/JP3935658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Position Input By Displaying (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparation of a transparent, non-glare face with excellent productivity. SOLUTION: This method for producing the transparent ton-glare face on a glass substrate 1 comprises a pretreatment comprising one or more treatment spraying a polymer solution 3a of an inorganic polymer having Si-N ponds and hydrogen, soluble in the organic solvent, in particle state, and burning them to form a water repellant substance in silica particles in the atmosphere and a post-treatment spraying the polymer solution 3a to a surface of the glass substrate 1 after the pretreatment, in particle state and burning the sprayed polymer solution 3a in the particle state and the water repellant substance obtained by the pretreatment to form silica in the atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は透光性ノングレア面
化加工方法と透光性ノングレアタッチスクリーンに関
し、ガラス基材の表面を表示デバイスやタッチデバイス
の表示スクリーンやタッチスクリーンに適した透光性ノ
ングレア面とするのに用いられる透光性ノングレア面化
加工方法とそれにより得られる透光性ノングレアタッチ
スクリーンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-transmitting non-glare surface processing method and a light-transmitting non-glare touch screen, and more particularly to a light-transmitting non-glare touch screen suitable for a display device or a touch screen. The present invention relates to a translucent non-glare surface processing method used for forming a non-glare surface and a translucent non-glare touch screen obtained by the method.

【0002】[0002]

【従来の技術】表示スクリーンやタッチスクリーンは共
に画面がきれいということが要求される。それには、背
後からの画像情報が鮮明に見えるための高い透明性、つ
まり透光性と、背後からの画像情報をそれらスクリーン
を通して手前から見るのに、スクリーンにその手前から
入射する光を反射しないノングレア性とを、同時に満足
しなければならない。
2. Description of the Related Art Both display screens and touch screens are required to have clean screens. This requires high transparency, that is, transparency, so that the image information from behind can be seen clearly, and the image information from behind is viewed from the front through those screens, but does not reflect the light incident on the screen from the front. Non-glare properties must be satisfied at the same time.

【0003】これを満足するのに従来、透明なガラス基
板の表面をフッ酸でエッチング処理して粗面化し、透光
性およびノングレア性を満足できるようにすることが行
なわれている。
[0003] In order to satisfy this, conventionally, the surface of a transparent glass substrate has been roughened by etching with hydrofluoric acid so as to satisfy translucency and non-glare properties.

【0004】[0004]

【発明が解決しようとする課題】上記従来のフッ酸によ
るガラス表面の粗面化処理は、エッチングにより細かな
凹部をガラス基板の表面に形成してその表面を荒らす表
面処理である。ガラスには細かな気泡があってこれがフ
ッ酸処理によるエッチング効果で大きく口を開けること
がある。このように大きく口を開けた気泡はガラス基板
の強度を低下させ、凹圧力を受けるタッチスクリーンで
は特に問題である。また、そのような大きく口を開けた
気泡は光を複雑に屈折させて表示の透視性を邪魔して視
覚的なノイズとなる。これらのため、フッ酸処理後のガ
ラス基板は表示スクリーンやタッチスクリーンでは不良
品扱いになりやすく、ガラス基板の歩留まりが50〜6
0%と低くなる。
The conventional surface roughening treatment of glass surface with hydrofluoric acid is a surface treatment for forming fine concave portions on the surface of a glass substrate by etching to roughen the surface. There are fine bubbles in the glass, which may be greatly opened due to the etching effect of the hydrofluoric acid treatment. Such a wide open air bubble reduces the strength of the glass substrate, and is particularly problematic in a touch screen subjected to a concave pressure. In addition, such a wide open air bubble refracts light in a complicated manner, hinders the transparency of the display, and causes visual noise. For these reasons, the glass substrate after hydrofluoric acid treatment tends to be treated as a defective product on a display screen or a touch screen, and the yield of the glass substrate is 50 to 6%.
It is as low as 0%.

【0005】本発明の目的は、非エッチング方式で歩留
まりの問題がなく透光性ノングレア面化ができる透光性
ノングレア面化加工方法と透光性ノングレアタッチスク
リーンを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a light-transmitting non-glare surface processing method and a light-transmitting non-glare touch screen capable of forming a light-transmitting non-glare surface without a problem of yield in a non-etching method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の透光性ノングレア面化加工方法は、ガラ
ス基材の表面に、ケイ素−窒素結合物質と水素原子を持
ち、有機溶剤に可溶な無機ポリマーの有機溶媒溶液であ
るポリマー液を粒子状に塗布し、この塗布した粒子状の
ポリマー液を撥水性を持つ中間物質が生成するように大
気中で焼成することを1回以上行なう前工程と、前工程
後のガラス基材の表面に前記ポリマー液を粒子状に塗布
し、この塗布した粒子状のポリマー液および前工程によ
る前記中間物をシリカまで大気中で焼成する後工程とを
備え、基材表面を透光性のある粒子が散在した透光性ノ
ングレア面を得ることを第1の特徴としている。
In order to achieve the above-mentioned object, a light-transmitting non-glare surface treatment method of the present invention has a silicon-nitrogen bonding substance and a hydrogen atom on the surface of a glass substrate, A method in which a polymer solution, which is an organic solvent solution of an inorganic polymer soluble in a solvent, is applied in the form of particles, and the applied particulate polymer solution is fired in the air so as to form an intermediate substance having water repellency, is described as follows. Pre-process to be performed more than once, and apply the polymer liquid to the surface of the glass base material after the pre-process in the form of particles, and bake the applied particulate polymer liquid and the intermediate in the previous process to silica in the air. The first feature is to obtain a light-transmitting non-glare surface in which light-transmitting particles are dispersed on the surface of the base material, including a post-process.

【0007】このような構成では、前記ポリマー液は大
気中で焼成してシリカにすることができるが、この焼成
時に撥水性のある物質が生成されるのを利用し、ガラス
基材の上に前記ポリマー液の粒子を塗布して、これに前
記撥水性の物質が生成されるように焼成する前工程によ
り、それより後に塗布する粒子状のポリマー液を、撥水
性の物質が生成している先のシリカ粒子がその撥水性に
よりまわりへはじいて重なりを防止しながら、先のシリ
カ粒子がない隙間領域に追いやりそこを埋めて高密度化
していく働きをさせることができ、先のシリカ粒子中に
ある撥水性の物質は後のポリマー液とともに後工程にて
シリカに焼成されるので、シリカ粒子を重なりなくほぼ
一重に高密度にガラス基材上に焼成して結合させ、シリ
カ粒子の透明性とそれらが作る凹凸にて乱反射させるこ
とによるノングレア性とをシリカ粒子の重なりによる極
端な凹凸なしに満足することができる。しかも、前工程
の塗布、焼成を複数回行なうことにより、前記中間物質
による重なりを防止しながらの高密度化の特性を繰り返
し利用してシリカ粒子の重なりなくさらなる高密度化を
図ってノングレア性を向上することができる。また、非
エッチング方式の透光性ノングレア面化であるためガラ
ス基材の気泡を大きく口を開かせるようなことがなくガ
ラス基材の歩留まりは良好である。
In such a configuration, the polymer liquid can be calcined in the air to form silica. By applying the particles of the polymer liquid and baking it so that the water-repellent substance is generated therein, a water-repellent substance is generated in the particulate polymer liquid to be applied thereafter. While preventing the silica particles from repelling around due to their water repellency and preventing overlapping, they can work to drive into the gap area where the silica particles do not exist, fill them and increase the density, and The water-repellent substance is fired into silica in the subsequent step together with the polymer liquid, so that the silica particles are fired and bonded to the glass substrate at almost one density without overlapping, and the transparency of the silica particles When A non-glare due to diffusely reflect at irregularities these make can be satisfied without extreme uneven due to overlapping of the silica particles. Moreover, by performing the application and firing in the previous step a plurality of times, the density of the silica particles is further increased without overlapping by using the characteristics of the density increase while preventing the overlap by the intermediate substance, and the non-glare property is obtained. Can be improved. In addition, since the light-transmitting non-glare surface is formed by the non-etching method, the glass base material does not greatly open the air bubbles and the yield of the glass base material is good.

【0008】本発明の透光性ノングレア面化加工方法
は、また、ガラス基材の表面に、ケイ素−窒素結合と水
素原子を持ち、有機溶剤に可溶な無機ポリマーを粒子状
に塗布し、この塗布した粒子状の無機ポリマーをケイ素
−水素結合物質が生成するように大気中で焼成すること
を1回以上行なう前工程と、前工程後のガラス基材の表
面に前記無機ポリマーを粒子状に塗布し、この塗布した
粒子状の無機ポリマーおよび前工程による前記ケイ素−
水素結合物質をシリカまで大気中で焼成する後工程とを
備え、基材表面を透光性のある粒子が散在した透光性ノ
ングレア面を得ることを第2の特徴としている。
[0008] The light-transmitting non-glare surface-treating method of the present invention is also characterized in that an inorganic polymer which has a silicon-nitrogen bond and a hydrogen atom and is soluble in an organic solvent is applied to the surface of a glass substrate in the form of particles. A pre-process in which the applied particulate inorganic polymer is baked in the air at least once so that a silicon-hydrogen bonding substance is generated, and the inorganic polymer is coated on the surface of the glass substrate after the pre-process. And the coated particulate inorganic polymer and the silicon
A second step is to provide a post-process in which the hydrogen bonding substance is baked in the atmosphere to silica to obtain a light-transmitting non-glare surface in which light-transmitting particles are scattered on the substrate surface.

【0009】このような構成では、前工程で生成する前
記ケイ素−水素結合物質は、前記第1の特徴における撥
水性の物質の1つに当たり、第1の特徴の発明と同じ作
用効果を発揮する。
In such a configuration, the silicon-hydrogen bonding substance produced in the preceding step corresponds to one of the water-repellent substances in the first aspect, and exhibits the same function and effect as the first aspect of the invention. .

【0010】これらの発明において、前工程の焼成温度
は、撥水性の物質を生成させるために後工程の焼成温度
に至らない温度であるのが生成の効率、安定性の面で好
適である。
[0010] In these inventions, the firing temperature in the preceding step is preferably a temperature that does not reach the firing temperature in the subsequent step in order to generate a water-repellent substance, from the viewpoints of production efficiency and stability.

【0011】また、前工程と後工程との組み合わせを複
数回繰り返すこともでき、この場合、上記のように極端
な凹凸差のないほぼ一重となるシリカ粒子層を形成する
ことが、前記繰り返し回数分だけ重ねて行なわれ、シリ
カ粒子による凹凸をさらに緻密に、かつ平均化すること
ができ、ノングレア性や平坦性が透光性に優先されるよ
うな場合に好適である。
Further, the combination of the pre-step and the post-step can be repeated a plurality of times. In this case, forming a substantially single silica particle layer having no extreme unevenness as described above can be achieved by the above-mentioned number of repetitions. The process is performed by overlapping, and the unevenness due to the silica particles can be more densely and evenly averaged, which is suitable when the non-glare property and the flatness are prioritized over the light-transmitting property.

【0012】本発明の透光性ノングレア面化加工方法
は、さらに、ガラス基材の表面に、ケイ素−窒素結合物
質と水素原子を持ち、有機溶剤に可溶な無機ポリマーの
有機溶媒溶液であるポリマー液を粒子状に塗布し、この
塗布した粒子状のポリマー液をシリカまで大気中で焼成
して基材表面を透光性のある粒子が散在した透光性ノン
グレア面を得る透光性ノングレア面化加工方法であっ
て、前記塗布と、塗布した粒子状のポリマー液に撥水性
の物質を生成させるように前記焼成温度より低い温度で
仮焼成する塗布、仮焼成工程を1回以上行なって後、前
記塗布、焼成工程を行なって、基材表面を透光性のある
粒子が散在したノングレア面を得ることを第3の特徴と
している。
[0012] The translucent non-glare surface treatment method of the present invention further comprises an organic solvent solution of an inorganic polymer which has a silicon-nitrogen bonding substance and a hydrogen atom on the surface of the glass substrate and is soluble in an organic solvent. A polymer liquid is applied in the form of particles, and the applied particle-form polymer liquid is calcined in the atmosphere to silica to obtain a light-transmitting non-glare surface in which light-transmitting particles are scattered on the substrate surface. A surface treatment method, wherein the coating and the preliminary baking step are performed at least once by performing preliminary baking at a temperature lower than the baking temperature so as to generate a water-repellent substance in the applied particulate polymer liquid. Thereafter, the third feature is that the coating and firing steps are performed to obtain a non-glare surface in which light-transmitting particles are dispersed on the surface of the base material.

【0013】このような構成では、ガラス基材の表面に
ポリマー液を粒子状に塗布してシリカまで焼成するの
に、前記塗布と、塗布した粒子状のポリマー液からの焼
成シリカに撥水性の物質を生成させるように前記焼成温
度より低い温度で仮焼成する塗布、仮焼成工程を1回以
上優先して行なってから、塗布、焼成工程を行なうこと
により、前記撥水性の物質による重なりを防止しながら
の高密度化を、前記塗布、仮焼成工程の繰り返し回数分
だけ発揮させて、シリカ粒子を重なりなくほぼ一重に高
密度にガラス基材上に焼成して結合させ、シリカ粒子の
透明性とそれらが作る凹凸にて乱反射させることによる
ノングレア性とをシリカ粒子の重なりによる極端な凹凸
なしに満足することができる。また、非エッチング方式
の透光性ノングレア面化であるためガラス基材の気泡を
大きく口を開かせたりすることはなくガラス基材の歩留
まりは良好である。
In such a configuration, the polymer liquid is applied to the surface of the glass substrate in the form of particles and fired into silica. Prevention of the water-repellent material from overlapping by performing the application and calcination steps after giving priority to the application and calcination steps of calcination at a temperature lower than the calcination temperature at least once so as to generate a substance. The density of the silica particles is increased by the number of repetitions of the coating and calcination steps, and the silica particles are baked and bonded to the glass substrate almost at a single density without overlapping, and the transparency of the silica particles is increased. The non-glare property by irregularly reflecting the irregularities formed by the irregularities can be satisfied without extreme irregularities due to the overlapping of the silica particles. In addition, since the light-transmitting non-glare surface is formed by the non-etching method, the yield of the glass base material is good because the air bubbles of the glass base material are not greatly opened.

【0014】この場合も、塗布、仮焼成工程と、塗布、
焼成工程との組み合わせを複数回繰り返して行なうこと
ができ、上記のようにシリカ粒子の重なりによる極端な
凹凸差のないほぼ一重となるシリカ粒子層を形成するこ
とが、前記繰り返し回数分だけ重ねて形成して、シリカ
粒子による凹凸をさらに緻密に、かつ平均化することが
でき、ノングレア性や平坦性が透光性に優先されるよう
な場合に好適である。
[0014] In this case, too, the coating and pre-baking steps,
Combination with the firing step can be repeatedly performed a plurality of times, to form an almost single silica particle layer without an extreme difference in unevenness due to the overlapping of silica particles as described above, by repeating the number of times of the repetition When formed, the irregularities due to the silica particles can be more densely and evenly averaged, which is suitable when non-glare properties and flatness are prioritized over translucency.

【0015】以上の各発明において、また、霧化状態の
ポリマー液とガラス基材の表面との接触によって、ガラ
ス基材の表面にポリマー液を粒子状に塗布することがで
き、ポリマーの霧化分散を利用して均一な塗布ができ
る。
In each of the above inventions, the polymer liquid can be applied to the surface of the glass substrate in a particulate form by contact between the polymer liquid in the atomized state and the surface of the glass substrate. Uniform application can be achieved using dispersion.

【0016】霧化状態のポリマー液とガラス基材の表面
との接触は、ポリマー液の霧化雰囲気にガラス基材の表
面を曝して行なうのが均一塗布の面でさらに好適であ
り、ガラス基材の表面は上向きでポリマー液の霧化雰囲
気に曝すと、霧化状態のほぼ均等な分散状態からの自然
落下によってより均一に塗布させることができ特に好適
である。
The contact between the polymer liquid in the atomized state and the surface of the glass substrate is preferably performed by exposing the surface of the glass substrate to the atomization atmosphere of the polymer liquid in terms of uniform application. Exposure of the surface of the material upward to the atomization atmosphere of the polymer liquid is particularly preferable because the material can be applied more uniformly by natural fall from the substantially uniform dispersion state of the atomized state.

【0017】また、1または複数の所定回に塗布するポ
リマー液にそれが形成するシリカ粒子よりも小さい粒子
径300から1000Åの抗菌性微粒子を混入して行な
うと、ポリマー液が抗菌性微粒子を保持してシリカにま
で焼成されてバインダとなりガラス基材の表面に存在さ
せ続けるので、透光性ノングレア面に抗菌性を持たせる
ことができ、不特定多数の人が使用し触れるタッチスク
リーンの衛生性確保に有効である。シリカの粒子径は5
0μ以下であるのが好適である。
When the antimicrobial fine particles having a particle diameter of 300 to 1000 ° smaller than the silica particles to be formed are mixed with the polymer liquid to be applied one or more predetermined times, the polymer liquid retains the antimicrobial fine particles. It is then baked to silica and becomes a binder, which continues to exist on the surface of the glass substrate, so that the translucent non-glare surface can have antibacterial properties, and the hygiene of the touch screen used and touched by an unspecified number of people It is effective for securing. Silica particle size is 5
It is preferable that it is 0 μm or less.

【0018】また、ポリマー液の少なくとも初回の塗布
と次回の塗布との関係を含む、先の塗布時の粒子径を後
の塗布時の粒子径よりも大きくすると、先の塗布ではポ
リマー液の少ない粒子数での重なり率のより低い定密度
状態にてガラス基材表面の塗布面積率を稼ぎやすくする
のに併せ、後の塗布ではポリマー液の粒子が先のシリカ
粒子よりも小さいことにより、先のシリカ粒子の撥水性
によるはじき作用を受けてそれらの隙間領域を埋めるの
に、先のシリカ粒子とより重なりにくくなり、シリカ粒
子によるほぼ均等で平坦な凹凸を持った透光性のよいノ
ングレア面を形成しやすく、品質が安定する。
When the particle diameter at the time of the first coating including the relationship between at least the first coating and the next coating of the polymer liquid is larger than the particle diameter at the time of the subsequent coating, the amount of the polymer liquid in the first coating is small. In addition to facilitating the application area ratio on the surface of the glass substrate in a constant density state where the overlap ratio in the number of particles is lower, the particles of the polymer liquid are smaller in the later application than the silica particles in the earlier application. The non-glare surface with good translucency with almost uniform and flat irregularities due to the silica particles being less likely to overlap with the previous silica particles to fill those gaps due to the repelling action of the silica particles due to the water repellency And the quality is stable.

【0019】本発明の透光性ノングレアタッチスクリー
ンは、透明なガラス基板の表面に、複数回異時に塗布、
焼成された透光性のあるシリカの粒子からなる透光性ノ
ングレア層を有し、最終に塗布、焼成されるシリカの粒
子を除く、それよりも先に塗布、焼成されたシリカの粒
子の少なくとも初回のシリカの粒子は、それより後のシ
リカの粒子の焼成まで撥水性を持つ物質が生成された履
歴を持つものであることを第1の特徴としている。
The translucent non-glare touch screen of the present invention is applied to the surface of a transparent glass substrate a plurality of times at different times.
Having a light-transmitting non-glare layer composed of calcined translucent silica particles, excluding the silica particles that are finally applied and calcined, at least of the silica particles calcined and calcined earlier than that The first feature is that the first silica particles have a history of producing a substance having water repellency until the subsequent silica particles are fired.

【0020】このような構成では、前記第1または第2
の特徴の透光性ノングレア面化加工方法によって得ら
れ、ガラス基板の表面に透光性のあるシリカの粒子が複
数回塗布、焼成された密で粒子のランダムな重なりによ
る極端な凹凸のない透光性、タッチ間隔およびドラッグ
性が共によい優れたノングレア面を持った透光性ノング
レアタッチスクリーンを実現し、非エッチング方式のも
のであることによって強度の低下がなく歩留まりよく得
られる。
In such a configuration, the first or the second
The transparent non-glare surface processing method is characterized by the following characteristics: the transparent silica particles are coated and baked a plurality of times on the surface of the glass substrate, and the transparent silica particles have no irregularities due to random overlapping of the particles. A light-transmitting non-glare touch screen having an excellent non-glare surface with good light properties, touch intervals and drag properties is realized, and a non-etching type is used to obtain a good yield without a decrease in strength.

【0021】本発明の透光性ノングレアタッチスクリー
ンは、また、透明なガラス基板の表面に、複数回異時に
塗布、焼成された透光性のあるシリカの粒子からなる透
光性ノングレア層を有し、この透光性ノングレア層はシ
リカの粒子がほぼ一重に焼成されていることを第2の特
徴としている。
The light-transmitting non-glare touch screen of the present invention also has a light-transmitting non-glare layer made of light-transmitting silica particles applied and fired at different times a plurality of times on the surface of a transparent glass substrate. The second feature of the light-transmitting non-glare layer is that silica particles are substantially single-fired.

【0022】このような構成でも、第1の特徴の場合同
様に、前記第1または第2の特徴の透光性ノングレア面
化加工方法によって得られ、ガラス基板の表面に透光性
のあるシリカの粒子が複数回塗布、焼成された密で粒子
のランダムな重なりによる極端な凹凸のない透光性、タ
ッチ感触およびドラッグ性が共により優れたノングレア
面を持った透光性ノングレアタッチスクリーンを実現
し、非エッチング方式のものであることによって強度の
低下がなく歩留まりよく得られる。
[0022] Even in such a configuration, similarly to the case of the first feature, the light-transmitting non-glare surface-forming method of the first or second feature is employed, and the surface of the glass substrate is made of silica having a light-transmitting property. A translucent non-glare touch screen with a non-glare surface with excellent non-glare surface that has no irregularities due to the random and overlapping of dense particles that have been coated and fired multiple times. However, by using the non-etching method, the strength is not reduced and a good yield can be obtained.

【0023】これらの発明において、さらに、最初に塗
布、焼成されたシリカの粒子径は、後に塗布、焼成され
るシリカの粒子径よりも大きいと、シリカの初回の塗
布、焼成による粒子密度を高めやすくなる。
In these inventions, if the particle diameter of the silica which is first applied and fired is larger than the particle diameter of the silica which is applied and fired later, the particle density by the first application and firing of silica is increased. It will be easier.

【0024】また、最終に塗布、焼成されたシリカの粒
子は、抗菌性粒子を担持ないしは含んだものとすること
ができ、透光性ノングレア面に抗菌性を持たせることが
でき、不特定多数の人が使用し触れるタッチスクリーン
の衛生性確保に有効である。
Further, the silica particles finally coated and calcined can carry or contain antibacterial particles, can have antibacterial properties on the light-transmitting non-glare surface, and can have an unspecified number of particles. It is effective to ensure the sanitation of the touch screen used and touched by other people.

【0025】本発明のそれ以上の目的および特徴は、以
下の詳細な説明および図面の記載によって明らかにな
る。本発明の各特徴は、可能な限りにおいてそれ単独
で、あるいは種々な組み合わせで複合して用いることが
できる。
Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態に係る
透光性ノングレア面化加工方法につき図面を参照しなが
ら詳細に説明し、本発明の理解に供する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a method for forming a light-transmitting non-glare surface according to an embodiment of the present invention.

【0027】本実施の形態は図1に示すように、透明性
の面からクリアガラスをガラス基材1とし、これの表面
を透光性のよい微小なシリカ粒子3の付着によって非エ
ッチング方式で透光性ノングレア面化し、タッチスクリ
ーン2を製造する場合の一例である。しかし、本発明は
これに限られることはなく、表示スクリーンなど透光性
とノングレア性とが要求される板材、あるいは非板材一
般に適用して有効である。
In this embodiment, as shown in FIG. 1, a clear glass is used as a glass substrate 1 from a transparent surface, and the surface of the glass substrate 1 is formed by a non-etching method by attaching fine silica particles 3 having good light transmission. This is an example of a case where the touch screen 2 is manufactured by forming a translucent non-glare surface. However, the present invention is not limited to this, and is effective when applied to a plate material such as a display screen which requires translucency and non-glare properties or a non-plate material in general.

【0028】シリカを焼成する原料として、ケイ素−窒
素結合物質Si−Nと水素原子Hを持ち、有機溶剤に可
溶な無機ポリマー(SiH2 NH、例えば東燃株式会社
製のパーヒドロポリシラザン)が知られている。この無
機ポリマーの有機溶媒溶液であるポリマー液を塗布し大
気中で焼成すると大気中の水分や酸素と反応して高純度
シリカが得られる。例えば450℃で焼成するとアモル
ファスな状態のシリカSiO2 が得られる。その反応式
は次の通りであり、 ‐SiH2 NH‐+O2 → SiO2 +NH3 ‐SiH2 NH‐+H2 O → SiO2 +NH3 +H2 焼成時の雰囲気ガスを分析すると、アンモニアおよび水
素の生成が確認される。
As a raw material for calcining silica, an inorganic polymer (SiH 2 NH, for example, perhydropolysilazane manufactured by Tonen Corporation) having a silicon-nitrogen bonding substance Si—N and a hydrogen atom H and soluble in an organic solvent is known. Have been. When a polymer solution, which is an organic solvent solution of the inorganic polymer, is applied and baked in the atmosphere, it reacts with moisture and oxygen in the atmosphere to obtain high-purity silica. For example, when calcined at 450 ° C., amorphous silica SiO 2 is obtained. The reaction formula is as follows: -SiH 2 NH- + O 2 → SiO 2 + NH 3 -SiH 2 NH- + H 2 O → SiO 2 + NH 3 + H 2 Generation is confirmed.

【0029】このシリカのIRスペクトルは図3に示す
ようにシロキサンSi−Oの吸収が成長しており、塗布
する液状の無機ポリマーで見られるシリカ以外の成分に
よる吸収はほぼ焼失している。またこのシリカの特性
は、密度2.1〜2.2g/cm3 、屈折率1.46、
抵抗率約1015、絶縁耐圧性>2×106 V/cm、比
誘電率4.2@1MHz、可視領域の光透過率98%以
上であり、膜状形態での透明性は石英ガラスと同等であ
る。
In the IR spectrum of this silica, as shown in FIG. 3, the absorption of siloxane Si—O has grown, and the absorption due to components other than silica, which is found in the liquid inorganic polymer to be applied, has almost completely been burned off. The characteristics of this silica include a density of 2.1 to 2.2 g / cm 3 , a refractive index of 1.46,
The resistivity is about 10 15 , the withstand voltage> 2 × 10 6 V / cm, the relative dielectric constant is 4.241 MHz, the light transmittance in the visible region is 98% or more, and the transparency in the film form is the same as that of quartz glass. Are equivalent.

【0030】そこで、本発明者等は、図1に示すように
上記液状の無機ポリマー、つまりポリマー液3aをガラ
ス基材1上に粒子状に塗布して焼成することによりガラ
ス基材1の表面を粗面化し透光性のあるノングレア面4
を得る研究開発を行なっている。
Then, the present inventors applied the above-mentioned liquid inorganic polymer, that is, the polymer liquid 3a to the glass substrate 1 in the form of particles as shown in FIG. Non-glare surface 4
Research and development.

【0031】ところで、タッチスクリーンにはアナログ
容量結合方式、光方式、超音波方式および抵抗膜方式な
ど、さまざまなテクノロジーがある。超音波方式ではタ
ッチスクリーン上を指でドラッグして描くサインをその
筆圧変化とともに読取り、本人確認を行なう技術が開発
されている。この場合、タッチスクリーンのノングレア
面に極端な凹凸があるとドラッグ中そこに本人の意思や
癖に関わらない大きな筆圧が生じてノイズになり、読み
取りエラーの原因になる。また、ドラッグする指に引っ
掛かり感を及ぼして使用者に違和感、不快感を与える。
つまりタッチ感触の悪いものとなる。
There are various technologies for the touch screen, such as an analog capacitive coupling system, an optical system, an ultrasonic system, and a resistive film system. In the ultrasonic method, a technique has been developed in which a signature drawn by dragging a finger on a touch screen is read together with a change in the pen pressure to identify the sign. In this case, if there is extreme unevenness on the non-glare surface of the touch screen, a large writing pressure is generated during dragging that is not related to the intention or habit of the user, resulting in noise and a reading error. In addition, the dragging finger gives a sense of being caught, giving the user a sense of discomfort and discomfort.
That is, the touch feeling is poor.

【0032】しかし、本発明者等の経験によれば、ポリ
マー液3aをガラス基板1の上に粒子状に塗布して所定
のグロス度のノングレア面を得るのに上記のような極端
な凹凸を避けるのは難しい。塗布密度が高いと、隣どう
しのポリマー液3aが接触して凝集し1つになることが
連続し膜化しやすくノングレア性は得られない。塗布密
度が低いと粒子間の隙間が大きくなってやはりグロス度
の高いノングレア性は得られない。そこで、塗布密度を
少なくして複数回塗布すると、図12に実験例を示すよ
うに先の大きなシリカ粒子3に後の小さなシリカ粒子3
1、34が二重や三重に重なり、極端な凹凸の原因とな
る。これらは、ポリマー液3aを粒子状に塗布する操作
を繰り返すほど確率の問題として極端な凹凸が緩和さ
れ、平均化されていく。しかし、それには塗布操作を多
数回繰り返す必要があるし、シリカ粒子3が重なるほど
透明度が低下するので、タッチスクリーンとしての実用
性が欠けて行く。
However, according to the experience of the present inventors, in order to obtain a non-glare surface having a predetermined glossiness by applying the polymer liquid 3a to the glass substrate 1 in the form of particles, the above-mentioned extreme unevenness is required. Hard to avoid. When the coating density is high, the polymer liquids 3a adjacent to each other come into contact with each other to be aggregated into one, and it is easy to form a film, and the non-glare property cannot be obtained. If the coating density is low, the gap between the particles becomes large, and the non-glare property with a high gloss cannot be obtained. Therefore, when the coating density is reduced and the coating is performed a plurality of times, as shown in the experimental example in FIG.
1, 34 overlaps doubly or triple, causing extreme unevenness. In these, as the operation of applying the polymer liquid 3a in the form of particles is repeated, extreme irregularities are reduced and averaged as a problem of probability. However, this requires repeating the coating operation many times, and the more the silica particles 3 overlap, the lower the transparency, and thus the practicality as a touch screen is lacking.

【0033】一方、本発明者等は種々な実験からポリマ
ー液3aの前記シリカまでの焼成において撥水性の物質
がシロキサンとともに生成されることを知見している。
この撥水性の物質は例えばケイ素−水素結合物質Si−
Hであり、ポリマ−液3aをはじく。このような中間物
質は例えば焼成温度を80〜200℃、焼成時間を15
分〜5分に設定して安定に得られる。焼成温度が高いと
焼成時間は短くてよく、焼成温度が低いと焼成時間は長
く要る。図3にその例を示し、80℃×10分の焼成を
行なった場合のスペクトルである。図3では撥水性の物
質Si−Hがシロキサンとともに生成されているのが確
認できる。
On the other hand, the present inventors have found from various experiments that a water-repellent substance is produced together with siloxane in the calcination of the polymer liquid 3a to the silica.
This water-repellent substance is, for example, a silicon-hydrogen bonding substance Si-
H, which repels the polymer liquid 3a. Such an intermediate substance has, for example, a baking temperature of 80 to 200 ° C. and a baking time of 15 minutes.
It can be obtained stably by setting to minutes to 5 minutes. If the firing temperature is high, the firing time may be short, and if the firing temperature is low, the firing time is long. FIG. 3 shows an example of the spectrum, which is a spectrum obtained when baking is performed at 80 ° C. for 10 minutes. In FIG. 3, it can be confirmed that the water-repellent substance Si-H is generated together with the siloxane.

【0034】本実施の形態はこれらシリカの特性と、シ
リカ焼成において生成されるSi−Hなどの撥水性の物
質の特性とを巧みに活かしたもので、クリアガラスであ
るガラス基材1の表面に、ケイ素−窒素結合物質Si−
Nと水素原子Hを持ち、有機溶剤に可溶な無機ポリマー
の有機溶媒溶液であるポリマー液3a(SiH2 NH、
例えば東燃株式会社製のポリシラザン)を図1に示すよ
うに粒子状に塗布し、この塗布した粒子状のポリマー液
3aを撥水性の物質が生成するように大気中で焼成する
ことを1回以上行なう前工程と、この前工程後のガラス
基材1の表面に前記無機ポリマー3aを粒子状に塗布
し、この塗布した粒子状のポリマー液3aおよび前工程
による前記中間物をシリカSiO2 まで大気中で焼成す
る後工程とを備え、ガラス基材1の表面を透光性のある
シリカ粒子3が図1、図2に示すように散在した透光性
ノングレア面4を得る。
The present embodiment skillfully utilizes the characteristics of these silicas and the characteristics of a water-repellent substance such as Si-H generated during the firing of silica. The silicon-nitrogen bonding substance Si-
Polymer liquid 3a (SiH 2 NH, which is an organic solvent solution of an inorganic polymer having N and hydrogen atoms H and soluble in an organic solvent.
For example, polysilazane (manufactured by Tonen Co., Ltd.) is applied in the form of particles as shown in FIG. 1, and the applied particle-like polymer liquid 3a is fired at least once in the air so as to generate a water-repellent substance. air and pre-process, the pre-said inorganic polymer 3a on the surface of the glass substrate 1 is coated particulate after the step, the intermediate product according to the coated particulate polymer solution 3a and before step to silica SiO 2 to perform And a post-baking step in the inside, so as to obtain a translucent non-glare surface 4 in which translucent silica particles 3 are scattered on the surface of the glass substrate 1 as shown in FIGS.

【0035】このようにガラス基材1の上に前記無機ポ
リマーを粒子状に塗布して、これに前記撥水性の物質が
生成されるように焼成することを1回以上行なうこと
で、ガラス基材1の表面に焼成により撥水性の物質が生
成しているシロキサン粒子ないしはシリカ粒子3として
1回以上形成される。
As described above, the inorganic polymer is applied to the glass substrate 1 in the form of particles and baked on the glass substrate 1 at least once so as to produce the water-repellent substance. The siloxane particles or silica particles 3 in which a water-repellent substance is generated by firing on the surface of the material 1 are formed at least once.

【0036】ここで、ガラス基材1の上に前記ポリマー
液3aを最初に塗布、焼成するのに、それよりも後に塗
布、焼成するポリマー液3aよりも粒子径を大きくする
ことにより、シリカの初回の塗布、焼成による粒子密度
を高めやすくして、しかも、それより後に塗布する粒子
状のポリマー液3aにつき、撥水性の物質が生成してい
る前記先のシリカ粒子3がその撥水性によりまわりへは
じいて上下の重なりを防止しながら、先のシリカ粒子3
がない隙間領域に追いやりそこを埋めて高密度化してい
く働きをさせることができる。なお、先のシリカ粒子3
中の撥水性の物質は後のポリマー液3aとともに後工程
にてシリカに焼成される。
Here, when the polymer liquid 3a is first applied and fired on the glass substrate 1, the particle diameter is made larger than that of the polymer liquid 3a which is applied and fired later. It is easy to increase the particle density by the first application and baking, and for the particulate polymer liquid 3a to be applied after that, the above-mentioned silica particles 3 in which the water-repellent substance is generated turn around due to the water repellency. The silica particles 3
It can be made to work in the gap region where there is no gap and fill it up to increase the density. The silica particles 3
The water-repellent substance therein is calcined together with the polymer liquid 3a to silica in a later step.

【0037】この結果、先のシリカ粒子3と後のシリカ
粒子31とに上下の重なりなくほぼ一重に高密度にガラ
ス基材1上に焼成して結合させ、シリカ粒子3、31の
透明性とそれらが作る凹凸にて乱反射させることによる
ノングレア性とをシリカ粒子3、31の重なりによる極
端な凹凸なしに満足することができる。
As a result, the first silica particles 3 and the second silica particles 31 are baked and bonded to the glass substrate 1 at a density of approximately one without any vertical overlap, thereby bonding the silica particles 3 and 31 with the transparency. The non-glare property due to irregular reflection by the irregularities created by them can be satisfied without extreme irregularities due to the overlapping of the silica particles 3 and 31.

【0038】しかも、前工程の塗布、焼成を複数回行な
うことにより、前記撥水性の物質による重なりを防止し
ながらの高密度化の特性を繰り返し利用してシリカ粒子
3、31の重なりなくさらなる高密度化を図ることがで
きる。また、非エッチング方式の透光性ノングレア面化
であるためガラス基材1の気泡を大きく口を開かせるよ
うなことがなく、強度や透光性の面でもガラス基材1の
歩留まりは良好である。
Moreover, by performing the coating and baking in the previous step a plurality of times, the characteristics of densification while preventing the water-repellent substance from being overlapped are repeatedly used, so that the silica particles 3 and 31 can be further overlapped without overlapping. Density can be increased. Further, since the light-transmitting non-glare surface is formed by the non-etching method, the air bubbles of the glass substrate 1 are not greatly opened, and the yield of the glass substrate 1 is good in terms of strength and light-transmitting properties. is there.

【0039】なお、無機ポリマーの分子量はポリマー液
3aの焼成特性などに関係し、数平均分子量を500〜
4000程度に設定してよく、数平均分子量700〜1
500のパーヒドロポリシラザンの20%溶液を用いる
のが好ましい。溶剤としては、脂肪族炭化水素、脂環式
炭化水素、芳香族炭化水素の炭化水素溶媒、ハロゲン化
メタン、ハロゲン化エタン、ハロゲン化ベンゼン等のハ
ロゲン化炭化水素、脂肪族エーテル、脂環式エーテル等
のエーテル類が使用できる。好ましい溶媒は、塩化メチ
レン、クロロホルム、四塩化炭素、プロモホルム、塩化
エチレン、塩化エチリデン、トリクロロエタン、テトラ
クロロエタン等のハロゲン化炭化水素、エチルエーテ
ル、イソプロピルエーテル、エチルブチルエーテル、ブ
チルエーテル、1,2・・ジオキシエタン、シオキサ
ン、ジメチルジオキサン、テトラヒドロフラン、テトラ
ヒドロピラン等のエーテル類、ペンタンヘキサン、イソ
ヘキサン、メチルペンタン、ヘプタン、イソヘプタン、
オクタン、イソオクタン、シクロペンタン、メチルシク
ロペンタン、シクロヘキサン、メチルシクロヘキサン、
ベンゼン、トルエン、キシレン、エチルベンゼン等の炭
化水素等である。
The molecular weight of the inorganic polymer is related to the sintering characteristics of the polymer liquid 3a and the like.
It may be set to about 4000, and the number average molecular weight is 700 to 1
Preferably, a 20% solution of 500 perhydropolysilazane is used. Examples of the solvent include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbon solvents, halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene, aliphatic ethers, alicyclic ethers. And the like. Preferred solvents are methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, ethylidene chloride, trichloroethane, halogenated hydrocarbons such as tetrachloroethane, ethyl ether, isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane, Ethers such as siloxane, dimethyldioxane, tetrahydrofuran, tetrahydropyran, pentanehexane, isohexane, methylpentane, heptane, isoheptane,
Octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane,
Hydrocarbons such as benzene, toluene, xylene, and ethylbenzene.

【0040】これらの溶剤を使用する場合、前記パーヒ
ドロポリシラザンの溶解度や溶剤の蒸発速度を調節する
ために、2種類以上の溶剤を混合してもよい。
When these solvents are used, two or more solvents may be mixed in order to adjust the solubility of the perhydropolysilazane and the evaporation rate of the solvent.

【0041】撥水性の物質が、ケイ素−水素結合物質S
iHであるとき、上記本発明者等の知見に従えば、焼成
温度を80〜200℃、焼成時間を15分〜5分の焼成
条件として好適である。また、このような撥水性の物質
のための焼成温度とシリカの焼成温度450℃を例にと
ると、本実施の形態の焼成工程は、前工程の焼成温度
を、撥水性の物質を生成させるために後工程の焼成温度
に至らない温度で行なうものとしても捉えることがで
き、撥水性の物質の生成効率、安定性の面で好適であ
る。
The water-repellent substance is a silicon-hydrogen bonding substance S
In the case of iH, according to the findings of the present inventors, it is preferable to set the firing temperature at 80 to 200 ° C. and the firing time at 15 to 5 minutes. Further, taking as an example a baking temperature for such a water-repellent substance and a baking temperature of 450 ° C. for silica, the baking step of the present embodiment uses the baking temperature of the previous step to generate a water-repellent substance. For this reason, it can be considered that the heat treatment is performed at a temperature that does not reach the firing temperature in the subsequent step, which is suitable in terms of the efficiency of generation of the water-repellent substance and the stability.

【0042】さらに、各場合の前工程及び後工程の関係
は、撥水性の物質を最終的にシリカに焼成できる関係か
らは、前記塗布と、塗布した粒子状のポリマー液3aの
焼成途中のシリカ粒子3に撥水性を持った中間物質を生
成させるように前記焼成温度より低い温度で仮焼成する
塗布、仮焼成工程と、その後の塗布と、塗布した粒子状
のポリマー液3aと先の撥水性の物質とをシリカに焼成
する塗布、焼成工程との関係としても捉えることができ
る。上記以外の撥水性の物質としては、Si−メチル、
Si−フェニール、Si−弗化アルキルなどがある。
Further, the relationship between the pre-process and the post-process in each case is that the water-repellent substance can be finally baked into silica from the viewpoint of the above-mentioned coating and the sintering of the coated particulate polymer liquid 3a. Coating, pre-sintering step, and subsequent application in which the particles 3 are pre-sintered at a temperature lower than the sintering temperature so as to generate a water-repellent intermediate substance, and the applied particulate polymer liquid 3a and the previous water repellency Can be also grasped as a relationship with the coating and baking steps of baking the substance with silica. Other water-repellent substances include Si-methyl,
Examples include Si-phenyl and Si-alkyl fluoride.

【0043】しかし、本発明者等は臨界条件を求めた訳
ではなく、他の種々な焼成条件や他の種々な撥水性の物
質、およびこれを持ったシリカ焼成のための他のポリマ
ー液3aの存在は否定できず、基本的には上記に限定さ
れない。
However, the present inventors have not sought critical conditions, but have determined various other firing conditions, other various water-repellent substances, and other polymer liquids 3a for firing silica containing the same. Cannot be denied, and is basically not limited to the above.

【0044】以上の各場合において、霧化状態のポリマ
ー液3aとガラス基材1の表面との接触によって、ガラ
ス基材1の表面にポリマー液3aを粒子状に塗布するこ
とができ、ポリマー液3aの霧化分散を利用して均一な
塗布ができる。霧化状態のポリマー液3aとガラス基材
1の表面との接触は、ポリマー液3aの霧化雰囲気にガ
ラス基材1の表面を曝して行なうのが均一塗布の面でさ
らに好適であり、ガラス基材1の表面は上向きでポリマ
ー液3aの霧化雰囲気に曝すと、霧化状態のほぼ均等な
分散状態からの自然落下によってより均一に塗布させる
ことができる。
In each of the above cases, the contact of the atomized polymer liquid 3a with the surface of the glass substrate 1 allows the polymer liquid 3a to be applied to the surface of the glass substrate 1 in the form of particles. Uniform application can be performed using the atomization dispersion of 3a. The contact between the polymer liquid 3a in the atomized state and the surface of the glass substrate 1 is more preferably performed by exposing the surface of the glass substrate 1 to the atomizing atmosphere of the polymer liquid 3a in terms of uniform application. If the surface of the base material 1 is exposed upward to the atomizing atmosphere of the polymer liquid 3a, it can be applied more uniformly by spontaneous drop from a substantially uniform dispersion state of the atomized state.

【0045】1または複数の所定回、例えば最終に塗布
するポリマー液3aに、それが形成する粒子31よりも
小さい抗菌性微粒子32を混入して前記シリカの焼成を
行なうと、ポリマー液3aが抗菌性微粒子32を保持し
てシリカ粒子3にまで焼成されてバインダとなり、ガラ
ス基材1の表面に抗菌性微粒子32を存在させ続けるの
で、透光性ノングレア面に抗菌性を安定して持たせるこ
とができ、不特定多数の人が使用し触れるタッチスクリ
ーンの衛生性を確保するのに有効である。
When one or more predetermined times, for example, the antibacterial fine particles 32 smaller than the particles 31 to be formed are mixed into the polymer liquid 3a to be finally applied and the silica is calcined, the polymer liquid 3a becomes antibacterial. The transparent non-glare surface is stably provided with antibacterial properties because the non-glare surface of the glass substrate 1 is kept baked to the silica particles 3 while retaining the conductive fine particles 32 to form a binder. This is effective for ensuring the hygiene of the touch screen used and touched by an unspecified number of people.

【0046】抗菌性微粒子32にはAg、Cu、Znな
どの抗菌性のある金属イオンを含む無機粒子がその取扱
いや抗菌性の持続において好適である。抗菌性微粒子3
2の粒子径は小さいほど比表面積が大きく質量に対する
抗菌作用面の比が大きくなって抗菌性を発揮するのに有
利である。また、ポリマー液3a中において互いに凝集
せず分散していることが必要である。これを満足するの
に抗菌性微粒子32の粒子径は300〜1000Å程度
とするのが好適であり、必要に応じて分散させて凝集防
止を行う。
As the antibacterial fine particles 32, inorganic particles containing antibacterial metal ions such as Ag, Cu, and Zn are suitable for handling and maintaining antibacterial properties. Antibacterial fine particles 3
The smaller the particle size of 2, the larger the specific surface area, the larger the ratio of the antibacterial action surface to the mass, which is advantageous for exhibiting antibacterial properties. Further, it is necessary that the polymer liquid 3a be dispersed without being aggregated in the polymer liquid 3a. In order to satisfy this, it is preferable that the particle size of the antibacterial fine particles 32 is about 300 to 1000 °, and if necessary, the particles are dispersed to prevent aggregation.

【0047】また、上記した従来のフッ酸処理によるノ
ングレア面には大きいもので24.48μ程度、小さな
もので7.771μ程度の凹部ができてノングレア面化
している。本実施の形態におけるシリカ粒子3、31の
粒子径は一例として、大きいもので16.126μ程
度、中ぐらいのもので5.912μ程度、小さなもので
0.61μ程度以下のものが散在してノングレア面化し
ており、フッ酸処理の場合とほぼ同等のノングレア面が
得られている。
The non-glare surface formed by the above-mentioned conventional hydrofluoric acid treatment has a large concave portion of about 24.48 μm and a small concave portion of about 7.771 μm, and has a non-glare surface. As an example, the particle diameter of the silica particles 3 and 31 in the present embodiment is about 16.126 μm for a large one, about 5.912 μm for a medium one, and about 0.61 μm or less for a small one. The surface is flat, and a non-glare surface almost equal to that in the case of hydrofluoric acid treatment is obtained.

【0048】また、ポリマー液3aの少なくとも初回の
塗布と次回の塗布との関係を含む、先の塗布時の粒子径
を後の塗布時の粒子径よりも大きくすると、先の塗布で
はポリマー液3aの少ない粒子数での重なり率のより低
い定密度状態にてガラス基材1表面の塗布面積率を稼ぎ
やすくするのに併せ、後の塗布ではポリマー液3aの粒
子が先のシリカ粒子3よりも小さいことにより、先のシ
リカ粒子3の撥水性によるはじき作用を受けてそれらの
隙間領域を埋めるのに、先のシリカ粒子3とより重なり
にくくなり、シリカ粒子3によるほぼ均等で平坦な凹凸
を持った透光性のよいノングレア面4を形成しやすく、
品質が安定する。しかも、粒子径の違うシリカ粒子の混
在によって、粒子の上下の重なりに原因するような極端
な凹凸をもたらさないで、乱反射率を高めグロス度を高
めることができる。
When the particle diameter at the time of the first application including the relationship between at least the first application and the next application of the polymer liquid 3a is larger than the particle diameter at the time of the subsequent application, the polymer liquid 3a is used at the first application. In addition to facilitating the gain of the coating area ratio on the surface of the glass substrate 1 in a constant density state where the overlap ratio is low with a small number of particles, the particles of the polymer liquid 3a in the later coating are smaller than the silica particles 3 in the preceding coating. Due to its small size, the silica particles 3 are repelled by the water repellency to fill the gaps between them, so that they are less likely to overlap with the previous silica particles 3 and have substantially uniform and flat irregularities due to the silica particles 3. Easy to form a non-glare surface 4 with good translucency,
Quality is stable. In addition, by mixing silica particles having different particle diameters, it is possible to increase the irregular reflectance and the gross degree without causing extreme unevenness caused by the vertical overlapping of the particles.

【0049】ところで、タッチスクリーンにおいて超音
波方式を採用するものでは、超音波特性を十分に発揮さ
せるのに、厚さ3mm程度の厚みのガラス板が好適であ
る。そこで、厚さ3mmのクリアガラスよりなるガラス
基板をガラス基材1として、上記のような透光性ノング
レア面化加工を行うことにより、透明なガラス基板の表
面に、複数回異時に塗布、焼成された透光性のあるシリ
カの粒子からなる透光性ノングレア層を有し、最終に塗
布、焼成されるシリカの粒子を除く、それよりも先に塗
布、焼成されたシリカの粒子の少なくとも初回のシリカ
の粒子は、それより後のシリカの粒子の焼成まで撥水性
を持つ物質が生成された履歴を持つものとなる透光性ノ
ングレアタッチスクリーンが得られる。
By the way, if the touch screen employs an ultrasonic method, a glass plate having a thickness of about 3 mm is suitable for sufficiently exhibiting ultrasonic characteristics. Therefore, a glass substrate 1 made of clear glass having a thickness of 3 mm is used as the glass substrate 1 and the above-mentioned translucent non-glare surface treatment is performed to apply and bake a plurality of times on the surface of the transparent glass substrate at different times. Having a translucent non-glare layer composed of translucent silica particles, excluding the silica particles that are finally applied and calcined, at least the first of the previously applied and calcined silica particles The silica particles of the above can provide a light-transmitting non-glare touch screen having a history of producing a substance having water repellency until the subsequent silica particles are fired.

【0050】この得られる透光性ノングレアタッチスク
リーンは、また、透明なガラス基板の表面に、複数回異
時に塗布、焼成された透光性のあるシリカの粒子からな
る透光性ノングレア層を有し、この透光性ノングレア層
はシリカの粒子がほぼ一重に焼成されたものでもある。
The obtained translucent non-glare touch screen also has a translucent non-glare layer made of translucent silica particles which are applied and fired at different times a plurality of times on the surface of a transparent glass substrate. The light-transmitting non-glare layer is also obtained by baking silica particles almost once.

【0051】いずれのものも、好適な透光性、好適なノ
ングレア性、好適なドラッグ性、好適な超音波特性を発
揮するし、ガラス基板の素材自体の持つ欠点による以外
に不良品となることはない。従って、ガラス基板の素材
の品質検査を十分にしておけば歩留まりの問題は生じな
い。
Each of them exhibits suitable translucency, suitable non-glare properties, suitable drag properties, and suitable ultrasonic characteristics, and is defective due to defects of the glass substrate material itself. There is no. Therefore, if the quality inspection of the glass substrate material is sufficiently performed, the problem of the yield does not occur.

【0052】本実施の形態の幾つかの実施例を比較例と
ともに以下に示す。
Some examples of this embodiment are shown below together with comparative examples.

【0053】実施例1 厚さ3mmのクリヤガラスよりなるガラス基板の表面に
数平均分子量700のパーヒドロポリシラザンN−N1
10(東燃株式会社製)のキシレン20%溶液を用いて
2回吹きした。1回吹き後150℃で5分間焼成を行
い、2回吹き後は450℃で60分間焼成を行った。2
回吹きに際し抗菌性微粒子として粒子径が700Åの銀
を用いた。
Example 1 A perhydropolysilazane N--N1 having a number average molecular weight of 700 was coated on the surface of a glass substrate made of clear glass having a thickness of 3 mm.
10 (manufactured by Tonen Co., Ltd.) was sprayed twice using a 20% xylene solution. After blowing once, baking was performed at 150 ° C. for 5 minutes, and after blowing twice, baking was performed at 450 ° C. for 60 minutes. 2
At the time of re-blowing, silver having a particle diameter of 700 ° was used as the antibacterial fine particles.

【0054】これにより得られた透光性ノングレアタッ
チスクリーンの表面状態を示すと、100倍では図4
(a)または図5(a)に示すとおりであり、400倍
で示すと図4(b)、図5(b)に示す通りであった。
なお、図4(b)、図5(b)に示す拡大領域は図4
(a)または図5(a)における対応する箇所に枠を施
して示してある。図4(b)、図5(b)の中で黒い斑
点は抗菌性微粒子32であり、1回目のシリカ粒子3と
2回目のシリカ粒子31の上下の重なりは見られない。
The surface state of the translucent non-glare touch screen thus obtained is shown in FIG.
(A) or FIG. 5 (a), and when the magnification is 400 times, it was as shown in FIGS. 4 (b) and 5 (b).
The enlarged area shown in FIG. 4B and FIG.
(A) or a corresponding portion in FIG. 5 (a) is shown with a frame. 4 (b) and 5 (b), black spots are the antibacterial fine particles 32, and no vertical overlap between the first silica particles 3 and the second silica particles 31 is observed.

【0055】また、実施例1でのノングレアタッチスク
リーンの表面における抗菌性は、フィルム密着法による
大腸菌では、初期菌数105 が、室温6時間後に10に
低下し、黒コウジカビ(アスペルギルスニイガー)で
は、初期菌数105 が、室温6時間後に103 、室温2
4時間後に102 にまで低下し、青カビ(ペニシリウム
シトリナム)も初期菌数105 が、室温24時間後に1
0まで低下した。
The antibacterial property on the surface of the non-glare touch screen in Example 1 was as follows. In Escherichia coli by the film adhesion method, the initial number of bacteria decreased from 10 5 to 10 after 6 hours at room temperature, and Aspergillus niger was increased. Then, the initial number of bacteria 10 5 was increased to 10 3 and room temperature 2 after 6 hours at room temperature.
After 4 hours, it decreased to 10 2 , and blue mold (penicillium citrinum) also showed an initial bacterial count of 10 5 and 1 hour after room temperature at 24 hours.
It dropped to zero.

【0056】実施例2 厚さ3mmのクリヤガラスよりなるガラス基板の表面に
数平均分子量700のパーヒドロポリシラザンN−N1
10(東燃株式会社製)のキシレン20%溶液を用いて
3回吹きした。1回吹き後120℃で10分間焼成を行
い、2回吹き後も120℃で10分間焼成を行い、3回
吹き後は450℃で60分間焼成を行った。3回吹きに
際し抗菌性微粒子として粒子径が700Åの銀を用い
た。
Example 2 Perhydropolysilazane N--N1 having a number average molecular weight of 700 was coated on the surface of a glass substrate made of clear glass having a thickness of 3 mm.
It was sprayed three times using a 20% xylene solution of 10 (manufactured by Tonen Corporation). After the first blow, baking was performed at 120 ° C. for 10 minutes, after the second blow, baking was performed at 120 ° C. for 10 minutes, and after the third blow, baking was performed at 450 ° C. for 60 minutes. At the time of blowing three times, silver having a particle diameter of 700 ° was used as antibacterial fine particles.

【0057】これにより得られた透光性ノングレアタッ
チスクリーンの表面状態を示すと、100倍では図6
(a)または図7(a)に示すとおりであり、400倍
で示すと図6(b)、図7(b)に示す通りであった。
なお、図6(b)、図7(b)に示す拡大領域は図6
(a)または図7(a)における対応する箇所に枠を施
して示してある。図6(b)、図7(b)の中で黒い斑
点は抗菌性微粒子32であり、1回目のシリカ粒子3と
2回目のシリカ粒子31と、3回目のシリカ粒子34の
上下の重なりはほとんど見られず、実施例1に比しシリ
カ粒子の分散密度が向上している。なお、抗菌性は実施
例1の場合とほぼ同等の結果が得られた。
The surface state of the translucent non-glare touch screen thus obtained is shown in FIG.
(A) or FIG. 7 (a), and when shown at 400 times, as shown in FIG. 6 (b) and FIG. 7 (b).
The enlarged areas shown in FIG. 6B and FIG.
(A) or corresponding parts in FIG. 7 (a) are shown with a frame. 6 (b) and 7 (b), the black spots are the antimicrobial fine particles 32, and the vertical overlap of the first silica particle 3, the second silica particle 31, and the third silica particle 34 The dispersion density of the silica particles was hardly observed and the dispersion density of the silica particles was improved as compared with Example 1. In addition, antibacterial properties were almost the same as those in Example 1.

【0058】実施例3 厚さ3mmのクリヤガラスよりなるガラス基板の表面に
数平均分子量700のパーヒドロポリシラザンN−N1
10(東燃株式会社製)のキシレン20%溶液を用いて
2回吹きした。1回吹き後80℃で10分間焼成を行
い、2回吹き後は450℃で60分間焼成を行った。2
回吹きに際し抗菌性微粒子として粒子径が700Åの銀
を用いた。
Example 3 Perhydropolysilazane N--N1 having a number average molecular weight of 700 was coated on the surface of a glass substrate made of clear glass having a thickness of 3 mm.
10 (manufactured by Tonen Co., Ltd.) was sprayed twice using a 20% xylene solution. After blowing once, baking was performed at 80 ° C. for 10 minutes, and after blowing twice, baking was performed at 450 ° C. for 60 minutes. 2
At the time of re-blowing, silver having a particle diameter of 700 ° was used as the antibacterial fine particles.

【0059】これにより得られた透光性ノングレアタッ
チスクリーンの表面状態を示すと、100倍では図8
(a)または図9(a)に示すとおりであり、400倍
で示すと図8(b)、図9(b)に示す通りであった。
なお、図8(b)、図9(b)に示す拡大領域は図8
(a)または図9(a)における対応する箇所に枠を施
して示してある。図8(b)、図9(b)の中で黒い斑
点は抗菌性微粒子32であり、1回目のシリカ粒子3と
2回目のシリカ粒子31の上下の重なりは極く少ない。
なお、抗菌性は実施例1の場合とほぼ同等の結果が得ら
れた。
The surface state of the translucent non-glare touch screen thus obtained is shown in FIG.
(A) or FIG. 9 (a), and when shown at 400 times, as shown in FIGS. 8 (b) and 9 (b).
The enlarged areas shown in FIGS. 8B and 9B correspond to FIG.
9 (a) or corresponding parts in FIG. 9 (a) are framed. 8 (b) and 9 (b), the black spots are the antibacterial fine particles 32, and the first silica particles 3 and the second silica particles 31 have very little vertical overlap.
In addition, antibacterial properties were almost the same as those in Example 1.

【0060】比較例 厚さ3mmのクリヤガラスよりなるガラス基板の表面に
数平均分子量700のパーヒドロポリシラザンN−N1
10(東燃株式会社製)のキシレン20%溶液を用いて
3回吹きした。1回吹き後、2回吹き後、共に常温乾燥
し、3回吹き後は450℃で60分間焼成を行った。
Comparative Example A perhydropolysilazane N--N1 having a number average molecular weight of 700 was formed on the surface of a glass substrate made of clear glass having a thickness of 3 mm.
It was sprayed three times using a 20% xylene solution of 10 (manufactured by Tonen Corporation). After blowing once, after blowing twice, both were dried at room temperature, and after blowing three times, baking was performed at 450 ° C. for 60 minutes.

【0061】これにより得られた透光性ノングレアタッ
チスクリーンの表面状態を示すと、100倍では図10
(a)または図11(a)に示すとおりであり、400
倍で示すと図10(b)、図11(b)に示す通りであ
った。なお、図10(b)、図11(b)に示す拡大領
域は図10(a)または図11(a)における対応する
箇所に枠を施して示してある。図10(b)、図11
(b)の中で黒い斑点は抗菌性微粒子32であり、1回
目のシリカ粒子3と2回目のシリカ粒子31と、3回目
のシリカ粒子34の上下の重なりが多く見られるし、シ
リカ粒子の分散密度は2回吹きの実施例1、3と3回吹
きの実施例2との中間程度でしかない。
The surface state of the translucent non-glare touch screen thus obtained is shown in FIG.
(A) or as shown in FIG.
The magnification was as shown in FIGS. 10 (b) and 11 (b). The enlarged areas shown in FIG. 10B and FIG. 11B are indicated by corresponding frames in FIG. 10A or FIG. 11A with a frame. FIG. 10 (b), FIG.
In (b), black spots are antibacterial fine particles 32, and the first silica particles 3, the second silica particles 31, and the third silica particles 34 are often vertically overlapped. The dispersion density is only about halfway between Examples 1 and 3 of the double blow and Example 2 of the triple blow.

【0062】各実施例はそれぞれ抗菌性微粒子を最終吹
きのポリマー液に混合してノングレア面化加工と同時に
抗菌加工もしているが、抗菌加工は必要に応じてすれば
よいし、抗菌加工は上記したように行う回数やタイミン
グはいつでもよく、シリカを塗布、焼成する回数の全て
において行ってもよいし、塗布、焼成回数よりも少なく
1回または複数回行うにも、何回目の塗布、焼成時にす
るかは自由である。
In each of the embodiments, antibacterial fine particles are mixed with the polymer liquid of the last blow and antibacterial processing is performed simultaneously with non-glare surface treatment. The number of times and timing to perform as described above may be any time, may be performed in all of the number of times of applying and firing silica, or may be performed one or more times less than the number of times of application and firing, the number of times of application and firing It is up to you to do it.

【0063】なお、前記した前工程と後工程の組み合わ
せ、塗布、仮焼成工程と塗布、焼成工程との組み合せ
は、それぞれ複数回繰り返すこともでき、この場合、上
記のように極端な凹凸差のないほぼ一重となるシリカ粒
子3、31の層を形成することが、前記繰り返し回数分
だけ重ねて形成して、シリカ粒子3、31による凹凸を
さらに緻密に、かつ平均化することができ、ノングレア
性や平坦性が透光性に優先されるような場合に好適であ
る。
It should be noted that the above-mentioned combination of the pre-process and the post-process, and the combination of the coating and the calcination process and the coating and the calcination process can be repeated a plurality of times, respectively. It is possible to form a layer of silica particles 3 and 31 which are almost single layer by overlapping the same number of times as the above-mentioned number of repetitions, so that unevenness due to silica particles 3 and 31 can be more densely and averaged, and non-glare This is suitable for the case where the property or flatness is prioritized over the light transmitting property.

【0064】[0064]

【発明の効果】本発明によれば、上記の説明で明らかな
ように、ガラス基材の表面にシリカ粒子が上下に重なり
合わないでほぼ一重に並んで結合され、極端な凹凸のな
い平均化した乱反射面を形成することができるのと同時
に、この乱反射面を形成するシリカ粒子は透明性がよく
高い透光性を満足するので、品質のよい透光性ノングレ
ア面が得られる。しかも、非エッチング方式であってガ
ラス基材の気泡を大きく口を開けさせるようなことはな
く歩留まりは良好である。
According to the present invention, as is apparent from the above description, the silica particles are bonded to the surface of the glass substrate almost in a single line without overlapping vertically, and the averaging without extreme unevenness is achieved. At the same time as forming the irregularly-reflected surface, the silica particles forming the irregularly-reflective surface have high transparency and satisfy high translucency, so that a high-quality translucent non-glare surface can be obtained. In addition, since the non-etching method is used, air bubbles in the glass substrate are not greatly opened, and the yield is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る透光性ノングレア面
化したタッチスクリーンの断面図であり、図4(b)の
I−I線に沿って断面したものである。
FIG. 1 is a cross-sectional view of a touch screen having a translucent non-glare surface according to an embodiment of the present invention, and is a cross-sectional view taken along line II of FIG. 4B.

【図2】ポリマー液を焼成して得たシリカのIRスペク
トル図である。
FIG. 2 is an IR spectrum diagram of silica obtained by calcining a polymer solution.

【図3】ガラス基材に粒子状に塗布したポリマー液を8
0℃で10分焼成したときのIRスペクトル図である。
FIG. 3 shows a polymer liquid applied to a glass substrate in the form of particles.
It is an IR spectrum figure when baking at 0 degreeC for 10 minutes.

【図4】実施例1のタッチスクリーン表面の状態を示す
1つの部分の顕微鏡写真図で、その(a)は100倍の
場合、その(b)は400倍の場合を示している。
FIGS. 4A and 4B are micrographs of one portion showing the state of the surface of the touch screen in Example 1, wherein FIG. 4A shows a case of 100 times and FIG. 4B shows a case of 400 times.

【図5】実施例1のタッチスクリーン表面の状態を示す
別の部分の顕微鏡写真図で、その(a)は100倍の場
合、その(b)は400倍の場合を示している。
5A and 5B are micrographs of another portion showing a state of the touch screen surface of Example 1, wherein FIG. 5A shows a case of 100 times and FIG. 5B shows a case of 400 times.

【図6】実施例2のタッチスクリーン表面の状態を示す
1つの部分の顕微鏡写真図で、その(a)は100倍の
場合、その(b)は400倍の場合を示している。
FIGS. 6A and 6B are micrographs of one portion showing the state of the touch screen surface of Example 2, wherein FIG. 6A shows a case of 100 times and FIG. 6B shows a case of 400 times.

【図7】実施例2のタッチスクリーン表面の状態を示す
別の部分の顕微鏡写真図で、その(a)は100倍の場
合、その(b)は400倍の場合を示している。
FIGS. 7A and 7B are micrographs of another portion showing the state of the touch screen surface of Example 2, wherein FIG. 7A shows a case of 100 times and FIG. 7B shows a case of 400 times.

【図8】実施例3のタッチスクリーン表面の状態を示す
1つの部分の顕微鏡写真図で、その(a)は100倍の
場合、その(b)は400倍の場合を示している。
FIGS. 8A and 8B are photomicrographs of one portion showing the state of the touch screen surface of Example 3, in which FIG. 8A shows a case of 100 times and FIG. 8B shows a case of 400 times.

【図9】実施例3のタッチスクリーン表面の状態を示す
別の部分の顕微鏡写真図で、その(a)は100倍の場
合、その(b)は400倍の場合を示している。
FIGS. 9A and 9B are photomicrographs of another portion showing the state of the surface of the touch screen of Example 3, in which FIG. 9A shows the case of 100 times and FIG. 9B shows the case of 400 times.

【図10】比較例のタッチスクリーン表面の状態を示す
1つの部分の顕微鏡写真図で、その(a)は100倍の
場合、その(b)は400倍の場合を示している。
FIGS. 10A and 10B are photomicrographs of one portion showing a state of a touch screen surface of a comparative example. FIG. 10A shows a case of 100 times, and FIG. 10B shows a case of 400 times.

【図11】比較例のタッチスクリーン表面の状態を示す
別の部分の顕微鏡写真図で、その(a)は100倍の場
合、その(b)は400倍の場合を示している。
FIGS. 11A and 11B are micrographs of another portion showing the state of the touch screen surface of the comparative example, in which FIG. 11A shows a case of 100 times and FIG. 11B shows a case of 400 times.

【図12】本発明に関連した実験例に係る透光性ノング
レア面化したタッチスクリーンの断面図であり、図11
(b)のXII−XII線に沿って断面したものであ
る。
FIG. 12 is a cross-sectional view of a translucent non-glare touch screen according to an experimental example related to the present invention.
(B) is a cross-section along the line XII-XII.

【符号の説明】[Explanation of symbols]

1 ガラス基材 2 タッチスクリーン 3、31、34 シリカ粒子 3a ポリマー液 4 ノングレア面 32 抗菌性微粒子 DESCRIPTION OF SYMBOLS 1 Glass base material 2 Touch screen 3, 31, 34 Silica particles 3a Polymer liquid 4 Non-glare surface 32 Antibacterial fine particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // A01N 59/16 A01N 59/16 A Fターム(参考) 2H042 BA02 BA03 BA13 BA15 BA19 4G059 AA08 AB09 AB13 AC02 EA05 EA12 EB05 EB06 FA05 FA22 FA28 FB05 GA01 GA04 GA12 4H011 AA02 BA01 BB18 BC18 DA07 DC10 DD06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // A01N 59/16 A01N 59/16 A F-term (Reference) 2H042 BA02 BA03 BA13 BA15 BA19 4G059 AA08 AB09 AB13 AC02 EA05 EA12 EB05 EB06 FA05 FA22 FA28 FB05 GA01 GA04 GA12 4H011 AA02 BA01 BB18 BC18 DA07 DC10 DD06

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基材の表面に、ケイ素−窒素結合
物質と水素原子を持ち、有機溶剤に可溶な無機ポリマー
の有機溶媒溶液であるポリマー液を粒子状に塗布し、こ
の塗布した粒子状のポリマー液を撥水性を持つ中間物質
が生成するように大気中で焼成することを1回以上行な
う前工程と、前工程後のガラス基材の表面に前記ポリマ
ー液を粒子状に塗布し、この塗布した粒子状のポリマー
液および前工程による前記中間物をシリカまで大気中で
焼成する後工程とを備え、基材表面を透光性のある粒子
が散在した透光性ノングレア面を得ることを特徴とする
透光性ノングレア面化加工方法。
1. A polymer solution which is a solution of an inorganic polymer having a silicon-nitrogen bonding substance and a hydrogen atom and soluble in an organic solvent, which is an organic solvent solution, is applied to the surface of a glass substrate in the form of particles. And baking the polymer liquid in the air at least once in the air so as to form an intermediate substance having water repellency, and applying the polymer liquid to the surface of the glass substrate after the previous step in the form of particles. And a post-process in which the coated particulate polymer liquid and the intermediate obtained in the preceding process are calcined in the atmosphere to silica to obtain a light-transmitting non-glare surface in which light-transmitting particles are scattered on the substrate surface. A translucent non-glare surface processing method characterized by the above-mentioned.
【請求項2】 ガラス基材の表面に、ケイ素−窒素結合
と水素原子を持ち、有機溶剤に可溶な無機ポリマーの有
機溶媒溶液であるポリマー液を粒子状に塗布し、この塗
布した粒子状のポリマー液をケイ素−水素結合物質が生
成するように大気中で焼成することを1回以上行なう前
工程と、前工程後のガラス基材の表面に前記ポリマー液
を粒子状に塗布し、この塗布した粒子状のポリマー液お
よび前工程による前記ケイ素−水素結合物質をシリカま
で大気中で焼成する後工程とを備え、基材表面を透光性
のある粒子が散在した透光性ノングレア面を得ることを
特徴とする透光性ノングレア面化加工方法。
2. A polymer solution, which is an organic solvent solution of an inorganic polymer having a silicon-nitrogen bond and a hydrogen atom and soluble in an organic solvent, is applied on the surface of a glass substrate in the form of particles. A step of firing the polymer liquid in the air at least once so that a silicon-hydrogen bonding substance is produced, and applying the polymer liquid to the surface of the glass base material after the previous step in a particle form, And a post-process in which the coated particulate polymer liquid and the silicon-hydrogen bonding material obtained in the previous process are baked to silica in the air, and the base material surface has a light-transmitting non-glare surface in which light-transmitting particles are dispersed. A light-transmitting non-glare surface treatment method, characterized by being obtained.
【請求項3】 前工程の焼成温度は、後工程の焼成温度
に至らない温度である請求項1、2のいずれか1項に記
載の透光性ノングレア面化加工方法。
3. The translucent non-glare surface treatment method according to claim 1, wherein the firing temperature in the pre-process is a temperature that does not reach the firing temperature in the post-process.
【請求項4】 前工程と後工程との組み合わせを複数回
繰り返す透光性ノングレア面化加工方法。
4. A translucent non-glare surface treatment method in which a combination of a pre-process and a post-process is repeated a plurality of times.
【請求項5】 ガラス基材の表面に、ケイ素−窒素結合
物質と水素原子を持ち、有機溶剤に可溶な無機ポリマー
の有機溶媒溶液であるポリマー液を粒子状に塗布し、こ
の塗布した粒子状のポリマー液をシリカまで大気中で焼
成して基材表面を透光性のある粒子が散在した透光性ノ
ングレア面を得る透光性ノングレア面化加工方法であっ
て、 前記塗布と、塗布した粒子状のポリマー液を撥水性を持
った中間物質を生成させるように前記焼成温度より低い
温度で仮焼成する塗布、仮焼成工程を1回以上行なって
後、前記塗布、焼成工程を行なって、基材表面を透光性
のある粒子が散在したノングレア面を得ることを特徴と
する透光性ノングレア面化加工方法。
5. A polymer solution, which is an organic solvent solution of an inorganic polymer having a silicon-nitrogen bonding substance and a hydrogen atom and soluble in an organic solvent, is applied to the surface of a glass substrate in the form of particles. A non-glare surface processing method for obtaining a light-transmitting non-glare surface in which particles of a light-transmitting particle are scattered by sintering a polymer liquid in the form of silica in the atmosphere to silica, wherein the coating and the coating After performing the coating and calcination steps of calcining the particulate polymer liquid at a temperature lower than the calcination temperature so as to generate an intermediate substance having water repellency, performing the coating and calcination steps at least once. A non-glare surface processing method comprising obtaining a non-glare surface in which light-transmitting particles are scattered on the substrate surface.
【請求項6】 塗布、仮焼成工程と、塗布、焼成工程と
の組み合わせを複数回繰り返して行なう請求項5に記載
の透光性ノングレア面化加工方法。
6. The translucent non-glare surface treatment method according to claim 5, wherein a combination of the application and the preliminary firing step and the application and the firing step is repeated a plurality of times.
【請求項7】 霧化状態のポリマー液とガラス基材の表
面との接触によって、ガラス基材の表面にポリマー液を
粒子状に塗布する請求項1〜6のいずれか1項に記載の
透光性ノングレア面化加工方法。
7. The transparent liquid according to claim 1, wherein the polymer liquid is applied to the surface of the glass substrate in a particulate form by contact between the polymer liquid in an atomized state and the surface of the glass substrate. Optical non-glare surface processing method.
【請求項8】 霧化状態のポリマー液とガラス基材の表
面との接触は、ポリマー液の霧化雰囲気にガラス基材の
表面を曝して行なう請求項7に記載の透光性ノングレア
面化加工方法。
8. The translucent non-glare surface according to claim 7, wherein the contact between the atomized polymer liquid and the surface of the glass substrate is performed by exposing the surface of the glass substrate to the atomization atmosphere of the polymer liquid. Processing method.
【請求項9】 ガラス基材の表面は上向きでポリマー液
の霧化雰囲気に曝す請求項8に記載の透光性ノングレア
面化加工方法。
9. The method according to claim 8, wherein the surface of the glass substrate is exposed upward to the atomization atmosphere of the polymer liquid.
【請求項10】 1または複数の所定回に塗布するポリ
マー液にこれが形成する塗布粒子よりも小さい粒子径3
00から1000Åの抗菌剤微粒子を混入して行なう請
求項1〜9のいずれか1項に記載の透光性ノングレア面
化加工方法。
10. A polymer liquid to be applied one or more predetermined times, having a particle size 3 smaller than the applied particles formed by the polymer liquid.
The translucent non-glare surface treatment method according to any one of claims 1 to 9, which is performed by mixing antibacterial agent fine particles of from 00 to 1000 °.
【請求項11】 ポリマー液の少なくとも初回の塗布と
次回の塗布との関係を含む、先の塗布時の粒子径を後の
塗布時の粒子径よりも大きくする請求項1〜10のいず
れか1項に記載の透光性ノングレア面化加工方法。
11. The method according to claim 1, wherein the particle size at the time of the first application is larger than the particle size at the time of the subsequent application, including the relationship between at least the first application and the next application of the polymer liquid. 4. The method for forming a translucent non-glare surface according to item 4.
【請求項12】 シリカの粒子径は50μ以下で塗布す
る請求項1〜11のいずれか1項に記載の透光性ノング
レア面化加工方法。
12. The translucent non-glare surface treatment method according to claim 1, wherein the silica is applied with a particle diameter of 50 μm or less.
【請求項13】 透明なガラス基板の表面に、複数回異
時に塗布、焼成された透光性のあるシリカの粒子からな
る透光性ノングレア層を有し、最終に塗布、焼成される
シリカの粒子を除く、それよりも先に塗布、焼成された
シリカの粒子の少なくとも初回のシリカの粒子は、それ
より後のシリカの粒子の焼成まで撥水性を持つ物質が生
成された履歴を持つものであることを特徴とする透光性
ノングレアタッチスクリーン。
13. A transparent glass substrate having a light-transmitting non-glare layer composed of light-transmitting silica particles applied and fired at different times a plurality of times on the surface of a transparent glass substrate. Excluding the particles, at least the first silica particles of the silica particles coated and calcined earlier have a history of producing a substance having water repellency until subsequent calcining of the silica particles. A translucent non-glare touch screen.
【請求項14】 透明なガラス基板の表面に、複数回異
時に塗布、焼成された透光性のあるシリカの粒子からな
る透光性ノングレア層を有し、この透光性ノングレア層
はシリカの粒子がほぼ一重に焼成されていることを特徴
とする透光性ノングレアタッチスクリーン。
14. A translucent non-glare layer comprising translucent silica particles applied and fired at different times a plurality of times on the surface of a transparent glass substrate, wherein the translucent non-glare layer is made of silica. A translucent non-glare touch screen characterized in that the particles are fired almost single layer.
【請求項15】 最初に塗布、焼成されたシリカの粒子
径は、後に塗布、焼成されたシリカの粒子径よりも大き
い請求項13、14のいずれか1項に記載の透光性ノン
グレアタッチスクリーン。
15. The translucent non-glare touch screen according to claim 13, wherein the particle diameter of the silica applied and fired first is larger than the particle diameter of the silica applied and fired later. .
【請求項16】 1または複数の所定回に塗布、焼成さ
れたシリカの粒子は、抗菌性粒子を担持し、ないしは含
んでいる請求項13〜15のいずれか1項に記載の透光
性ノングレアタッチスクリーン。
16. The translucent non-glare according to claim 13, wherein the silica particles coated and calcined at one or more predetermined times carry or contain antibacterial particles. touch screen.
JP2000148229A 2000-05-19 2000-05-19 Translucent non-glare surface processing method and translucent non-glare touch screen Expired - Lifetime JP3935658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148229A JP3935658B2 (en) 2000-05-19 2000-05-19 Translucent non-glare surface processing method and translucent non-glare touch screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148229A JP3935658B2 (en) 2000-05-19 2000-05-19 Translucent non-glare surface processing method and translucent non-glare touch screen

Publications (2)

Publication Number Publication Date
JP2001328846A true JP2001328846A (en) 2001-11-27
JP3935658B2 JP3935658B2 (en) 2007-06-27

Family

ID=18654291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148229A Expired - Lifetime JP3935658B2 (en) 2000-05-19 2000-05-19 Translucent non-glare surface processing method and translucent non-glare touch screen

Country Status (1)

Country Link
JP (1) JP3935658B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085330A1 (en) * 2003-03-24 2004-10-07 Nakajima Glass Co., Inc. Method for producing glass sheet coated with titanium oxide thin film
JP2013082615A (en) * 2011-10-10 2013-05-09 Schott Ag Glass or crystallized glass substrate coated with layer having tactile properties
US10036556B2 (en) 2012-12-20 2018-07-31 Schott Ag Coated glass or glass ceramic substrate with haptic properties
EP3441373A1 (en) * 2017-08-08 2019-02-13 Apple Inc. Electronic devices with glass layer coatings
WO2021240833A1 (en) * 2020-05-25 2021-12-02 ハドラスホールディングス株式会社 Coating material and coating method
WO2023095538A1 (en) * 2021-11-26 2023-06-01 日本板硝子株式会社 Cover member
WO2023218878A1 (en) * 2022-05-12 2023-11-16 大日本印刷株式会社 Antiviral optical film, image display panel, and image display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085330A1 (en) * 2003-03-24 2004-10-07 Nakajima Glass Co., Inc. Method for producing glass sheet coated with titanium oxide thin film
JP2013082615A (en) * 2011-10-10 2013-05-09 Schott Ag Glass or crystallized glass substrate coated with layer having tactile properties
US9701576B2 (en) 2011-10-10 2017-07-11 Schott Ag Coated glass or glass ceramic substrate with haptic properties
EP2592056B1 (en) * 2011-10-10 2021-05-12 Schott AG Coated glass or glass ceramic substrate with haptic characteristics
US10036556B2 (en) 2012-12-20 2018-07-31 Schott Ag Coated glass or glass ceramic substrate with haptic properties
CN112218470A (en) * 2017-08-08 2021-01-12 苹果公司 Electronic device with glass layer coating
US10353123B2 (en) 2017-08-08 2019-07-16 Apple Inc. Electronic Devices with glass layer coatings
EP3441373A1 (en) * 2017-08-08 2019-02-13 Apple Inc. Electronic devices with glass layer coatings
US11209944B2 (en) 2017-08-08 2021-12-28 Apple Inc. Electronic devices with glass layer coatings
CN112218470B (en) * 2017-08-08 2022-12-13 苹果公司 Electronic device with glass layer coating
WO2021240833A1 (en) * 2020-05-25 2021-12-02 ハドラスホールディングス株式会社 Coating material and coating method
WO2023095538A1 (en) * 2021-11-26 2023-06-01 日本板硝子株式会社 Cover member
WO2023218878A1 (en) * 2022-05-12 2023-11-16 大日本印刷株式会社 Antiviral optical film, image display panel, and image display device

Also Published As

Publication number Publication date
JP3935658B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP6843743B2 (en) A coated glass substrate or glass ceramic substrate having resistant and multifunctional surface properties, a method for manufacturing the substrate, and use of the substrate.
JP7326702B2 (en) Transparent substrate with antifouling film and capacitive in-cell touch panel liquid crystal display device
US6706552B2 (en) Method for making interactive information devices with spacer elements
CN108623179B (en) Anti-glare glass substrate
TW200528748A (en) Optical layer system having antireflection properties
CN1989080B (en) Nanostructured coatings and related methods
CN108948889A (en) Textured automatically cleaning membranous system and the method for being used to form the membranous system
US20080305254A1 (en) Method of manufacturing optical element, and optical element
JP2010134462A (en) Method of depositing porous anti-reflecting layer, and glass having anti-reflecting layer
CN103582617A (en) Substrate element for coating with an easy-to-clean coating
US6787240B2 (en) Enhanced light transmission conductive coated transparent substrate
JP2008214182A (en) Method for manufacturing three-dimensional coated glass ceramic body, particularly peephole glass plate for fireplace or oven
JP2020117436A (en) Touch pad, and touch panel
WO2004108283A1 (en) Photocatalyst member
TW201016805A (en) Coating compositions and articles with formed coating films
JP2001328846A (en) Method for preparation of transparent non-glare face and transparent non-glare touch screen
WO2018120521A1 (en) Optical film and manufacturing method therefor
CN112919819B (en) Manufacturing method of anti-glare glass without flash point
JP2000239047A (en) Hydrophilic photocatalytic member
CN116075420A (en) Transparent substrate with antireflection film and image display device
JP5899696B2 (en) Anti-reflective article
US7189453B2 (en) Functional surface member
CN208141358U (en) A kind of touch screen and electronic product
JP4029641B2 (en) Transparent conductive laminate and resistive touch panel
CN209381523U (en) A kind of environment-friendly materials except formaldehyde

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250