JP2001323001A - beta-GLUCAN HAVING ACTIVITY FOR ENHANCING IMMUNITY AND FORMED INTO THE LOW MOLECULAR ONE - Google Patents

beta-GLUCAN HAVING ACTIVITY FOR ENHANCING IMMUNITY AND FORMED INTO THE LOW MOLECULAR ONE

Info

Publication number
JP2001323001A
JP2001323001A JP2000142998A JP2000142998A JP2001323001A JP 2001323001 A JP2001323001 A JP 2001323001A JP 2000142998 A JP2000142998 A JP 2000142998A JP 2000142998 A JP2000142998 A JP 2000142998A JP 2001323001 A JP2001323001 A JP 2001323001A
Authority
JP
Japan
Prior art keywords
glucan
water
soluble
molecular weight
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000142998A
Other languages
Japanese (ja)
Other versions
JP4812157B2 (en
Inventor
Kazufumi Tsubaki
和文 椿
Hiroshi Sugiyama
宏 杉山
Masatoshi Yamazaki
正利 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP2000142998A priority Critical patent/JP4812157B2/en
Publication of JP2001323001A publication Critical patent/JP2001323001A/en
Application granted granted Critical
Publication of JP4812157B2 publication Critical patent/JP4812157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-molecular-weight water-soluble β-glucan capable of promoting the in-vivo production of a cytokine exemplified by TNF, capable of enhancing the activities and useful for proliferation of various kinds of infectious disease and development of tumor by enhancing the productivity of antibody or the whole of immunological activities. SOLUTION: This water-soluble β-glucan formed into the low-molecular one has activity for enhancing immunity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、免疫力を増強し、
種々の細菌、ウイルス感染やガンの発生を予防する作用
を有する水溶性βグルカン、及び該水溶性βグルカンを
有効成分として含有する食品素材、化粧品素材、医薬品
素材及びそれら素材の加工品に関する。
TECHNICAL FIELD The present invention relates to a method for enhancing immunity,
The present invention relates to a water-soluble β-glucan having an action of preventing the occurrence of various bacteria and viral infections and cancer, and a food material, a cosmetic material, a pharmaceutical material and a processed product of the material containing the water-soluble β-glucan as an active ingredient.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】生体
は、主として免疫系の作用によって、細菌やウイルス等
の微生物、或いは生体内で発生する腫瘍等の攻撃から守
られている。近年、免疫機能に作用し、これを増強する
効果を有する生体応答修飾物質(以下BRMと略記)を
用いたインフルエンザ予防或いはガン治療に関する研究
が注目されている。
2. Description of the Related Art The living body is protected from the attack of microorganisms such as bacteria and viruses or tumors and the like generated in the living body mainly by the action of the immune system. In recent years, attention has been focused on research on influenza prevention or cancer treatment using a biological response modifier (hereinafter abbreviated as BRM) having an effect on an immune function and enhancing it.

【0003】BRMの免疫増強効果は、先ず、生体内の
様々な細胞にBRMが作用し、腫瘍壊死因子(以下TN
Fと略記)、インターロイキン類、インターフェロン類
等のサイトカインと総称される物質産生が活性化、誘導
されることにより生じる。誘導されたこれらの物質は、
免疫担当細胞に作用し免疫系を活性化する。サイトカイ
ンのうち、TNFは、単球やマクロファージから放出さ
れるものであって、細胞増殖作用や抗ウイルス作用を示
すことが知られている。インターロイキン類としては、
IL1〜IL12の存在が知られている。そのうちIL
1は、感染、炎症、種々の免疫反応等に伴い、主として
単球やマクロファージから産生される分子量17500
のペプチドホルモンである。インターフェロン類は、イ
ンターフェロン−α、インターフェロン−β、インター
フェロン−γの3つが知られている。インターフェロン
−γは、分子量が約2万の糖蛋白質であって、抗ウイル
ス作用、マクロファージやナチュラルキラー細胞等の免
疫担当細胞の活性化や分化誘導に作用し免疫調節因子と
して注目されている。
[0003] The immunopotentiating effect of BRM is based on the fact that BRM acts on various cells in a living body to induce tumor necrosis factor (TN).
This is caused by activation and induction of the production of substances generally referred to as cytokines such as F), interleukins and interferons. These derived substances are:
Acts on immunocompetent cells to activate the immune system. Among the cytokines, TNF is released from monocytes and macrophages, and is known to have a cell growth effect and an antiviral effect. As interleukins,
The presence of IL1 to IL12 is known. Of which IL
No. 1 has a molecular weight of 17,500 produced mainly from monocytes and macrophages due to infection, inflammation, various immune reactions, etc.
Is a peptide hormone. Three types of interferons are known: interferon-α, interferon-β, and interferon-γ. Interferon-γ is a glycoprotein having a molecular weight of about 20,000, and has been attracting attention as an immunoregulatory factor by acting on antiviral activity, activation of immune-competent cells such as macrophages and natural killer cells, and induction of differentiation.

【0004】これらサイトカインを単離精製して、或い
は遺伝子組換えによって調製し、それぞれを投与してウ
イルス感染治療或いはガン治療に応用する研究が行われ
ているが、免疫増強作用は、多くの細胞が協奏的に働
き、はじめて効果を発揮するものであり、それぞれのサ
イトカインのバランスが重要で、未だ多くのサイトカイ
ンをバランスよく投与する方法が見出されておらず、ガ
ン治療を達成するには至っていないのが現状で、これら
の課題克服の目的に使用されるBRMへの期待は大き
い。
Research has been conducted to isolate and purify these cytokines or to prepare them by genetic recombination and administer them to apply them to the treatment of viral infections or cancers. Work in concert and exert their effects for the first time, and the balance of each cytokine is important, and there is no way to find a way to administer many cytokines in a well-balanced manner. At present, there is great expectation for BRM used to overcome these problems.

【0005】BRMとしては、微生物由来の多糖類、或
いは細胞壁成分等では酵母菌体、乳酸菌菌体等が知られ
ている。また、シイタケ抽出多糖類であるレンチナン或
いはその他胆子菌類のβグルカン類も有効であることが
知られている。しかし、これら微生物や胆子菌は、培養
に手間がかかり、特殊な設備を必要とする。また、これ
ら微生物や胆子菌由来のβグルカン或いはその他多糖類
の抽出は、操作が煩雑であると共に、精製工程も煩雑
で、コスト及び操作時間が多大にかかり、得られるBR
Mが高価なものとなってしまう問題がある。
[0005] Known BRMs include polysaccharides derived from microorganisms, yeast cells, lactic acid bacteria cells, and the like as cell wall components. It is also known that lentinan, a polysaccharide extracted from shiitake mushroom, and β-glucans of other bile fungi are effective. However, these microorganisms and bile fungi require time and labor for culture and require special equipment. In addition, the extraction of β-glucan or other polysaccharides derived from these microorganisms and bile fungi requires complicated operations, requires a complicated purification step, requires a great deal of cost and operation time, and results in a BR.
There is a problem that M becomes expensive.

【0006】水溶性βグルカンのBRMの作用、即ち免
疫増強作用に関しては、胆子菌培養物或いは子実体の熱
水抽出物に同作用が認められている。しかし、これらの
キノコ類では、重量平均分子量200万〜20万の高分
子量のβグルカンに免疫増強作用が認められている。ま
た、イネ科植物由来の重量平均分子量が10万を超える
比較的高分子量のβグルカンに免疫増強作用のあること
は知られているが、その免疫増強作用は満足できるもの
ではなく、また重量平均分子量が10万以下に低分子化
されたβグルカンについての免疫増強作用に関しては未
知であった。
[0006] With regard to the BRM action of water-soluble β-glucan, that is, the immunopotentiating action, the same action has been observed in cultures of bile fungi or hot water extracts of fruiting bodies. However, in these mushrooms, a high molecular weight β-glucan having a weight average molecular weight of 2,000,000 to 200,000 has an immunopotentiating effect. It is known that relatively high molecular weight β-glucan having a weight average molecular weight of more than 100,000 derived from gramineous plants has an immunopotentiating effect, but the immunopotentiating effect is not satisfactory, and the weight average The immunopotentiating effect of β-glucan whose molecular weight has been reduced to 100,000 or less has not been known.

【0007】このように免疫増強作用が認められている
βグルカンは、重量平均分子量が10万を超える高分子
量のものである。一般的に高分子量のβグルカンは、粘
性が高く、水に溶解させるのが難しい。そのため、食
品、化粧品、医薬品等の素材として使用する場合、加熱
操作や長時間の攪拌操作等が必要になり、熱による変性
や分子修飾のためのコストが高くなる等の問題があり、
機能性を保持した、より低分子量のβグルカンが望まれ
ている。
[0007] β-glucan, which has been recognized as having an immunopotentiating effect, has a weight-average molecular weight exceeding 100,000. Generally, high molecular weight β-glucan has high viscosity and is difficult to dissolve in water. Therefore, when used as a material for foods, cosmetics, pharmaceuticals, etc., a heating operation or a long-time stirring operation is required, and there are problems such as an increase in cost for heat-induced denaturation and molecular modification.
There is a need for lower molecular weight β-glucan that retains its functionality.

【0008】従って、本発明の目的は、体内におけるT
NFをはじめとするサイトカインの産生を促進し、その
作用を増強させ、抗体産生能或いは免疫作用全体を増強
することによって各種感染症や腫瘍発生の予防に役立
つ、低分子量の水溶性βグルカンを提供することにあ
る。
Accordingly, it is an object of the present invention to provide a T
Provide low-molecular weight water-soluble β-glucan that promotes the production of NF and other cytokines, enhances their action, and enhances antibody production ability or overall immunity to help prevent various infectious diseases and tumor development. Is to do.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、高分子量のβグル
カンを低分子化することによって得られた低分子量の水
溶性βグルカンが、高分子量のβグルカンに比較してよ
り強い免疫増強作用を有することを見出し、本発明に到
達した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, obtained a low-molecular-weight water-soluble β-glucan obtained by converting a high-molecular-weight β-glucan into a low-molecular-weight compound. Have a stronger immunopotentiating effect than β-glucan of high molecular weight, and have reached the present invention.

【0010】即ち、本発明は、免疫増強作用を有する低
分子化された水溶性βグルカンを提供するものである。
That is, the present invention provides a low molecular weight water-soluble β-glucan having an immunopotentiating effect.

【0011】また、本発明は、重量平均分子量が10万
以下である前記水溶性βグルカンを提供するものであ
る。
The present invention also provides the water-soluble β-glucan having a weight average molecular weight of 100,000 or less.

【0012】また、本発明は、分子量10万未満のβグ
ルカンの含有量の割合が、全βグルカンの80重量%以
上である前記水溶性βグルカンを提供するものである。
Further, the present invention provides the above water-soluble β-glucan, wherein the ratio of the content of β-glucan having a molecular weight of less than 100,000 is 80% by weight or more of the total β-glucan.

【0013】また、本発明は、βグルカンが、イネ科植
物由来のものである前記水溶性βグルカンを提供するも
のである。
[0013] The present invention also provides the above water-soluble β-glucan, wherein the β-glucan is derived from a plant of the grass family.

【0014】また、本発明は、前記イネ科植物が、大麦
類又はオーツ麦類である前記水溶性βグルカンを提供す
るものである。
The present invention also provides the water-soluble β-glucan, wherein the grass is a barley or oats.

【0015】また、本発明は、前記水溶性βグルカンを
含有する食品素材、化粧品素材及び医薬品素材並びにそ
れら素材の加工品を提供するものである。
The present invention also provides a food material, a cosmetic material, a pharmaceutical material and a processed product of the material, which contain the water-soluble β-glucan.

【0016】また、本発明は、前記水溶性βグルカンを
0.1〜90重量%含有する前記素材及び前記加工品を
提供するものである。
Further, the present invention provides the above-mentioned raw material and the processed product containing 0.1 to 90% by weight of the above-mentioned water-soluble β-glucan.

【0017】また、本発明は、さらに乳酸菌又は乳酸菌
菌体成分を含有する前記素材及び前記加工品を提供する
ものである。
Further, the present invention provides the above-mentioned material and the processed product further containing a lactic acid bacterium or a lactic acid bacterium cell component.

【0018】[0018]

【発明の実施の形態】本発明の低分子化された水溶性β
グルカンは、抗体産生増強作用或いはサイトカイン特に
TNFの産生促進作用を有する免疫増強作用を有し、特
に、食品、化粧品及び医薬品等の素材として適してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The low molecular weight water-soluble β of the present invention
Glucan has an antibody production enhancing effect or an immunopotentiating effect of promoting production of cytokines, particularly TNF, and is particularly suitable as a material for foods, cosmetics, pharmaceuticals and the like.

【0019】本発明のβグルカンは、植物、特にイネ科
植物由来のものが好ましく、食品素材として最も適当で
ある。イネ科植物の例としては、米類、小麦類、トウモ
ロコシ類、ヒエ類、アワ類、キビ類、大麦類、オーツ麦
類(カラス麦類)、ライ麦類等が挙げられ、好ましく
は、大麦類、オーツ麦類、さらに好ましくは大麦類であ
る。これらのイネ科植物には、ワキシー蛋白質を発現
し、アミロース合成される粳系統のもの或いはこの蛋白
質の作用の欠失した餅化系統のものがあるが、本発明に
おいては何れも材料とすることができる。
The β-glucan of the present invention is preferably derived from a plant, particularly a grass plant, and is most suitable as a food material. Examples of grasses include rice, wheat, corn, barnyard millet, millet, millet, barley, oats (crow oats), rye, and the like, and preferably barleys. , Oats, and more preferably barley. These gramineous plants include those of a non-glutinous line expressing waxy protein and synthesizing amylose and those of a glutinous line lacking the action of this protein. Can be.

【0020】本発明の低分子化された水溶性βグルカン
の水溶性とは、65℃の温水に完全に溶解する性質をい
う。完全に溶解する性質は、サンプルを蒸留水に対して
1重量%となるように添加し、10分間撹拌溶解させた
後、沈殿が目視によって確認されないこと、660nm
の吸光度による濁度測定において、対照の溶解水に対し
て、O.D.値が0.4以下である性質をいう。本発明
の水溶性βグルカンは、このような水溶性を有するた
め、食品、化粧品、医薬品等の素材として扱いやすく、
加工の手間がかからず、コストも抑えることができる。
The water solubility of the low molecular weight water-soluble β-glucan of the present invention means a property of being completely dissolved in hot water at 65 ° C. The property of completely dissolving is that a sample is added so as to be 1% by weight with respect to distilled water, and after stirring and dissolving for 10 minutes, no precipitate is visually observed at 660 nm.
In the turbidity measurement by the absorbance of O., the water dissolved in O. D. The property whose value is 0.4 or less. Since the water-soluble β-glucan of the present invention has such water solubility, it is easy to handle as a material for food, cosmetics, pharmaceuticals, and the like,
Processing time is not required, and costs can be reduced.

【0021】本発明の水溶性βグルカンは、低分子量で
ある。ここでいう低分子量とは、水溶性であり、且つ免
疫増強作用を有すればよい。その中でも、特に重量平均
分子量が10万以下の水溶性βグルカンが、免疫増強作
用に優れ、食品、化粧品、医薬品等の素材としても優れ
ている。その中でも、重量平均分子量5000〜10万
のものが好ましく。更に重量平均分子量1万〜6万のも
のがより好ましい。
The water-soluble β-glucan of the present invention has a low molecular weight. The term "low molecular weight" as used herein means that it is water-soluble and has an immunopotentiating effect. Among them, water-soluble β-glucan having a weight-average molecular weight of 100,000 or less is excellent in immunity-enhancing action and is also excellent as a material for foods, cosmetics, pharmaceuticals and the like. Among them, those having a weight average molecular weight of 5,000 to 100,000 are preferable. Further, those having a weight average molecular weight of 10,000 to 60,000 are more preferable.

【0022】本発明の水溶性βグルカンは、分子量10
万未満のβグルカンの含有量の割合が、全βグルカンの
80重量%以上が好ましく、90重量%以上がより好ま
しく、さらに95重量%以上がより好ましく、100重
量%のものが最も好ましい。
The water-soluble β-glucan of the present invention has a molecular weight of 10
The ratio of the β-glucan content of less than 10,000 is preferably 80% by weight or more, more preferably 90% by weight or more, more preferably 95% by weight or more, and most preferably 100% by weight of the total β-glucan.

【0023】本発明の低分子化された水溶性βグルカン
は、イネ科植物等の原料から直接得ることができ、また
原料から抽出精製された高分子量のβグルカンを低分子
化して得ることもできる。
The low-molecular-weight water-soluble β-glucan of the present invention can be obtained directly from a raw material such as a gramineous plant, and can also be obtained by reducing the molecular weight of a high-molecular-weight β-glucan extracted and purified from the raw material. it can.

【0024】穀類から高分子量のβグルカンを得る方法
としては、例えば、多ろう質大麦を原料とし、水抽出に
より製造する方法(特公平4−11197号公報)、或
いは、大麦、オーツ麦を原料として、アルカリ抽出、中
和、アルコール沈殿により、重量平均分子量10万〜1
00万のβグルカンを得る方法(特公平6−83652
号公報)等がある。これらの製造方法で得られたβグル
カンは、高分子量であるため、このままでは粘性が高く
水に再可溶させるのが難しい。これらの高分子量のβグ
ルカンを低分子化して本発明の低分子化水溶性βグルカ
ンを得ることができる。
As a method for obtaining a high molecular weight β-glucan from cereals, for example, a method of producing a waxy barley as a raw material and extracting it with water (Japanese Patent Publication No. 4-11197), or a method of producing a barley or oat as a raw material As a weight average molecular weight of 100,000 to 1 by alkali extraction, neutralization, and alcohol precipitation.
How to get a million β-glucan (Japanese Patent Publication No. 6-83652)
Publication). Since β-glucan obtained by these production methods has a high molecular weight, it has high viscosity and it is difficult to re-dissolve in water as it is. The molecular weight of these high molecular weight β-glucan can be reduced to obtain the low molecular weight water-soluble β-glucan of the present invention.

【0025】高分子量のβグルカンを低分子化する方法
としては、公知である多糖類の加水分解反応の何れもが
利用可能である。例えば、水溶性多糖類は、酸存在下に
加圧加熱により加水分解することが知られており、これ
を利用して高分子量のβグルカンを低分子化することが
できる。また、酵素による加水分解反応を利用した低分
子化も有効で、酵素としては、1/3βグルカナーゼ等
を用いることができる。以上のように、原料から抽出精
製された高分子量のβグルカンから本発明の低分子化水
溶性βグルカンを得ることができる。また、本発明の低
分子化水溶性βグルカンは、WO98/13056号国
際公報に記載の方法等により、原料穀物から直接抽出し
て得ることもできる。
As a method for lowering the molecular weight of high-molecular weight β-glucan, any known polysaccharide hydrolysis reaction can be used. For example, it is known that a water-soluble polysaccharide is hydrolyzed by heating under pressure in the presence of an acid, and this can be used to lower the molecular weight of high-molecular-weight β-glucan. It is also effective to reduce the molecular weight using a hydrolysis reaction by an enzyme. As the enzyme, 1 / 3β glucanase or the like can be used. As described above, the low molecular weight water-soluble β-glucan of the present invention can be obtained from the high-molecular-weight β-glucan extracted and purified from the raw material. Further, the low-molecular-weight water-soluble β-glucan of the present invention can also be obtained by directly extracting from raw cereal grains by the method described in WO98 / 13056 or the like.

【0026】本発明の低分子化された水溶性βグルカン
の中でも最も好ましいものは、大麦由来の低分子化水溶
性βグルカンであり、このものは、免疫増強作用に優れ
ており、特に体内におけるTNF類、インターロイキン
類、インターフェロン類等のサイトカインの産生を促進
し、その作用による抗体産生等の免疫力を増強させる効
果に優れ、これらの効果の中でも特に抗体産生増強作用
が、重量平均分子量10万以上の高分子量のβグルカン
に比較して著しく優れている。
Among the low molecular weight water-soluble β-glucans of the present invention, the most preferable one is barley-derived low molecular weight water-soluble β-glucan, which is excellent in immunity-enhancing action and is particularly useful in the body. The effect of promoting the production of cytokines such as TNFs, interleukins, interferons, and the like, and enhancing the immunity such as antibody production by the action is excellent. It is remarkably superior to β-glucan having a molecular weight of 10,000 or more.

【0027】また、本発明の低分子化された水溶性βグ
ルカンを、食品、化粧品、医薬品等の素材又はそれら素
材の加工品に含有させて使用する場合、0.1〜90重
量%含有させることが好ましい。また、本発明の低分子
化された水溶性βグルカンの免疫増強作用は単独で十分
発現しうるものであるが、乳酸菌又は乳酸菌菌体成分と
併用することで、さらに免疫増強作用が増し好ましい。
When the low molecular weight water-soluble β-glucan of the present invention is used in a material such as foods, cosmetics and pharmaceuticals or a processed product of such a material, it is contained in an amount of 0.1 to 90% by weight. Is preferred. Although the immunopotentiating effect of the low-molecular-weight water-soluble β-glucan of the present invention can be sufficiently expressed alone, it is preferable to use it in combination with lactic acid bacteria or lactic acid bacteria cell components, because the immunopotentiating effect is further increased.

【0028】[0028]

【実施例】以下、実施例により本発明を更に説明する
が、本発明はこれら実施例によって限定されるものでは
ない。尚、特に記述がない限り、実施例中の%は重量に
よるものであり、分子量は重量平均分子量である。
The present invention will be further described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified,% in the examples is by weight, and the molecular weight is a weight average molecular weight.

【0029】実施例1(低分子化水溶性βグルカンの製
造) 市販の大麦を粉砕し、24メッシュの篩にて通過分を大
麦粉とした。該大麦粉500gに水2.5L(リット
ル)を加え、55℃に加温後、2時間攪拌抽出した。抽
出後、混合液を遠心力1500Gで10分間遠心分離
し、2.2Lの上清を得た。この上清を冷却、凍結し、
−10℃で24時間放置した。解凍後、沈殿したβグル
カンを濾過分離し、80℃にて加熱乾燥し、15gのβ
グルカン粗抽出物を得た。このβグルカン粗抽出物に水
300mlを加え、90℃にて完全に溶解させた後、−
20℃に冷却し、24時間凍結保存した。解凍後、沈殿
したβグルカンを濾過分離し、凍結乾燥し、10gのβ
グルカン精製物(サンプルA)を得た。
Example 1 (Production of Low-Molecular Water-Soluble β-Glucan) Commercial barley was pulverized and passed through a 24-mesh sieve to obtain barley flour. 2.5 L (liter) of water was added to 500 g of the barley flour, heated to 55 ° C., and extracted with stirring for 2 hours. After the extraction, the mixture was centrifuged at 1,500 G for 10 minutes to obtain 2.2 L of the supernatant. Cool and freeze the supernatant,
It was left at -10 ° C for 24 hours. After thawing, the precipitated β-glucan was separated by filtration and dried by heating at 80 ° C. to obtain 15 g of β-glucan.
A glucan crude extract was obtained. After adding 300 ml of water to the β-glucan crude extract and completely dissolving it at 90 ° C.,
It was cooled to 20 ° C. and stored frozen for 24 hours. After thawing, the precipitated β-glucan was separated by filtration, freeze-dried, and
A glucan purified product (sample A) was obtained.

【0030】このサンプルAを1%となるように蒸留水
に加え、65℃に加温し、10分間放置したところ、溶
解し透明の水溶液となった。660nmによる吸光度
は、蒸留水を対照として、O.D.値0.127を示し
た。次に、サンプルAの分子量をゲル濾過クロマトグラ
フィーにて次のようにして測定した。サンプルAを蒸留
水に濃度1%となるように加え、沸騰水中で溶解させ
た。分離には温度50℃でゲル濾過カラムSupero
se6HR(ファルマシア製)を用い、分子量マーカー
としてShodexプルラン標準液P−82(昭和電工
社製)を用いた。蒸留水を溶出液とし、流速0.6ml
/min.で溶出画分を屈折計(RI)でモニタリング
した。プルラン標準物の分子量より、サンプルAの分子
量を測定した結果、その分子量は10万〜5000に分
布し、分子量10万以上のピークはわずかであり(3%
以下)、分子量が低下するほど含量は多くなり、主成分
は分子量4万であった。また分子量5000以下のβグ
ルカンはわずかであった(5%以下)。
This sample A was added to distilled water so as to have a concentration of 1%, heated to 65 ° C., and allowed to stand for 10 minutes to be dissolved to form a transparent aqueous solution. Absorbance at 660 nm was measured using an O.D. D. A value of 0.127 was shown. Next, the molecular weight of Sample A was measured by gel filtration chromatography as follows. Sample A was added to distilled water to a concentration of 1% and dissolved in boiling water. Gel separation column Supero at a temperature of 50 ° C for separation
Using se6HR (manufactured by Pharmacia), Shodex pullulan standard solution P-82 (manufactured by Showa Denko KK) was used as a molecular weight marker. Using distilled water as eluent, flow rate 0.6 ml
/ Min. The elution fraction was monitored with a refractometer (RI). As a result of measuring the molecular weight of sample A from the molecular weight of the pullulan standard, the molecular weight was distributed in the range of 100,000 to 5,000, and the peak having a molecular weight of 100,000 or more was slight (3%
Below), the content increased as the molecular weight decreased, and the main component was 40,000 in molecular weight. Β-glucan having a molecular weight of 5,000 or less was slight (5% or less).

【0031】比較例2(高分子量のβグルカンの製造) 市販の大麦を粉砕し、24メッシュの篩にて通過分を大
麦粉とした。該大麦粉500gに水2.5Lを加え、5
5℃に加温後、30分間攪拌抽出した。抽出後、混合液
を遠心力1500Gで10分間遠心分離し、2.2Lの
上清を得た。この上清を冷却、凍結し、−10℃で24
時間放置した。解凍後、沈殿したβグルカンを濾過分離
し、80℃にて加熱乾燥し、5gのβグルカン粗抽出物
を得た。このβグルカン粗抽出物に水500mlを加
え、煮沸して溶解させた後、−20℃に冷却し、24時
間凍結保存した。解凍後、沈殿したβグルカンを濾過分
離し、凍結乾燥し、3.6gのβグルカン精製物(サン
プルB)を得た。
Comparative Example 2 (Production of High-Molecular-Weight β-Glucan) Commercial barley was pulverized and passed through a 24-mesh sieve to obtain barley flour. 2.5 L of water was added to 500 g of the barley flour, and 5
After heating to 5 ° C., the mixture was stirred and extracted for 30 minutes. After the extraction, the mixture was centrifuged at 1,500 G for 10 minutes to obtain 2.2 L of the supernatant. The supernatant was cooled, frozen and kept at -10 ° C for 24 hours.
Left for hours. After thawing, the precipitated β-glucan was separated by filtration and dried by heating at 80 ° C. to obtain 5 g of a β-glucan crude extract. 500 ml of water was added to the β-glucan crude extract, and the mixture was boiled to dissolve, cooled to −20 ° C., and stored frozen for 24 hours. After thawing, the precipitated β-glucan was separated by filtration and freeze-dried to obtain 3.6 g of purified β-glucan (sample B).

【0032】このサンプルBを1%となるように蒸留水
に加え、65℃に加温し、10分間溶解を試みたが、サ
ンプルBは沈殿が認められ全ては溶解しなかった。66
0nmの吸光度を測定したところ、O.D.値1.74
を示した。次に、サンプルBの分子量をゲル濾過クロマ
トグラフィーにて次のようにして測定した。サンプルB
を蒸留水に濃度1%となるように加え、沸騰水中で溶解
させた。分離には50℃でゲル濾過カラムSupero
se6HR(ファルマシア製)を用い、分子量マーカー
としてShodexプルラン標準液P−82(昭和電工
社製)を用いた。蒸留水を溶出液とし、流速0.6ml
/min.で溶出画分を屈折計(RI)でモニタリング
した。その結果、プルラン標準物の分子量より、サンプ
ルBの分子量を測定した結果、その分子量分布は、分子
量50万〜15万に分布し、主成分は分子量30万であ
った。分子量10万以下の低分子化βグルカンは認めら
れなかった。
This sample B was added to distilled water so as to have a concentration of 1%, heated to 65 ° C., and attempted to dissolve for 10 minutes. However, sample B was found to precipitate but not completely dissolved. 66
The absorbance at 0 nm was measured. D. Value 1.74
showed that. Next, the molecular weight of Sample B was measured by gel filtration chromatography as follows. Sample B
Was added to distilled water to a concentration of 1% and dissolved in boiling water. Gel separation column Supero at 50 ° C for separation
Using se6HR (manufactured by Pharmacia), Shodex pullulan standard solution P-82 (manufactured by Showa Denko KK) was used as a molecular weight marker. Using distilled water as eluent, flow rate 0.6 ml
/ Min. The elution fraction was monitored with a refractometer (RI). As a result, the molecular weight of Sample B was measured from the molecular weight of the standard pullulan. As a result, the molecular weight distribution was distributed in the range of 500,000 to 150,000, and the main component was 300,000. Low molecular weight β-glucan having a molecular weight of 100,000 or less was not observed.

【0033】試験例1(腹空内細胞数の変動) 先ず、実施例1で得られたサンプルA(本発明の低分子
化水溶性βグルカン)を10mMリン酸緩衝液(pH
6.9)100μlに溶解し、0.32〜20mgの量
でICRマウス6週齢メスの腹空に投与し、6時間後に
腹空細胞を採取し、顕微鏡下、その細胞数をカウントし
た。その結果、投与量に比例して細胞数は増加し、未投
与マウスに比較すると、2〜3倍となった。増加した全
細胞数に対する好中球数の割合をカウントしたところ、
投与量に従い増加し、0.32mg投与で約10倍、1
mg投与で20倍、5mg投与で30倍に増加した。増
加した細胞中の好中球数の割合は1mg投与で増加細胞
の70%を超えていた。臨床的に使用されている免疫増
強剤であるシイタケ抽出物由来の精製レンチナンは1m
g投与で、細胞数が3倍、好中球数は30倍、割合は8
0%であった。細菌由来のOK−432の投与では0.
2mg投与で細胞数は5倍、好中球は60倍、割合は9
0%であった。
Test Example 1 (Variation in the number of cells in the peritoneal cavity) First, the sample A (low-molecular-weight water-soluble β-glucan of the present invention) obtained in Example 1 was treated with a 10 mM phosphate buffer (pH
6.9) The cells were dissolved in 100 μl and administered in an amount of 0.32 to 20 mg to the peritoneum of a 6-week-old female ICR mouse. Six hours later, peritoneal cells were collected, and the number of cells was counted under a microscope. As a result, the number of cells increased in proportion to the dose, and was 2 to 3 times higher than that of the non-administered mice. When the ratio of neutrophil count to total cell count was counted,
The dose increases with the dose.
The increase was 20-fold with the administration of mg and 30-fold with the administration of 5 mg. The proportion of neutrophils in the increased cells exceeded 70% of the increased cells at the 1 mg dose. Purified lentinan derived from shiitake mushroom extract, a clinically used immunopotentiator, is 1 m
g, the number of cells was 3 times, the number of neutrophils was 30 times, and the ratio was 8
It was 0%. In the case of administration of OK-432 derived from a bacterium, the amount of 0.
At 2 mg administration, the cell count was 5 times, neutrophils were 60 times, and the ratio was 9
It was 0%.

【0034】次に、前記サンプルAを投与し、経時的な
細胞の質的変化を検討した。前記サンプルAの10mg
をマウス腹空に投与し、6、12、24、48、72時
間後に細胞を採取し免疫担当細胞である好中球、マクロ
ファージ、リンパ球の数をカウントした。その結果、総
細胞数は、24時間で最大となり未投与の10倍であっ
た。好中球は24時間後に最大となり、その後48時間
後には急激に減少し、72時間後にはほぼ正常値であっ
た。マクロファージは、12時間以降増加し48時間で
最大を示した。リンパ球数も48時間後に最大を示し
た。レンチナンでは、12時間後に総細胞数が最大とな
り、その後減少した。好中球数は6時間後が最大でその
後減少した。好中球の数は前記サンプルAでは24時間
まで減少せず、レンチナンに比較すると持続力があっ
た。レンチナン投与のマウスにおけるマクロファージと
リンパ球の変化は前記サンプルAとほぼ同様であった。
尚、上記細胞数のカウントは、腹空細胞をスライドガラ
スに塗布し、核染色して形態学的な変化より好中球、マ
クロファージ、リンパ球に類別してカウントした。ま
た、細胞の顕微鏡観察により、前記サンプルAの投与後
48時間の細胞観察において、マクロファージの活発な
貪食作用の結果と考えられる形態学的特徴と、劇的な好
中球の減少を認めた。このような変化はレンチナン、O
K−432、その他では認められず、前記サンプルAの
投与で特異的に認められることであった。
Next, the sample A was administered, and the qualitative change of the cells over time was examined. 10 mg of the sample A
Was administered to the abdominal cavity of the mouse, and the cells were collected 6, 12, 24, 48, and 72 hours later, and the numbers of neutrophils, macrophages, and lymphocytes, which are immunocompetent cells, were counted. As a result, the total cell number reached a maximum in 24 hours, and was 10 times that of the non-administration. Neutrophils reached a maximum after 24 hours, decreased sharply after 48 hours, and were almost normal after 72 hours. Macrophages increased after 12 hours and peaked at 48 hours. Lymphocyte counts also peaked after 48 hours. Lentinan had the highest total cell number after 12 hours and then decreased. Neutrophil counts were greatest after 6 hours and decreased thereafter. The number of neutrophils did not decrease in sample A until 24 hours and was more persistent than lentinan. Changes in macrophages and lymphocytes in mice administered with lentinan were almost the same as those in Sample A.
In addition, the count of the above-mentioned cell number was performed by applying abdominal cells to a slide glass, staining the nucleus, and categorizing neutrophils, macrophages, and lymphocytes based on morphological changes. In addition, microscopic observation of the cells revealed morphological characteristics considered to be the result of active phagocytosis of macrophages and dramatic decrease in neutrophils in the cell observation 48 hours after the administration of Sample A. Such changes are caused by Lentinan, O
K-432 and others were not recognized, and were specifically recognized by the administration of the sample A.

【0035】試験例2(腹空内細胞より産生されるTN
F量の変動) 実施例1で得られたサンプルAを投与したマウスより得
た腹空細胞を用いて、TNF−αの産生能を評価した。
先ず、前記サンプルAを10mMリン酸緩衝液(pH
6.9)100μlに溶解し、ICRマウス6週齢メス
に0〜10mgとなるよう腹空投与した。3日後、腹空
細胞を採取し、無血清培養液で洗浄後、同培養液にて各
ウェルに5×105cellsとなるよう調整して添加
した。さらに乳酸菌菌体を20μg/mlとなるように
各ウェルに添加し、全量を200μlとし、2時間37
℃にて放置した。培養上清のTNF−α濃度をELIS
A測定キット(ENDOGEN社製TNF−2 ELI
SAKIT EN−2601−90)を用いて測定し
た。その結果、前記サンプルAの0.3mg投与で51
pg/ml、1mg投与で128pg/ml、3mg投
与で141pg/mlと濃度依存的に産生されるTNF
−αの濃度は増加した。無添加の場合、25pg/ml
であり、その産生量は前記サンプルAに特異的であっ
た。
Test Example 2 (TN produced from cells in the abdominal cavity)
Fluctuation in F Amount) TNF-α production ability was evaluated using peritoneal cells obtained from mice to which sample A obtained in Example 1 was administered.
First, the sample A was added to a 10 mM phosphate buffer (pH
6.9) The solution was dissolved in 100 μl, and administered to a 6-week-old female ICR mouse abdominally in a concentration of 0 to 10 mg. Three days later, the peritoneal cells were collected, washed with a serum-free culture solution, and then added to each well with the same culture solution so as to be 5 × 105 cells. Further, lactic acid bacteria cells were added to each well to a concentration of 20 μg / ml, and the total volume was adjusted to 200 μl for 2 hours 37
Left at ℃. The concentration of TNF-α in the culture supernatant was determined by ELISA.
A measurement kit (TNF-2 ELI manufactured by ENDOGEN)
SAKIT EN-2601-90). As a result, when 0.3 mg of the sample A was administered, 51 mg was administered.
pg / ml, TNF produced in a concentration-dependent manner as 128 pg / ml at 1 mg administration and 141 pg / ml at 3 mg administration
The concentration of -α increased. 25 pg / ml when not added
And the production amount was specific to the sample A.

【0036】また、前記サンプルAを投与したマウスよ
り得た腹空細胞を用いて、TNF−α産生能の経時変化
を評価した。サンプルAの3mgを10mMリン酸緩衝
液(pH6.9)100μlに溶解し、ICRマウス6
週齢メスに腹空投与した。0〜7日後、腹空細胞を採取
し、無血清培養液で洗浄後、同培養液にて各ウェルに5
×105cellsとなるよう調整して添加した。さら
に乳酸菌菌体を20μg/mlとなるように各ウェルに
添加し、全量を200μlとし、2時間37℃にて放置
した。培養上清のTNF−α濃度をELISA測定キッ
ト(ENDOGEN社製TNF−2 ELISAKIT
EN−2601−90)を用いて測定した。その結
果、前記サンプルA投与直後では18pg/ml、1日
後で84pg/ml、3日後で130pg/ml、5日
後に121pg/ml、7日後に98pg/mlとTN
F−αの産生量は経日的に増加し、その産生能は7日間
持続していた。
The time course of TNF-α production was evaluated using peritoneal cells obtained from the mouse to which the sample A was administered. 3 mg of sample A was dissolved in 100 μl of 10 mM phosphate buffer (pH 6.9), and ICR mouse 6
Weekly females were administered intraperitoneally. After 0 to 7 days, the peritoneal cells were collected, washed with a serum-free culture medium, and added to each well with the same culture medium.
It adjusted so that it might become x105 cells, and was added. Further, lactic acid bacteria cells were added to each well at a concentration of 20 μg / ml to make a total volume of 200 μl, and left at 37 ° C. for 2 hours. The TNF-α concentration of the culture supernatant was measured using an ELISA measurement kit (TNF-2 ELISA Kit manufactured by ENDOGEN).
EN-2601-90). As a result, immediately after the administration of the sample A, 18 pg / ml, 84 pg / ml after 1 day, 130 pg / ml after 3 days, 121 pg / ml after 5 days, 98 pg / ml after 7 days, and TN
The production of F-α increased daily, and its production ability was maintained for 7 days.

【0037】試験例3 実施例1で得られたサンプルA及び比較例1で得られた
サンプルBをマウスに投与し、その抗体産生増強の作用
を解析した。先ず、抗原としてウシ・血漿ガンマーグロ
ブリン1mgをPBS(リン酸緩衝液)の1mlに溶解
させ1mg/mlの抗原液を調整した。前記サンプルA
又はBの500μgをPBSの1mlに加え、加熱溶解
させた。前記サンプルAは、50℃に加温することで瞬
時に溶解した。前記サンプルBは、50℃に加温するこ
とでは溶解せず、90℃に30分間放置し溶解させた。
抗原液とサンプル溶液を当量混合し、マウスの腹空に1
00μlづつ投与した。マウスは、Balbcマウス4
週齢、メスを用い、各サンプル5匹を1群とした。2週
間後に1回目と同様にして追加免疫した。尚、ウシ・血
漿ガンマーグロブリン0.5mgをPBSの1mlに溶
解させ0.5mg/mlとし、マウスに100μl投与
した群を対照とした。追加免疫後2週間で採血し、トー
タルの抗体産生量(IgG,IgM,IgA抗体量)の
差をELISAにて測定した。尚、ELISAは、先
ず、免疫に用いたウシ・血漿ガンマーグロブリンを10
μg/mlの濃度で96マイクロプレート(ヌンク社製
・マキシソープ)にプレートコーティングして、血清の
希釈液を1時間、37℃にて反応後、さらにペルオキシ
ターゼを標識した抗マウス・イムノグロブリン抗体を2
次抗体として1時間、37℃で反応させた。次に、オル
トフェニレンジアミン溶液(和光純薬社製)を発色剤と
して用いて、10分間37℃に放置後、2M硫酸で反応
を停止後、490nmの吸光度を測定した。
Test Example 3 A sample A obtained in Example 1 and a sample B obtained in Comparative Example 1 were administered to mice, and the effect of enhancing antibody production was analyzed. First, 1 mg of bovine / plasma gamma globulin as an antigen was dissolved in 1 ml of PBS (phosphate buffer) to prepare a 1 mg / ml antigen solution. Sample A
Alternatively, 500 μg of B was added to 1 ml of PBS and dissolved by heating. The sample A was instantaneously dissolved by heating to 50 ° C. The sample B was not dissolved by heating to 50 ° C., but was left at 90 ° C. for 30 minutes to be dissolved.
An equal amount of the antigen solution and the sample solution are mixed, and 1
Each dose of 00 μl was administered. The mouse is Balbc mouse 4
Using a female of the age and a female, each group consisted of 5 animals. Two weeks later, a booster immunization was performed in the same manner as the first time. In addition, 0.5 mg / ml of bovine / plasma gamma globulin was dissolved in 1 ml of PBS to 0.5 mg / ml, and a group administered with 100 μl of mice was used as a control. Blood was collected two weeks after the booster immunization, and the difference in the total antibody production (IgG, IgM, IgA antibody amounts) was measured by ELISA. In the ELISA, 10 g of bovine / plasma gamma globulin used for immunization were first used.
The plate was coated on a 96-microplate (Maxi Soap, manufactured by Nunc Corporation) at a concentration of μg / ml, and a diluted solution of serum was reacted at 37 ° C. for 1 hour, and then an anti-mouse immunoglobulin antibody labeled with peroxidase was further added. 2
Reaction was carried out at 37 ° C. for 1 hour as a secondary antibody. Next, an orthophenylenediamine solution (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a coloring agent, left at 37 ° C. for 10 minutes, stopped the reaction with 2M sulfuric acid, and measured the absorbance at 490 nm.

【0038】次に、マウスより採取した血液を遠心分離
し、血清を得て、これを×10〜×5120倍に0.2
%BSA(牛血清アルブミン)を含むPBS−Twee
n溶液(ソルビタンモノエステルであるTween20
をPBSに0.05%となるように溶解したもの)にて
希釈し、抗体価を測定した。その結果、2560倍に希
釈した血清の抗ウシ・血漿ガンマーグロブリン抗体価を
O.D.値の平均値として比較すると、サンプルA投与
群(n=5)は0.703±0.1、サンプルB投与群
(n=5)は0.491±0.075、対照群(n=
5)は0.315±0.090であった。この試験から
サンプルA投与群の抗体価はサンプルB投与群よりも高
値を示し、前記サンプルAの抗体産生増強効果が認めら
れた。
Next, blood collected from the mouse was centrifuged to obtain serum, which was then multiplied by a factor of 10 to 5120 to 0.2 times.
PBS-Twee containing% BSA (bovine serum albumin)
n solution (Tween 20 which is a sorbitan monoester)
Was dissolved in PBS to a concentration of 0.05%) and the antibody titer was measured. As a result, the anti-bovine / plasma gamma-globulin antibody titer of the serum diluted 2560-fold was determined to be O.D. D. When compared as an average value, the sample A administration group (n = 5) was 0.703 ± 0.1, the sample B administration group (n = 5) was 0.491 ± 0.075, and the control group (n = 5).
5) was 0.315 ± 0.090. From this test, the antibody titer of the sample A administration group was higher than that of the sample B administration group, and the antibody production enhancing effect of the sample A was confirmed.

【0039】[0039]

【発明の効果】本発明の低分子化された水溶性βグルカ
ンは、体内におけるTNFをはじめとするサイトカイン
の産生を促進し、その作用を増強させ、抗体産生能或い
は免疫作用全体を増強することによって各種感染症や腫
瘍発生の予防に役立つものである。
Industrial Applicability The low molecular weight water-soluble β-glucan of the present invention promotes the production of TNF and other cytokines in the body, enhances its action, and enhances the antibody-producing ability or the overall immunity. It helps to prevent various infections and tumors.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 35/74 A61K 35/74 D 4C090 35/78 35/78 U A61P 31/04 A61P 31/04 31/12 31/12 35/00 35/00 37/04 37/04 Fターム(参考) 4B018 MD33 MD86 ME08 4C083 AA031 AA111 AD201 CC01 DD27 EE12 4C086 AA01 AA02 EA20 MA01 MA02 MA04 NA14 ZB09 ZB26 ZB33 ZB35 ZC75 4C087 AA01 AA02 BC56 NA14 ZB26 ZB33 ZB35 4C088 AB73 AC04 BA12 BA26 CA05 CA11 CA12 CA14 CA17 MA04 NA14 ZB09 ZB26 ZB33 ZB35 ZC75 4C090 AA04 BA21 BC10 BD03 CA04 CA09 CA11 CA13 CA18 CA19 DA23 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) A61K 35/74 A61K 35/74 D 4C090 35/78 35/78 U A61P 31/04 A61P 31/04 31 / 12 31/12 35/00 35/00 37/04 37/04 F-term (reference) 4B018 MD33 MD86 ME08 4C083 AA031 AA111 AD201 CC01 DD27 EE12 4C086 AA01 AA02 EA20 MA01 MA02 MA04 NA14 ZB09 ZB26 ZB33 ZB35 ZC75 4C087 AA01 AA02 BC ZB26 ZB33 ZB35 4C088 AB73 AC04 BA12 BA26 CA05 CA11 CA12 CA14 CA17 MA04 NA14 ZB09 ZB26 ZB33 ZB35 ZC75 4C090 AA04 BA21 BC10 BD03 CA04 CA09 CA11 CA13 CA18 CA19 DA23

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 免疫増強作用を有する低分子化された水
溶性βグルカン。
1. A low molecular weight water-soluble β-glucan having an immunopotentiating effect.
【請求項2】 重量平均分子量が10万以下である請求
項1記載の水溶性βグルカン。
2. The water-soluble β-glucan according to claim 1, having a weight average molecular weight of 100,000 or less.
【請求項3】 分子量が10万未満のβグルカンの含有
量の割合が、全βグルカンの80重量%以上である請求
項1記載の水溶性βグルカン。
3. The water-soluble β-glucan according to claim 1, wherein the ratio of the content of β-glucan having a molecular weight of less than 100,000 is 80% by weight or more of the total β-glucan.
【請求項4】 βグルカンが、イネ科植物由来のもので
ある請求項1〜3の何れかに記載の水溶性βグルカン。
4. The water-soluble β-glucan according to claim 1, wherein the β-glucan is derived from a gramineous plant.
【請求項5】 イネ科植物が、大麦類又はオーツ麦類で
ある請求項4記載の水溶性βグルカン。
5. The water-soluble β-glucan according to claim 4, wherein the gramineous plant is barley or oats.
【請求項6】 請求項1〜5の何れかに記載の水溶性β
グルカンを含有する食品素材、化粧品素材若しくは医薬
品素材又はそれら素材の加工品。
6. The water-soluble β according to claim 1,
Food materials, cosmetic materials or pharmaceutical materials containing glucans or processed products of these materials.
【請求項7】 水溶性βグルカンを0.1〜90重量%
含有する請求項6記載の素材又は加工品。
7. 0.1 to 90% by weight of water-soluble β-glucan
The raw material or processed product according to claim 6, which contains.
【請求項8】 さらに乳酸菌又は乳酸菌菌体成分を含有
する請求項6又は7記載の素材又は加工品。
8. The material or processed product according to claim 6, further comprising a lactic acid bacterium or a lactic acid bacterium cell component.
JP2000142998A 2000-05-16 2000-05-16 Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action Expired - Lifetime JP4812157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142998A JP4812157B2 (en) 2000-05-16 2000-05-16 Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142998A JP4812157B2 (en) 2000-05-16 2000-05-16 Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action

Publications (2)

Publication Number Publication Date
JP2001323001A true JP2001323001A (en) 2001-11-20
JP4812157B2 JP4812157B2 (en) 2011-11-09

Family

ID=18649872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142998A Expired - Lifetime JP4812157B2 (en) 2000-05-16 2000-05-16 Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action

Country Status (1)

Country Link
JP (1) JP4812157B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354570A (en) * 2000-06-15 2001-12-25 Ichimaru Pharcos Co Ltd Immunoactivating agent and cosmetic using the same
JP2002306056A (en) * 2001-04-10 2002-10-22 Asahi Denka Kogyo Kk Quality-improving composition for bakery product
JP2003040785A (en) * 2001-05-21 2003-02-13 Combi Corp Infection suppressing composition and food and drink containing the same
WO2004078188A1 (en) 2003-03-07 2004-09-16 Aureo Co., Ltd. COMPOSITION CONTAINING β-GLUCAN AND CONSTIPATION-RELIEVING DRUG, IMMUNOPOTENTIATOR AND SKIN MOISTENING AGENT USING THE COMPOSITION
JP2004269408A (en) * 2003-03-07 2004-09-30 Aureo Co Ltd Humectant for skin
JP2004269407A (en) * 2003-03-07 2004-09-30 Aureo Co Ltd Constipation ameliorant and food and beverage containing the same
JP2006069993A (en) * 2004-09-06 2006-03-16 Snow Brand Milk Prod Co Ltd Immunopotentiating agent
JP2006521828A (en) * 2003-04-02 2006-09-28 カーギル,インコーポレイティド Improved dietary fiber containing material comprising low molecular weight glucan
JP2007297322A (en) * 2006-04-28 2007-11-15 Toyobo Co Ltd Method for promoting cytokine production
JP2008214273A (en) * 2007-03-05 2008-09-18 Daiso Co Ltd STRESS MITIGATOR USING beta-1,3-1,6-D-GLUCAN
US7442541B2 (en) 2002-06-25 2008-10-28 Adeka Corporation β-glucan-containing fat and oil composition and novel microorganism capable of producing β-glucan
JP2009035732A (en) * 2007-07-20 2009-02-19 Korea Atomic Energy Research Inst Method for producing low molecular weight beta-glucan by radiation irradiation and low molecular weight beta-glucan produced by radiation irradiation
JP2012184261A (en) * 2012-06-21 2012-09-27 Snow Brand Milk Products Co Ltd Immunopotentiating agent
BE1020120A3 (en) * 2011-06-06 2013-05-07 Duynie Holding Bv COMPOSITION OF ANIMAL FOOD.
JP2016079118A (en) * 2014-10-15 2016-05-16 株式会社Adeka Immunomodulator, health supplement feed, and feed
KR20170052824A (en) * 2015-11-04 2017-05-15 주식회사 케이메디쿱 Immune-enhancing composition comprsing glucan
JP7284467B1 (en) 2022-06-01 2023-05-31 国立大学法人信州大学 Immunostimulatory macrophage inducer, cancer microenvironment improving agent, cancer apoptosis inducer, and immunostimulatory macrophage induction method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257335A (en) * 1975-10-31 1977-05-11 Taito Kk Manufacture of novel, pharmacologically active polysacchiaride degrada tion products
JPS5945301A (en) * 1982-09-09 1984-03-14 Toyo Soda Mfg Co Ltd Polysaccharide and its preparation
JPS5953424A (en) * 1982-09-20 1984-03-28 Toyo Soda Mfg Co Ltd Antitumor agent
JPS6377901A (en) * 1986-09-22 1988-04-08 Tosoh Corp Novel polysaccharides
JPH0680575A (en) * 1991-03-05 1994-03-22 Meiji Milk Prod Co Ltd Oral immunopotentiating agent
JPH06277085A (en) * 1993-03-29 1994-10-04 Taito Kk Production of low-molecular weight branched beta-1,3-glucan and branched laminarioligosaccharide
JPH09135681A (en) * 1995-09-14 1997-05-27 Sanei Touka Kk Lactic acid bacterium having productivity of l-lactic acid and inducing activity for production of tnf
JPH09249574A (en) * 1996-03-18 1997-09-22 Natl Fedelation Of Agricult Coop Assoc Antitumor agent
WO1998013056A1 (en) * 1996-09-25 1998-04-02 Gracelinc Limited Beta-glucan products and extraction processes from cereals
JPH10167972A (en) * 1996-10-11 1998-06-23 Takeda Shokuhin Kogyo Kk Immunoactivator
JPH11199494A (en) * 1998-01-10 1999-07-27 Nichinichi Seiyaku Kk Immunopotentiator using enteric capsure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257335A (en) * 1975-10-31 1977-05-11 Taito Kk Manufacture of novel, pharmacologically active polysacchiaride degrada tion products
JPS5945301A (en) * 1982-09-09 1984-03-14 Toyo Soda Mfg Co Ltd Polysaccharide and its preparation
JPS5953424A (en) * 1982-09-20 1984-03-28 Toyo Soda Mfg Co Ltd Antitumor agent
JPS6377901A (en) * 1986-09-22 1988-04-08 Tosoh Corp Novel polysaccharides
JPH0680575A (en) * 1991-03-05 1994-03-22 Meiji Milk Prod Co Ltd Oral immunopotentiating agent
JPH06277085A (en) * 1993-03-29 1994-10-04 Taito Kk Production of low-molecular weight branched beta-1,3-glucan and branched laminarioligosaccharide
JPH09135681A (en) * 1995-09-14 1997-05-27 Sanei Touka Kk Lactic acid bacterium having productivity of l-lactic acid and inducing activity for production of tnf
JPH09249574A (en) * 1996-03-18 1997-09-22 Natl Fedelation Of Agricult Coop Assoc Antitumor agent
WO1998013056A1 (en) * 1996-09-25 1998-04-02 Gracelinc Limited Beta-glucan products and extraction processes from cereals
JPH10167972A (en) * 1996-10-11 1998-06-23 Takeda Shokuhin Kogyo Kk Immunoactivator
JPH11199494A (en) * 1998-01-10 1999-07-27 Nichinichi Seiyaku Kk Immunopotentiator using enteric capsure

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354570A (en) * 2000-06-15 2001-12-25 Ichimaru Pharcos Co Ltd Immunoactivating agent and cosmetic using the same
JP2002306056A (en) * 2001-04-10 2002-10-22 Asahi Denka Kogyo Kk Quality-improving composition for bakery product
JP4688335B2 (en) * 2001-04-10 2011-05-25 株式会社Adeka Dough for bakery products
JP2003040785A (en) * 2001-05-21 2003-02-13 Combi Corp Infection suppressing composition and food and drink containing the same
JP4499979B2 (en) * 2001-05-21 2010-07-14 コンビ株式会社 Composition for controlling pathogen infection
US7442541B2 (en) 2002-06-25 2008-10-28 Adeka Corporation β-glucan-containing fat and oil composition and novel microorganism capable of producing β-glucan
WO2004078188A1 (en) 2003-03-07 2004-09-16 Aureo Co., Ltd. COMPOSITION CONTAINING β-GLUCAN AND CONSTIPATION-RELIEVING DRUG, IMMUNOPOTENTIATOR AND SKIN MOISTENING AGENT USING THE COMPOSITION
JP2004269408A (en) * 2003-03-07 2004-09-30 Aureo Co Ltd Humectant for skin
JP2004269407A (en) * 2003-03-07 2004-09-30 Aureo Co Ltd Constipation ameliorant and food and beverage containing the same
CN100341521C (en) * 2003-03-07 2007-10-10 奥力有限公司 Composition containing beta-glucan and constipation-relieving drug, immunopotentiator and skin moistening agent using the composition
JP2006521828A (en) * 2003-04-02 2006-09-28 カーギル,インコーポレイティド Improved dietary fiber containing material comprising low molecular weight glucan
JP2006069993A (en) * 2004-09-06 2006-03-16 Snow Brand Milk Prod Co Ltd Immunopotentiating agent
JP2007297322A (en) * 2006-04-28 2007-11-15 Toyobo Co Ltd Method for promoting cytokine production
JP2008214273A (en) * 2007-03-05 2008-09-18 Daiso Co Ltd STRESS MITIGATOR USING beta-1,3-1,6-D-GLUCAN
JP2009035732A (en) * 2007-07-20 2009-02-19 Korea Atomic Energy Research Inst Method for producing low molecular weight beta-glucan by radiation irradiation and low molecular weight beta-glucan produced by radiation irradiation
BE1020120A3 (en) * 2011-06-06 2013-05-07 Duynie Holding Bv COMPOSITION OF ANIMAL FOOD.
JP2012184261A (en) * 2012-06-21 2012-09-27 Snow Brand Milk Products Co Ltd Immunopotentiating agent
JP2016079118A (en) * 2014-10-15 2016-05-16 株式会社Adeka Immunomodulator, health supplement feed, and feed
KR20170052824A (en) * 2015-11-04 2017-05-15 주식회사 케이메디쿱 Immune-enhancing composition comprsing glucan
KR102558854B1 (en) * 2015-11-04 2023-07-24 경기대학교 산학협력단 Immune-enhancing composition comprsing glucan
JP7284467B1 (en) 2022-06-01 2023-05-31 国立大学法人信州大学 Immunostimulatory macrophage inducer, cancer microenvironment improving agent, cancer apoptosis inducer, and immunostimulatory macrophage induction method

Also Published As

Publication number Publication date
JP4812157B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP2001323001A (en) beta-GLUCAN HAVING ACTIVITY FOR ENHANCING IMMUNITY AND FORMED INTO THE LOW MOLECULAR ONE
Sun et al. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera
Fan et al. Partial characterization and anti-tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis
Chen et al. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells
KR100855409B1 (en) Processes of Making North American Ginseng Fractions, Products Containing Them, and Use as Immunomodulators
Cho et al. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression
Deng et al. Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiata
US6143883A (en) Water-soluble low molecular weight beta-glucans for modulating immunological responses in mammalian system
Xiao-Lei et al. Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa
WO2003099309A1 (en) Active fraction having anti-cancer and anti-metastasis isolated from acanthopanax species and fruits
Qiao et al. Immunostimulatory activity of the polysaccharides from Hyriopsis cumingii
JP6270822B2 (en) Polysaccharides from the order of Plasinococcus
JPH08500623A (en) New glucan preparation
Wang et al. Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection
Jo et al. Polysaccharide isolated from fermented barley activates innate immune system and anti-tumor metastasis in mice
Li et al. Structural characterization of novel comb-like branched α-D-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo
US10835565B2 (en) Pharmaceutical compositions having antibacterial, antiviral, and other immunostimulatory activities
WO2003068245A1 (en) Use of polyanhydroglucuronic acid comprising microdispersed oxidised cellulose as immunomodulator
KR102558669B1 (en) Modulation of Immune Function by BACILLUS COAGULANS
CN106243239B (en) It is a kind of for improving the soluble small molecule beta-1,3-dextran of hepatitis immunity
Ji et al. The immunosuppressive effects of low molecular weight chitosan on thymopentin-activated mice bearing H22 solid tumors
JP6681466B2 (en) Homogeneous polysaccharide having immunomodulatory activity and method for preparing the same
JP2003183176A (en) Immunopotentiating composition
JP2008120707A (en) Immunopotentiating substance, and pharmaceutical composition, food, feed and cosmetic each containing the same
Lei et al. EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R151 Written notification of patent or utility model registration

Ref document number: 4812157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

EXPY Cancellation because of completion of term