JP2001328829A - Apparatus and method for molding optical element - Google Patents

Apparatus and method for molding optical element

Info

Publication number
JP2001328829A
JP2001328829A JP2000144387A JP2000144387A JP2001328829A JP 2001328829 A JP2001328829 A JP 2001328829A JP 2000144387 A JP2000144387 A JP 2000144387A JP 2000144387 A JP2000144387 A JP 2000144387A JP 2001328829 A JP2001328829 A JP 2001328829A
Authority
JP
Japan
Prior art keywords
glass material
molding
optical element
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000144387A
Other languages
Japanese (ja)
Other versions
JP4358406B2 (en
Inventor
Koki Iwazawa
広喜 岩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2000144387A priority Critical patent/JP4358406B2/en
Publication of JP2001328829A publication Critical patent/JP2001328829A/en
Application granted granted Critical
Publication of JP4358406B2 publication Critical patent/JP4358406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for molding an optical element, excellent in profile irregularity by properly controlling the temperature of a molding surface and the time of the molding, and slow and uniform cooling of the whole molded glass material. SOLUTION: This apparatus for molding the optical element for obtaining the optical element by conveying a glass material to the space between a pair of forming molds heated to a temperature lower than the temperature of the glass material, and molding the glass material by the pair of the forming molds has an infrared lamp heater 4a for heating the upper mold, capable of heating the forming mold, an infrared lamp heater 4b for heating the lower forming mold, and a heating controller 30, a switch 31, a temperature regulator 32 and a heating output regulator 33 consisting a heating temperature-controlling means for controlling the temperature distribution of the molding surfaces of the pair of the forming molds so as to be the prescribed temperature distribution to compensate the largeness and smallness of heat capacity distribution based on the shape of the optical element to be molded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子の成形装
置及び成形方法に関するものである。
The present invention relates to a molding apparatus and a molding method for an optical element.

【0002】[0002]

【従来の技術】一般に、光学素子成形用に用いるガラス
素材は、中心部と外周部との間に肉厚の差を持ってお
り、ガラス軟化点付近の温度に均等に加熱したガラス素
材を、そのガラス素材よりも温度が低い、ガラス転移点
付近の温度に成形面を均等に加熱した成形型で押圧成形
する場合、ガラス素材の薄肉の部分が早く固まり、厚肉
の部分が遅れて固まるために、厚肉の部分の収縮量が大
きくなり、内部ひずみや、表面に大きなうねりが発生
し、良好な面精度の光学素子を得ることができない。例
えば、凸形状の光学素子の場合、薄肉の外周部が先にガ
ラス転移点以下に冷却され、中心部が遅れてガラス転移
点以下になるために、変形時間に差が生じ、良好な光学
素子を得ることができない。
2. Description of the Related Art Generally, a glass material used for molding an optical element has a difference in thickness between a central portion and an outer peripheral portion. If the glass material is pressed at a temperature lower than that of the glass material, at a temperature near the glass transition point, and the molding surface is heated evenly, the thin part of the glass material solidifies quickly and the thick part hardens later. In addition, the amount of shrinkage of the thick part increases, causing internal strain and large undulation on the surface, making it impossible to obtain an optical element with good surface accuracy. For example, in the case of an optical element having a convex shape, a thin outer peripheral portion is first cooled to a temperature lower than the glass transition point, and a central portion is delayed to be lower than the glass transition point. Can not get.

【0003】この問題を解決するための従来技術とし
て、特開平02−133325号公報に開示されている
光学素子の成形方法がある。
[0003] As a conventional technique for solving this problem, there is a method for molding an optical element disclosed in Japanese Patent Application Laid-Open No. 02-133325.

【0004】特開平02−133325号公報に示され
ている光学素子の成形方法は、ガラス素材を、さめやす
い薄肉部が高温に、さめにくい厚肉部が低温に、同心円
方向に温度分布を持つように加熱して、均一な温度に加
熱した成形面で押圧し、ガラス素材全体が硬化する時間
を揃える光学素子の成形方法である。
The method of molding an optical element disclosed in Japanese Patent Application Laid-Open No. H02-133325 discloses a method of forming a glass material such that a thin portion that is easy to cool has a high temperature, a thick portion that is difficult to cool has a low temperature, and a temperature distribution in a concentric direction. This is a molding method for an optical element in which the glass material is heated and pressed on a molding surface heated to a uniform temperature, and the curing time of the entire glass material is made uniform.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平02−
133325号公報に開示された成形方法では、ガラス
素材の加熱温度の制御が難しく、温度バラツキが大きい
ため、成形条件の再現性が悪く歩留まりが低下し、安定
した品質の光学素子が得られない。
However, Japanese Patent Application Laid-Open No.
In the molding method disclosed in JP-A-133325, it is difficult to control the heating temperature of the glass material, and the temperature variation is large. Therefore, the reproducibility of the molding conditions is poor, the yield is reduced, and an optical element of stable quality cannot be obtained.

【0006】また、ガラス素材の温度の高い部分が、成
形型と接触するときのヒートショックが大きく、ワレや
焼き付きが発生したり、型の耐久性を悪化させるという
問題がある。
Further, there is a problem that a high temperature portion of the glass material causes a large heat shock when coming into contact with the molding die, causing cracks and seizures and deteriorating the durability of the die.

【0007】本発明は、上記従来技術の問題点に鑑みて
なされたもので、成型時以降の成型面温度を適切に制御
し、成型されたガラス素材全体の冷却速度を遅く、均一
にすることにより、面精度の良好な光学素子を得ること
ができる光学素子の成形装置及び成形方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to appropriately control the temperature of a molding surface after molding and to make the cooling rate of the entire molded glass material slow and uniform. Accordingly, the present invention provides an optical element molding apparatus and a molding method capable of obtaining an optical element with good surface accuracy.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明の光
学素子の成形装置は、加熱軟化したガラス素材を搬送装
置によりガラス素材より低い温度に加熱した一対の成形
型間に搬送し、この一対の成形型により前記ガラス素材
を成形して光学素子を得る光学素子の成形装置におい
て、前記一対の成形型を加熱する加熱手段と、この加熱
手段に加熱動力を送り、一対の成形型の成形面を一定温
度分布に制御するとともに、ガラス素材の成形時に前記
成形面の温度分布を、成形する光学素子の形状に基づく
熱容量分布の大小を補完する温度分布となるように制御
する加熱温度制御手段とを有することを特徴とするもの
である。
According to a first aspect of the present invention, there is provided a molding apparatus for an optical element, wherein a heat-softened glass material is conveyed between a pair of molding dies heated to a lower temperature than the glass material by a conveying device. In an optical element forming apparatus for forming an optical element by forming the glass material with a pair of forming dies, a heating unit for heating the pair of forming dies, and a heating power is sent to the heating unit to form the pair of forming dies. Heating temperature control means for controlling the surface to a constant temperature distribution and controlling the temperature distribution of the molding surface during molding of the glass material so as to have a temperature distribution that complements the magnitude of the heat capacity distribution based on the shape of the optical element to be molded. And characterized in that:

【0009】請求項2記載の発明は、加熱軟化したガラ
ス素材を、ガラス素材より低い温度に加熱した対向する
一対の成形型の間に搬送し押圧成形することにより光学
素子を得る光学素子の成形方法において、前記一対の成
形型を加熱する加熱手段に加熱動力を送り、一対の成形
型の成形面を一定温度分布に制御するとともに、前記ガ
ラス素材の成形時に前記成形面の温度分布を、成形する
光学素子の形状に基づく熱容量分布の大小を補完する温
度分布となるように制御して光学素子を成形することを
特徴とするものである。
According to a second aspect of the present invention, an optical element is obtained by conveying a heat-softened glass material between a pair of opposite molds heated to a temperature lower than that of the glass material and pressing the glass material to obtain an optical element. In the method, a heating power is sent to a heating means for heating the pair of molding dies, and the molding surfaces of the pair of molding dies are controlled to have a constant temperature distribution, and the temperature distribution of the molding surfaces is molded when the glass material is molded. The optical element is formed by controlling the temperature distribution so as to complement the magnitude of the heat capacity distribution based on the shape of the optical element.

【0010】請求項3記載の発明は、加熱軟化したガラ
ス素材を、型加熱ヒータによりガラス素材より低い温度
に加熱した対向する一対の成形型の間に搬送し押圧成形
することにより光学素子を得る光学素子の成形方法にお
いて、前記ガラス素材を均一な温度に加熱し、前記成形
型の成形面を同心円方向に温度分布をつけた状態に加熱
する工程と、前記ガラス素材を前記成形型間に搬送する
工程と、前記成形型によるガラス素材の成形時に、前記
ガラス素材の冷えやすい部分に大きな熱量を、それ以外
の部分にも一定量の熱量を供給することにより、前記ガ
ラス素材全面の冷却速度が小さく均等になるように制御
し、ガラス素材の温度がガラス転移点以下になるまで押
圧保持する工程と、成形されたガラス素材を冷却し、一
対の成形型を離型する工程とを含むことを特徴とするも
のである。
According to a third aspect of the present invention, an optical element is obtained by transporting a heat-softened glass material between a pair of opposite molds heated to a temperature lower than that of the glass material by a mold heater and pressing. In the method of molding an optical element, a step of heating the glass material to a uniform temperature and heating a molding surface of the molding die in a state of providing a temperature distribution in a concentric direction, and transporting the glass material between the molding dies. And, during the molding of the glass material by the mold, by supplying a large amount of heat to the easily cooled portion of the glass material and supplying a fixed amount of heat to other portions, the cooling rate of the entire surface of the glass material is reduced. Controlling so that it is small and even, pressing and holding until the temperature of the glass material is below the glass transition point, cooling the formed glass material, and releasing a pair of molds It is characterized in that including the that step.

【0011】以下に、請求項1記載の成形装置の構成に
よる、請求項2記載の成形方法について説明する。
Hereinafter, a molding method according to a second aspect of the present invention will be described using the configuration of the molding apparatus according to the first aspect.

【0012】ガラス素材は予め加熱炉で全体が均一な温
度になるように加熱する。その後ガラス素材は、搬送手
段により、加熱手段を用いてガラス素材より低い温度に
加熱した一対の成形型間に搬送される。
The glass material is heated in advance in a heating furnace so that the temperature of the glass material becomes uniform. Thereafter, the glass material is conveyed by the conveying means between the pair of molds heated to a lower temperature than the glass material using the heating means.

【0013】成形型は、その成形面が一定温度分布にな
るような温度に温度制御されており、成形時には加熱温
度制御手段により光学素子の形状に応じて、前記成形面
の温度分布を成形する光学素子の形状に基づく熱容量分
布の大小を補完する温度分布となるように制御する。
The temperature of the molding die is controlled so that the molding surface has a constant temperature distribution. During molding, the temperature distribution of the molding surface is molded by a heating temperature control means in accordance with the shape of the optical element. The temperature distribution is controlled so as to complement the magnitude of the heat capacity distribution based on the shape of the optical element.

【0014】例えば、厚肉部と薄肉部の比が小さく、変
形量の小さい光学素子を成形する場合は、そのまま一定
温度分布を維持し、厚肉部と薄肉部の比が大きく、変形
量の大きい光学素子の場合は、成形直前に急速に加熱す
ることにより、成形面に光学素子の熱容量分布の大小を
補完する温度分布をつけた状態で成形する。
For example, when molding an optical element having a small ratio between a thick portion and a thin portion and a small amount of deformation, a constant temperature distribution is maintained as it is, the ratio between the thick portion and the thin portion is large, and the deformation amount is small. In the case of a large optical element, it is rapidly heated immediately before molding to form a molding surface with a temperature distribution that complements the magnitude of the heat capacity distribution of the optical element.

【0015】即ち、成形型の成形面がガラス素材に接触
してから、加熱手段に対する加熱動力を急速に増加し、
ガラス素材の冷えやすい部分、つまり冷却速度の大きい
部分に対応する成形型の成形面に大きな熱量を、ガラス
素材の冷えにくい部分、つまり冷却速度の小さい部分に
対応する成形型の成形面にも一定量の熱量を供給し、ガ
ラス素材全体が均一な冷却速度になるように冷却速度を
制御する。
That is, after the molding surface of the mold contacts the glass material, the heating power for the heating means is rapidly increased,
A large amount of heat is applied to the molding surface of the mold that corresponds to the portion of the glass material that is easy to cool, that is, the portion with a high cooling rate, and the molding surface of the mold that corresponds to the portion of the glass material that is difficult to cool, that is, the portion that has a low cooling speed An amount of heat is supplied, and the cooling rate is controlled so that the entire glass material has a uniform cooling rate.

【0016】このようにして、ガラス素材全体が均一に
冷却することから、内部ひずみや表面のうねりの発生を
除去することが可能となる。さらに、ガラス素材全体の
冷却速度を遅くすることにより、変形時間が増加し、変
形量の大きな形状の光学素子でも、面精度よく成形する
ことが可能となる。
In this way, since the entire glass material is uniformly cooled, it is possible to eliminate the occurrence of internal strain and surface undulation. Further, by reducing the cooling rate of the entire glass material, the deformation time is increased, and even an optical element having a large deformation amount can be formed with high surface accuracy.

【0017】請求項3記載の成形方法によっても、上述
した請求項2記載の成形方法の場合と同様にして、成形
型の成形面がガラス素材に接触してから、ガラス素材の
冷えやすい部分、つまり冷却速度の大きい部分に対応す
る成形型の成形面に大きな熱量を、ガラス素材の冷えに
くい部分、つまり冷却速度の小さい部分に対応する成形
型の成形面にも一定量の熱量を供給し、ガラス素材全体
が均一な冷却速度になるように冷却速度を制御する。
According to the molding method of the third aspect, similarly to the case of the molding method of the second aspect, after the molding surface of the mold contacts the glass material, a portion of the glass material that is easy to cool, In other words, a large amount of heat is supplied to the molding surface of the molding die corresponding to the portion having a large cooling rate, and a fixed amount of heat is also supplied to the molding surface of the molding die corresponding to the portion of the glass material that is difficult to cool, that is, the portion having a small cooling speed. The cooling rate is controlled so that the entire glass material has a uniform cooling rate.

【0018】このようにして、ガラス素材全体が均一に
冷却することことから、内部ひずみや表面のうねりの発
生を除去することが可能となる。さらに、ガラス素材全
体の冷却速度を遅くすることにより、変形時間が増加
し、変形量の大きな形状の光学素子でも、面精度よく成
形することが可能となる。
In this way, since the entire glass material is uniformly cooled, it is possible to eliminate the occurrence of internal strain and surface undulation. Further, by reducing the cooling rate of the entire glass material, the deformation time is increased, and even an optical element having a large deformation amount can be formed with high surface accuracy.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0020】(実施の形態1) (構成)図1、図2は、本発明おける実施の形態1の光
学素子の成形方法に用いる成形装置の概略図である。
(Embodiment 1) (Configuration) FIGS. 1 and 2 are schematic views of a molding apparatus used in a method for molding an optical element according to Embodiment 1 of the present invention.

【0021】この成形装置において、凹形状の成形面1
cを有する上型1aは台座2aに位置決め部材3aを用
いて取り付けられている。
In this molding apparatus, the concave molding surface 1
The upper die 1a having the letter c is mounted on the pedestal 2a using the positioning member 3a.

【0022】また、凹形状の成形面1dを有する下型1
bは、前記上型1aに対向して、台座2bに位置決め部
材3bを用いて上下に昇降可能に取り付けられている。
Further, a lower mold 1 having a concave molding surface 1d is provided.
b is attached to the pedestal 2b so as to be able to move up and down by using a positioning member 3b, facing the upper die 1a.

【0023】下型1bには、搬送皿7に当接、突き上げ
可能な筒状のスペーサ9が取り付けられている。
The lower die 1b is provided with a cylindrical spacer 9 which can be brought into contact with the transport tray 7 and pushed up.

【0024】前記上型1aの外周には、上型ヒータハウ
ジング5aが配置され、上型加熱用赤外線ランプヒータ
4aが、前記上型ヒータハウジング5a内に取り付けら
れている。また、前記下型1bの外周には、下型ヒータ
ハウジング5bが配置され、赤外線ランプヒータからな
る下型加熱用赤外線ランプヒータ4bが前記下型ヒータ
ハウジング5bに取り付けられている。
An upper heater housing 5a is arranged on the outer periphery of the upper die 1a, and an infrared lamp heater 4a for heating the upper die is mounted in the upper heater housing 5a. A lower heater housing 5b is arranged around the outer periphery of the lower die 1b, and a lower die heating infrared lamp heater 4b composed of an infrared lamp heater is attached to the lower heater housing 5b.

【0025】上型加熱用赤外線ランプヒータ4a、及
び、下型加熱用赤外線ランプヒータ4bは、図3に示す
加熱温度制御手段を構成する加熱制御装置30により制
御される温度調節器32(ガラス素材の成形時に、各型
温度を設定された温度に加熱調整する)、加熱出力調節
器33(ガラス素材の成形時に、各型温度に追加的かつ
強制的に加熱する)に各々接続され、温度調節器32及
び加熱出力調節器33により、上型1a、及び、下型1
bを各々側面から加熱し成形面1c、及び、成形面1d
の温度を調節可能に構成している。
The upper mold heating infrared lamp heater 4a and the lower mold heating infrared lamp heater 4b are provided with a temperature controller 32 (glass material) controlled by a heating control device 30 constituting a heating temperature control means shown in FIG. The temperature of each mold is adjusted to the set temperature during the molding process, and the heating output controller 33 (additionally and forcibly heats the mold temperature to each mold temperature during the molding of the glass material). The upper mold 1a and the lower mold 1 are controlled by the heater 32 and the heating output controller 33.
b is heated from the respective side surfaces to form a molding surface 1c and a molding surface 1d
Is configured to be adjustable.

【0026】また、加熱出力調節器33により上型加熱
用赤外線ランプヒータ4a、及び、下型加熱用赤外線ラ
ンプヒータ4bに対する加熱動力(電力)を急速に増大
可能としている。
The heating power (electric power) for the upper die heating infrared lamp heater 4a and the lower die heating infrared lamp heater 4b can be rapidly increased by the heating output controller 33.

【0027】前記温度調節器32、前記加熱出力調節器
33は、加熱制御装置30により制御される切り替え器
31によりいずれか一方が選択的に動作するようになっ
ている。
One of the temperature controller 32 and the heating output controller 33 is selectively operated by a switching unit 31 controlled by a heating controller 30.

【0028】前記ガラス素材6は、予め研削・研磨・芯
取りされた凸形状レンズで、搬送皿7に供給されてい
る。
The glass material 6 is a convex lens that has been ground, polished, and centered in advance, and is supplied to the transfer plate 7.

【0029】搬送皿7は、搬送アーム8に載置可能で、
搬送アーム8は図示せぬ駆動手段により搬送皿7、ガラ
ス素材6を上型1aと下型1bの間に搬入、搬出可能と
なっている。
The transfer tray 7 can be placed on a transfer arm 8.
The transfer arm 8 can carry in and out the transfer tray 7 and the glass material 6 between the upper mold 1a and the lower mold 1b by a driving means (not shown).

【0030】本実施の形態1では、前記ガラス素材6は
SK11(ガラス転移点;541℃)を用いた。また上
型1a、下型1bは、WC(タングステンカーバイト)
を用いた。
In the first embodiment, SK11 (glass transition point; 541 ° C.) was used as the glass material 6. The upper die 1a and the lower die 1b are made of WC (tungsten carbide).
Was used.

【0031】(作用)次に、図3、図4、図5をも参照
して、本発明の実施の形態1の成形装置による光学素子
の製造方法を説明する。
(Operation) Next, with reference to FIGS. 3, 4 and 5, a method of manufacturing an optical element by the molding apparatus according to the first embodiment of the present invention will be described.

【0032】図1、図2に示す上型1aと下型1bは、
前記温度調節器32により、各々側面から加熱され、外
周部が800℃、成形面1c、及び、成形面1dの外周
部でガラス転移点付近の540℃、成形面1c、及び、
成形面1dの中心付近で525℃の温度となるように加
熱される。
The upper mold 1a and the lower mold 1b shown in FIGS.
Heated from the side by the temperature controller 32, the outer periphery is 800 ° C., the molding surface 1c, and 540 ° C. near the glass transition point at the outer periphery of the molding surface 1d, the molding surface 1c, and
It is heated to a temperature of 525 ° C. near the center of the molding surface 1d.

【0033】前記ガラス素材6は、搬送皿7に載置さ
れ、図示せぬ加熱装置でガラス軟化点付近の温度(ガラ
ス軟化点+2度又は+3度)に加熱され、搬送アーム8
により上型1aと下型1bの間に搬入される。
The glass material 6 is placed on a transfer tray 7 and heated to a temperature near the glass softening point (glass softening point +2 degrees or +3 degrees) by a heating device (not shown).
Is carried between the upper mold 1a and the lower mold 1b.

【0034】この後、図2に示すように、図示せぬ駆動
装置により、下型1bを上昇させ、ガラス素材6を押圧
成形する。本実施の形態1では押圧時間を15秒とし
た。
Thereafter, as shown in FIG. 2, the lower die 1b is raised by a driving device (not shown) to press-mold the glass material 6. In the first embodiment, the pressing time is set to 15 seconds.

【0035】このとき成形面1c、及び、成形面1d
が、ガラス素材6に接触すると同時に、切り替え器31
により温度調節器32に代えて加熱出力調節器33を動
作させ、上型加熱用赤外線ランプヒータ4a、及び、下
型加熱用赤外線ランプヒータ4bの加熱出力(電力)を
急激に一定時間だけ上昇させる。
At this time, the molding surface 1c and the molding surface 1d
Comes into contact with the glass material 6 and at the same time, the switching device 31
Causes the heating output controller 33 to operate instead of the temperature controller 32, thereby rapidly increasing the heating output (electric power) of the upper die heating infrared lamp heater 4a and the lower die heating infrared lamp heater 4b for a certain period of time. .

【0036】本実施の形態1では、成形前の各型の温度
調整時の0.6KW程度の出力から、1.2KW程度に
10秒間、加熱出力を上昇させた。
In the first embodiment, the heating output is increased from about 0.6 KW at the time of temperature adjustment of each mold before molding to about 1.2 KW for 10 seconds.

【0037】尚、前記加熱出力の増加量、及び、増加時
間は成形するガラス素材6の変形量によって種々に調整
可能である。
The amount and time of the increase in the heating output can be variously adjusted according to the amount of deformation of the glass material 6 to be formed.

【0038】ここで、下型1bを代表例として説明する
と、下型加熱用赤外線ランプヒータ4bの出力増加によ
り、下型1bに温度分布が型内外に発生する。即ち、図
4に示すように、外周部が高温部11、成形面中心付近
が573℃の低温部10となる。尚、図4に示す下型1
b内の成形面中心付近の弧状の各実線Lは10度刻みの
温度分布を表し、外周部になるほどに実線Lの密度が濃
くなり分布として表示不可となっている。
Here, the lower mold 1b will be described as a representative example. Due to the increase in the output of the lower mold heating infrared lamp heater 4b, a temperature distribution occurs in the lower mold 1b inside and outside the mold. That is, as shown in FIG. 4, the outer peripheral portion is the high-temperature portion 11 and the vicinity of the center of the molding surface is the low-temperature portion 10 of 573 ° C. The lower mold 1 shown in FIG.
Each of the arc-shaped solid lines L in the vicinity of the center of the molding surface in b represents a temperature distribution in increments of 10 degrees, and the density of the solid lines L becomes deeper toward the outer periphery and cannot be displayed as a distribution.

【0039】この温度分布により、図5に示すように、
成形面1dに送られる熱量13は、下型1bの外周部が
大きく、中心部に向かうに従い小さくなる。前記上型1
aの場合も下型1bと同様な温度分布になる。
According to this temperature distribution, as shown in FIG.
The amount of heat 13 sent to the molding surface 1d is large at the outer peripheral portion of the lower mold 1b and becomes smaller toward the central portion. The upper die 1
In the case of a, the temperature distribution is similar to that of the lower mold 1b.

【0040】一方、押圧時にガラス素材6から下型1b
に移動する熱量12は、型の外周部からの放熱によって
外周部が大きく、中心部が小さくなっている。
On the other hand, when the glass material 6 is pressed, the lower mold 1b
The amount of heat 12 that moves to the outside is large at the outer periphery and smaller at the center due to heat radiation from the outer periphery of the mold.

【0041】この後、冷却工程となるが、ここで、下型
1bの成形面1dには、既述したようにさめやすい外周
部に大きな熱量(成形面中心付近が573℃となるよう
な熱量)が与えられており、上型1aの場合も同様であ
ることから、ガラス素材6の冷却速度は、ガラス素材6
全体としてほぼ均等になり、一部分(冷めやすい外周
部)が先に固化することはない。
Thereafter, a cooling step is performed. Here, as described above, a large amount of heat is applied to the molding surface 1d of the lower mold 1b at the outer peripheral portion which is easy to be cooled (a heat amount such that the temperature near the center of the molding surface becomes 573 ° C.). ) Is given, and the same applies to the case of the upper mold 1a.
As a whole, it becomes substantially uniform, and a portion (the outer peripheral portion that is easy to cool) does not solidify first.

【0042】本実施の形態1のガラス素材6の成形時及
び冷却時における前記上型1a、下型1bからなる成形
型の経時的な温度変化、ガラス素材6の経時的な温度変
化を図6に示す。図6から理解できるように、上下型1
a、1bによりガラス素材6が押圧されると、ガラス素
材6が変形しかつガラス素材6の温度が上下型1a、1
bにより低下するが、この変形時間内に各型の成形面の
中心付近と外周部とに温度分布を付与するように急激に
一定時間だけ温度上昇させたことにより、ガラス素材6
はその中心部と外周部での冷却速度がほぼ均等になって
おり、この冷却速度はガラス素材6の変形初期の冷却速
度に対して遅くなっている。
FIG. 6 shows a temporal change in temperature of the molding die composed of the upper mold 1a and the lower mold 1b and a temporal change in temperature of the glass material 6 during molding and cooling of the glass material 6 of the first embodiment. Shown in As can be understood from FIG.
When the glass material 6 is pressed by a and 1b, the glass material 6 is deformed and the temperature of the glass material 6 becomes lower and higher.
b, the temperature is rapidly increased for a certain period of time so as to provide a temperature distribution near the center of the molding surface of each mold and the outer peripheral portion within the deformation time.
The cooling rate at the central portion and the outer peripheral portion is substantially equal, and this cooling speed is lower than the cooling speed of the glass material 6 at the initial stage of deformation.

【0043】前記ガラス素材6の温度がガラス転移点以
下になった段階で上型1aに対して、下型1bを下降さ
せて離型する。
When the temperature of the glass material 6 becomes lower than the glass transition point, the lower mold 1b is lowered with respect to the upper mold 1a to release the mold.

【0044】(効果)本実施の形態1に示す成形装置を
使用した成形方法によれば、 ガラス素材6の冷却時に
おいては、ガラス素材6全体の既述した加熱処理により
冷却速度が遅くなり、変形時間が長くなることより、ガ
ラス素材6の変形量が大きい場合でも所望の成形が可能
となる。また、ガラス素材6全体の冷却が均等に行わ
れ、かつ、冷却速度が遅くなることによって、変形時間
が長くなり、冷却部分の不揃いによるヒケや内部応力の
残留を除去することが可能で、面精度のよい光学素子を
成形することが可能となる。
(Effect) According to the molding method using the molding apparatus shown in the first embodiment, when the glass material 6 is cooled, the cooling rate is reduced by the above-described heating treatment of the entire glass material 6, As the deformation time becomes longer, desired molding can be performed even when the amount of deformation of the glass material 6 is large. In addition, since the entire glass material 6 is uniformly cooled and the cooling rate is slowed, the deformation time is prolonged, so that sinks and residual internal stress due to uneven cooling portions can be removed. It is possible to mold an optical element with high accuracy.

【0045】(実施の形態2) (構成)図7は本発明の実施の形態2の成形装置の構成
を示す概略図である。
(Embodiment 2) (Structure) FIG. 7 is a schematic view showing the structure of a molding apparatus according to Embodiment 2 of the present invention.

【0046】本実施の形態2においては、実施の形態1
に示した上型加熱用赤外線ランプヒータ4a、及び、下
型加熱用赤外線ランプヒータ4bの代わりに、渦電流を
利用する高周波加熱方式を採用したことが特徴である。
即ち、図7に示すように、上型1aの外周には、高周波
コイル14aが、下型1b外周には高周波コイル14b
が各々取り付けられ、図示しない高周波加熱用電源に各
々接続されている。この他の構成は実施の形態1の場合
と同様なのでその詳細説明は省略する。
In the second embodiment, the first embodiment
Is characterized in that a high-frequency heating method using eddy current is employed instead of the upper mold heating infrared lamp heater 4a and the lower mold heating infrared lamp heater 4b shown in FIG.
That is, as shown in FIG. 7, a high-frequency coil 14a is provided on the outer periphery of the upper mold 1a, and a high-frequency coil 14b is provided on the outer periphery of the lower mold 1b.
Are attached and connected to a high-frequency heating power supply (not shown). The other configuration is the same as that of the first embodiment, and the detailed description is omitted.

【0047】(作用)本実施の形態2に示す成形装置に
よる成形方法は、実施の形態1の場合と同様に、図示せ
ぬ加熱装置でガラス軟化点温度付近に加熱したガラス素
材6を、高周波コイル14a、14bにてガラス転移点
以下の温度に加熱した上型1a、及び、下型1bで押圧
し、ガラス素材6と成形面1c、及び、成形面1dが接
触した瞬間に、高周波加熱の出力を増加し、成形型1
a、及び、成形型1bの側面に熱伝達効率良く大きな熱
量を供給する。この他の作用は実施の形態1の場合と同
様である。
(Effect) In the forming method using the forming apparatus shown in the second embodiment, similarly to the first embodiment, a glass material 6 heated to a temperature near the glass softening point by a heating device (not shown) is subjected to a high frequency wave. The upper mold 1a and the lower mold 1b heated to a temperature equal to or lower than the glass transition point by the coils 14a and 14b are pressed by the upper mold 1a and the lower mold 1b, and when the glass material 6 comes into contact with the molding surface 1c and the molding surface 1d, the high frequency heating is started. Increase output, mold 1
a and a large amount of heat is supplied to the side surface of the mold 1b with good heat transfer efficiency. Other operations are the same as those in the first embodiment.

【0048】(効果)本実施の形態2の成形方法によれ
ば、高周波コイル14a、14bを採用し、これらの出
力増加量とその増加時間、及び、高周波の周波数を変え
ることにより、ガラス素材6に対してより多様なパター
ンで効率良く熱伝達が可能となり、成形可能なガラス素
材6の形状、範囲を拡大でき、多様な光学素子を得るこ
とができる。
(Effects) According to the molding method of the second embodiment, the high frequency coils 14a and 14b are employed, and the amount of increase in the output and the increase time thereof, and the frequency of the high frequency are changed, so that the glass material 6 is formed. Therefore, heat transfer can be efficiently performed in various patterns, the shape and range of the glass material 6 that can be formed can be expanded, and various optical elements can be obtained.

【0049】(実施の形態3) (構成)図8は本発明の実施の形態3の成形装置の構成
を示す概略図である。
(Embodiment 3) (Configuration) FIG. 8 is a schematic view showing the configuration of a molding apparatus according to Embodiment 3 of the present invention.

【0050】本実施の形態3においては、実施の形態2
に示した成形型加熱用の高周波コイル14a、14bに
代えて、上型加熱用高周波コイル16a、及び、下型加
熱用高周波コイル16bを、各々上型15a、下型15
bの内部に装着し、また、上型15a、下型15bの成
形面15c、15dを各々凸形状としたことが特徴であ
る。
In the third embodiment, the second embodiment
In place of the high-frequency coils 14a and 14b for heating the molding die shown in FIG. 7, an upper-type heating high-frequency coil 16a and a lower-type heating high-frequency coil 16b are replaced with an upper die 15a and a lower die 15 respectively.
b, and the molding surfaces 15c and 15d of the upper die 15a and the lower die 15b are each formed in a convex shape.

【0051】即ち、凸形状の成形面15cを有する上型
15aには、その内部にコイル挿入穴23aが開けら
れ、中心部に通し穴22aを開けた台座24aに位置決
め部材3aを用いて取り付けられている。
That is, the upper die 15a having the convex molding surface 15c is provided with a coil insertion hole 23a therein, and is mounted using a positioning member 3a on a pedestal 24a having a through hole 22a formed in the center. ing.

【0052】また、凸形状の成形面15dを有する下型
15bは、その内部にコイル挿入穴23bが開けられ、
上型15aに対向して、中心部に通し穴22bを開けた
台座24bに位置決め部材3bを用いて、上下に昇降可
能に取り付けられている。
The lower mold 15b having the convex molding surface 15d has a coil insertion hole 23b formed therein.
Using a positioning member 3b, it is mounted on a pedestal 24b having a through hole 22b at the center thereof so as to be able to move up and down, facing the upper die 15a.

【0053】前記上型加熱用高周波コイル16aは、通
し穴22aを貫通してコイル挿入穴23a内に挿入され
ている。また、前記下型加熱用高周波コイル16bは通
し穴22bを貫通してコイル挿入穴23bに挿入されて
いる。
The upper mold heating high-frequency coil 16a is inserted into the coil insertion hole 23a through the through hole 22a. The lower mold heating high-frequency coil 16b is inserted into the coil insertion hole 23b through the through hole 22b.

【0054】上型加熱用高周波コイル16a、及び、下
型加熱用高周波コイル16bは、図示せぬ高周波加熱用
電源に接続され、上型15a、及び、下型15bを各々
内部から高周波加熱するようにしている。この他の構成
は実施の形態2の場合と同様なのでその詳細説明は省略
する。
The upper mold heating high-frequency coil 16a and the lower mold heating high-frequency coil 16b are connected to a high-frequency heating power supply (not shown) to heat the upper mold 15a and the lower mold 15b from inside. I have to. The other configuration is the same as that of the second embodiment, and the detailed description is omitted.

【0055】(作用)本実施の形態3の成形装置を用い
た成形方法においては、成形面15c、及び、成形面1
5dが、ガラス素材17に接触すると同時に、高周波加
熱用電源によって上型加熱用高周波コイル16a、及
び、下型加熱用高周波コイル16bへの出力を急激に一
定時間だけ上昇させる。
(Operation) In the molding method using the molding apparatus of the third embodiment, the molding surface 15c and the molding surface 1
5d contacts the glass material 17 and, at the same time, the output to the upper die heating high-frequency coil 16a and the lower die heating high-frequency coil 16b is rapidly increased by the high-frequency heating power supply for a certain period of time.

【0056】この場合の出力増加量、及び、増加時間は
成形するガラス素材17の変形量によって調整する。こ
こで、下型15bの場合、下型加熱用高周波コイル16
bの出力増加により、図9に示すように、外側(外周
部)が低温部18、内部(中心部側)が高温部19とな
る温度分布が発生する。
In this case, the output increase amount and the increase time are adjusted by the deformation amount of the glass material 17 to be formed. Here, in the case of the lower mold 15b, the high-frequency coil 16 for lower mold heating is used.
Due to the increase in the output of b, as shown in FIG. 9, a temperature distribution occurs in which the outside (outer peripheral portion) becomes the low temperature portion 18 and the inside (the center portion side) becomes the high temperature portion 19.

【0057】この温度分布により、図10に示すよう
に、ガラス素材17に対する下型15bの成形面15d
に送られる熱量(矢印で示す)21は、中心部が大き
く、外周部に向かうに従い小さくなる。上型15aの場
合も同様になっている。
Due to the temperature distribution, as shown in FIG.
The amount of heat (indicated by an arrow) 21 is large at the center and becomes smaller toward the outer periphery. The same applies to the case of the upper mold 15a.

【0058】一方、押圧時にガラス素材17から下型1
5bに移動する熱量(矢印で示す)20は、中心部が大
きく、外周部が小さくなっている。
On the other hand, the lower mold 1
The amount of heat (indicated by an arrow) 20 moving to 5b is large at the center and small at the outer periphery.

【0059】ここで、下型15bの成形面15dには、
中心部側に大きな熱量が与えられているので、ガラス素
材17の冷却速度は、ガラス素材17全体としてほぼ均
等になり、一部分が先に固化することはなくなる。
Here, on the molding surface 15d of the lower mold 15b,
Since a large amount of heat is applied to the central portion, the cooling rate of the glass material 17 becomes substantially uniform as a whole of the glass material 17, and a portion does not solidify first.

【0060】さらに、ガラス素材17全体の冷却速度が
遅くなり、変形時間が長くなることより、ガラス素材1
7の変形量が大きい場合でも成形が可能となる。一定時
間経過後、前記上型加熱用高周波コイル16a、及び、
下型加熱用高周波コイル16bの出力を成形面15c、
15dの温度調節状態に戻した後、図示せぬ急冷装置に
より、上型15a、下型15b、及び、ガラス素材17
を急冷し、ガラス素材17の温度がガラス転移点以下に
なったら、下型15bを下降させ離型する。
Further, the cooling rate of the entire glass material 17 is reduced, and the deformation time is increased.
Molding becomes possible even when the deformation amount of 7 is large. After a certain period of time, the upper mold heating high-frequency coil 16a, and
The output of the lower mold heating high-frequency coil 16b is output to the molding surface 15c,
After returning to the temperature control state of 15d, the upper mold 15a, the lower mold 15b, and the glass material 17 are cooled by a quenching device (not shown).
Is rapidly cooled, and when the temperature of the glass material 17 becomes lower than the glass transition point, the lower mold 15b is lowered to release the mold.

【0061】(効果)本実施の形態3に示す成形装置を
使用した成形方法によれば、成形中の凹面をもつガラス
素材17全体の冷却が均等に行われ、かつ、冷却速度が
遅くなり、変形時間が長いことから、冷却部分の不揃い
によるヒケや内部応力の残留を除去することができ、面
精度のよい所望の光学素子を得ることが可能となる。
(Effect) According to the molding method using the molding apparatus shown in the third embodiment, the entire glass material 17 having a concave surface during molding is uniformly cooled, and the cooling rate is reduced. Since the deformation time is long, sink marks and residual internal stress due to uneven cooling portions can be removed, and a desired optical element with good surface accuracy can be obtained.

【0062】[0062]

【発明の効果】本発明によれば、加熱手段を用いた成形
型の加熱制御を適切に行い、成形された光学素子全体の
冷却速度を均一にし、遅くすることにより、面精度の良
好な光学素子を得ることが可能な成形装置を提供するこ
とができる。
According to the present invention, by appropriately controlling the heating of the mold using the heating means, and making the cooling rate of the entire molded optical element uniform and slow, an optical element having good surface accuracy can be obtained. A molding device capable of obtaining an element can be provided.

【0063】また、本発明によれば、成形中のガラス素
材全体の冷却が均等に行われ、かつ、冷却速度が遅くな
り、変形時間が長いことから、冷却部分の不揃いによる
ヒケや内部応力の残留を除去することができ、面精度の
よい所望の光学素子を得ることが可能な成形方法を提供
することかできる。
Further, according to the present invention, the entire glass material being formed is uniformly cooled, and the cooling rate is slow and the deformation time is long. It is possible to provide a molding method capable of removing a residue and obtaining a desired optical element with high surface accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の成形装置を示す概略断
面図である。
FIG. 1 is a schematic sectional view showing a molding device according to a first embodiment of the present invention.

【図2】本発明の実施の形態1の成形装置による成形工
程時の概略断面図である。
FIG. 2 is a schematic cross-sectional view at the time of a molding step by the molding apparatus according to the first embodiment of the present invention.

【図3】本発明の実施の形態1の成形装置の加熱温度制
御系を示すブロック図である。
FIG. 3 is a block diagram illustrating a heating temperature control system of the molding apparatus according to the first embodiment of the present invention.

【図4】本発明の実施の形態1における下型の温度分布
を示す説明図である。
FIG. 4 is an explanatory diagram showing a temperature distribution of a lower die according to the first embodiment of the present invention.

【図5】本発明の実施の形態1における下型とガラス素
材との熱伝達の状態を示す説明図である。
FIG. 5 is an explanatory diagram showing a state of heat transfer between the lower mold and the glass material according to the first embodiment of the present invention.

【図6】本発明の実施の形態1における成形型、ガラス
素材の温度変化を示すグラフである。
FIG. 6 is a graph showing temperature changes of a molding die and a glass material according to the first embodiment of the present invention.

【図7】本発明の実施の形態2の成形装置を示す概略断
面図である。
FIG. 7 is a schematic sectional view showing a molding device according to a second embodiment of the present invention.

【図8】本発明の実施の形態3の成形装置を示す概略断
面図である。
FIG. 8 is a schematic sectional view showing a molding device according to a third embodiment of the present invention.

【図9】本発明の実施の形態3における下型の温度分布
を示す説明図である。
FIG. 9 is an explanatory diagram showing a temperature distribution of a lower die according to Embodiment 3 of the present invention.

【図10】本発明の実施の形態3における下型とガラス
素材との熱伝達の状態を示す説明図である。
FIG. 10 is an explanatory diagram showing a state of heat transfer between a lower mold and a glass material according to Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

1a 上型 1b 下型 1c 成形面 1d 成形面 2a 台座 2b 台座 3a 位置決め部材 3b 位置決め部材 4a 上型加熱用赤外線ランプヒータ 4b 上型加熱用赤外線ランプヒータ 5a 上型ヒータハウジング 5b 下型ヒータハウジング 6 ガラス素材 7 搬送皿 8 搬送アーム 9 スペーサ 30 加熱制御装置 31 切り替え器 32 温度調節器 33 加熱出力調節器 1a Upper die 1b Lower die 1c Molding surface 1d Molding surface 2a Pedestal 2b Pedestal 3a Positioning member 3b Positioning member 4a Upper die heating infrared lamp heater 4b Upper die heating infrared lamp heater 5a Upper die heater housing 5b Lower heater housing 6 Glass Material 7 Transfer tray 8 Transfer arm 9 Spacer 30 Heating control device 31 Switching device 32 Temperature controller 33 Heating output controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱軟化したガラス素材を搬送装置によ
りガラス素材より低い温度に加熱した一対の成形型間に
搬送し、この一対の成形型により前記ガラス素材を成形
して光学素子を得る光学素子の成形装置において、 前記一対の成形型を加熱する加熱手段と、 この加熱手段に加熱動力を送り、一対の成形型の成形面
を一定温度分布に制御するとともに、ガラス素材の成形
時に前記成形面の温度分布を、成形する光学素子の形状
に基づく熱容量分布の大小を補完する温度分布となるよ
うに制御する加熱温度制御手段と、 を有することを特徴とする光学素子の成形装置。
An optical element for conveying a glass material which has been heated and softened to a pair of molds heated to a temperature lower than that of the glass material by a conveying device, and molding the glass material with the pair of molds to obtain an optical element. A heating means for heating the pair of molding dies, a heating power is supplied to the heating means to control the molding surfaces of the pair of molding dies to a constant temperature distribution, and the molding surface is formed at the time of molding the glass material. A heating temperature control means for controlling the temperature distribution to be a temperature distribution that complements the magnitude of the heat capacity distribution based on the shape of the optical element to be molded.
【請求項2】 加熱軟化したガラス素材を、ガラス素材
より低い温度に加熱した対向する一対の成形型の間に搬
送し押圧成形することにより光学素子を得る光学素子の
成形方法において、 前記一対の成形型を加熱する加熱手段に加熱動力を送
り、一対の成形型の成形面を一定温度分布に制御すると
ともに、前記ガラス素材の成形時に前記成形面の温度分
布を、成形する光学素子の形状に基づく熱容量分布の大
小を補完する温度分布となるように制御して光学素子を
成形することを特徴とする光学素子の成形方法。
2. A method for forming an optical element, wherein a glass material which has been heated and softened is conveyed between a pair of molding dies heated to a temperature lower than that of the glass material and pressed to obtain an optical element. A heating power is sent to heating means for heating the molding die, and the molding surfaces of the pair of molding dies are controlled to have a constant temperature distribution, and at the time of molding the glass material, the temperature distribution of the molding surface is adjusted to the shape of the optical element to be molded. A method for molding an optical element, characterized in that an optical element is molded by controlling the temperature distribution so as to complement the magnitude of a heat capacity distribution based on the optical element.
【請求項3】 加熱軟化したガラス素材を、型加熱ヒー
タによりガラス素材より低い温度に加熱した対向する一
対の成形型の間に搬送し押圧成形することにより光学素
子を得る光学素子の成形方法において、 前記ガラス素材を均一な温度に加熱し、前記成形型の成
形面を同心円方向に温度分布をつけた状態に加熱する工
程と、 前記ガラス素材を前記成形型間に搬送する工程と、 前記成形型によるガラス素材の成形時に、前記ガラス素
材の冷えやすい部分に大きな熱量を、それ以外の部分に
も一定量の熱量を供給することにより、前記ガラス素材
全面の冷却速度が小さく均等になるように制御し、ガラ
ス素材の温度がガラス転移点以下になるまで押圧保持す
る工程と、 成形されたガラス素材を冷却し、一対の成形型を離型す
る工程と、 を含むことを特徴とする光学素子の成形方法。
3. A method for molding an optical element, wherein a glass material which has been heated and softened is conveyed between a pair of opposite molds heated to a lower temperature than the glass material by a mold heater and pressed to obtain an optical element. Heating the glass material to a uniform temperature and heating the molding surface of the mold to a state in which a temperature distribution is provided in a concentric direction; and transporting the glass material between the molds; At the time of molding the glass material by the mold, by supplying a large amount of heat to the easily cooled portion of the glass material and supplying a fixed amount of heat to the other portions, the cooling rate of the entire surface of the glass material is small and uniform. Controlling and pressing and holding the glass material until the temperature of the glass material becomes equal to or lower than the glass transition point; and cooling the formed glass material and releasing the pair of molds. Method of molding an optical element characterized and.
JP2000144387A 2000-05-17 2000-05-17 Optical element molding apparatus and molding method Expired - Fee Related JP4358406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144387A JP4358406B2 (en) 2000-05-17 2000-05-17 Optical element molding apparatus and molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144387A JP4358406B2 (en) 2000-05-17 2000-05-17 Optical element molding apparatus and molding method

Publications (2)

Publication Number Publication Date
JP2001328829A true JP2001328829A (en) 2001-11-27
JP4358406B2 JP4358406B2 (en) 2009-11-04

Family

ID=18651052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144387A Expired - Fee Related JP4358406B2 (en) 2000-05-17 2000-05-17 Optical element molding apparatus and molding method

Country Status (1)

Country Link
JP (1) JP4358406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259635A (en) * 2022-07-01 2022-11-01 天津大学 Glass lens mould pressing forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259635A (en) * 2022-07-01 2022-11-01 天津大学 Glass lens mould pressing forming method

Also Published As

Publication number Publication date
JP4358406B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
TWI245748B (en) Method and apparatus for molding a glass product
JP4358406B2 (en) Optical element molding apparatus and molding method
JP4825494B2 (en) Glass forming equipment
JP2007186392A (en) Method of molding thermoplastic base material
JP3967146B2 (en) Optical element molding method
JPH04357121A (en) Molding optical element and molding device therefor
JP2975167B2 (en) Glass optical element molding method
JP3187902B2 (en) Glass optical element molding method
JPH05124077A (en) Manufacture of plastic molding
JP2723139B2 (en) Optical element molding method and molding apparatus
JP4232305B2 (en) Precision glass optical element manufacturing method and precision glass optical element manufacturing apparatus using the method
JP2836230B2 (en) Lens molding equipment
JP2004091281A (en) Apparatus for manufacturing glass lens
JP4255294B2 (en) Glass optical element manufacturing method and molding apparatus
JP2002104831A (en) Method of press-forming
JP2005187216A (en) Optical element molding die and production method of optical element
JP2746425B2 (en) Method and apparatus for molding optical element
JP4030799B2 (en) Optical element molding method
JP3184584B2 (en) Glass lens molding method
JP2002036355A (en) Method and apparatus for manufacturing plastic molded article
JP2004231477A (en) Method and apparatus for molding optical element
JPH0672725A (en) Method for molding optical glass
JP2003146674A (en) Press molding apparatus and method for manufacturing glass optical element
JPH06305751A (en) Glass lens molding device
JP2002128534A (en) Forming method of optical glass element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees