JP2001326069A - Organic electroluminescent element and manufacturing method of the same - Google Patents

Organic electroluminescent element and manufacturing method of the same

Info

Publication number
JP2001326069A
JP2001326069A JP2000141177A JP2000141177A JP2001326069A JP 2001326069 A JP2001326069 A JP 2001326069A JP 2000141177 A JP2000141177 A JP 2000141177A JP 2000141177 A JP2000141177 A JP 2000141177A JP 2001326069 A JP2001326069 A JP 2001326069A
Authority
JP
Japan
Prior art keywords
insulating film
moisture
counter electrode
forming
proof insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000141177A
Other languages
Japanese (ja)
Inventor
Chishio Hosokawa
地潮 細川
Hiroshi Shoji
弘 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000141177A priority Critical patent/JP2001326069A/en
Publication of JP2001326069A publication Critical patent/JP2001326069A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroluminescent element with high insulation property between elements, good sealing property, fine patterning, and uniform luminous property. SOLUTION: The organic electroluminescent element comprises a luminous element 17 having an organic layer 13 including a luminous layer interposed between a lower electrode 12 formed on a substrate 11 and an opposing electrode 14, and a non-luminous part 18 with an inter-layer insulation film 15 formed on the substrate and the lower electrode 12, and a moistureproof layer 16 at the outer surface of the non-luminous part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機エレクトロルミ
ネッセンス素子(以下、「有機EL素子」と略記す
る。)に関し、更に詳しくは、高精細で、均一発光性が
高く、封止性能に優れることから、特にディスプレイ用
として有用性の高い有機EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device (hereinafter abbreviated as "organic EL device"), and more particularly to a device having high definition, high uniform light emission, and excellent sealing performance. In particular, the present invention relates to an organic EL device having high utility for display.

【0002】[0002]

【従来の技術】近年、ディスプレイ用の有機EL素子の
開発が盛んに行われている。ディスプレイに用いる有機
EL素子には、パターンニングが高精細(精密)で、均
一発光性が高いことが要求される。
2. Description of the Related Art In recent years, organic EL elements for displays have been actively developed. An organic EL element used for a display is required to have high definition (precision) patterning and high uniform light emission.

【0003】特開平3−250583号公報には、層間
絶縁膜によって、発光部分と非発光部分を備えた素子で
あって、パターン精度が良好で発光の均一性の高い素子
が開示されている。また、特開平5−275172号公
報には、壁状の層間絶縁膜を設け、斜め蒸着により陰極
を形成することによりラインピッチが100μm程度の
高精細ディスプレイが開示されている。
Japanese Patent Application Laid-Open No. 3-250583 discloses an element having a light-emitting portion and a non-light-emitting portion formed of an interlayer insulating film, which has good pattern accuracy and high light emission uniformity. Japanese Patent Application Laid-Open No. Hei 5-275172 discloses a high-definition display having a line pitch of about 100 μm by providing a wall-shaped interlayer insulating film and forming a cathode by oblique vapor deposition.

【0004】ところが、上記のような層間絶縁膜を設け
た有機EL素子においては、層間絶縁膜を隔てて隣接す
る発光素子部分(画素)が、互いに絶縁され分離されて
いないことがあり、パターニングの精密性が不十分な場
合がある。また一方、層間絶縁膜を設けた有機EL素子
においては、層間絶縁膜の段差の存在によって対向電極
の薄膜が分離されるため、封止性能が低下し、これによ
って電極が酸化、劣化し、発光欠陥(ダークスポット、
ダークエリア)を発生することがある。この発光欠陥に
より、発光の均一性が著しく低下する。またこの封止能
の低下は、電極が酸素や水分に触れるため隣接する発光
素子部分間で短絡が生じ、それらの絶縁分離性を低下さ
せる原因にもなっている。これらの問題は、ディスプレ
イ用の有機EL素子としては致命的欠陥である。
However, in the organic EL device provided with the interlayer insulating film as described above, the light emitting element portions (pixels) adjacent to each other with the interlayer insulating film interposed therebetween may be insulated and not separated from each other. Precision may be insufficient. On the other hand, in an organic EL device provided with an interlayer insulating film, the thin film of the counter electrode is separated due to the presence of a step in the interlayer insulating film, so that the sealing performance is reduced, whereby the electrode is oxidized and deteriorated, and light is emitted. Defects (dark spots,
Dark area). Due to this light emission defect, the uniformity of light emission is significantly reduced. In addition, the decrease in the sealing ability causes a short circuit between the adjacent light emitting element portions because the electrodes come into contact with oxygen or moisture, which is a cause of lowering their insulation and separation properties. These problems are fatal defects for an organic EL element for a display.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の観点
からなされたもので、発光素子部分間の絶縁分離性が高
く、かつ封止能が優れ、パターンニングが高精細であ
り、発光の均一性が優れた有機EL素子を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has high insulation separation between light emitting element portions, excellent sealing ability, high definition patterning, and light emission. An object is to provide an organic EL device having excellent uniformity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、非発光素子部分の外表面、又は非発光素
子部分の外表面及び発光素子部分の外表面に特定の防湿
性絶縁膜を形成することによって、本発明の目的を効果
的に達成することができることを見出し本発明を完成し
たものである。すなわち、本発明の要旨は以下の通りで
ある。 〈1〉 基板上に設けた下部電極と対向電極の間に、発
光層を含む有機層を有する発光素子部分と、前記基板及
び下部電極上にパターン加工された層間絶縁膜が存在す
る非発光素子部分とを有する有機エレクトロルミネッセ
ンス素子であって、前記非発光素子部分の外表面に防湿
性絶縁膜が形成されている有機エレクトロルミネッセン
ス素子。 〈2〉 防湿性絶縁膜が非発光素子部分の外表面及び発
光素子部分の外表面に形成されている前記〈1〉に記載
の有機エレクトロルミネッセンス素子。 〈3〉 防湿性絶縁膜の水蒸気透湿度が10g/(m2
・24h)以下である前記〈1〉又は〈2〉に記載の有
機エレクトロルミネッセンス素子。 〈4〉 防湿性絶縁膜の主成分が、対向電極に使用する
材料を活性化した酸素及び/又は活性化した窒素によっ
て酸化、窒化、又は酸窒化して形成された酸化物、窒化
物又は酸窒化物である前記〈1〉〜〈3〉のいずれかに
記載の有機エレクトロルミネッセンス素子。 〈5〉 防湿性絶縁膜が、AlOx(5/4<x<3/
2)を含むものである前記〈1〉〜〈4〉のいずれかに
記載の有機エレクトロルミネッセンス素子。 〈6〉 防湿性絶縁膜が、AlNy(4/5<y<4/
3)を含むものである前記〈1〉〜〈4〉のいずれかに
記載の有機エレクトロルミネッセンス素子。 〈7〉 層間絶縁膜を隔てて隣接する発光素子部分が、
互いに分離し絶縁されている前記〈1〉〜〈6〉のいず
れかに記載の有機エレクトロルミネッセンス素子。 〈8〉 層間絶縁膜と防湿性絶縁膜の間、及び/又は対
向電極と防湿性絶縁膜の間に応力緩和層を有する前記
〈1〉〜〈7〉のいずれかに記載の有機エレクトロルミ
ネッセンス素子。 〈9〉 応力緩和層の材質が、ヤング率1×105 N/
2 以下の金属である前記〈8〉に記載の有機エレクト
ロルミネッセンス素子。 〈10〉基板上に下部電極を形成する工程、パターン化
された層間絶縁膜を設ける工程、発光層を含む有機層を
形成する工程、対向電極を形成する工程、並びに非発光
素子部分の外表面、又は非発光素子部分の外表面及び発
光素子部分の外表面に防湿性絶縁膜を形成する工程を有
する有機エレクトロルミネッセンス素子の製造方法。 〈11〉防湿性絶縁膜を形成する工程が、水蒸気透湿度
が10g/(m2・24h)以下の膜を形成するもので
ある前記〈9〉又は〈10〉に記載の有機エレクトロル
ミネッセンス素子の製造方法。 〈12〉防湿性絶縁膜を形成する工程が、活性化した酸
素及び/又は活性化した窒素によって対向電極に使用す
る材料の酸化物、窒化物又は酸窒化物を形成するもので
ある前記〈10〉又は〈11〉に記載の有機エレクトロ
ルミネッセンス素子の製造方法。 〈13〉防湿性絶縁膜を形成する工程が、対向電極を形
成する工程の後に、該工程で形成された膜を、活性化し
た酸素及び/又は活性化した窒素によって酸化、窒化又
は酸窒化するものである前記〈10〉〜〈12〉のいず
れかに記載の有機エレクトロルミネッセンス素子の製造
方法。 〈14〉防湿性絶縁膜を形成する工程が、活性化した酸
素及び/又は活性化した窒素によって酸化、窒化又は酸
窒化雰囲気にして、対向電極に使用する材料の膜を形成
することによって、酸化、窒化又は酸窒化された対向電
極に使用する材料を堆積させるものである前記〈10〉
〜〈12〉のいずれかに記載の有機エレクトロルミネッ
センス素子の製造方法。 〈15〉層間絶縁膜と防湿性絶縁膜の間、及び/又は対
向電極と防湿性絶縁膜の間に応力緩和層を設ける工程を
有する前記〈10〉〜〈14〉のいずれかに記載の有機
エレクトロルミネッセンス素子の製造方法。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the outer surface of the non-light emitting element portion, or the outer surface of the non-light emitting element portion and the outer surface of the light emitting element portion have a specific moisture-proof property. It has been found that the object of the present invention can be effectively achieved by forming an insulating film, and the present invention has been completed. That is, the gist of the present invention is as follows. <1> A light-emitting element portion having an organic layer including a light-emitting layer between a lower electrode provided on a substrate and a counter electrode, and a non-light-emitting element having an interlayer insulating film patterned on the substrate and the lower electrode And an organic electroluminescent element having a moisture-proof insulating film formed on an outer surface of the non-light-emitting element portion. <2> The organic electroluminescent device according to <1>, wherein the moisture-proof insulating film is formed on an outer surface of the non-light emitting element portion and an outer surface of the light emitting element portion. <3> The moisture vapor permeability of the moisture-proof insulating film is 10 g / (m 2
-24h) The organic electroluminescent device according to <1> or <2> above. <4> An oxide, nitride, or acid formed by oxidizing, nitriding, or oxynitriding a material used for a counter electrode with active oxygen and / or activated nitrogen as a main component of the moisture-proof insulating film. The organic electroluminescence device according to any one of <1> to <3>, which is a nitride. <5> The moisture-proof insulating film is made of AlOx (5/4 <x <3 /
The organic electroluminescence device according to any one of the above <1> to <4>, which includes item 2). <6> The moisture-proof insulating film is made of AlNy (4/5 <y <4 /
The organic electroluminescence device according to any one of the above <1> to <4>, which includes item 3). <7> The light-emitting element portions adjacent to each other with the interlayer insulating film interposed therebetween
The organic electroluminescent device according to any one of <1> to <6>, which is separated and insulated from each other. <8> The organic electroluminescent device according to any one of <1> to <7>, further including a stress relaxation layer between the interlayer insulating film and the moisture-proof insulating film and / or between the counter electrode and the moisture-proof insulating film. . <9> The material of the stress relaxation layer has a Young's modulus of 1 × 10 5 N /
The organic electroluminescence device according to <8>, wherein the metal is m 2 or less. <10> Step of forming lower electrode on substrate, step of providing patterned interlayer insulating film, step of forming organic layer including light emitting layer, step of forming counter electrode, and outer surface of non-light emitting element portion Alternatively, a method for manufacturing an organic electroluminescent device, comprising a step of forming a moisture-proof insulating film on an outer surface of a non-light emitting element portion and an outer surface of a light emitting element portion. <11> The organic electroluminescent device according to <9> or <10>, wherein the step of forming the moisture-proof insulating film forms a film having a water vapor moisture permeability of 10 g / (m 2 · 24 h) or less. Production method. <12> The step of forming the moisture-proof insulating film comprises forming an oxide, nitride or oxynitride of the material used for the counter electrode with the activated oxygen and / or the activated nitrogen. > Or <11>, the method for producing an organic electroluminescence device according to <11>. <13> In the step of forming the moisture-proof insulating film, after the step of forming the counter electrode, the film formed in the step is oxidized, nitrided, or oxynitrided with activated oxygen and / or activated nitrogen. The method for producing an organic electroluminescence device according to any one of the above <10> to <12>. <14> The step of forming a moisture-proof insulating film is performed by oxidizing, nitriding, or oxynitriding with activated oxygen and / or activated nitrogen to form a film of a material used for a counter electrode, Wherein the material used for the nitrided or oxynitrided counter electrode is deposited.
The method for producing an organic electroluminescence device according to any one of <12> to <12>. <15> The organic device according to any one of <10> to <14>, further including a step of providing a stress relaxation layer between the interlayer insulating film and the moisture-proof insulating film and / or between the counter electrode and the moisture-proof insulating film. A method for manufacturing an electroluminescence element.

【0007】[0007]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。本発明は、基板上に設けた下部電極と対向
電極の間に、発光層を含む有機層を有する発光素子部分
と、前記基板及び下部電極上にパターン加工された層間
絶縁膜が存在する非発光素子部分とを有する有機エレク
トロルミネッセンス素子であって、前記非発光素子部分
の外表面、又は非発光素子部分の外表面及び発光素子部
分の外表面に防湿性絶縁膜が形成されている有機エレク
トロルミネッセンス素子である。
Next, an embodiment of the present invention will be described. The present invention provides a non-light-emitting device in which a light-emitting element portion having an organic layer including a light-emitting layer is provided between a lower electrode provided on a substrate and a counter electrode, and an interlayer insulating film patterned on the substrate and the lower electrode is present. An organic electroluminescence device having an element portion, wherein a moisture-proof insulating film is formed on an outer surface of the non-light emitting element portion, or an outer surface of the non-light emitting element portion and an outer surface of the light emitting element portion. Element.

【0008】ここで、パターン加工された層間絶縁膜と
は、基板と下部電極の上にあって、パターン加工によっ
て層間絶縁膜が存在しない開口部で発光素子として作用
する部分(発光素子部分:画素)を形成するとともに、
絶縁膜として存在しそれ自体は発光素子を形成しない非
発光素子部分を形成する絶縁膜である。この膜の上に、
さらに有機層及び対向電極を形成すると、パターン加工
された層間絶縁膜が存在しない開口部のみが通電可能と
なり、その部分にのみ精度のよい発光が得られる。この
ような層間絶縁膜の存在によって、パターン精度のよい
発光が得られる。
Here, the patterned interlayer insulating film is a portion (light emitting element portion: pixel) which is located on the substrate and the lower electrode and has an opening where the interlayer insulating film does not exist by the pattern processing. )
An insulating film that exists as an insulating film and forms a non-light emitting element portion which does not itself form a light emitting element. On top of this membrane
Further, when the organic layer and the counter electrode are formed, only the opening where the patterned interlayer insulating film does not exist can be energized, and accurate light emission can be obtained only in that portion. Due to the presence of such an interlayer insulating film, light emission with high pattern accuracy can be obtained.

【0009】また、その層間絶縁膜の形状は特に限定さ
れるものではなく、例えば断面形状がテーパー状、垂直
断面状、逆テーパー状のものが挙げられる。本発明にお
いては、これらの中でテーパー状や垂直断面状のものが
好ましく、テーパー状のものがより好ましい。また、層
間絶縁膜の膜の厚さ(高さ)は、絶縁効果を有する厚さ
であればよく、通常50nm〜20μmが好ましく、5
00nm〜10μmがより好ましく用いられる。
The shape of the interlayer insulating film is not particularly limited, and examples thereof include those having a tapered cross section, a vertical cross section, and a reverse taper. In the present invention, among these, those having a tapered shape or a vertical sectional shape are preferable, and those having a tapered shape are more preferable. The thickness (height) of the interlayer insulating film may be a thickness having an insulating effect, and is usually preferably 50 nm to 20 μm, and preferably 5 nm to 20 μm.
00 nm to 10 μm is more preferably used.

【0010】本発明で用いられる層間絶縁膜の材質につ
いては、絶縁体であって、高精細パターンニングが可能
な材質であればいかなるものであってもよく、例えば、
種々の絶縁性ポリマーや絶縁性酸化物、窒化物などが挙
げられる。好ましい絶縁性ポリマーの具体例としては、
ポリイミド、フッ素化ポリイミド、ポリオレフィン、ポ
リアクリレート、フッ素系ポリマー、ポリキノリンなど
が挙げられ、また好ましい絶縁性酸化物、窒化物として
は、AlOp(1/2<p≦3/2)、SiOq、フッ
素添加SiOq(1<q<2),Si34などが挙げら
れる。
[0010] The material of the interlayer insulating film used in the present invention may be any material as long as it is an insulator and is capable of high-definition patterning.
Various insulating polymers, insulating oxides, nitrides, and the like can be given. Specific examples of preferred insulating polymers include:
Polyimide, fluorinated polyimide, polyolefin, polyacrylate, fluorinated polymer, polyquinoline, etc. are preferred. Preferred insulating oxides and nitrides include AlOp (1/2 <p ≦ 3/2), SiOq, and fluorine addition. SiOq (1 <q <2), Si 3 N 4 and the like.

【0011】また、層間絶縁膜の材質については、低吸
湿性のものがより好ましい。具体的には,ASTM−D
570法で測定したときの吸湿能力が 0.5質量%以
下が好ましく、吸湿能力が0.1質量%以下のものが特
に好ましい。吸湿性が高い層間絶縁膜は、素子作製中に
混入した水分が滲みだすことにより、有機EL素子の電
極を酸化、劣化させ、発光欠陥(ダークスポット)など
が生じる原因となるからである。このような低吸湿性層
間絶縁膜の材質としては、フッ素系ポリマーやポリオレ
フィンなどを挙げることができる。また、上記の層間絶
縁膜の吸湿性を向上する手段として、層間絶縁膜が吸水
剤を含有してもよい。この吸水剤によって、前記した素
子が保有する水分の他に、外部より侵入する水分をも吸
着することにより、電極を含む素子構成材料の酸化によ
るダークスポットやダークエリアの発生を抑制でき、有
機EL素子の発光面の均一性を維持する効果がある。こ
こに用いる吸水剤は、水分を吸着する材料であれば特に
限定されないが、吸水量が多く、一度吸着した水分を放
出しにくい性質を有しているものが望ましい。このよう
な吸水剤の形状は、特に限定されるものではないが、粉
状のものが吸着面積が大きく吸水能が高い点で好まし
い。また、吸水剤の平均粒径としては、0.03〜2μ
mのものが吸水性能を高める上で好ましく、平均粒径が
0.1〜2μmのものが更に好ましい。層間絶縁膜にお
ける吸水剤の含有量は、吸水剤の種類や粒径等に依存す
るので特に限定されないが、一般に1〜90vol%が
好ましく、10〜30vol%がさらに好ましい。1v
ol%未満では水分を吸着する効果が不十分になる場合
が有り、90vol%を超えると層間絶縁膜のパターニ
ング精度が低下する場合があるからである。さらに活性
処理や脱水処理をした吸水剤が吸水能が高い点で好まし
い。
Further, as for the material of the interlayer insulating film, a material having low hygroscopicity is more preferable. Specifically, ASTM-D
It is preferably 0.5% by mass or less, particularly preferably 0.1% by mass or less, as measured by the 570 method. This is because an interlayer insulating film having high hygroscopicity causes oxidation and deterioration of an electrode of an organic EL element due to bleeding of water mixed during the element production, causing light emission defects (dark spots) and the like. Examples of the material of such a low hygroscopic interlayer insulating film include a fluoropolymer and a polyolefin. Further, as a means for improving the hygroscopicity of the interlayer insulating film, the interlayer insulating film may contain a water absorbing agent. The water absorbing agent also adsorbs water invading from the outside in addition to the water contained in the above-described element, thereby suppressing the occurrence of dark spots and dark areas due to oxidation of the element constituting materials including the electrodes. This has the effect of maintaining the uniformity of the light emitting surface of the device. The water-absorbing agent used here is not particularly limited as long as it is a material that adsorbs moisture. However, it is desirable that the water-absorbing agent has a large amount of water absorption and has a property of hardly releasing once-adsorbed water. The shape of such a water-absorbing agent is not particularly limited, but a powdery one is preferable because it has a large adsorption area and a high water-absorbing ability. The average particle size of the water absorbing agent is 0.03 to 2 μm.
m is preferable in terms of enhancing water absorption performance, and more preferably 0.1 to 2 μm in average particle size. The content of the water-absorbing agent in the interlayer insulating film is not particularly limited because it depends on the type and particle size of the water-absorbing agent, but is generally preferably 1 to 90 vol%, more preferably 10 to 30 vol%. 1v
If the amount is less than 90% by volume, the effect of adsorbing moisture may be insufficient, and if it exceeds 90% by volume, the patterning accuracy of the interlayer insulating film may be reduced. Further, a water-absorbing agent that has been activated or dehydrated is preferred because of its high water-absorbing ability.

【0012】本発明において使用できる吸水剤の具体例
としては、シリカゲル、ゼオライト、活性アルミナ、チ
タニア、ケイソウ土、活性炭、半水石膏、五酸化リン、
過塩素酸マグネシウム、水酸化カリウム、硫酸カルシウ
ム、臭化カルシウム、酸化カルシウム、酸化バリウム、
酸化亜鉛、臭化亜鉛、及び無水硫酸銅等の無機化合物や
リチウム、ベリリウム、カリウム、ナトリウム、マグネ
シウム、ルビジウム、ストロンチウム、カルシウム等の
金属及びこれらを含有する金属合金、更には、吸水性樹
脂、たとえばポリアミド、ポリイミド、アクリル系ポリ
マーもしくはメタクリル系ポリマーなどが挙げられる。
これらは、一種類のみを用いても良く、あるいは二種類
以上を併用しても良い。
Specific examples of the water-absorbing agent usable in the present invention include silica gel, zeolite, activated alumina, titania, diatomaceous earth, activated carbon, hemihydrate gypsum, phosphorus pentoxide,
Magnesium perchlorate, potassium hydroxide, calcium sulfate, calcium bromide, calcium oxide, barium oxide,
Inorganic compounds such as zinc oxide, zinc bromide, and anhydrous copper sulfate, and metals such as lithium, beryllium, potassium, sodium, magnesium, rubidium, strontium, and calcium, and metal alloys containing these, and further, a water-absorbing resin, for example, Examples include polyamide, polyimide, acrylic polymer, and methacrylic polymer.
These may be used alone or in combination of two or more.

【0013】さらに、本発明の層間絶縁膜の材質につい
ては、感光性の機能を有するものであってもよい。この
機能を保有している材料を用いると、フォトレジストを
用いることなくフォトリソグラフが可能になり、素子の
パターンニング工程が簡素化される効果がある。この感
光性を付与した材料としては、この種のものとして市販
されているものを使用することができる。
Further, the material of the interlayer insulating film of the present invention may have a photosensitive function. When a material having this function is used, photolithography can be performed without using a photoresist, and there is an effect that a patterning process of an element is simplified. As the material having the photosensitivity, a commercially available material of this type can be used.

【0014】本発明においては、上記層間絶縁膜は発光
素子部分を設けるようにパターン加工されたものである
ことが必要である。このパターン加工の方法は特に制限
はなく種々の方法で行うことができる。代表的方法とし
てフォトリソグラフを用いる方法がある。この方法で
は、まず、層間絶縁膜を製膜をし、次いでフォトレ
ジストの感光及び現像を行い、その後パターンニング
する。層間絶縁膜の製膜は、絶縁性ポリマーを用いる場
合には、通常ポリマー溶液又はポリマー前駆体溶液を塗
布法、スピンコート法、ディピング法などにより行い、
酸化物、窒化物の場合は通常蒸着法、化学蒸着法(CV
D法)、プラズマCVD法、ECR(Electron
Cyclotron Rezonance)−CVD
法、スパッタリング法、ECR−スパッタリング法など
の方法で行う。また、フォトレジストの感光及び現像を
行うには、まず所望のパターンの精細度に適したフォト
レジスト及び露光法の選定をする。露光法には、例えば
コンタクト露光法、縮小露光法等がある。続いて、パタ
ーンニングを行う。ここではフォトレジストが残存して
いない部分をエッチング除去する。エッチング方法とし
ては、溶媒により層間絶縁膜を溶解し除去するウェット
エッチング法、プラズマ等により層間絶縁膜を分解除去
するドライエッチング法がある。ウェットエッチング法
を用いる場合には、基板に対し垂直方向の層間絶縁膜の
エッチングの速度が大きい溶媒を用いることが好まし
い。各種層間絶縁膜に応じて、この溶媒が存在する場合
は、ウェットエッチング法を用いることが、生産コスト
の低減や生産性の向上に繋がるので好ましい。ドライエ
ッチング法を用いる場合には、エッチングガスの選定が
重要である。ポリイミド、フッ素化ポリイミド、ポリオ
レフィン、ポリアクリレート、ポリキノリン等のポリマ
ーに対しては、酸素プラズマを用いてエッチングするこ
とが好ましい。一方、フッ素系ポリマー、酸化物、窒素
化合物等は、フッ化炭化ガスをプラズマによりラジカル
化したものをエッチングガスとして用いることが好まし
い。フッ化炭化ガスとしては、CHF3、CF4等が特に
好ましい。又、ハロゲン化ホウ素ガスを用いること、酸
素、アルゴン等をフッ化炭化ガスに混合し用いることも
できる。
In the present invention, the interlayer insulating film needs to be patterned so as to provide a light emitting element portion. This pattern processing method is not particularly limited, and can be performed by various methods. As a typical method, there is a method using photolithography. In this method, first, an interlayer insulating film is formed, then the photoresist is exposed and developed, and then patterned. When an insulating polymer is used for forming an interlayer insulating film, a polymer solution or a polymer precursor solution is usually applied by a coating method, a spin coating method, a dipping method, and the like.
In the case of oxides and nitrides, a normal vapor deposition method and a chemical vapor deposition method (CV
D method), plasma CVD method, ECR (Electron)
Cyclotron Resonance) -CVD
, Sputtering, ECR-sputtering, or the like. In order to expose and develop the photoresist, first, a photoresist and an exposure method suitable for a desired pattern definition are selected. Examples of the exposure method include a contact exposure method and a reduction exposure method. Subsequently, patterning is performed. Here, the portion where the photoresist does not remain is removed by etching. Examples of the etching method include a wet etching method in which the interlayer insulating film is dissolved and removed by a solvent, and a dry etching method in which the interlayer insulating film is decomposed and removed by plasma or the like. In the case of using the wet etching method, it is preferable to use a solvent which has a high etching rate of the interlayer insulating film in a direction perpendicular to the substrate. When this solvent is present depending on various interlayer insulating films, it is preferable to use a wet etching method because it leads to reduction of production cost and improvement of productivity. When using a dry etching method, it is important to select an etching gas. For polymers such as polyimide, fluorinated polyimide, polyolefin, polyacrylate, and polyquinoline, etching is preferably performed using oxygen plasma. On the other hand, it is preferable to use, as an etching gas, a fluoropolymer, an oxide, a nitrogen compound, or the like, which is obtained by radicalizing a fluorocarbon gas by plasma. As the fluorocarbon gas, CHF 3 , CF 4 and the like are particularly preferable. Alternatively, a boron halide gas may be used, or oxygen, argon, or the like may be mixed with a fluorocarbon gas and used.

【0015】以上の様にして層間絶縁膜の作製を行うこ
とができるが、この方法以外にも例えば、酸化物を混合
したペーストをスクリーン印刷等により製膜パターン化
した後、数百度で焼成して、パターン加工された層間絶
縁膜を作製する方法も有効である。
The interlayer insulating film can be prepared as described above. In addition to this method, for example, a paste mixed with an oxide is formed into a film forming pattern by screen printing or the like, and then fired at several hundred degrees. Thus, a method of producing a patterned interlayer insulating film is also effective.

【0016】本発明は、上記のようなパターン加工され
た層間絶縁膜が存在する非発光素子部分の外表面に防湿
性絶縁膜が形成されている有機エレクトロルミネッセン
ス素子である。この防湿性絶縁膜は、防湿性と絶縁性と
を備え持つ膜である。そしてその防湿性絶縁膜の防湿性
は、水蒸気透湿度が10g/(m2・24h)以下であ
ることが必要であり、5g/(m2・24h)以下であ
ることがより好ましく、1g/(m2・24h)以下で
あることが特に好ましい。防湿性絶縁膜の水蒸気透湿度
が10g/(m2・24h)を超えると素子構成材料の
劣化を抑制できず、ダークスポットなどが発生する。
The present invention is an organic electroluminescent device in which a moisture-proof insulating film is formed on the outer surface of a non-light emitting device portion where the above-described patterned interlayer insulating film exists. This moisture-proof insulating film is a film having moisture-proof and insulating properties. The moisture of the moisture-proof insulating film is required to be vapor moisture permeability is 10g / (m 2 · 24h) or less, more preferably 5g / (m 2 · 24h) or less, 1 g / (M 2 · 24h) or less is particularly preferred. If the moisture vapor transmission rate of the moisture-proof insulating film exceeds 10 g / (m 2 · 24 h), deterioration of the element constituting material cannot be suppressed, and a dark spot or the like is generated.

【0017】なお、ここでいう水蒸気透湿度の値は40
℃、相対湿度90%におけるものであり、具体的には、
JIS−Z−0208(防湿包装材料の透湿度試験方
法)又はこれと実質的に同じ方法によって測定できる。
The value of the water vapor permeability mentioned here is 40.
℃, relative humidity 90%, specifically,
It can be measured by JIS-Z-0208 (test method of moisture permeability of moisture-proof packaging material) or substantially the same method.

【0018】上記のような防湿性絶縁膜は、非発光素子
部分の外表面に存在すればよいが、この防湿性絶縁膜の
防湿性(能)によって、電極が外部の酸素や水分などと
接触することを防ぎ、また、層間絶縁膜内部の酸素や水
分などを放出することを押さえることによって、ダーク
スポットやダークエリアの発生を抑制する作用をなし、
発光面の均一性を保つ効果をもたらす。さらに、この防
湿性絶縁膜は、その絶縁性によって隣接する発光素子部
分間を絶縁し分離する作用をなし、パターニングの高精
細さを高める効果をももたらす。
The moisture-proof insulating film as described above only needs to be present on the outer surface of the non-light-emitting element portion. The moisture-proof property of the moisture-proof insulating film allows the electrode to come into contact with external oxygen or moisture. By suppressing the release of oxygen and moisture inside the interlayer insulating film, thereby suppressing the occurrence of dark spots and dark areas.
This has the effect of maintaining the uniformity of the light emitting surface. Further, the moisture-proof insulating film has an effect of insulating and separating adjacent light emitting element portions by its insulating property, and also has an effect of increasing the fineness of patterning.

【0019】この防湿性絶縁膜が形成される位置につい
ては種々の態様がある。例えば、非発光素子部分の外表
面全面とともに発光素子部分の外表面の全面にも防湿性
絶縁膜が存在する態様が挙げられる(図1参照)。この
態様は、絶縁性を高めるとともに、有機EL素子全体の
防湿性を一層高める点で、特に好ましい態様である。
There are various modes for the position where the moisture-proof insulating film is formed. For example, there is an embodiment in which a moisture-proof insulating film exists on the entire outer surface of the light emitting element portion as well as on the entire outer surface of the non-light emitting element portion (see FIG. 1). This embodiment is a particularly preferable embodiment in that the insulating property is enhanced and the moisture-proof property of the entire organic EL element is further enhanced.

【0020】また、防湿性絶縁膜が非発光素子部分の外
表面のうち、層間絶縁膜の外側面に位置する部分に存在
する態様が挙げられる(図3参照)。このような態様で
は、防湿性絶縁膜の防湿性及び絶縁性が共に満たされ本
発明の目的を達成でき、また防湿性絶縁膜の製造時間を
より短縮できる効果がある。
Further, there is an embodiment in which the moisture-proof insulating film is present in a portion located on the outer surface of the interlayer insulating film in the outer surface of the non-light emitting element portion (see FIG. 3). In such an embodiment, both the moisture-proof property and the insulating property of the moisture-proof insulating film are satisfied, so that the object of the present invention can be achieved, and the production time of the moisture-proof insulating film can be further shortened.

【0021】また、さらに非発光素子部分の外表面のう
ち、層間絶縁膜の裾の部分のみに防湿性絶縁膜が形成さ
れている態様であってもよい(図4参照)。層間絶縁膜
の裾の部分が最も防湿性が劣ることが多いため、その部
分に防湿性絶縁膜を集中した態様である。したがって、
このような態様の防湿性絶縁膜であっても本発明の目的
を達成できる。
Further, a mode in which a moisture-proof insulating film is formed only on the bottom of the interlayer insulating film on the outer surface of the non-light emitting element portion (see FIG. 4). Since the bottom portion of the interlayer insulating film often has the lowest moisture-proof property, the moisture-proof insulating film is concentrated on that portion. Therefore,
The object of the present invention can be achieved even with the moisture-proof insulating film having such an embodiment.

【0022】このように、本発明の防湿性絶縁膜は、隣
接する発光素子部分間を絶縁でき、層間絶縁膜の防湿性
を確保できる限り、必ずしも非発光素子部分や発光素子
部分の外表面の全面を覆わなければならないものではな
い。
As described above, the moisture-proof insulating film of the present invention necessarily insulates the adjacent light-emitting element portions from each other, and as long as the moisture-proof property of the interlayer insulating film can be ensured, the moisture-proof insulating film does not necessarily cover the outer surface of the non-light-emitting element portion or the light-emitting element portion. It does not have to cover the whole surface.

【0023】なお、本発明における防湿性絶縁膜の膜厚
については特に制限はなく、材料によって異なるが、通
常10nm程度あればよく、例えば10nm〜5μmの
ものを用いれば目的を達することができる。
The thickness of the moisture-proof insulating film in the present invention is not particularly limited, and varies depending on the material. However, it is usually only required to be about 10 nm.

【0024】この防湿性絶縁膜の材質については、上記
のように防湿性と絶縁性を有するものであれば特に制限
はないが、素子の製造効率を高める観点から、対向電極
に使用する材料の酸化物、窒化物または酸窒化物を主成
分とする膜を用いるのが好ましい。これらは特に、活性
化した酸素及び/又は活性化した窒素によって酸化、窒
化、又は酸窒化して形成される酸化物、窒化物または酸
窒化物が好ましい。ここでいう「活性化した酸素」や
「活性化した窒素」とは、酸素原子含有ガスや窒素原子
含有ガスのエネルギー準位を高め、反応性を高くしたガ
スである。例えば、励起状態にある、ラジカル状態にあ
る、イオン化状態、またはプラズマ状態にあるものをい
う。
The material of the moisture-proof insulating film is not particularly limited as long as it has the moisture-proof property and the insulating property as described above. It is preferable to use a film containing oxide, nitride, or oxynitride as a main component. These are particularly preferably oxides, nitrides, or oxynitrides formed by oxidizing, nitriding, or oxynitriding with activated oxygen and / or activated nitrogen. The term "activated oxygen" or "activated nitrogen" as used herein refers to a gas in which the energy level of an oxygen atom-containing gas or a nitrogen atom-containing gas is increased to increase reactivity. For example, it refers to an excited state, a radical state, an ionized state, or a plasma state.

【0025】また、ここで、対向電極に使用する材料と
される金属としては、導電性が大きなもの、具体的には
例えば、比抵抗が1×10-3Ω・cm以下のものが用い
られ、比抵抗が1×10-4Ω・cm以下のものがさらに
好ましく用いられる。これらの金属の代表例としては、
単体としてはAl、Cu,Ag,Cr、Ta、Mg、
W、Zn、Tiなどが挙げられる。また合金としては、
前述の金属から形成される合金、中でもAlとの各種金
属との合金、例えばAl:Si、Al:Ta、Al:L
i、Al:Ca、Al:Inなどが挙げられる。これら
の中でも、対向電極に使用する材料がAl又はAl含有
合金である場合が好ましい。
Here, as the metal used as the material for the counter electrode, a metal having high conductivity, specifically, for example, a metal having a specific resistance of 1 × 10 −3 Ω · cm or less is used. And those having a specific resistance of 1 × 10 −4 Ω · cm or less are more preferably used. Representative examples of these metals include:
Al, Cu, Ag, Cr, Ta, Mg,
W, Zn, Ti and the like can be mentioned. Also, as an alloy,
Alloys formed from the aforementioned metals, especially alloys with Al and various metals, for example, Al: Si, Al: Ta, Al: L
i, Al: Ca, Al: In and the like. Among these, the case where the material used for the counter electrode is Al or an Al-containing alloy is preferable.

【0026】防湿性絶縁膜として一般に用いられるの
は、これら対向電極に使用される材料としての金属単体
や合金の酸化物、窒化物、酸窒化物である。つまり具体
的には、酸化アルミニウム、酸化銅、酸化銀、酸化クロ
ム、酸化タンタル、酸化マグネシウム、酸化タングステ
ン、酸化亜鉛、酸化チタン、及び前記アルミ合金の酸化
物、さらには窒化アルミニウム、窒化銅、窒化銀、窒化
クロム、窒化タンタル、窒化マグネシウム、窒化タング
ステン、窒化亜鉛、窒化チタン及び前記アルミ合金の窒
化物などである。そして、これらの酸化物、窒化物など
の膜は正規組成でなくても良い。また必ずしも透明であ
る必要はなく、黒色である不良酸化膜(正規組成よりは
ずれた組成の膜)や金属微粒子を分散した酸化物膜、金
属微粒子を分散した窒化物膜であってもよい。これら
は、黒色性の光吸収膜にすることができ、非発光素子部
分の表面に光吸収性の防湿性絶縁膜が形成されることに
より発光素子または発光装置のコントラストを向上させ
る効果がある。
As the material used for the counter electrode, an oxide, a nitride or an oxynitride of a simple metal or an alloy is generally used as the moisture-proof insulating film. That is, specifically, aluminum oxide, copper oxide, silver oxide, chromium oxide, tantalum oxide, magnesium oxide, tungsten oxide, zinc oxide, titanium oxide, and oxides of the aluminum alloys, and furthermore, aluminum nitride, copper nitride, nitride Silver, chromium nitride, tantalum nitride, magnesium nitride, tungsten nitride, zinc nitride, titanium nitride, nitrides of the above-mentioned aluminum alloy, and the like. The films of these oxides and nitrides do not have to have a regular composition. It is not always necessary to be transparent, and a black defective oxide film (a film having a composition deviating from the normal composition), an oxide film in which fine metal particles are dispersed, or a nitride film in which fine metal particles are dispersed may be used. These can be black light-absorbing films, and have an effect of improving the contrast of a light-emitting element or a light-emitting device by forming a light-absorbing moisture-proof insulating film on the surface of a non-light-emitting element portion.

【0027】これらの中でも、防湿性絶縁膜が酸化アル
ミニウムや窒化アルミニウムを含む場合が好ましい。特
に、酸化アルミニウムがAlOx(5/4<x<3/
2)で表される化合物を含むものである場合、窒化アル
ミニウムがAlNy(4/5<y<4/3)で表される
化合物を含むものである場合が好ましい。
Among these, it is preferable that the moisture-proof insulating film contains aluminum oxide or aluminum nitride. In particular, aluminum oxide is AlOx (5/4 <x <3 /
In the case of containing the compound represented by 2), it is preferable that the aluminum nitride contains the compound represented by AlNy (4/5 <y <4/3).

【0028】次に、このような防湿性絶縁膜の形成方法
としては、特に制限はないが、防湿性絶縁膜の主成分が
対向電極に使用する材料の酸化物、窒化物または酸窒化
物である場合を例にして説明すると、例えば次の方法
(1)や方法(2)が挙げられる。
Next, the method for forming such a moisture-proof insulating film is not particularly limited, but the main component of the moisture-proof insulating film is oxide, nitride or oxynitride of the material used for the counter electrode. The description will be given taking a case as an example. For example, the following method (1) or method (2) can be given.

【0029】方法(1) 対向電極に使用する材料を蒸着法やスパッタ法などで形
成した後、その薄膜の表面に活性化した酸素及び/又は
活性化した窒素、具体的には、例えば酸素、窒素、N
O,アンモニア、またはこれらを希ガスと混合したガス
をプラズマ化またはイオン化して照射または曝す方法で
ある。これにより前記対向電極に使用する材料で形成さ
れた膜を酸化、窒化、または酸窒化する。プラズマ形成
には各種方法があるが、マイクロウエーブ,交流、また
は電磁波(RF)などによりガスをプラズマ化するのが
簡便である。例えば、真空槽中に平行平板型電極または
バレル型電極を設け、これに交流、または電磁波を印加
し、プラズマ化する方法が挙げられる。この場合のガス
圧、及び真空度などの条件は適宜選定し、酸化、窒化、
または酸窒化を行えばよいが、例えば、RF出力は0.
2〜400mW/cm 2、真空度10-2〜5×10-1
aの条件が好ましい。一方イオン化しこれを照射すると
きには、イオンガンを用いるのも好ましい。イオンガン
の方式としては、ECR型、カウフマン型などの各種方
式があり、通常照射の加速電位が10V〜3KV、照射
電流が0.1μA〜200mA、真空度10-6〜5×1
-1Paで行う。
Method (1) The material used for the counter electrode is formed by vapor deposition or sputtering.
After the formation, activated oxygen and / or
Activated nitrogen, specifically, for example, oxygen, nitrogen, N
O, ammonia, or a mixture of these with a rare gas
By plasma or ionizing and irradiating or exposing
is there. As a result, it is formed of the material used for the counter electrode.
The deposited film is oxidized, nitrided, or oxynitrided. Plasma formation
There are various methods, but microwave, exchange, and
Is to convert gas into plasma by electromagnetic wave (RF)
It is simple. For example, a parallel plate type electrode or
Barrel type electrode is provided and AC or electromagnetic wave is applied to it.
Then, a method of turning into plasma is given. Gas in this case
Conditions such as pressure and degree of vacuum are appropriately selected, and oxidation, nitridation,
Alternatively, oxynitriding may be performed.
2 to 400 mW / cm Two, Vacuum degree 10-2~ 5 × 10-1P
The condition of a is preferred. On the other hand, when it is ionized and irradiated
In this case, it is also preferable to use an ion gun. Ion gun
Various methods such as ECR type and Kauffman type
There is a formula, the acceleration potential for normal irradiation is 10 V to 3 KV,
Current is 0.1μA ~ 200mA, vacuum degree 10-6~ 5 × 1
0-1Perform at Pa.

【0030】方法(2) 対向電極を形成した後に、活性化した酸素及び/又は活
性化した窒素により酸化、窒化又は酸窒化雰囲気にし
て、蒸着法やスパッタ法などで対向電極に使用する材料
の膜を形成することによって、酸化、窒化、または酸窒
化された対向電極に使用する材料を堆積させる方法であ
る。これは、いわゆる反応性蒸着法である。この場合の
酸化雰囲気の形成方法としては、対向電極の蒸着、スパ
ッタ中の真空雰囲気に微量の酸素またはオゾンを導入す
る方法が挙げられる。例えば真空度が10-1〜10-4
aとなるように、酸素またはオゾンを真空槽に導入す
る。酸素またはオゾンを導入する場所としては、真空槽
全体であってもよいし、基板付近または対向電極表面に
吹き付けるようにしても良い。さらに酸素、オゾンを希
ガスなどと混合して用いても良い。また酸化雰囲気の形
成方法としては、プラズマ雰囲気を形成し、この中に対
向電極に使用する材料の蒸着粒子を通過させ酸化させ、
堆積させても良い。このプラズマ形成方法には前記した
ように各種方法がある。また、別の好ましい酸化雰囲気
の形成方法としては、酸素をイオン化し、これを照射し
ながら対向電極に使用する材料を堆積する方法である。
ここで用いるイオンガンの方式としては、前記と同様な
方式、条件を挙げることができる。また、窒化または窒
酸化雰囲気の形成方法としては、対向電極に使用する材
料の蒸着やスパッタ中の真空雰囲気に微量の窒素やアン
モニアを導入する方法であってもよい。より好ましくは
雰囲気の形成方法として、プラズマ雰囲気を形成し、こ
の中に対向電極に使用する材料の蒸着粒子を通過させる
ことにより窒化または窒酸化させ、堆積させる方法であ
る。プラズマ化するガスとしては酸素、窒素、NO,ア
ンモニアなどまたは、これらを希ガスと混合したガスが
挙げられる。また別の雰囲気の形成方法としては、窒
素、NO、アンモニアをイオン化しこれを照射しながら
対向電極に使用する材料を堆積する方法である。ここで
用いるイオンガンの方式などは、前記したものと同様で
ある。
Method (2) After the counter electrode is formed, an atmosphere of oxidation, nitridation or oxynitridation is activated by activated oxygen and / or activated nitrogen, and the material used for the counter electrode is formed by vapor deposition or sputtering. This is a method of depositing a material used for an oxidized, nitrided, or oxynitrided counter electrode by forming a film. This is a so-called reactive evaporation method. As a method for forming the oxidizing atmosphere in this case, a method of introducing a small amount of oxygen or ozone into the vacuum atmosphere during the deposition and sputtering of the counter electrode is given. For example, if the degree of vacuum is 10 -1 to 10 -4 P
Oxygen or ozone is introduced into the vacuum chamber so as to satisfy a. The place where oxygen or ozone is introduced may be the entire vacuum chamber, or may be sprayed near the substrate or on the surface of the counter electrode. Further, oxygen and ozone may be used by being mixed with a rare gas or the like. As a method for forming an oxidizing atmosphere, a plasma atmosphere is formed, through which vapor-deposited particles of a material used for a counter electrode are passed and oxidized.
It may be deposited. As the plasma forming method, there are various methods as described above. Another preferable method of forming an oxidizing atmosphere is a method of ionizing oxygen and depositing a material used for a counter electrode while irradiating the ionized oxygen.
Examples of the method of the ion gun used here include the same method and conditions as described above. Further, as a method of forming the nitriding or nitriding atmosphere, a method of introducing a small amount of nitrogen or ammonia into a vacuum atmosphere during vapor deposition or sputtering of a material used for the counter electrode may be used. More preferably, the atmosphere is formed by a method in which a plasma atmosphere is formed, through which vapor-deposited particles of the material used for the counter electrode are passed, thereby nitriding or nitriding and depositing. Examples of the gas to be turned into plasma include oxygen, nitrogen, NO, ammonia, and the like, or a gas obtained by mixing these with a rare gas. Another method of forming the atmosphere is a method of ionizing nitrogen, NO, and ammonia, and depositing a material used for the counter electrode while irradiating the ionized nitrogen, NO, and ammonia. The method of the ion gun used here is the same as that described above.

【0031】このようにして得られる防湿性絶縁膜は、
通常の酸素、窒素雰囲気で酸化などをした程度の酸化膜
などより緻密な膜が形成され、前記した特異の効果を発
揮する防湿性絶縁膜になる。
The moisture-proof insulating film thus obtained is
A denser film such as an oxide film that has been oxidized in a normal oxygen or nitrogen atmosphere is formed, and becomes a moisture-proof insulating film exhibiting the above-described specific effects.

【0032】続いて、本発明の有機EL素子における基
板、電極、有機層など発光素子部分について説明する。
まず、本発明において有機EL素子の基板としては、透
明性を有するものが好ましく、一般にガラス、透明プラ
スチック、石英などが用いられる。
Subsequently, a light emitting element portion such as a substrate, an electrode and an organic layer in the organic EL element of the present invention will be described.
First, in the present invention, the substrate of the organic EL device is preferably a substrate having transparency, and generally, glass, transparent plastic, quartz, or the like is used.

【0033】また、本発明において下部電極について
は、陰極である場合と陽極である場合があるが、例えば
下部電極が陽極である場合は、通常、導電性透明酸化物
電極を用いれば良い。具体的には、酸化In、Sn添加
酸化In、フッ素添加酸化亜鉛、酸化In−酸化亜鉛な
どが挙げられる。また、下部電極を配線層と半導電性の
電極から構成することもできる。例えば半導電性電極と
して各種無機半導体、有機半導体が用いられる。具体的
には例えばC,DLC(ダイヤモンドライクカーボ
ン)、ZnS、ZnSe,ZnSSe、MgS、MgS
Se、ポリアニリンおよびその誘導体、ポリチオフェン
及びその誘導体、ルイス酸添加アミン化合物層などを用
いることができる。
In the present invention, the lower electrode may be a cathode or an anode. For example, when the lower electrode is an anode, a conductive transparent oxide electrode may be generally used. Specifically, In oxide, Sn-added In oxide, fluorine-added zinc oxide, In-zinc oxide, and the like can be given. Further, the lower electrode may be composed of a wiring layer and a semiconductive electrode. For example, various inorganic semiconductors and organic semiconductors are used as the semiconductive electrode. Specifically, for example, C, DLC (diamond-like carbon), ZnS, ZnSe, ZnSSe, MgS, MgS
Se, polyaniline and its derivatives, polythiophene and its derivatives, Lewis acid-added amine compound layers, and the like can be used.

【0034】また、本発明における対向電極について
は、陽極である場合と陰極である場合がある。例えば対
向電極を陰極とするときは、その材質はアルカリ金属含
有合金、又はアルカリ土類金属含有合金が好ましい。具
体的には例えば、Mg:Ag、Al:Li、Pb:L
i、Zn:Li、Bi:Li、In:Li、Al:Ca
などの合金が挙げられる。これらは耐食性があり、低仕
事関数である。また別の好ましい例としては有機層との
界面にアルカリ金属化合物又はアルカリ土類金属化合
物、または希土類化合物の超薄膜(膜厚0.1〜10n
m)を設け、その上に前述の金属単体、合金を用いるも
のが挙げられる。すなわち金属単体としてはAl、C
u、Ag、Cr、Ta、Mg、W、Zn、Tiなどが、
また合金としては前述の金属から形成される合金、特に
Alと他の各種金属との合金、たとえばAl:Si、A
l:Ta、Al:Li,Al:Ca、Al:Inなどが
挙げられる。さらに陰極に近接する有機層中にアルカリ
金属化合物、アルカリ土類金属化合物又は希土類化合物
を添加し、電子注入輸送性を強化した後、前記、金属ま
たは合金を用いてもよい。
The counter electrode in the present invention may be an anode or a cathode. For example, when the counter electrode is a cathode, the material is preferably an alkali metal-containing alloy or an alkaline earth metal-containing alloy. Specifically, for example, Mg: Ag, Al: Li, Pb: L
i, Zn: Li, Bi: Li, In: Li, Al: Ca
And the like. These are corrosion resistant and have a low work function. As another preferred example, an ultrathin film of an alkali metal compound, an alkaline earth metal compound, or a rare earth compound (having a thickness of 0.1 to 10 n) is provided on the interface with the organic layer.
m), on which the above-mentioned metal simple substance or alloy is used. That is, Al, C
u, Ag, Cr, Ta, Mg, W, Zn, Ti, etc.
As the alloy, an alloy formed from the above-mentioned metals, particularly an alloy of Al and various other metals, for example, Al: Si, A
l: Ta, Al: Li, Al: Ca, Al: In and the like. Further, an alkali metal compound, an alkaline earth metal compound or a rare earth compound may be added to the organic layer close to the cathode to enhance the electron injecting and transporting properties, and then the above metal or alloy may be used.

【0035】次に、本発明における有機EL素子の有機
層であるが、この有機層の構成は特に限定されることは
なく、例えば次の様な構成が挙げられる。 陽極/発光層/陰極 陽極/正孔輸送層/発光層/陰極 陽極/正孔輸送層/発光層/電子輸送層/陰極 陽極/正孔注入層/正孔輸送層/発光層/電子輸送
層/陰極 本発明における有機層とは、上記の正孔注入層、正孔輸
送層、発光層、電子輸送層を意味する。但し、発光層以
外は、必ずしも有機物から形成される必要はなく、必要
に応じて無機半導体材料、無機絶縁材料、その他を使用
しても良い。本発明において、各層に使用する材料は特
に限定されるものではなく、あらゆるものが使用でき
る。例えば、発光層として用いる有機材としては、ジス
チリル誘導体、8−ヒドロキシキノリン系金属錯体など
が発光材として有効であり、さらにポリフルオレン誘導
体、ポリアリーレンビニレン誘導体なども有用である。
Next, the organic layer of the organic EL device according to the present invention is not particularly limited. For example, the following structure may be mentioned. Anode / light-emitting layer / cathode anode / hole-transport layer / light-emitting layer / cathode anode / hole-transport layer / light-emitting layer / electron-transport layer / cathode anode / hole-injection layer / hole-transport layer / light-emitting layer / electron-transport layer / Cathode The organic layer in the present invention means the above-described hole injection layer, hole transport layer, light emitting layer, and electron transport layer. However, other than the light emitting layer, it is not always necessary to be formed from an organic material, and an inorganic semiconductor material, an inorganic insulating material, or the like may be used as necessary. In the present invention, the material used for each layer is not particularly limited, and any material can be used. For example, as the organic material used for the light emitting layer, a distyryl derivative, an 8-hydroxyquinoline-based metal complex, or the like is effective as the light emitting material, and a polyfluorene derivative, a polyarylene vinylene derivative, or the like is also useful.

【0036】上記有機層の形成方法としては、蒸着法、
スピンコート法、バーコート法など各種用いることがで
きる。有機化合物として分子量300〜2000のもの
を用いるときは、蒸着法を用いる方が製膜の膜厚均一
性、無欠陥性の観点より好ましく、有機化合物の分子量
が2000以上であるときは、湿式法であるスピンコー
ト法、バーコート法、スプレー法などを用いることが好
ましい。
The organic layer can be formed by a vapor deposition method,
Various methods such as a spin coating method and a bar coating method can be used. When an organic compound having a molecular weight of 300 to 2,000 is used, it is preferable to use a vapor deposition method from the viewpoint of uniformity of film thickness and no defect, and when the organic compound has a molecular weight of 2,000 or more, a wet method is used. It is preferable to use a spin coating method, a bar coating method, a spray method, or the like.

【0037】これらを製膜方法は、蒸着法、スパッタリ
ング法が好ましく用いられ、特に蒸着法が好ましい。本
発明に使用する蒸着方法はいかなる方法でもよいが、蒸
着方向を、基板面に対して直下より蒸着することがより
好ましい。
As a method for forming these films, a vapor deposition method and a sputtering method are preferably used, and a vapor deposition method is particularly preferable. The vapor deposition method used in the present invention may be any method, but it is more preferable that the vapor deposition is performed from directly below the substrate surface.

【0038】次に、本発明の第二の発明について説明す
る。本発明の第二の発明は、前記の層間絶縁膜と防湿性
絶縁膜の間,及び/又は対向電極と防湿性絶縁膜の間に
応力緩和層を有する有機EL素子である。
Next, the second invention of the present invention will be described. The second invention of the present invention is an organic EL device having a stress relaxation layer between the interlayer insulating film and the moisture-proof insulating film and / or between the counter electrode and the moisture-proof insulating film.

【0039】この応力緩和層を設けることによって、層
間絶縁膜や対向電極と防湿性絶縁膜の主に熱膨張率の相
違から発生する応力によって、防湿性絶縁膜に亀裂が発
生することを抑制し、防湿性絶縁膜の防湿、封止効果を
維持向上する効果を示す。これにより、本発明における
有機EL素子の発光の均一性を付与する効果を更に増大
するものである。
By providing this stress relaxation layer, it is possible to suppress the occurrence of cracks in the moisture-proof insulating film due to the stress mainly generated due to the difference in the coefficient of thermal expansion between the interlayer insulating film or the counter electrode and the moisture-proof insulating film. And the effect of maintaining and improving the moisture-proof and sealing effects of the moisture-proof insulating film. Thereby, the effect of imparting uniformity of light emission of the organic EL element in the present invention is further increased.

【0040】ここで言う応力緩和層は、層間絶縁膜と防
湿性絶縁膜の間、及び/又は対向電極と防湿性絶縁膜の
間に存在すれば目的を達することができる。この応力緩
和層の膜の厚さは、特に制限はないが、10nm〜10
μmが好ましい。また、この応力緩和層の材質として
は、ヤング率が対向電極に使用する材料より柔らかい金
属が好ましく、例えば、ヤング率が1×105 N/m2
(1×104 kg/m2)の金属が好ましく、6×10
4 N/m2(6×103kg/m2)以下の金属がより好
ましく、ヤング率が3×104 N/m2(3×103
g/m2)以下の金属が特に好ましい。ヤング率が1×
104 N/m2を超える金属の場合、応力が発生し、ダ
ークスポットが拡大しやすくなり好ましくない。具体的
に好ましい材質としては、In,Pb,Sn,Sb、B
i、及びこれらの合金や各種はんだを挙げることができ
る。また、別の好ましい態様としては、前述の防湿性絶
縁膜と対向電極の材料の中間組成または傾斜化組成が挙
げられる。中間組成としては、対向電極材料と防湿性絶
縁膜である酸化物、窒化物などの無機化合物との混合組
成が挙げられる。また傾斜化組成としては、対向電極か
ら無機化合物膜との境界において、対向電極から無機化
合物膜に移行するにつれ、対向電極の酸化の度合いが徐
々に大きくなり防湿性絶縁膜の組成に近接もしくは、同
じ組成になって防湿性絶縁膜となる形態である。
The purpose of the stress relaxation layer can be achieved if it exists between the interlayer insulating film and the moisture-proof insulating film and / or between the counter electrode and the moisture-proof insulating film. The thickness of the stress relaxation layer is not particularly limited, but may be 10 nm to 10 nm.
μm is preferred. Further, as the material of the stress relaxation layer, a metal having a Young's modulus softer than the material used for the counter electrode is preferable. For example, the Young's modulus is 1 × 10 5 N / m 2.
(1 × 10 4 kg / m 2 ), preferably 6 × 10 4
Metals of 4 N / m 2 (6 × 10 3 kg / m 2 ) or less are more preferable, and Young's modulus is 3 × 10 4 N / m 2 (3 × 10 3 k).
g / m 2 ) or less are particularly preferred. Young's modulus is 1 ×
In the case of a metal exceeding 10 4 N / m 2 , stress is generated, and a dark spot is easily enlarged, which is not preferable. Specific preferred materials include In, Pb, Sn, Sb, and B.
i and their alloys and various solders. Further, as another preferred embodiment, the above-described intermediate composition or graded composition of the material of the moisture-proof insulating film and the counter electrode is exemplified. Examples of the intermediate composition include a mixed composition of a counter electrode material and an inorganic compound such as an oxide or a nitride which is a moisture-proof insulating film. As the graded composition, at the boundary between the counter electrode and the inorganic compound film, as the counter electrode shifts to the inorganic compound film, the degree of oxidation of the counter electrode gradually increases and approaches the composition of the moisture-proof insulating film, or In this embodiment, the same composition is used to form a moisture-proof insulating film.

【0041】前記の応力緩和層の形成方法としては、真
空蒸着法またはスパッタ法が好ましい。前記した柔らか
い金属は低融点でありきわめて蒸着がし易いからであ
る。例えば、対向電極形成工程によって対向電極に使用
する材料の膜が形成された後にこれら金属を真空蒸着す
れば応力緩和層が形成できる。また、別の方法として
は、対向電極に使用する材料を蒸着またはスパッタしな
がら、徐々に酸化雰囲気または窒化雰囲気にしてゆき、
対向電極材料と無機化合物の混合組成または傾斜化組成
を形成する方法が挙げられる。徐々に酸化または窒化雰
囲気にすれば、前述の対向電極の酸化や窒化の度合いが
徐々に大きくなり防湿性絶縁膜の組成に近接もしくは、
同一組成になり防湿性絶縁膜となる形態を実現すること
ができる。
As a method for forming the stress relaxation layer, a vacuum evaporation method or a sputtering method is preferable. This is because the above soft metal has a low melting point and is extremely easy to vapor-deposit. For example, a stress relaxation layer can be formed by vacuum-depositing these metals after forming a film of the material used for the counter electrode in the counter electrode forming step. Another method is to gradually evaporate or sputter the material used for the counter electrode to an oxidizing or nitriding atmosphere,
A method of forming a mixed composition or a graded composition of the counter electrode material and the inorganic compound is exemplified. If the atmosphere is gradually oxidized or nitrided, the degree of oxidation or nitridation of the above-described counter electrode gradually increases and approaches the composition of the moisture-proof insulating film, or
It is possible to realize a form that has the same composition and becomes a moisture-proof insulating film.

【0042】徐々に酸化雰囲気または窒化雰囲気にする
方法としては、前記と同様に、対向電極の蒸着やスパッ
タ中の真空雰囲気に微量の酸素またはオゾンを導入する
量を増やしていくこと方法が挙げられる。また別の雰囲
気の形成方法として、プラズマ雰囲気を形成し、この中
に対向電極に使用する材料の蒸着粒子を通過させ酸化、
窒化または酸窒化させつつ堆積させる方法が挙げられ
る。この場合プラズマ出力を強めていく方法を用いても
良い。さらに別の方法としては、窒素、NO、アンモニ
アをイオン化しこれを照射しながら対向電極に使用する
材料を堆積する際にイオン化加速電位を強めるか、又は
イオン電流値を大きくする方法も好適である。
As a method of gradually changing the atmosphere to an oxidizing atmosphere or a nitriding atmosphere, there is a method of increasing the amount of introducing a small amount of oxygen or ozone into a vacuum atmosphere during vapor deposition or sputtering of a counter electrode, as described above. . As another method of forming the atmosphere, a plasma atmosphere is formed, and vaporized particles of the material used for the counter electrode are passed through the plasma atmosphere to oxidize the atmosphere.
A method of depositing while nitriding or oxynitriding may be used. In this case, a method of increasing the plasma output may be used. As still another method, it is also preferable to increase the ionization acceleration potential or increase the ion current value when depositing a material to be used for the counter electrode while ionizing nitrogen, NO, and ammonia while irradiating them. .

【0043】次に、本発明における有機EL素子につい
ては、以下の方法で効率的に、かつ経済的に製造でき
る。本発明における有機EL素子の製造方法は、基板上
に下部電極を形成する工程、パターン化された層間絶縁
膜を設ける工程、有機発光層を形成する工程、対向電極
を形成する工程、並びに非発光素子部分の外表面、又は
非発光素子部分の外表面及び発光素子部分の外表面上に
防湿性膜を形成する工程を含む有機EL素子の製造方法
である。
Next, the organic EL device of the present invention can be efficiently and economically manufactured by the following method. The method for manufacturing an organic EL device according to the present invention includes a step of forming a lower electrode on a substrate, a step of providing a patterned interlayer insulating film, a step of forming an organic light emitting layer, a step of forming a counter electrode, and a step of non-light emitting. An organic EL device manufacturing method including a step of forming a moisture-proof film on an outer surface of an element portion, an outer surface of a non-light emitting element portion, and an outer surface of a light emitting element portion.

【0044】上記の製造方法においては、まず、基板
に、通常の方法で下部電極を形成する。通常、導電性透
明酸化物を蒸着法又はスパッタ法又はCVD法にて製膜
する。また下部電極をパターン加工する場合は、フォト
リソグラフ法によって導電性酸化物膜上にフォトレジス
トを所望のパターンで形成し、これをマスクとしてエッ
チング液で導電性酸化物をエッチングし、パターン加工
する方法を用いることができる。ここで用いるエッチン
グ液としては、この目的で市販されている酸類などを用
いることができる。
In the above manufacturing method, first, a lower electrode is formed on a substrate by an ordinary method. Usually, a conductive transparent oxide is formed by a vapor deposition method, a sputtering method, or a CVD method. When the lower electrode is patterned, a photoresist is formed in a desired pattern on the conductive oxide film by a photolithographic method, and the conductive oxide is etched with an etchant using the photoresist as a mask to perform pattern processing. Can be used. As the etchant used here, acids and the like that are commercially available for this purpose can be used.

【0045】次にパターン化された層間絶縁膜を設ける
工程としては、その材料などにより種々の方法を選択で
きるが、前記した層間絶縁膜を製膜し、フォトレジ
ストを感光及び現像し、次いでパターンニング工程に
より層間絶縁膜を形成すればよい。また、この方法以外
のスクリーン印刷法などであってもよい。
Next, as a step of providing a patterned interlayer insulating film, various methods can be selected depending on the material and the like. The above-described interlayer insulating film is formed, a photoresist is exposed and developed, and then the pattern is formed. What is necessary is just to form an interlayer insulating film by a lining process. A screen printing method other than this method may be used.

【0046】続いて、発光層を含む有機層を形成する。
この工程では、前記した有機薄膜の形成法を用いれば良
く、例えば蒸着法や、特開平3−250583号公報に
開示されているようにマスクを用いながら複数回蒸着す
る方法などが挙げられる。さらに続いて対向電極を設け
る工程を行う。この工程は前記したように有機薄膜上に
対向電極に使用する材料を蒸着またはスパッタ法で形成
する。
Subsequently, an organic layer including a light emitting layer is formed.
In this step, the above-described method of forming an organic thin film may be used, and examples thereof include a vapor deposition method and a method of performing vapor deposition a plurality of times using a mask as disclosed in JP-A-3-250583. Subsequently, a step of providing a counter electrode is performed. In this step, as described above, the material used for the counter electrode is formed on the organic thin film by vapor deposition or sputtering.

【0047】次いで本発明においては非発光素子部分の
外表面に防湿性絶縁膜を形成する。防湿性絶縁膜は、前
記のように非発光素子部分の外表面とともにさらに発光
素子部分の外表面上全面にも形成されていてもよいし、
非発光素子部分の外表面の一部のみに形成されてもよ
い。
Next, in the present invention, a moisture-proof insulating film is formed on the outer surface of the non-light emitting element portion. The moisture-proof insulating film may be formed on the entire outer surface of the light emitting element portion together with the outer surface of the non-light emitting element portion as described above,
It may be formed only on a part of the outer surface of the non-light emitting element portion.

【0048】また、この防湿性絶縁膜は、水蒸気透湿度
が10g/(m2・24h)以下であることが必要であ
り、5g/(m2・24h)以下であることがより好ま
しく、1g/(m2・24h)以下であることが特に好
ましい。
[0048] Also, the moisture-proof insulating film is required to be vapor moisture permeability is 10g / (m 2 · 24h) or less, more preferably 5g / (m 2 · 24h) or less, 1g / (M 2 · 24h) or less is particularly preferred.

【0049】この防湿性絶縁膜を形成する工程として
は、非発光素子部分の外表面などに、対向電極に使用す
る材料の酸化物、窒化物又は酸窒化物を主成分とする膜
を形成する工程が、膜の形成が容易である点で好まし
い。
In the step of forming the moisture-proof insulating film, a film mainly composed of an oxide, nitride or oxynitride of the material used for the counter electrode is formed on the outer surface of the non-light emitting element portion or the like. The step is preferred in that the formation of the film is easy.

【0050】そして、この対向電極に使用する材料の酸
化物、窒化物又は酸窒化物を主成分とする膜を形成する
方法としては、前記の方法(1)のように、対向電極に
使用する材料の膜を形成する工程の後に、該工程によっ
て形成された膜を酸化、窒化又は酸窒化する方法、ある
いは前記方法(2)のように、酸化、窒化又は酸窒化雰
囲気の下で膜形成を行い、酸化、窒化又は酸窒化された
対向電極に使用する材料を堆積させる方法が挙げられ
る。
As a method of forming a film mainly composed of an oxide, nitride or oxynitride of the material used for the counter electrode, as in the above-mentioned method (1), a film used for the counter electrode is used. After the step of forming a film of the material, a method of oxidizing, nitriding or oxynitriding the film formed by the step, or forming the film under an oxidizing, nitriding or oxynitriding atmosphere as in the method (2). And a method of depositing a material used for the oxidized, nitrided or oxynitrided counter electrode.

【0051】本発明においては、上記のように、対向電
極に使用する材料の酸化物、窒化物又は酸窒化物を主成
分とする膜などの防湿性絶縁膜を形成するが、その膜の
形成によって、隣接する発光素子部分が絶縁し分離され
る。とりわけ非発光素子部分の外表面であって層間絶縁
膜の外側面にあたる部分は通常膜厚の薄い対向電極層が
存在するから、対向電極に使用する材料の膜を形成した
後に、該膜を強力に酸化,窒化または酸窒化すれば、当
該層間絶縁膜で隔てられた2つの対向電極は、絶縁され
分離される。本発明では、必ずしも逆テーパー断面の層
間絶縁膜を用いる必要はなく、段差断面を保有する層間
絶縁膜を用いれば、この側部外表面に設けられた対向電
極層を完全に酸化または窒化し、対向電極同士を分離独
立させることが可能となる。特にこの発明の好ましい態
様にとしては、基板上に下部電極を複数の平行電極ライ
ンとして形成する工程、非発光素子部分を形成する層間
絶縁膜を複数のリブ状に形成し、該リブを下部電極ライ
ンと直交させて形成する工程、発光層を含む有機層を形
成する工程、対向電極を形成する工程、非発光素子部分
の外表面、又は非発光素子部分の外表面及び発光素子部
分の外表面に対向電極に使用する材料の酸化物、窒化物
または酸化窒化物を主成分とする防湿性絶縁膜を形成す
るとともに該リブの側部の対向電極に使用する材料を完
全に絶縁化し、対向電極の平行電極ラインを互いに分離
独立させる工程を少なくとも含む有機EL素子の製造方
法である。このようにすることでXYマトリックス型の
有機EL素子を製造できる。
In the present invention, as described above, a moisture-proof insulating film such as a film mainly containing an oxide, a nitride or an oxynitride of the material used for the counter electrode is formed. Thereby, the adjacent light emitting element portions are insulated and separated. In particular, a portion of the outer surface of the non-light emitting element portion corresponding to the outer surface of the interlayer insulating film usually has a thin counter electrode layer. Therefore, after forming a film of a material used for the counter electrode, the film is strongly applied. If the substrate is oxidized, nitrided or oxynitrided, the two opposing electrodes separated by the interlayer insulating film are insulated and separated. In the present invention, it is not always necessary to use an interlayer insulating film having a reverse tapered cross section, and if an interlayer insulating film having a stepped cross section is used, the counter electrode layer provided on this side outer surface is completely oxidized or nitrided, The opposing electrodes can be separated and independent. Particularly, in a preferred embodiment of the present invention, a step of forming a lower electrode as a plurality of parallel electrode lines on a substrate, forming an interlayer insulating film for forming a non-light emitting element portion in a plurality of ribs, and forming the lower electrode into a lower electrode Forming at right angles to the line, forming an organic layer including a light-emitting layer, forming a counter electrode, an outer surface of a non-light-emitting element portion, or an outer surface of a non-light-emitting element portion and an outer surface of a light-emitting element portion Forming a moisture-proof insulating film mainly composed of an oxide, nitride or oxynitride of the material used for the counter electrode and completely insulating the material used for the counter electrode on the side of the rib, Is a method for manufacturing an organic EL element, which comprises at least a step of separating and independent parallel electrode lines from each other. By doing so, an XY matrix type organic EL element can be manufactured.

【0052】本発明における有機EL素子の製造方法に
おいては、前記製造方法の各工程に加えて、層間絶縁膜
と防湿性絶縁膜の間、及び/又は対向電極と防湿性絶縁
膜との間に応力緩和層を設ける工程を採用することもで
きる。
In the method of manufacturing an organic EL device according to the present invention, in addition to the steps of the above-described manufacturing method, a method may be employed between the interlayer insulating film and the moisture-proof insulating film and / or between the counter electrode and the moisture-proof insulating film. A step of providing a stress relaxation layer can also be adopted.

【0053】応力緩和層を設ける方法については、前記
のように真空蒸着法またはスパッタ法が好ましく用いら
れる。この場合、対向電極に使用する材料が堆積され薄
膜化された後に、応力緩和層用の金属を真空蒸着すれば
応力緩和層が形成できる。またこれとは別の方法とし
て、対向電極として使用する材料を蒸着またはスパッタ
しながら、徐々に窒化雰囲気または酸化雰囲気にしてゆ
き、対向電極に使用する材料と無機化合物の混合組成ま
たは傾斜化組成を形成する方法がある。徐々に酸化雰囲
気にすれば、前述の対向電極として使用する材料の酸化
の度合いが徐々に大きくなり防湿性絶縁膜の組成に近接
もしくは、同一組成になり防湿性膜となる形態を実現す
ることができる。
As for the method of providing the stress relaxation layer, the vacuum evaporation method or the sputtering method is preferably used as described above. In this case, the stress relaxation layer can be formed by vacuum-depositing a metal for the stress relaxation layer after the material used for the counter electrode is deposited and thinned. As another method, while depositing or sputtering the material used as the counter electrode, gradually setting the material in the nitriding atmosphere or the oxidizing atmosphere to a mixed or graded composition of the material used for the counter electrode and the inorganic compound. There is a method of forming. If the atmosphere is gradually changed to an oxidizing atmosphere, the degree of oxidation of the material used as the above-described counter electrode gradually increases, and the composition of the moisture-proof insulating film becomes close to or the same as that of the moisture-proof insulating film. it can.

【0054】[0054]

〔予備実験〕〔Preliminary experiment〕

(防湿性絶縁膜の組成と性質の確認1)ポリエチレンテ
レフタレート(PET)フィルム上に膜厚20μmのA
l:Li合金を成膜した。次いで、これをプラズマ照射
室の平行平板型の電極の中央に配置し、真空度1.2×
10-2Pa、Ar:O2の体積比200:75、RF出
力92mW/cm2の条件で酸素プラズマ照射した。得
られた酸化膜をX線光電子分光装置(XPS)で分析し
た結果、AlOx(x=1.30)であった。またこの
膜の水蒸気透湿度は2.5g/(m2・24h)であっ
た。 (防湿性絶縁膜の組成と性質の確認2)確認1の酸素プ
ラズマ照射の代わりに、真空度1.2×10-2Pa、A
r:窒素の体積比200:60、RF出力140mW/
cm2の条件で窒素プラズマ照射した。この窒化膜はA
lOy(y=1.22)であり、水蒸気透湿度は1.8
g/(m2・24h)であった。 (防湿性絶縁膜の組成と性質の確認3)防湿性絶縁膜の
組成と性質の確認1における酸素プラズマの代わりに、
2をオゾン化して照射した。この酸化膜はAlOx
(x=0.9)であり、水蒸気透湿度は20g/(m2
・24h)であった。 (防湿性絶縁膜の組成と性質の確認4)確認1の酸素プ
ラズマ照射の代わりに、真空度1.2×10-2Paで酸
素プラズマ雰囲気としてアルミを蒸着させ、酸化アルミ
ニウムを堆積させた。この酸化膜はAlOx(x=1.
35)であり、水蒸気透湿度は1.2g/(m2・24
h)であった。
(Confirmation of Composition and Properties of Moisture-Proof Insulating Film 1) A 20 μm-thick A on polyethylene terephthalate (PET) film
l: Li alloy was deposited. Next, this was arranged at the center of the parallel plate type electrode in the plasma irradiation chamber, and the degree of vacuum was 1.2 ×
Oxygen plasma irradiation was performed under the conditions of 10 −2 Pa, a volume ratio of Ar: O 2 of 200: 75, and an RF output of 92 mW / cm 2 . The obtained oxide film was analyzed by an X-ray photoelectron spectroscopy (XPS), and as a result, it was found to be AlOx (x = 1.30). The water vapor permeability of this film was 2.5 g / (m 2 · 24 h). (Confirmation 2 of composition and properties of moisture-proof insulating film) Instead of oxygen plasma irradiation of confirmation 1, vacuum degree 1.2 × 10 -2 Pa, A
r: nitrogen volume ratio 200: 60, RF output 140 mW /
Irradiation with nitrogen plasma was performed under the condition of cm 2 . This nitride film is A
10Oy (y = 1.22), and the water vapor permeability is 1.8
g / (m 2 · 24 h). (Confirmation of composition and properties of moisture-proof insulating film 3) In place of oxygen plasma in confirmation 1 of composition and properties of moisture-proof insulating film,
O 2 was ozonized and irradiated. This oxide film is made of AlOx
(X = 0.9), and the water vapor transmission rate is 20 g / (m 2).
24h). (Confirmation of Composition and Properties of Moisture-Proof Insulating Film 4) Instead of the oxygen plasma irradiation of Confirmation 1, aluminum was vapor-deposited in an oxygen plasma atmosphere at a degree of vacuum of 1.2 × 10 −2 Pa to deposit aluminum oxide. This oxide film is formed of AlOx (x = 1.
35) and the water vapor transmission rate is 1.2 g / (m 2 · 24
h).

【0055】〔実施例1〕 (1) リブ状層間絶縁膜の形成 厚さ0.7mmのガラス基板2上に、ITOを300μ
mピッチでストライプ加工した下部電極を有する基板を
用意した。この下部電極上に、感光性ポリオレフィン系
のネガタイプレジスト(日本ゼオン社製;ZCOAT−
1410)をスピンコートにてスピンナー回転数150
0rpmで35秒間回転させ製膜した。この膜厚は5.
3μmであった。次いでホットオーブンにて70℃、3
0分、乾燥(ベーク)した。次にフォトマスクを用い,
365nmの紫外線露光で120mJ/cm2 の照射量
の露光をした。この露光パターンは幅20μmの層間絶
縁膜である感光性ポリオレフィン系のネガタイプレジス
トが300μmおきに上記ITOパターンに垂直に、線
状のリブラインとして残る様にした。その後現像し、乾
燥窒素雰囲気下のクリーンオーブン中で200℃で2時
間キュアーを行い、リブ状層間絶縁膜を形成した。この
リブの断面を走査電子顕微鏡(SEM)により像観察を
行ったところ、リブの段差はほぼ垂直状であった。 (2) 有機EL素子作製 上記(1)で得られた層間絶縁膜を形成したガラス基板
をイソプロピルアルコールにて3分間、超音波洗浄を行
い、更にオゾンを併用した洗浄装置にて30分間、洗浄
を行った。次にこれを真空蒸着装置(日本真空技術社
製)の基板ホルダーに装着した。真空蒸着装置のモリブ
テン製の抵抗加熱ボートにN,N’−ジフェニル−
N,N’−ビス−(3−メチルフェニル)−(1,1’
−ビフェニル)−4,4’−ジアミン(以下、TPDと
略記する)を200mg入れ、これとは別のモリブテン
製の抵抗加熱ボートにトリス(8−ヒドロキシキノリ
ノール)アルミニウム(以下、Alqと略記する)を2
00mg入れて真空槽を1×10-6torr迄排気し
た。そして、まずボートを加熱し膜厚80nmの正孔
輸送層を成膜した。次にボートを真空槽から取り出す
ことなく、ボートを加熱して正孔輸送層の上にAlq
からなる膜厚75nmの発光層を成膜した。さらに真空
槽を開けることなく、予め真空槽内に設けてあるAl:
Li合金が入った抵抗加熱ボートを加熱し、蒸着レー
ト0.8nm/sで膜厚200nmのAl:Li対向電
極を製膜した。
Example 1 (1) Formation of a rib-like interlayer insulating film On a glass substrate 2 having a thickness of 0.7 mm, 300 μm of ITO was deposited.
A substrate having a lower electrode striped at an m pitch was prepared. On this lower electrode, a photosensitive polyolefin-based negative type resist (manufactured by Zeon Corporation; ZCOAT-
1410) by spin coating with a spinner rotation speed of 150
The film was formed by rotating at 0 rpm for 35 seconds. This film thickness is 5.
It was 3 μm. Then in a hot oven at 70 ° C, 3
Dried (baked) for 0 minutes. Next, using a photomask,
Exposure was performed at an irradiation amount of 120 mJ / cm 2 by UV exposure at 365 nm. In this exposure pattern, a photosensitive polyolefin-based negative resist, which is an interlayer insulating film having a width of 20 μm, is left as a linear rib line perpendicular to the ITO pattern every 300 μm. Thereafter, the film was developed and cured at 200 ° C. for 2 hours in a clean oven under a dry nitrogen atmosphere to form a rib-like interlayer insulating film. When an image of the cross section of the rib was observed with a scanning electron microscope (SEM), the step of the rib was almost vertical. (2) Preparation of organic EL element The glass substrate on which the interlayer insulating film obtained in the above (1) was formed was subjected to ultrasonic cleaning with isopropyl alcohol for 3 minutes, and further cleaned for 30 minutes with a cleaning device using ozone. Was done. Next, this was mounted on a substrate holder of a vacuum evaporation apparatus (manufactured by Nippon Vacuum Engineering Co., Ltd.). N, N'-diphenyl- was added to the molybdenum resistance heating boat of the vacuum evaporation system.
N, N'-bis- (3-methylphenyl)-(1,1 '
-Biphenyl) -4,4'-diamine (hereinafter abbreviated as TPD), 200 mg, and tris (8-hydroxyquinolinol) aluminum (hereinafter abbreviated as Alq) in another molybdenum resistance heating boat. 2
Then, the vacuum tank was evacuated to 1 × 10 −6 torr. Then, the boat was heated to form a hole transport layer having a thickness of 80 nm. Next, without removing the boat from the vacuum tank, the boat was heated and Alq was placed on the hole transport layer.
A light emitting layer having a thickness of 75 nm was formed. Further, without opening the vacuum chamber, Al previously provided in the vacuum chamber:
The resistance heating boat containing the Li alloy was heated to form a 200 nm thick Al: Li counter electrode at a deposition rate of 0.8 nm / s.

【0056】続いて、このようにして得られた有機EL
素子をプラズマ照射室の平行平板型の電極の中央に配置
し、真空度1.2×10-2Pa、Ar:O2の体積比2
00:75、RF出力92mW/cm2で、酸素プラズ
マを対向電極上側より照射し、前記リブの側部の電極材
料として堆積した膜を酸化した。この側部の酸化物膜を
XPSで分析した結果、主成分は、組成がAlOx(x
=1.30)のアルミナであることが判明した。また、
これをSEMで観察したところ、リブの外表面をすべて
防湿性を有するアルミナが被覆していた。次いで、厚さ
0.7mmのガラス板を用い有機EL素子上側に、封止
板を接着した。封止は不活性気体中(乾燥窒素ガス中)
で、封止板の周囲を紫外線硬化性接着剤を塗布し、封止
板と有機EL素子を貼り合わせ紫外線照射して行った。
Subsequently, the organic EL thus obtained was obtained.
The element was placed at the center of the parallel plate type electrode in the plasma irradiation chamber, the degree of vacuum was 1.2 × 10 −2 Pa, and the volume ratio of Ar: O 2 was 2
At 00:75, an RF plasma was irradiated from above the counter electrode at an RF output of 92 mW / cm 2 to oxidize the film deposited as an electrode material on the side of the rib. As a result of analyzing the oxide film on this side by XPS, the main component has a composition of AlOx (x
= 1.30). Also,
When this was observed with an SEM, the outer surfaces of the ribs were all covered with moisture-proof alumina. Next, a sealing plate was bonded to the upper side of the organic EL element using a glass plate having a thickness of 0.7 mm. Seal in inert gas (in dry nitrogen gas)
Then, an ultraviolet curable adhesive was applied to the periphery of the sealing plate, and the sealing plate and the organic EL element were bonded and irradiated with ultraviolet rays.

【0057】このようにして得られた本発明の有機EL
素子のラインのうち、ITOのライン1本とAlのライ
ン1本を選び、ITOを+(正)極、Alを−(負)極
として電圧7Vを印加し、パターンの精度を光学顕微鏡
下で調べたところ、ITOとAlのストライプの交差部
分だけ発光した。すなわち隣接するAlラインとは分離
独立していることが判明した。全てのAlラインの電圧
印加を順次行い調べた結果、互いに短絡し繋がった箇所
はなく、本発明の有機EL素子の対向電極の分離パター
ンニングは良好であることが判明した。同時にAlライ
ンのエッジの画素の無発光化状態を調べたところ、無発
光幅は5μm以下であり、エッジも良好に規定されてい
た。
The organic EL of the present invention thus obtained
Among the element lines, one ITO line and one Al line were selected, and a voltage of 7 V was applied using ITO as a positive (positive) electrode and Al as a negative (negative) electrode. Upon examination, light was emitted only at the intersection of the ITO and Al stripes. That is, it was found that the adjacent Al line was separated and independent. As a result of sequentially applying and applying a voltage to all the Al lines, there were no short-circuited and connected portions, and it was found that the separation patterning of the counter electrode of the organic EL element of the present invention was good. At the same time, the non-emission state of the pixel at the edge of the Al line was examined. The non-emission width was 5 μm or less, and the edge was well defined.

【0058】〔実施例2〕有機EL素子を酸素プラズマ
照射して酸化する代わりに、窒素プラズマ照射し窒化し
た以外は、実施例1と同様にして本発明の有機EL素子
を作製した。窒化の条件は、真空度1.2×10-2
a、Ar:窒素の体積比200:60、RF出力140
mW/cm2であった。窒化後のリブ側部の窒化物膜を
XPSで分析した結果、主成分がAlNy(y=1.2
2)であり、また、これをSEMで観察したところリブ
の外表面をすべてSiNxが被覆していた。封止板を封
着した後の有機EL素子のラインのうち、ITOのライ
ン1本とAlのライン1本を選び、ITOを+(正)
極、Alを−(負)極として電圧7Vを印加し、パター
ンの精度を光学顕微鏡下で調べたところ、ITOとAl
のストライプの交差部分だけ発光した。すなわち隣接す
るAlラインとは分離独立していることが判明した。ま
た全てのAlラインの電圧印加を順次行い調べた結果、
互いに短絡し繋がった箇所はなく、本発明の有機EL素
子の対向電極の分離パターンニングは良好であることが
判明した。同時にAlラインのエッジの画素の無発光化
状態を調べたところ、無発光幅は4.5μm以下であ
り、エッジも良好に規定されていることが判明した。し
たがって、このAlNxは防湿性絶縁膜として機能して
いる。
Example 2 An organic EL device according to the present invention was produced in the same manner as in Example 1 except that the organic EL device was irradiated with nitrogen plasma and nitrided instead of being oxidized by irradiating oxygen plasma. The conditions for nitriding are as follows: vacuum degree 1.2 × 10 -2 P
a, Ar: nitrogen volume ratio 200: 60, RF output 140
mW / cm 2 . As a result of analyzing the nitride film on the rib side after nitriding by XPS, the main component was AlNy (y = 1.2
2), and when this was observed by SEM, all the outer surfaces of the ribs were covered with SiNx. From the lines of the organic EL element after sealing the sealing plate, one ITO line and one Al line were selected, and the ITO was + (positive).
When a voltage of 7 V was applied with the negative electrode and Al as a negative electrode, the accuracy of the pattern was examined under an optical microscope.
Only the intersection of the stripes emitted light. That is, it was found that the adjacent Al line was separated and independent. In addition, as a result of sequentially applying and applying voltage to all Al lines,
There were no short-circuited and connected portions, and it was found that the separation patterning of the counter electrode of the organic EL device of the present invention was good. At the same time, when the non-emission state of the pixel at the edge of the Al line was examined, it was found that the non-emission width was 4.5 μm or less, and the edge was well defined. Therefore, this AlNx functions as a moisture-proof insulating film.

【0059】〔比較例1〕酸素プラズマを照射しなかっ
たこと以外は、実施例1と同様にして有機EL素子を作
製した。この素子は、ITOとAlのストライプの交差
部分以外の箇所が多数発光し、陰極の分離独立は不完全
であった。
Comparative Example 1 An organic EL device was manufactured in the same manner as in Example 1 except that no oxygen plasma was irradiated. In this device, a large number of portions other than the intersection of the ITO and Al stripes emitted light, and the independence of the cathode was incomplete.

【0060】〔比較例2〕実施例1と同様の下部電極を
有する基板上に、感光性アクリレート系のネガタイプレ
ジスト(新日鉄化学社製;V259)を実施例1と同様
の方法でスピンコートして製膜した(膜厚は5.3μ
m)。次にホットオーブンにて70℃、30分ベークし
た後、フォトマスクを用い、365nmの紫外線露光で
450mJ/cm2の照射量の露光をした。露光パター
ンは、実施例1と同様幅20μmの層間絶縁膜である感
光性アクリレート系のネガタイプレジストが300μm
おきに基板上のITOパターンに垂直に、線状のリブラ
インとして残る様にした。その後現像し、乾燥窒素雰囲
気下で160度、0.5時間クリーンオーブン中でキュ
アーを行い、層間絶縁膜リブを形成した。このリブの断
面をSEMにより像観察したところ逆テーパー状であっ
た。
Comparative Example 2 A photosensitive acrylate negative type resist (V259, manufactured by Nippon Steel Chemical Co., Ltd.) was spin-coated on a substrate having the same lower electrode as in Example 1 in the same manner as in Example 1. A film was formed (the film thickness was 5.3 μm).
m). Next, the film was baked in a hot oven at 70 ° C. for 30 minutes, and then exposed using a photomask at an irradiation amount of 450 mJ / cm 2 by UV exposure at 365 nm. Exposure pattern is 300 μm of a photosensitive acrylate negative type resist which is an interlayer insulating film having a width of 20 μm as in Example 1.
Every other time, it was made to remain as a linear rib line perpendicular to the ITO pattern on the substrate. Thereafter, development was performed, and curing was performed in a clean oven at 160 ° C. for 0.5 hour in a dry nitrogen atmosphere to form an interlayer insulating film rib. When an image of the cross section of the rib was observed with an SEM, the rib had a reverse tapered shape.

【0061】その後、実施例1と同じ方法で有機EL素
子を作製した。この素子について、XPS及び断面SE
Mで観察したところ対向電極材料の堆積膜が、リブの外
表面上を覆っていない箇所があった。この原因はリブが
逆テーパーの突起であるため、対向電極材料が堆積され
なかったと思われる。しかし、断面をSEMで観察した
ところリブの一部が逆テーパーを形成しておらず、この
個所では対向電極の堆積膜は連続していた。
Thereafter, an organic EL device was manufactured in the same manner as in Example 1. For this element, XPS and section SE
Observation at M showed that the deposited film of the counter electrode material did not cover the outer surface of the rib. It is considered that this was because the ribs were projections having an inverse taper, and thus the counter electrode material was not deposited. However, when the cross section was observed by SEM, a part of the rib did not form an inverse taper, and the deposited film of the counter electrode was continuous at this point.

【0062】次に、酸素プラズマ照射を行わずに、有機
EL素子上に実施例1と同様な方法で封止板を接着し
た。得られた素子のラインのうち、ITOのライン1本
とAlのライン1本を選び、ITOを+(正)極、Al
を−(負)極として電圧7Vを印加し、パターンの精度
を光学顕微鏡下で調べたところ、ITOとAlのストラ
イプの交差部分だけ発光した。すなわち隣接するAlラ
インとは分離独立していることが判明した。しかし、他
のラインを選び同様な試験を繰り返し行ったところ、対
向電極が分離していないラインが多数発生していること
が判明した。この不分離は一部が逆テーパーを形成して
いないことが原因している考えられる。
Next, a sealing plate was adhered to the organic EL element in the same manner as in Example 1 without performing oxygen plasma irradiation. From the obtained device lines, one ITO line and one Al line were selected, and ITO was set to + (positive) electrode, Al
When a voltage of 7 V was applied with-as a (negative) pole, and the accuracy of the pattern was examined under an optical microscope, light was emitted only at the intersection of the ITO and Al stripes. That is, it was found that the adjacent Al line was separated and independent. However, when another line was selected and the same test was repeated, it was found that a number of lines where the counter electrode was not separated occurred. It is considered that this non-separation is caused by the fact that a part does not form a reverse taper.

【0063】〔比較例3〕実施例1と同様にして、素子
を製造した。ただし、平行平板型のプラズマ照射の代わ
りにO2をオゾン化しAl:Li対向電極に照射した
(防湿性絶縁膜の組成と性質の確認3と同じ条件)。こ
れによって、生成した酸化膜をXPSで分析したとこ
ろ、AlOx(x=0.9)であった。またSEMによ
る観察では多孔質の膜であった。この素子を室温で24
時間保存したものは、無発光点が多数発生した。
Comparative Example 3 An element was manufactured in the same manner as in Example 1. However, instead of the parallel plate type plasma irradiation, O 2 was ozonized and irradiated to the Al: Li counter electrode (the same conditions as in confirmation 3 of the composition and properties of the moisture-proof insulating film). The oxide film thus formed was analyzed by XPS and found to be AlOx (x = 0.9). Further, it was a porous film as observed by SEM. The device was left at room temperature for 24
In the one stored for a long time, many non-emission points were generated.

【0064】〔実施例3〕比較例2と同様に素子を作製
した。但し、対向電極を形成した後に実施例1と同様な
方法で、酸素プラズマを対向電極上より照射し、前記リ
ブの側部の電極材料堆積膜を酸化した。この酸化物膜を
XPSで分析した結果、主成分はアルミナであることが
判明した。その後比較例2と同様に封止板で封着した。
この素子のラインのうち、ITOのライン1本とAlの
ライン1本を選び、ITOを+(正)極、Alを−
(負)極として電圧7Vを印加し、パターンの精度を光
学顕微鏡下で調べたところ、ITOとAlのストライプ
の交差部分だけ発光した。すなわち隣接するAlライン
とは分離独立していることが判明した。全てのAlライ
ンの電圧印加を順次行い調べた結果、互いに短絡し繋が
った箇所はなく、本発明の有機EL素子の対向電極の分
離パターンニングは良好であることが判明した。つま
り、隣接する対向電極ラインの分離が不十分な箇所は、
リブの側部がプラズマ照射により完全に絶縁物化された
ことが分かる。
Example 3 An element was produced in the same manner as in Comparative Example 2. However, after forming the counter electrode, oxygen plasma was irradiated from above the counter electrode in the same manner as in Example 1 to oxidize the electrode material deposited film on the side of the rib. The oxide film was analyzed by XPS, and it was found that the main component was alumina. Then, it sealed with the sealing plate similarly to the comparative example 2.
Of the element lines, one ITO line and one Al line were selected, and ITO was set to a positive (positive) pole and Al was set to-.
When a voltage of 7 V was applied as a (negative) pole and the accuracy of the pattern was examined under an optical microscope, light was emitted only at the intersection of the ITO and Al stripes. That is, it was found that the adjacent Al line was separated and independent. As a result of sequentially applying and applying a voltage to all the Al lines, there were no short-circuited and connected portions, and it was found that the separation patterning of the counter electrode of the organic EL element of the present invention was good. In other words, where the separation of adjacent counter electrode lines is insufficient,
It can be seen that the side portions of the ribs were completely turned into insulators by plasma irradiation.

【0065】〔実施例4〕実施例1と同様に有機EL素
子を作成した。この状態でリブ及び対向電極上には無機
化合物であるアルミナが被覆されていた。本実施例で
は、さらにアルミナ表面上に反応性蒸着法を用いて酸化
アルミニウムをさらに蒸着させた。この反応性蒸着法で
は、対向電極材料であるアルミを蒸着しつつこの蒸着物
を真空度1.2×10-2Paにて形成した酸素プラズマ
中を通過させ酸化アルミニウムとして堆積させる。結果
として前記アルミナ上にさらに膜厚0.3μmの酸化ア
ルミニウムの膜が防湿性絶縁膜の一部として堆積した。
この酸化アルミニウムの膜をXPSで分析した結果、主
成分は、組成がAlOx(x=1.35)のアルミナで
あることが判明した。また、これをSEMで観察したと
ころ、リブの外表面をすべて防湿性を有するアルミナが
被覆していた。このようにして得られた本発明の有機E
L素子のラインのうち、ITOのライン1本とAlのラ
イン1本を選び、ITOを+(正)極、Alを−(負)
極として電圧7Vを印加し、パターンの精度を光学顕微
鏡下で調べたところ、ITOとAlのストライプの交差
部分だけ発光した。また全てのAlラインの電圧印加を
順次行い調べた結果、互いに短絡し繋がった箇所はな
く、本発明の有機EL素子の対向電極の分離パターンニ
ングは良好であることが判明した。同時にAlラインの
エッジの画素の無発光化状態を調べたところ、無発光幅
は5μm以下であり、エッジも良好に規定されていた。
Example 4 An organic EL device was prepared in the same manner as in Example 1. In this state, alumina as an inorganic compound was coated on the ribs and the counter electrode. In this example, aluminum oxide was further deposited on the alumina surface using a reactive deposition method. In this reactive vapor deposition method, while depositing aluminum as a counter electrode material, the deposit is passed through oxygen plasma formed at a degree of vacuum of 1.2 × 10 −2 Pa to deposit aluminum oxide. As a result, a 0.3 μm-thick aluminum oxide film was further deposited on the alumina as a part of the moisture-proof insulating film.
Analysis of the aluminum oxide film by XPS revealed that the main component was alumina having a composition of AlOx (x = 1.35). When this was observed by SEM, it was found that the entire outer surface of the rib was covered with moisture-proof alumina. The organic E of the present invention thus obtained
One line of ITO and one line of Al are selected from the L element lines, and ITO is a + (positive) pole and Al is-(negative).
When a voltage of 7 V was applied as a pole and the accuracy of the pattern was examined under an optical microscope, light was emitted only at the intersection of the ITO and Al stripes. Further, as a result of sequentially applying voltages to all the Al lines and examining them, there were no short-circuited and connected portions, and it was found that the separation patterning of the counter electrode of the organic EL element of the present invention was good. At the same time, the non-emission state of the pixel at the edge of the Al line was examined. The non-emission width was 5 μm or less, and the edge was well defined.

【0066】〔実施例5〕実施例1と同様に素子を作成
する工程で、対向電極を製膜後に、その上にInを0.
3μm蒸着し、応力緩和層を形成した。次に実施例4と
同様の反応性蒸着法によって、膜厚が2μmのAlOx
を形成した。この素子の表面をSEMにて観測したとこ
ろ、AlOxには亀裂がなかった。
[Embodiment 5] In the process of fabricating the device in the same manner as in Embodiment 1, after forming a counter electrode, In was added with In.
3 μm was deposited to form a stress relaxation layer. Next, AlOx having a thickness of 2 μm was formed by the same reactive evaporation method as in Example 4.
Was formed. Observation of the surface of this device by SEM revealed that AlOx had no cracks.

【0067】[0067]

【発明の効果】本発明にかかる有機EL素子は、発光素
子部分間の絶縁分離性が高く、かつ封止能が優れ、パタ
ーンニングが高精細であり、発光の均一性が優れてい
る。また、さらに応力緩和層を設けた有機EL素子は、
防湿性絶縁膜の封止及び絶縁効果をさらに高めることが
できる。さらに本発明の有機EL素子の製造方法は、本
発明の有機EL素子を効率的、経済的に製造できる。
As described above, the organic EL device according to the present invention has high insulation separation between light emitting element portions, excellent sealing ability, high definition patterning, and excellent light emission uniformity. Further, the organic EL element further provided with the stress relaxation layer
The sealing and insulating effects of the moisture-proof insulating film can be further enhanced. Furthermore, the method for manufacturing an organic EL device of the present invention can efficiently and economically manufacture the organic EL device of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様にかかる有機EL素子の概
念断面図(非発光素子部分の外表面及び発光素子部分の
全外表面に防湿性絶縁膜が形成されている場合)
FIG. 1 is a conceptual cross-sectional view of an organic EL element according to an embodiment of the present invention (when a moisture-proof insulating film is formed on the outer surface of a non-light emitting element portion and the entire outer surface of a light emitting element portion).

【図2】図1のX−Yに沿った断面における平面図FIG. 2 is a plan view in a cross section along XY of FIG. 1;

【図3】本発明の一実施態様にかかる有機EL素子の概
念断面図(非発光素子部分の外表面のうち層間絶縁膜の
外側面に位置する部分に防湿性絶縁膜が形成されている
場合)
FIG. 3 is a conceptual cross-sectional view of an organic EL device according to an embodiment of the present invention (in a case where a moisture-proof insulating film is formed on a portion of an outer surface of a non-light emitting element portion located on an outer surface of an interlayer insulating film). )

【図4】本発明の一実施態様にかかる有機EL素子の概
念断面図(非発光素子部分の外表面のうち層間絶縁膜の
外側面の裾の部分に防湿性絶縁膜が形成されている場
合)
FIG. 4 is a conceptual cross-sectional view of an organic EL element according to an embodiment of the present invention (in the case where a moisture-proof insulating film is formed on the outer surface of the non-light-emitting element at the bottom of the outer surface of the interlayer insulating film). )

【符号の説明】[Explanation of symbols]

11,21,31,41 基板 12,22,32,42 下部電極 13,33,43 有機層 14,34,44 対向電極 15,25,35,45 層間絶縁膜 16,36,46 防湿性絶縁膜 17 発光素子部分 27 発光素子部分(画素) 18 非発光素子部分 11, 21, 31, 41 Substrate 12, 22, 32, 42 Lower electrode 13, 33, 43 Organic layer 14, 34, 44 Counter electrode 15, 25, 35, 45 Interlayer insulating film 16, 36, 46 Moistureproof insulating film 17 Light-emitting element part 27 Light-emitting element part (pixel) 18 Non-light-emitting element part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/318 H01L 21/318 A H05B 33/10 H05B 33/10 33/12 33/12 B 33/14 33/14 A 33/22 33/22 Z Fターム(参考) 3K007 AB00 AB05 AB13 AB15 AB18 BA06 BB01 CA01 CB01 DA01 DB03 EA01 EB00 FA01 FA02 4K029 BA41 BA43 BA44 BA58 BC00 BC05 BD00 CA06 DC03 DC04 5F058 AA04 AD04 AD08 AD10 AF01 AF04 AG06 AH02 5G435 AA13 AA14 AA16 AA17 BB05 CC09 GG31 HH14 HH18 KK05──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01L 21/318 H01L 21/318 A H05B 33/10 H05B 33/10 33/12 33/12 B 33/14 33/14 A 33/22 33/22 Z F term (reference) 3K007 AB00 AB05 AB13 AB15 AB18 BA06 BB01 CA01 CB01 DA01 DB03 EA01 EB00 FA01 FA02 4K029 BA41 BA43 BA44 BA58 BC00 BC05 BD00 CA06 DC03 DC04 5F058 AA04 AD04 AD08 AD10 AF01 AG06 AH02 5G435 AA13 AA14 AA16 AA17 BB05 CC09 GG31 HH14 HH18 KK05

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けた下部電極と対向電極の間
に、発光層を含む有機層を有する発光素子部分と、前記
基板及び下部電極上にパターン加工された層間絶縁膜が
存在する非発光素子部分とを有する有機エレクトロルミ
ネッセンス素子であって、前記非発光素子部分の外表面
に防湿性絶縁膜が形成されている有機エレクトロルミネ
ッセンス素子。
1. A light-emitting element portion having an organic layer including a light-emitting layer between a lower electrode provided on a substrate and a counter electrode, and a non-light-emitting device having an interlayer insulating film patterned on the substrate and the lower electrode. An organic electroluminescent element having a light emitting element portion, wherein a moisture-proof insulating film is formed on an outer surface of the non-light emitting element portion.
【請求項2】 防湿性絶縁膜が非発光素子部分の外表面
及び発光素子部分の外表面に形成されている請求項1に
記載の有機エレクトロルミネッセンス素子。
2. The organic electroluminescent device according to claim 1, wherein the moisture-proof insulating film is formed on the outer surface of the non-light emitting element portion and the outer surface of the light emitting device portion.
【請求項3】 防湿性絶縁膜の水蒸気透湿度が10g/
(m2・24h)以下である請求項1又は2に記載の有
機エレクトロルミネッセンス素子。
3. The moisture-proof insulating film has a water vapor permeability of 10 g /
(M 2 · 24h) or less organic electroluminescent device according to claim 1 or 2.
【請求項4】 防湿性絶縁膜の主成分が、対向電極に使
用する材料を活性化した酸素及び/又は活性化した窒素
によって酸化、窒化、又は酸窒化して形成された酸化
物、窒化物又は酸窒化物である請求項1〜3のいずれか
に記載の有機エレクトロルミネッセンス素子。
4. An oxide or nitride formed by oxidizing, nitriding, or oxynitriding a material used for a counter electrode as a main component of the moisture-proof insulating film with activated oxygen and / or activated nitrogen. 4. The organic electroluminescence device according to claim 1, wherein the device is an oxynitride.
【請求項5】 防湿性絶縁膜が、AlOx(5/4<x
<3/2)で表される化合物を含むものである請求項1
〜4のいずれかに記載の有機エレクトロルミネッセンス
素子。
5. The method according to claim 1, wherein the moisture-proof insulating film is made of AlOx (5/4 <x
2. A compound containing a compound represented by <3/2).
5. The organic electroluminescent device according to any one of items 1 to 4,
【請求項6】 防湿性絶縁膜が、AlNy(4/5<y
<4/3)で表される化合物を含むものである請求項1
〜4のいずれかに記載の有機エレクトロルミネッセンス
素子。
6. The moisture-proof insulating film is made of AlNy (4/5 <y
The compound containing the compound represented by <4/3).
5. The organic electroluminescent device according to any one of items 1 to 4,
【請求項7】 層間絶縁膜を隔てて隣接する発光素子部
分が、互いに分離し絶縁されている請求項1〜6のいず
れかに記載の有機エレクトロルミネッセンス素子。
7. The organic electroluminescent element according to claim 1, wherein the light emitting element portions adjacent to each other via the interlayer insulating film are separated from each other and insulated.
【請求項8】 層間絶縁膜と防湿性絶縁膜の間、及び/
又は対向電極と防湿性絶縁膜の間に応力緩和層を有する
請求項1〜7のいずれかに記載の有機エレクトロルミネ
ッセンス素子。
8. between the interlayer insulating film and the moisture-proof insulating film, and / or
The organic electroluminescence device according to claim 1, further comprising a stress relaxation layer between the counter electrode and the moisture-proof insulating film.
【請求項9】 応力緩和層の材質が、ヤング率1×10
5 N/m2 以下の金属である請求項8に記載の有機エレ
クトロルミネッセンス素子。
9. The material of the stress relaxation layer has a Young's modulus of 1 × 10.
5 N / m 2 or less of an organic electroluminescent device according to claim 8 which is a metal.
【請求項10】基板上に下部電極を形成する工程、パタ
ーン化された層間絶縁膜を設ける工程、発光層を含む有
機層を形成する工程、対向電極を形成する工程、並びに
非発光素子部分の外表面、又は非発光素子部分の外表面
及び発光素子部分の外表面に防湿性絶縁膜を形成する工
程を有する有機エレクトロルミネッセンス素子の製造方
法。
10. A step of forming a lower electrode on a substrate, a step of providing a patterned interlayer insulating film, a step of forming an organic layer including a light emitting layer, a step of forming a counter electrode, and a step of forming a non-light emitting element portion. A method for manufacturing an organic electroluminescent device, comprising a step of forming a moisture-proof insulating film on an outer surface, an outer surface of a non-light emitting element portion, and an outer surface of a light emitting element portion.
【請求項11】防湿性絶縁膜を形成する工程が、水蒸気
透湿度が10g/(m2・24h)以下の膜を形成する
ものである請求項10に記載の有機エレクトロルミネッ
センス素子の製造方法。
11. The method for manufacturing an organic electroluminescence device according to claim 10, wherein the step of forming the moisture-proof insulating film is a step of forming a film having a water vapor permeability of 10 g / (m 2 · 24 h) or less.
【請求項12】防湿性絶縁膜を形成する工程が、活性化
した酸素及び/又は活性化した窒素によって対向電極に
使用する材料の酸化物、窒化物又は酸窒化物を形成する
ものである請求項10又は11に記載の有機エレクトロ
ルミネッセンス素子の製造方法。
12. The step of forming a moisture-proof insulating film is to form an oxide, a nitride or an oxynitride of a material used for a counter electrode with activated oxygen and / or activated nitrogen. Item 12. The method for producing an organic electroluminescence device according to item 10 or 11.
【請求項13】防湿性絶縁膜を形成する工程が、対向電
極を形成する工程の後に、該工程で形成された膜を、活
性化した酸素及び/又は活性化した窒素によって酸化、
窒化又は酸窒化するものである請求項10〜12のいず
れかに記載の有機エレクトロルミネッセンス素子の製造
方法。
13. The step of forming a moisture-proof insulating film comprises, after the step of forming a counter electrode, oxidizing the film formed in the step with activated oxygen and / or activated nitrogen.
The method for producing an organic electroluminescent device according to claim 10, wherein nitriding or oxynitriding is performed.
【請求項14】防湿性絶縁膜を形成する工程が、活性化
した酸素及び/又は活性化した窒素によって酸化、窒化
又は酸窒化雰囲気にして、対向電極に使用する材料の膜
を形成することによって、酸化、窒化又は酸窒化された
対向電極に使用する材料を堆積させるものである請求項
10〜12のいずれかに記載の有機エレクトロルミネッ
センス素子の製造方法。
14. A step of forming a moisture-proof insulating film by forming an oxide, nitridation or oxynitriding atmosphere with activated oxygen and / or activated nitrogen to form a film of a material used for a counter electrode. The method for manufacturing an organic electroluminescent device according to claim 10, wherein a material used for an oxidized, nitrided, or oxynitrided counter electrode is deposited.
【請求項15】層間絶縁膜と防湿性絶縁膜の間、及び/
又は対向電極と防湿性絶縁膜の間に応力緩和層を設ける
工程を有する請求項10〜14のいずれかに記載の有機
エレクトロルミネッセンス素子の製造方法。
15. An inter-layer insulating film and a moisture-proof insulating film, and / or
The method for manufacturing an organic electroluminescent device according to claim 10, further comprising a step of providing a stress relaxation layer between the counter electrode and the moisture-proof insulating film.
JP2000141177A 2000-05-15 2000-05-15 Organic electroluminescent element and manufacturing method of the same Withdrawn JP2001326069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141177A JP2001326069A (en) 2000-05-15 2000-05-15 Organic electroluminescent element and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141177A JP2001326069A (en) 2000-05-15 2000-05-15 Organic electroluminescent element and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2001326069A true JP2001326069A (en) 2001-11-22

Family

ID=18648331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141177A Withdrawn JP2001326069A (en) 2000-05-15 2000-05-15 Organic electroluminescent element and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2001326069A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139930A (en) * 2002-10-21 2004-05-13 Internatl Business Mach Corp <Ibm> Organic electroluminescent element, manufacturing method of the same, and organic electroluminescent display device
US7242375B2 (en) 2002-10-25 2007-07-10 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2007296691A (en) * 2006-04-28 2007-11-15 Konica Minolta Holdings Inc Gas barrier material, manufacturing method for gas barrier material, gas barrier material having transparent conductive film, and organic electroluminescent element
US7326653B2 (en) 2002-03-27 2008-02-05 Cambridge Display Technology Limited Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
JP2008056967A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Gas barrier property resin base material, and organic electroluminescence device
JP2008108515A (en) * 2006-10-24 2008-05-08 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display
JP2009230953A (en) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd Organic el display panel and its manufacturing method
WO2011027723A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2012064479A (en) * 2010-09-17 2012-03-29 Casio Comput Co Ltd Light emitting device
US8648528B2 (en) 2002-08-29 2014-02-11 Seiko Epson Corporation Electroluminescent device, method for manufacturing the same, and electronic apparatus
KR20150021887A (en) * 2013-08-21 2015-03-03 가부시키가이샤 재팬 디스프레이 Organic Electro-Luminescence Display Device and Method for Manufacturing The Same
JPWO2017094498A1 (en) * 2015-11-30 2018-09-20 パイオニア株式会社 Light emitting system
JPWO2017094499A1 (en) * 2015-11-30 2018-09-20 パイオニア株式会社 Light emitting device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7326653B2 (en) 2002-03-27 2008-02-05 Cambridge Display Technology Limited Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
JP2008243817A (en) * 2002-03-27 2008-10-09 Cambridge Display Technol Ltd Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
US8648528B2 (en) 2002-08-29 2014-02-11 Seiko Epson Corporation Electroluminescent device, method for manufacturing the same, and electronic apparatus
JP2004139930A (en) * 2002-10-21 2004-05-13 Internatl Business Mach Corp <Ibm> Organic electroluminescent element, manufacturing method of the same, and organic electroluminescent display device
US7242375B2 (en) 2002-10-25 2007-07-10 Seiko Epson Corporation Electro-optical device and electronic apparatus
US9450204B2 (en) 2002-10-25 2016-09-20 Seiko Epson Corporation Electro-optical device and electronic apparatus
US9065074B2 (en) 2002-10-25 2015-06-23 Seiko Epson Corporation Electro-optical device and electronic apparatus
US8779658B2 (en) 2002-10-25 2014-07-15 Seiko Epson Corporation Electro-optical device and electronic apparatus
JP2007296691A (en) * 2006-04-28 2007-11-15 Konica Minolta Holdings Inc Gas barrier material, manufacturing method for gas barrier material, gas barrier material having transparent conductive film, and organic electroluminescent element
JP2008056967A (en) * 2006-08-30 2008-03-13 Konica Minolta Holdings Inc Gas barrier property resin base material, and organic electroluminescence device
JP2008108515A (en) * 2006-10-24 2008-05-08 Fuji Electric Holdings Co Ltd Manufacturing method of organic el display
JP2009230953A (en) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd Organic el display panel and its manufacturing method
JP2012147013A (en) * 2009-09-04 2012-08-02 Semiconductor Energy Lab Co Ltd Semiconductor device
US8541780B2 (en) 2009-09-04 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer
CN102598283A (en) * 2009-09-04 2012-07-18 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
JP2011077515A (en) * 2009-09-04 2011-04-14 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US9130041B2 (en) 2009-09-04 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN105810753A (en) * 2009-09-04 2016-07-27 株式会社半导体能源研究所 Semiconductor device and method for manufacturing same
WO2011027723A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9537012B2 (en) 2009-09-04 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor layer
JP2012064479A (en) * 2010-09-17 2012-03-29 Casio Comput Co Ltd Light emitting device
KR20150021887A (en) * 2013-08-21 2015-03-03 가부시키가이샤 재팬 디스프레이 Organic Electro-Luminescence Display Device and Method for Manufacturing The Same
KR101661809B1 (en) 2013-08-21 2016-09-30 가부시키가이샤 재팬 디스프레이 Organic Electro-Luminescence Display Device and Method for Manufacturing The Same
JPWO2017094498A1 (en) * 2015-11-30 2018-09-20 パイオニア株式会社 Light emitting system
JPWO2017094499A1 (en) * 2015-11-30 2018-09-20 パイオニア株式会社 Light emitting device

Similar Documents

Publication Publication Date Title
JP3247388B2 (en) Organic electroluminescence device and method of manufacturing the same
US6617052B2 (en) Organic EL element and method of manufacturing the same
US8029684B2 (en) Self-emission panel and method of manufacturing the same
JPH1154285A (en) Organic electroluminescent element
JP2001326069A (en) Organic electroluminescent element and manufacturing method of the same
JP3963712B2 (en) Organic EL element structure
JP2011513944A (en) Water barrier sealing method
US7732249B2 (en) Organic EL light emitting display device and method of manufacturing the same
JP2004327402A (en) Moisture-proof electroluminescent element and its manufacturing method
JP2003203771A (en) Organic light emitting element, display device, and illumination device
JP4776993B2 (en) Organic electroluminescence device
JPH10261486A (en) Manufacture of organic electroluminescent light emitting device
JPH10247587A (en) Organic electroluminescence display and its manufacture
JP2000311784A (en) Manufacture for organic electroluminescent element
JP2007305318A (en) Organic el element array and organic el display device
JPH11312583A (en) Manufacture of el element
JP2001185351A (en) Organic luminescent element and its manufacturing method
JP2008293957A (en) Manufacturing method of organic light emitting device
JP2003297550A (en) Light-emitting element and display device and lighting apparatus using the same
JP2007234325A (en) Organic electroluminescent element and its manufacturing method
JP2002056971A (en) Sealing film for organic electroluminescent element, organic electroluminescent element using the same, and manufacturing method of the same
JPH10261490A (en) Organic el display device and production method thereof
JP2007227214A (en) Moisture absorption film forming method, moisture absorption film forming device, and organic electroluminescent element
JP2003234180A (en) Cover film for organic electroluminescence element, organic electroluminescence element using the same, and its manufacturing method
KR100453427B1 (en) Organic electroluminescent element and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090317