JP2001321759A - Method for determining compounding for improving physical properties of building surplus soil - Google Patents

Method for determining compounding for improving physical properties of building surplus soil

Info

Publication number
JP2001321759A
JP2001321759A JP2000143458A JP2000143458A JP2001321759A JP 2001321759 A JP2001321759 A JP 2001321759A JP 2000143458 A JP2000143458 A JP 2000143458A JP 2000143458 A JP2000143458 A JP 2000143458A JP 2001321759 A JP2001321759 A JP 2001321759A
Authority
JP
Japan
Prior art keywords
soil
physical properties
construction
compounding
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000143458A
Other languages
Japanese (ja)
Other versions
JP3959930B2 (en
Inventor
Eizo Fukazawa
栄造 深沢
Hiromasa Igarashi
寛昌 五十嵐
Hidekazu Anai
秀和 穴井
Satoshi Manabe
智 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2000143458A priority Critical patent/JP3959930B2/en
Publication of JP2001321759A publication Critical patent/JP2001321759A/en
Application granted granted Critical
Publication of JP3959930B2 publication Critical patent/JP3959930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the reliability in the determination of compounding when building surplus soil generated on a site of construction is recycled as physical property improved soil by compounding a hardening agent and water with the building surplus soil. SOLUTION: This method for determining compounding for improving physical properties of building surplus soil comprises a process (A) for preliminarily measuring both of the physical properties of plural kinds of building surplus soils and the physical properties of many kinds of treated soils for testing prepared by compounding a material such as the hardening agent, water or the like with the building surplus soils in various compounding ratios to accumulate data showing the relation of the characteristics of both of them and a process (B) for measuring the physical properties of building surplus soil to be improved and collating them with the accumulated data to determine the compounding for improving the physical properties of the building surplus soil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は工事現場で発生する
建設発生残土に固化剤及び水を配合して物性改良土を製
造して建設発生残土のリサイクルを図る際の建設発生残
土と固化剤及び水の配合を決定する決定方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a soil with improved properties by blending a solidifying agent and water with construction waste soil generated at a construction site and recycling the construction waste soil, The present invention relates to a method for determining the composition of water.

【0002】[0002]

【従来の技術】工事現場で発生する建設発生残土の廃棄
量の低減や再利用のために、残土を流動化処理して物性
改良土を製造し、この物性改良土を各種の埋戻し土とし
て再利用することは従来より行われている。この物性改
良土の配合決定に際しては、対象となる建設発生残土の
1部を事前に試験用として採取し、その含水比を測定
し、この試験用建設発生残土に固化剤(主としてセメン
トが使用される。)及び水を、その配合量を数段階に変
化させて試験用の数種類の試験用物性改良土を製造し、
製造された多種類の試験用物性改良土について、比重、
フロー値、ブリージング、1軸圧縮強度を測定し、所定
の品質を満足する試験用物性改良土の配合を基本配合と
するのが一般的であり、日々、新たな建設発生残土の含
水比を測定して、その値が試験用建設発生残土と大差な
ければ基本配合を踏襲し、差があれば水の配合量によっ
て調整するという方法が採られている。
2. Description of the Related Art In order to reduce the amount of waste generated during construction at construction sites and to reuse it, the remaining soil is fluidized to produce soil with improved physical properties. The soil with improved physical properties is used as various types of backfill soil. Reuse has been done for some time. When determining the composition of the soil with improved physical properties, a part of the target soil after construction is sampled in advance for testing, its water content is measured, and a solidifying agent (mainly cement is used) ) And water, by changing the compounding amount in several stages, to produce several types of soil for property improvement for testing,
The specific gravity,
It is common to measure the flow value, breathing, and uniaxial compressive strength, and to use the basic composition of a test property-improved soil that satisfies the specified quality. If the value is not much different from the residual soil generated by the test construction, the basic composition is followed, and if there is a difference, the method is adjusted by the amount of water.

【0003】[0003]

【発明が解決しようとする課題】ところで、新たな建設
発生残土の含水比が試験用建設発生残土の含水比と同じ
であっても、その他の物性が試験用建設発生残土(試験
用建設発生残土として数箇所のものを採取して場合も含
めて)の物性と異なる場合が多く、その場合に従来の方
法で配合を決定すると製造される物性改良土の品質のば
らつきが大きくなる。
By the way, even if the moisture content of the new construction waste soil is the same as the moisture content of the test construction waste soil, the other physical properties are different from those of the test construction waste soil (test construction waste soil). In some cases, the physical properties of the soil (including the case where several samples are sampled) are different from each other.

【0004】そのため、新たな建設発生残土と試験用建
設発生残土との物性に差異があると考えられる場合に
は、その都度、最初の配合試験からやり直して配合を検
討し直す必要があり、配合決定に多大の時間と労力を要
していた。
[0004] Therefore, when it is considered that there is a difference in the physical properties between the new construction waste soil and the test construction waste soil, it is necessary to start over from the first blending test and to examine the blending each time. The decision required a lot of time and effort.

【0005】[0005]

【課題を解決するための手段】本発明者らは、従来の日
常の配合管理方法が、簡便さを偏重するためか、採取さ
れる試験用建設発生残土は数箇所から採取されるといっ
ても改良対象となる建設発生残土と物性が類似した1種
類のみであり、しかも、改良対象となる建設発生残土の
物性の測定項目が含水比のみである点に注目した。
Means for Solving the Problems The present inventors have argued that the conventional daily method of blending control may be considered to reduce the simplicity, or that the test construction residual soil to be collected is collected from several places. It was also noted that there was only one kind of material having similar properties to the construction-generated residual soil to be improved, and that only the water content was the measurement item for the physical properties of the construction-generated residual soil to be improved.

【0006】物性の異なる複数の試験用建設発生残土を
使用して、各種配合の試験用物性改良土を製造し、試験
用建設発生残土の物性と試験用物性改良土の物性との関
連性を把握しておけば、試験は多くなるが、配合決定に
要する全体としての時間や労力は逆に減少すると考え
た。
[0006] A plurality of test soils with different physical properties having different properties are used to produce test soils of various compositions, and the relationship between the physical properties of the test soils and the physical properties of the test soil with improved physical properties is determined. It was thought that the number of tests would be increased if it was grasped, but that the overall time and labor required for determining the formulation would be reduced.

【0007】一方、土砂と固化剤及び水の配合物の強度
の発現には、細骨材に相当する土砂中の微細土粒子の含
有量が関連し、配合物の流動性は土砂の持つ液性限界値
に支配される、ことが知られている。この知見からする
と、配合決定に際しての建設発生残土の物性の測定項目
が含水比のみでは不十分であろうことに着目し、測定項
目として土砂中の微細土粒子の含有割合、つまり、土粒
子の粒度分布、及び土砂の持つ液性限界値を追加すれ
ば、実際の物性改良土に製造に適用し得る配合を決定す
ることができるであろうと考え、検討した結果、建設発
生残土の物性の測定項目を含水比、微細土粒子の含有割
合、液性限界値の3項目とした結果、同じ物性の建設発
生残土を使用した場合の物性改良土の品質のばらつきは
殆どなく、この考え方が正しいことが立証され、本発明
に到達した。
On the other hand, the development of the strength of a mixture of earth and sand, a solidifying agent and water is related to the content of fine earth particles in the earth and sand corresponding to fine aggregate, and the fluidity of the mixture is determined by the liquid of the earth and sand. It is known to be governed by sex limits. Based on this knowledge, we focused on the fact that the measurement items of the physical properties of the construction-generated residual soil at the time of determining the composition would not be sufficient with only the water content, and as a measurement item, the content ratio of fine soil particles in the soil, that is, We thought that adding the particle size distribution and the liquid property limit value of the earth and sand would determine the formulation that could be applied to the production of actual soil with improved physical properties. As a result of three items: water content, content ratio of fine soil particles, and liquid property limit value, there is almost no variation in the quality of the soil with improved physical properties when using construction-generated residual soil with the same physical properties, and this idea is correct. Has been established, and the present invention has been achieved.

【0008】即ち、本願の請求項1に係る発明は
「(A)予め、複数種類の建設発生残土の物性、及び、
この建設発生残土に固化剤及び水などの材料を種々の配
合で混合して製造した多種類の試験用処理土の物性、の
両者を測定することにより、両者の特性の関連性を示す
データを蓄積する過程と、(B)改良対象とする建設発
生残土の物性を測定し、その物性を上記の蓄積されたデ
ータと対照することにより建設発生残土の物性を改良す
る配合を決定する過程、とからなることを特徴とする建
設発生残土の物性を改良する配合を決定する方法。」で
あり、請求項2に係る発明は「改良対象となる建設発生
残土の物性測定項目が、(1)含水比、(2) 沈降中土スラ
リーの比重測定による75μm アンダーの微細土粒子の含
有割合、(3) フォールコーン試験による液性限界値の3
項目であり、上記(2)の測定結果により、建設発生残土
が砂質土と判定された場合は上記(3) の測定を省略する
ことを特徴とする請求項1記載の建設発生残土の物性を
改良する配合を決定する方法。」である。
That is, the invention according to claim 1 of the present application is based on the premise that "(A) physical properties of a plurality of types of construction-generated surplus soil,
By measuring both the physical properties of various types of test soils manufactured by mixing materials such as solidifying agents and water with this composition and the remaining soil in various combinations, data showing the relevance of the two properties can be obtained. Accumulating, and (B) measuring the physical properties of the construction-generated surplus soil to be improved, and determining the composition for improving the physical properties of the construction-generated surplus soil by comparing the physical properties with the accumulated data. A method for determining a composition for improving the physical properties of construction-generated surplus soil, characterized by comprising: The invention according to claim 2 is characterized in that the property measurement items of the construction-generated surplus soil to be improved include (1) water content, and (2) the content of fine soil particles under 75 μm obtained by measuring the specific gravity of the sedimenting soil slurry. Proportion, (3) 3 of liquid limit value by fall cone test
2. The physical properties of construction-generated surplus soil according to claim 1, wherein the measurement of (3) is omitted if the construction-generated surplus soil is determined to be sandy soil based on the measurement result of (2). To determine the formulation to improve ".

【0009】請求項1に係る発明の特徴である、物性を
測定した多種類の試験用建設発生残土を使用して多数の
物性改良土配合試験を行ない、大量の配合試験結果を作
成・蓄積しておき、対象とする建設発生残土の物性を蓄
積されたデータと対照して物性改良土の配合を決定する
という手法は、多数の実験などにより蓄積された過去の
大量のデータを利用して新たな課題を解決するための手
法として、科学(特に化学)の分野で一般的であるかも
しれないが、建設発生残土に関しては新しい手法であ
る。
[0009] A large number of compounding tests with improved physical properties are performed by using various types of residual soil for test construction whose physical properties are measured, which is a feature of the invention according to claim 1, and a large amount of compounding test results are prepared and accumulated. In addition, the method of determining the composition of the soil with improved physical properties in comparison with the stored data on the physical properties of the target construction-generated surplus soil is based on a large amount of past data accumulated through numerous experiments. Although it may be common in the field of science (especially chemistry) as a method to solve various problems, it is a new method for construction waste soil.

【0010】請求項2に係る発明の特徴、即ち、建設発
生残土の物性の測定項目を、(1) 含水比、(2) 沈降中土
スラリーの比重測定による75μm アンダーの微細土粒子
の含有割合、(3) フォールコーン試験による液性限界値
の3項目であり、(2) の測定結果により、建設発生残土
が砂質土と判定された場合は(3) の測定を省略する点が
本発明の特に大きな特徴である。勿論、測定項目が多け
れば多い程配合試験の精度は向上するが、一方、測定項
目の増加とともに配合試験の数量は幾何級数的に増大
し、それに要する時間と労力は膨大になる。本発明では
比較的少ない配合試験で試験の精度を向上させるため、
建設発生残土の物性の測定項目は上記の(1) (2) (3) の
3項目とした。
[0010] The characteristics of the invention according to claim 2, that is, the measurement items of the physical properties of the construction residual soil are (1) water content, (2) the content ratio of fine soil particles under 75μm by measuring the specific gravity of the sedimentation soil slurry (3) There are three items of the liquid limit value by the fall cone test, and the measurement point (3) is omitted when the residual soil from construction is judged to be sandy soil based on the measurement result of (2). This is a particularly significant feature of the invention. Of course, the greater the number of measurement items, the more the accuracy of the blending test is improved. On the other hand, as the number of measurement items increases, the number of the blending tests increases exponentially, and the time and labor required for it increases. In the present invention, in order to improve the accuracy of the test with relatively few compounding tests,
The measurement items of the physical properties of the construction surplus soil were the above three items (1), (2) and (3).

【0011】この測定項目は従来法の含水比のみの場合
に比して、砂質土の場合は1項目、粘性土の場合は2項
目増加し、測定や配合試験がそれだけ増加することにな
る。しかし、従来法では上述したように、物性の異なる
建設発生残土を使用する度に最初の配合試験から繰返す
ことが必要であり、全体としての測定や配合試験に要す
る時間や労力は、かえって本発明の方が小さくなる場合
が多い。
This measurement item is increased by one item in the case of sandy soil and by two items in the case of cohesive soil as compared with the case where only the water content of the conventional method is used, and the measurement and the mixing test increase accordingly. . However, according to the conventional method, as described above, it is necessary to repeat from the first compounding test every time using construction-generated residual soil having different physical properties, and the time and labor required for the overall measurement and compounding test are rather reduced by the present invention. Is often smaller.

【0012】本発明において、含水比、沈降中土スラリ
ーの比重測定による75μm アンダーの微細土粒子の含有
割合、フォールコーン試験による液性限界値の3項目の
測定には下記のように、JIS またはそれに準拠した簡便
な測定法が採用される。
In the present invention, the following three methods are used to measure the water content ratio, the content ratio of fine soil particles under 75 μm by measuring the specific gravity of the settling soil slurry, and the liquid limit value by the fall cone test, as described below. A simple measuring method conforming thereto is adopted.

【0013】(a) 含水比 JIS A 1203 (b) 沈降中土スラリーの比重測定による75μm アンダー
の微細土粒子の含有割合 以下に説明する簡便な測定法(以下簡易沈降法とい
う。)が採用される。
(A) Moisture content ratio JIS A 1203 (b) Content ratio of fine soil particles under 75 μm by measuring specific gravity of sedimenting soil slurry A simple measuring method described below (hereinafter referred to as a simple sedimentation method) is adopted. You.

【0014】簡易沈降法の概要。 (1)試料の建設発生残土を計量し、適量の水を入れた容
器に投入し、攪拌して、残土を十分に水に分散させる。
Outline of the simple sedimentation method. (1) Construction of the sample The remaining soil generated is measured, put into a container containing an appropriate amount of water, and stirred to sufficiently disperse the remaining soil in water.

【0015】(2)残土の水スラリーを水の入ったメスシ
リンダーに入れ、蓋をしてこぼれないない様に注意しな
がら、メスシリンダーの底を中心にしてメスシリンダー
を前後左右に振とうする。メスシリンダーは容量1l程度
のものが使用され、水(分散のための水との合計)と残
土との混合比率は予備実験により決定されるが、水900
〜980cc 、残土60〜200gの範囲で一定の値が選定され
る。
(2) Place the remaining soil water slurry in a graduated cylinder filled with water, and shake the graduated cylinder back and forth and around the bottom of the graduated cylinder, taking care not to spill it with the lid. . A measuring cylinder with a capacity of about 1 liter is used. The mixing ratio of water (total with water for dispersion) and residual soil is determined by preliminary experiments.
A certain value is selected within the range of ~ 980cc and the remaining soil of 60 ~ 200g.

【0016】(3)メスシリンダーを一定時間(通常は1
分)静置した後、メスシリンダー内に比重計を静かに挿
入し、比重計挿入後一定時間(通常は5分)経過した時
点で比重計を読み、その値と予め作成してある検量線と
により、土中の75μm アンダーの微細土粒子の含有割合
を判定する。(JIS A 1204の土の粒度試験方法による試
験によって粒度分布が判明しており、75μm アンダーの
微細土粒子の含有割合が異なる数種の試料について、同
じ操作の測定を行ない、比重計の読み−75μm アンダー
の微細土粒子の含有割合の関係の検量線を予め作成して
おく。) 配合試験用の建設発生残土、対象とする建設発生残土の
何れについても、同一条件で比重が測定されるのは当然
である。この比重の値が残土の土粒子の精密な粒度分布
に代わる指標とされる。定量的ではないが定性的には測
定される比重の値が高い程土粒子中の微細粒子の含有割
合が多い。通常のように、75μm アンダーの微細土粒子
の含有割合が15〜50%のものを砂質土、50%以上のもの
を粘性土とする。この簡易沈降法の採用により、長時間
を要していた土粒子の粒度分布の測定が10分以内の短時
間で完了し、続いて直ちに物性改良土の製造に移ること
が可能となる。
(3) Hold the graduated cylinder for a certain time (usually 1
Minutes) After standing still, gently insert the hydrometer into the graduated cylinder, read the hydrometer after a certain period of time (usually 5 minutes) after inserting the hydrometer, read the value and the calibration curve prepared in advance. Thus, the content ratio of fine soil particles under 75 μm in the soil is determined. (The particle size distribution has been determined by a test based on the soil particle size test method of JIS A 1204, and the same operation was performed on several types of samples that differed in the content ratio of fine soil particles under 75 μm. Prepare a calibration curve in advance for the relationship between the content ratio of fine soil particles under 75 μm.) The specific gravity is measured under the same conditions for both the construction residual soil and the target construction residual soil for the blending test. Is natural. The value of the specific gravity is used as an index instead of the precise particle size distribution of the soil particles in the remaining soil. Although not quantitative, qualitatively the higher the value of the measured specific gravity, the greater the content of fine particles in the soil particles. As usual, those with a content ratio of fine soil particles below 75 μm of 15 to 50% are considered to be sandy soil, and those with 50% or more are considered to be cohesive soil. By adopting this simple sedimentation method, the measurement of the particle size distribution of the soil particles, which took a long time, can be completed in a short time of 10 minutes or less, and then it is possible to immediately proceed to the production of the soil with improved physical properties.

【0017】(c) フォールコーン試験による液性限界値
地盤工学会JSF T 141-1990 なお、フォールコーン試験による液性限界値の測定にあ
たっては試料の調製時に含水比が変化する場合が多い。
そして、測定される液性限界値は当然含水比と相関関係
がある。従って、正確な液性限界値を測定するために
は、試料の調製時の含水比の変化を極力避ける必要があ
るが、現場での試料調製時に含水比の変化を完全に避け
ることは至難であり、現実的ではない。そのため、現場
での試料調製時に対象土に水を加えて一定の含水比(例
えば100 %)として、この試料について液性限界値を測
定し、既知の液性限界値と含水比と相関関係を利用して
実際の含水比の土の液性限界値を推定するのが、現実的
であり、簡便である。
(C) Liquid limit value by fall cone test Geotechnical Society of Japan JSF T 141-1990 In measuring the liquid limit value by the fall cone test, the water content often changes during sample preparation.
And the measured liquid property limit value naturally has a correlation with the water content ratio. Therefore, in order to accurately measure the liquid limit value, it is necessary to minimize the change in the water content during sample preparation, but it is extremely difficult to completely avoid the change in the water content during sample preparation on site. Yes, not realistic. Therefore, at the time of sample preparation on site, water is added to the target soil to obtain a constant moisture content (for example, 100%), and the liquid limit value of this sample is measured, and the correlation between the known liquid limit value and the water content is determined. It is realistic and convenient to estimate the liquid property limit value of the soil with the actual water content by using it.

【0018】本発明における試験用建設発生残土として
は、種々の物性の土が採取され、配合試験に供される。
天然に採取される土の種類が少なく、今後発生するであ
ろうと想定される建設発生残土をカバーし切れない場合
が多い。これに対処するためには、天然に採取された
土、例えば、微細粒子の含有割合が小さい砂質土と微細
粒子の含有割合が大きい砂質土とを混合して、天然に採
取されたものとは土粒子の粒度分布が異なる土を人工的
に合成し、この合成土を配合試験に供する必要がある。
In the present invention, various soils of various physical properties are collected and used for a blending test.
There are few types of soil that are collected naturally, and in many cases, it is not possible to cover the remaining soil from construction that is expected to occur in the future. To address this, naturally collected soils, for example, those that are naturally collected by mixing a sandy soil with a small percentage of fine particles and a sandy soil with a high percentage of fine particles It is necessary to artificially synthesize soil having a different particle size distribution of soil particles, and to subject the synthesized soil to a compounding test.

【0019】対象とする建設発生残土の物性の測定によ
り、残土が砂質土と判定される場合には、フォールコー
ン試験による液性限界値の測定を待たずに、蓄積した配
合試験結果から直ちに物性改良土の配合が決定される
が、対象とする建設発生残土が粘性土と判定される場合
には、フォールコーン試験による液性限界値の測定を待
ち、蓄積した配合試験結果を参照して物性改良土の配合
が決定される。
In the case where the remaining soil is determined to be sandy soil by the measurement of the physical properties of the target construction residual soil, the accumulated mixing test results are immediately obtained without waiting for the measurement of the liquid limit value by the fall cone test. The composition of the soil with improved physical properties is determined, but if the target construction residual soil is determined to be cohesive soil, wait for the measurement of the liquid property limit value by the fall cone test and refer to the accumulated composition test results. The composition of the property improving soil is determined.

【0020】また、対象とする建設発生残土の物性が試
験に供した土の物性と完全に一致する場合は蓄積した配
合試験結果から直ちに物性改良土の配合が決定される
が、対象とする建設発生残土の物性が配合試験に供した
土の物性と完全には一致しない場合が多い。この場合に
は、微細土粒子の含有割合、液性限界値の順に一致また
は類似する試験用土を使用した配合試験結果を参照して
配合を決定し、最後に含水比の測定結果から配合水分量
を調整する。
When the physical properties of the target construction residual soil completely match the physical properties of the soil subjected to the test, the composition of the soil with improved physical properties is immediately determined from the accumulated mixing test results. In many cases, the physical properties of the generated residual soil do not completely match the physical properties of the soil subjected to the compounding test. In this case, the blending ratio is determined by referring to the blending test results using test soils that are the same or similar in the order of the content ratio of the fine soil particles and the liquid property limit value. To adjust.

【0021】配合する水に廃棄泥水を使用する場合、泥
水中に含まれている分散剤が物性改良土の品質に悪影響
を及ぼさないことは確認されているが、当然、配合前に
pH、粘性(ファンネル粘性)、比重などを測定して、配
合試験で使用した泥水と一致することや配合量の限界の
有無などを確認する必要がある。
When waste mud is used as the compounding water, it has been confirmed that the dispersing agent contained in the mud does not adversely affect the quality of the soil with improved physical properties.
It is necessary to measure pH, viscosity (funnel viscosity), specific gravity, etc., to confirm that they match the muddy water used in the compounding test and that there is no limit on the amount of compounding.

【0022】本発明においては多数の配合試験により蓄
積されたデータはコンピュータで管理し、対象とする建
設発生残土の測定結果の入力により、直ぐに必要とする
情報が出力されるシステムとしておくことが好ましいこ
とは言うまでもない。また、配合試験結果をグラフ化し
ておき、対象とする建設発生残土の測定結果から、配合
をグラフ上で決定する方法は簡便かつ短時間で行える好
ましい方法である。
In the present invention, it is preferable that the data accumulated by a large number of compounding tests be managed by a computer, and the necessary information be output immediately upon input of the measurement result of the target construction residual soil. Needless to say. In addition, a method of graphing the composition test results and determining the composition on the graph from the measurement result of the target construction residual soil is a preferable method that can be performed simply and in a short time.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0024】図1は本発明の物性改良土の配合決定のフ
ローチャートであり、図2は試験用建設発生残土の物性
と、それを使用して良好な品質の物性改良土を製造し得
る添加材(固化材及び水)の添加量との関係についての
過去の蓄積されたデータを、試験用建設発生残土の75μ
m アンダーの微細土粒子の含有割合について纏めたグラ
フであり、図3は同様に過去の蓄積されたデータを建設
発生残土の液性限界値について纏めたグラフである。
FIG. 1 is a flow chart for determining the composition of the soil with improved physical properties according to the present invention, and FIG. 2 is a diagram showing the physical properties of the residual soil generated from the test construction and the additives which can be used to produce soil with improved quality. (Accumulated material and water) was added to the data collected in the past.
3 is a graph summarizing the content ratio of the fine soil particles under m, and FIG. 3 is a graph similarly summarizing the data accumulated in the past with respect to the liquid limit value of the remaining soil after construction.

【0025】下記表1に示す3種類の建設発生残土を対
象として、本発明の物性改良土の配合決定方法の適合性
を試験した。適合性の試験であるので3種類の建設発生
残土について、実際の現場作業では採用されない各種の
試験を合わせて行っている。
The suitability of the method for determining the composition of the soil with improved physical properties according to the present invention was tested on the three types of construction residual soil shown in Table 1 below. Since it is a compatibility test, various types of tests that are not adopted in actual on-site work are performed on three types of surplus soil generated during construction.

【0026】[0026]

【表1】 簡易沈降法により測定された各発生残土の比重は、それ
ぞれ、1.010 、1.038、1.037 であり、75μm アンダー
の微細土粒子の含有割合は、それぞれ、28%、86%、98
%であり、1番目の試料は砂質土、2、3番目の試料は
粘性土と判定された。
[Table 1] The specific gravity of each residual soil measured by the simple sedimentation method was 1.010, 1.038 and 1.037, respectively, and the content ratio of fine soil particles under 75 μm was 28%, 86% and 98%, respectively.
%, The first sample was determined to be sandy soil, and the second and third samples were determined to be clayey soil.

【0027】砂質土と判定された、1番目の試料につい
て図2のグラフの75μm アンダーの微細土粒子の含有割
合が28%である位置にはめ込み、発生残土、セメント、
水の配合量が表2の通り決定された。
The first sample, which was determined to be sandy soil, was inserted into a position where the content of fine soil particles under 75 μm in the graph of FIG. 2 was 28%, and the remaining soil, cement,
The amount of water was determined as shown in Table 2.

【0028】2、3番目の試料は粘性土と判定されたの
で、さらに、フォールコーン試験による液性限界値を測
定し、測定値として、それぞれ、65.5%、103.0 %が得
られた。この測定値を図3のグラフのそれぞれの液性限
界値の位置にはめ込み、発生残土、セメント、水の配合
量が表2の通り決定された。
Since the second and third samples were determined to be clayey soils, the liquid limit values were further measured by a fall cone test, and the measured values were 65.5% and 103.0%, respectively. The measured values were fitted to the respective liquid property limit values in the graph of FIG. 3, and the amounts of generated residual soil, cement, and water were determined as shown in Table 2.

【0029】[0029]

【表2】 配合された物性改良土の物性は表2に示す通りであり、
フロー、ブリージング、一軸圧縮強度の何れも所期の目
標値を達成していた。
[Table 2] The physical properties of the compounded physical properties improved soil are as shown in Table 2,
All of the flow, breathing, and uniaxial compressive strengths achieved the expected target values.

【0030】[0030]

【発明の効果】本発明では、試験用建設発生残土の種類
が増え、建設発生残土の測定項目が従来法に比し1〜2
項目増加するが、従来法のように物性の異なる建設発生
残土を使用する度に最初の配合試験から繰返す必要はな
く、信頼性の高い配合が決定できる。また、発生残土の
粒度分布を厳密な試験法で測定しなくとも、簡易沈降法
により75μm アンダーの微細土粒子の含有割合を把握で
きればよいので、現場作業として短時間で物性改良土の
配合を決定することができる。
According to the present invention, the types of surplus soil generated for the test are increased, and the measurement items of the surplus soil generated for the construction are 1 to 2 compared to the conventional method.
Although the number of items increases, it is not necessary to repeat from the first compounding test every time using construction waste soil having different physical properties as in the conventional method, and a highly reliable compounding can be determined. In addition, since the content ratio of fine soil particles under 75μm can be grasped by the simple sedimentation method without having to measure the particle size distribution of the generated residual soil by a strict test method, the formulation of the soil with improved physical properties can be determined in a short time as on-site work. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の物性改良土の配合決定のフローチャー
トである。
FIG. 1 is a flowchart for determining the composition of a physical property improving soil of the present invention.

【図2】試験用建設発生残土の物性と、それを使用して
良好な品質の物性改良土を製造し得る添加材(固化材及
び水)の添加量との関係についての過去の蓄積されたデ
ータを、試験用建設発生残土の75μm アンダーの微細土
粒子の含有割合について纏めたグラフである。
FIG. 2 shows the relationship between the physical properties of test-constructed surplus soil and the amounts of additives (solidification material and water) that can be used to produce good quality physical properties-improved soil. It is the graph which summarized the data about the content ratio of the fine soil particle of 75 micrometers or less of the residual soil generated by the test construction.

【図3】試験用建設発生残土の物性と、それを使用して
良好な品質の物性改良土を製造し得る添加材(固化材及
び水)の添加量との関係についての過去の蓄積されたデ
ータを、建設発生残土の液性限界値について纏めたグラ
フである。
FIG. 3 shows the accumulated relationship between the physical properties of test-constructed surplus soil and the amounts of additives (solidification material and water) that can be used to produce good quality property-improved soil. It is the graph which put together the data about the liquid property limit value of construction residual soil.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/24 C09K 103:00 // C09K 17/10 B09B 5/00 ZABF C09K 103:00 M (72)発明者 穴井 秀和 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 (72)発明者 真鍋 智 東京都港区元赤坂1丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 2D043 CA01 EA06 4D004 AA32 BA02 CA45 CC11 CC13 DA01 DA02 DA09 DA10 DA16 DA20 4H026 CA01 CC06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) G01N 33/24 C09K 103: 00 // C09K 17/10 B09B 5/00 ZABF C09K 103: 00 M (72) Inventor Hidekazu Anai Kashima Construction Co., Ltd. 1-2-7 Moto Akasaka, Minato-ku, Tokyo (72) Inventor Satoshi Manabe Kashima Construction Co., Ltd. F-term (1-2-7 Moto-Akasaka, Minato-ku, Tokyo) Reference) 2D043 CA01 EA06 4D004 AA32 BA02 CA45 CC11 CC13 DA01 DA02 DA09 DA10 DA16 DA20 4H026 CA01 CC06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)予め、複数種類の建設発生残土の
物性、及び、この建設発生残土に固化剤及び水などの材
料を種々の配合で混合して製造した多種類の試験用処理
土の物性、の両者を測定することにより、両者の特性の
関連性を示すデータを蓄積する過程と、(B)改良対象
とする建設発生残土の物性を測定し、その物性を上記の
蓄積されたデータと対照することにより建設発生残土の
物性を改良する配合を決定する過程、とからなることを
特徴とする建設発生残土の物性を改良する配合を決定す
る方法。
(A) The properties of a plurality of types of construction residual soil, and various types of test soils prepared by mixing materials such as a solidifying agent and water in various combinations with the construction residual soil in advance. And (B) measuring the physical properties of the construction-generated surplus soil to be improved and measuring the physical properties as described above. Determining the composition that improves the physical properties of the construction-generated surplus soil by comparing the data with the data.
【請求項2】 改良対象となる建設発生残土の物性測定
項目が、(1) 含水比、(2) 沈降中土スラリーの比重測定
による75μm アンダーの微細土粒子の含有割合、(3) フ
ォールコーン試験による液性限界値の3項目であり、上
記(2) の測定結果により、建設発生残土が砂質土と判定
された場合は上記(3) の測定を省略することを特徴とす
る請求項1記載の建設発生残土の物性を改良する配合を
決定する方法。
2. The measurement items of the properties of the construction-generated surplus soil to be improved are (1) water content, (2) content ratio of fine soil particles under 75 μm obtained by measuring specific gravity of sedimentation slurry, and (3) fall cone. There are three items of the liquid limit value by the test, and the measurement of the above (3) is omitted when the construction residual soil is determined to be sandy soil based on the measurement result of the above (2). 2. A method for determining a composition for improving physical properties of construction-generated surplus soil according to 1.
JP2000143458A 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil Expired - Fee Related JP3959930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143458A JP3959930B2 (en) 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143458A JP3959930B2 (en) 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil

Publications (2)

Publication Number Publication Date
JP2001321759A true JP2001321759A (en) 2001-11-20
JP3959930B2 JP3959930B2 (en) 2007-08-15

Family

ID=18650276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143458A Expired - Fee Related JP3959930B2 (en) 2000-05-16 2000-05-16 A method to determine the formulation to improve the physical properties of construction generated residual soil

Country Status (1)

Country Link
JP (1) JP3959930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067481A (en) * 2013-09-27 2015-04-13 三菱マテリアル株式会社 Method for preparing packing material
JP2017181289A (en) * 2016-03-30 2017-10-05 株式会社大林組 Soil qualities division device and soil qualities division method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067481A (en) * 2013-09-27 2015-04-13 三菱マテリアル株式会社 Method for preparing packing material
JP2017181289A (en) * 2016-03-30 2017-10-05 株式会社大林組 Soil qualities division device and soil qualities division method

Also Published As

Publication number Publication date
JP3959930B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
Amezketa et al. Testing a new procedure for measuring water‐stable aggregation
Assaad et al. Evaluation of static stability of self-consolidating concrete
Moon et al. Effect of fine particles on strength and stiffness of cement treated sand
Kwak et al. Flow behaviour of tailings paste for surface disposal
Niroshan et al. Flow characteristics of cemented paste backfill
Jeong et al. Applicability of power law for describing the rheology of soils of different origins and characteristics
Jacobson et al. Factors affecting strength gain in lime-cement columns and development of a laboratory testing procedure
Kollaros Liquid limit values obtained by different testing methods
Abd Elaty et al. Evaluation of consistency properties of freshly mixed concrete by cone penetration test
JP2012220229A (en) Method for measuring content rate of fine-grained fraction of displaced soil and method for manufacturing raw material soil for earthwork material
Todaro et al. Soil conditioning tests of clay for EPB tunnelling
JP2001321759A (en) Method for determining compounding for improving physical properties of building surplus soil
Heidarizadeh et al. Correlation between small-strain shear stiffness and compressive strength of clayey soils stabilized with cement and nano-SiO 2
JP4228301B2 (en) Quality control test method for cement improved ground
Arularasi et al. Energy Consumption of Self‐Compacting Concrete during Mixing and Its Impact on the Yield Stress Measured in the Ready‐Mix Concrete Plant
JP3491205B2 (en) Simple particle size test method by sedimentation analysis of soil
Maharaj et al. Revised test protocols for the identification of dispersive soils
Mouret et al. Metrological significance of the column test in the assessment of the static segregation of self-compacting concrete in the fresh state
JP2957939B2 (en) Simple compounding method of wet ground improvement material
Stewart et al. Influence of microfine aggregate characteristics on concrete performance
Goossens et al. Effect of sulfate and carbonate minerals on particle‐size distributions in arid soils
Tripathi et al. Methods for field and laboratory measurement of flowability and setting time of controlled low-strength materials
Paykov et al. Property-based assessment of soil mineralogy using mineralogy charts
JPH08211045A (en) Method for estimating strength of soil cement
Nakayama et al. Relation between physical properties of soils and effects of chemical stabilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3959930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160525

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees