JP2015067481A - Method for preparing packing material - Google Patents

Method for preparing packing material Download PDF

Info

Publication number
JP2015067481A
JP2015067481A JP2013202801A JP2013202801A JP2015067481A JP 2015067481 A JP2015067481 A JP 2015067481A JP 2013202801 A JP2013202801 A JP 2013202801A JP 2013202801 A JP2013202801 A JP 2013202801A JP 2015067481 A JP2015067481 A JP 2015067481A
Authority
JP
Japan
Prior art keywords
water
cement
amount
volume
neutralized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013202801A
Other languages
Japanese (ja)
Other versions
JP6191866B2 (en
Inventor
利広 小島
Toshihiro Kojima
利広 小島
岸本 幸尚
Yukihisa Kishimoto
幸尚 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013202801A priority Critical patent/JP6191866B2/en
Publication of JP2015067481A publication Critical patent/JP2015067481A/en
Application granted granted Critical
Publication of JP6191866B2 publication Critical patent/JP6191866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Treatment Of Sludge (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a packing material, in which a blending quantity of cement, that of a neutralized precipitate and that of construction surplus soil can be decided easily so that the packing material, which is prepared by blending the cement, the neutralized precipitate and the construction surplus soil, has predetermined flowability and material strength.SOLUTION: The packing material is prepared by blending the cement, the neutralized precipitate, the construction surplus soil and water and satisfies a target value of the flowability (JH flow) after the predetermined time passes since the blending work and another target value of the uniaxial compressive strength (hardened body strength) at the material age of 28 days. The method for preparing the packing material comprises the steps of: deciding the unit quantity of each of the cement, the neutralized precipitate, the construction surplus soil and the water according to the expression (1): W=α×JH+β×ω-γ×s+δ, the expression (2): ω=(P×pl/100×ω/100)+(B×cl/100×ω/100)σ=n×C/W+m and the expression (3): P+C+B+W=1000; and blending the cement, the neutralized precipitate, the construction surplus soil and the water on the basis of the decided unit quantities to prepare the packing material.

Description

本発明は中和沈殿澱物および建設残土を用いた充填材料の製造方法に関する。廃鉱山等の坑道に充填する充填材料として中和沈殿澱物および建設残土を用いた充填材料が検討されている。本発明はこのような充填材料の製造方法に関する。 The present invention relates to a method for producing a filling material using neutralized precipitated starch and construction residue. Filling materials using neutralized sediments and construction residual soil are being studied as filling materials for filling mine tunnels. The present invention relates to a method for producing such a filling material.

廃鉱山では、坑道等の地下空間において、鉱石に含まれる重金属等が好気性雰囲気下で酸化されて廃水中へ溶出することが知られており、流出する鉱山廃水の中和処理を行い、その工程で発生する沈殿物を埋め立て処分している。降雨等の影響により坑内を流れる水量が増えると、沈殿物の発生量が増加する。 In an abandoned mine, it is known that heavy metals contained in the ore are oxidized in an aerobic atmosphere and eluted into the wastewater in underground spaces such as tunnels. Deposits generated in the process are disposed of in landfills. As the amount of water flowing through the mine increases due to rainfall, etc., the amount of sediment generated increases.

そこで、坑道等の地下空間を充填して坑道内を流れる水の量を削減する方法が検討され、特許文献1および特許文献2のような地下空間または地下坑道の充填工法が提案されている。これらの工法で使用される充填材には高流動性や材料分離抵抗性が求められている。また、特許文献3には埋戻しに用いる高流動性処理土について記載されている。 Then, the method of filling the underground space such as a tunnel and reducing the amount of water flowing in the tunnel has been studied, and the underground space or underground tunnel filling method as in Patent Document 1 and Patent Document 2 has been proposed. The filler used in these construction methods is required to have high fluidity and material separation resistance. Patent Document 3 describes a highly fluid treated soil used for backfilling.

特開平9−125900号公報JP-A-9-125900 特開2002−81054号公報JP 2002-81054 A 特開2013−64314号公報JP 2013-64314 A

規模の大きな鉱山では、充填材料の製造場所から注入口までの距離が長くなるため、充填材料の搬送はポンプ圧送が有利である。また、廃水の処理工程で発生した沈殿物を充填材料の一部として利用できれば、埋め立て処分が不要となり、環境への負荷も大幅に低減されることになる。充填材料としてはセメントまたはセメント系固化材、沈殿物、土壌および水等からなる流動化処理土が考えられるが、沈殿物は鉱山によってその性状が異なること、土壌は入手場所により異なることから、所定の流動性を得るための配合も異なり、配合の決定が難しいと云う問題があった。 In a large-scale mine, the distance from the place where the filling material is produced to the injection port becomes long, so that the filling material is advantageously pumped. Moreover, if the deposit generated in the wastewater treatment process can be used as a part of the filling material, landfill disposal becomes unnecessary, and the burden on the environment is greatly reduced. As the filling material, fluidized soil consisting of cement or cement-based solidified material, sediment, soil and water, etc. can be considered, but the nature of the sediment varies depending on the mine, and the soil varies depending on the place of acquisition. The blending for obtaining the fluidity of the resin was different, and there was a problem that it was difficult to determine the blending.

本発明は、従来の上記問題を解決したものであり、セメント、中和沈殿物、建設残土および水を用いた充填材料について、所定の流動性および材料強度が得られる配合を容易に決定することができる製造方法を提供する。 The present invention solves the above-described conventional problems, and easily determines a blending material that can obtain a predetermined fluidity and material strength for a filling material using cement, neutralized sediment, construction residue, and water. The manufacturing method which can do is provided.

本発明は以下の構成からなる充填材料の製造方法である。
<1>
セメント、中和沈殿物、建設残土、および水を配合してなる充填材料において、混練から所定時間経過後の流動性(JHフロー)と材齢28日での一軸圧縮強度(硬化体強度)の目標値を満足する充填材料について、以下の式〔1〕および式〔2〕および式〔3〕に従って上記各材料の単位量を決定し、決定した単位量に基づいて上記各材料を配合して充填材料を製造する方法。
W=α×JH+β×ωL−γ×s+δ ・・・〔1〕
ただし、ωL=〔P×pl/100×ωLp/100〕+〔B×cl/100×ωLcl/100〕
α,β,γ,δ:実験定数
W:単位水量(kg/m3)
JH:混練から所定時間経過後のJHフロー値(mm)
P :中和沈殿物量(kg/m3)
pl:中和沈殿物中の75μm未満部分(質量%)
ωLp:中和沈殿物の液性限界時の含水比(質量%)
B :建設残土量(kg/m3)
cl:建設残土中の75μm未満部分(質量%)
s :中和沈殿物および建設残土中の75μm以上部分(kg/m3)
ωLcl:建設残土の液性限界時の含水比(質量%)

σ28=n×C/W+m ・・・〔2〕
ただし、σ28:28日材齢時の硬化体強度(N/mm2)
n、m:配合試験に基づく定数
C:単位セメント量(kg/m3)

V+CV+BV+W=1000・・・〔3〕
ただし、PV:中和沈殿物容量(L/m3)
V:セメント容量(L/m3)
V:建設残土容量(L/m3)
This invention is a manufacturing method of the filling material which consists of the following structures.
<1>
In the filling material composed of cement, neutralized sediment, construction residual soil, and water, the flowability (JH flow) after lapse of a predetermined time from kneading and uniaxial compressive strength (hardened body strength) at the age of 28 days For the filling material satisfying the target value, the unit amount of each material is determined according to the following formula [1], formula [2] and formula [3], and the above materials are blended based on the determined unit amount. A method for producing a filling material.
W = α × JH + β × ω L −γ × s + δ (1)
However, ω L = [P × pl / 100 × ω Lp / 100] + [B × cl / 100 × ω Lcl / 100]
α, β, γ, δ: Experimental constant W: Unit water volume (kg / m 3 )
JH: JH flow value (mm) after elapse of a predetermined time from kneading
P: Amount of neutralized precipitate (kg / m 3 )
pl: Less than 75 μm portion (% by mass) in the neutralized precipitate
ω Lp : Water content ratio at the liquid limit of neutralized precipitate (% by mass)
B: Construction soil volume (kg / m 3 )
cl: Less than 75μm (mass%) in construction soil
s: 75 μm or more portion (kg / m 3 ) in neutralized sediment and construction residual soil
ω Lcl : Moisture content ratio (% by mass) at the liquid limit of construction residual soil

σ 28 = n × C / W + m [2]
However, σ 28 : Hardened body strength at the age of 28 days (N / mm 2 )
n, m: Constant based on blending test C: Unit cement amount (kg / m 3 )

P V + C V + B V + W = 1000 (3)
However, P V : neutralized sediment volume (L / m 3 )
C V : Cement capacity (L / m 3 )
B V : Construction soil capacity (L / m 3 )

本発明の充填材料の製造方法は以下の態様を含む。
<2>
単位水量と細粒分容量に基づき以下の式〔4〕に従って材料分離抵抗性(ブリーディング率5%以下)を判断する上記<1>に記載する充填材料の製造方法。
単位水量/細粒分容量<8 ・・・〔4〕
(細粒分容量はセメントと中和沈殿物および建設残土の細粒分容量の合量)
<3>
細粒分容量に基づき以下の式〔5〕に従って遮水性(透水係数1×10-5cm/s以下)を判断する上記<1>または上記<2>に記載する充填材料の製造方法。
細粒分容量>100L/m3 ・・・〔5〕
(細粒分容量はセメントと中和沈殿物および建設残土の細粒分容量の合量)
The manufacturing method of the filling material of this invention includes the following aspects.
<2>
The method for producing a filling material according to <1>, wherein the material separation resistance (bleeding rate: 5% or less) is determined according to the following formula [4] based on the unit water amount and the fine particle volume.
Unit water volume / fine-grained volume <8 (4)
(The fine grain volume is the total of the fine grain volume of cement, neutralized sediment and construction residual soil)
<3>
The method for producing a filling material according to the above <1> or <2>, wherein the water impermeability (water permeability coefficient of 1 × 10 −5 cm / s or less) is determined according to the following formula [5] based on the fine particle volume.
Fine grain volume> 100L / m 3 [5]
(The fine grain volume is the total of the fine grain volume of cement, neutralized sediment and construction residual soil)

〔具体的な説明〕
以下、本発明を具体的に説明する。なお、単位固有の場合を除き、量は質量(水を除き乾燥質量)、%は質量基準である。
[Specific description]
Hereinafter, the present invention will be specifically described. Unless otherwise specified, the amount is mass (dry mass excluding water), and% is based on mass.

一般に、粒状物質と水からなるスラリーの流動性は以下のように変化する。ここで、細粒分は粒子径75μm未満の粒子、粗粒分は粒子径75μm以上の粒子である。
(イ)スラリーの流動性は、スラリーの単位水量Wが増加すると高くなり、この単位水量Wが減少すると低下する。
(ロ)粒状物質と水の量比が一定のとき、スラリーの流動性は粒状物質の粒子径が小さいほど(単位量中の細粒分量が多いほど)低下する。
(ハ)セメントモルタルのようにセメント(細粒分)と砂(粗粒分)が混在する系では、水量が一定の場合、細粒分量と粗粒分量の比率が流動性を左右する。
In general, the fluidity of a slurry composed of a particulate material and water varies as follows. Here, the fine particles are particles having a particle size of less than 75 μm, and the coarse particles are particles having a particle size of 75 μm or more.
(A) The fluidity of the slurry increases as the unit water amount W of the slurry increases, and decreases as the unit water amount W decreases.
(B) When the amount ratio of the particulate material and water is constant, the fluidity of the slurry decreases as the particle size of the particulate material is smaller (the finer amount in the unit amount is larger).
(C) In a system in which cement (fine particles) and sand (coarse particles) are mixed, such as cement mortar, when the amount of water is constant, the ratio of the fine particles to the coarse particles affects the fluidity.

上記(ロ)において、細粒分が流動するために必要な水量が存在し、この水量は細粒分の液性限界時における含水量と細粒分量に基づいている。一般に液性限界は425μm未満の粒子を対象とした試験でその含水比が測定されるが、流動化に必要な水量の主体は細粒分が要求する水量であるので、これを(液性限界時の含水量)×(細粒分量)によって定める。 In the above (b), there is an amount of water necessary for the fine particles to flow, and this water amount is based on the water content and the fine particle content at the liquid limit of the fine particles. In general, the liquid limit is measured in a test for particles less than 425 μm, but the water content required for fluidization is mainly the amount of water required by the fine particles. Moisture content at time) x (fine grain content).

セメント、中和沈殿物、建設残土、および水からなる充填材料では、細粒分は中和殿物と建設残土およびセメントに含有されており、ここでセメントは加水後に水和反応を伴い液性限界が不定であるので除外され、中和殿物と建設残土の細粒分の合計量とそれぞれの液性限界の含水量に基づいて細粒分に関する水量が定められる。 In the filling material consisting of cement, neutralized sediment, construction residue, and water, the fine particles are contained in the neutralization residue, construction residue, and cement, where the cement is liquid with a hydration reaction after addition. Since the limit is indefinite, it is excluded, and the amount of water related to the fine particles is determined based on the total amount of fine particles of the neutralized residue and construction residual soil and the water content of each liquid limit.

上記(ハ)において、細粒分と粗粒分が混在する場合、粗粒分の比率が高いと流動しやすくなり、目的の流動性を得るための水量は少なくて済む。そこで、目的の流動性を得るための水量は粗粒分に基づく量を差し引いて定められる。この粗粒分量は中和殿物と建設残土の粗粒分の合計量である。 In the above (c), when the fine particles and the coarse particles are mixed, if the ratio of the coarse particles is high, the particles easily flow and the amount of water for obtaining the desired fluidity is small. Therefore, the amount of water for obtaining the desired fluidity is determined by subtracting the amount based on the coarse particles. This amount of coarse particles is the total amount of coarse particles of neutralized residue and construction residual soil.

本発明は上記検討に基づき、セメント、中和沈殿物、建設残土、および水を配合してなる充填材料において、混練から所定時間経過後の流動性(JHフロー)と各材料の単位量との関係を、以下の式〔1〕で表現できることを見出した。さらに、セメント水比と硬化体強度の関係式〔2〕および各材料の容積和が充填材料の単位容量になることを示す式〔3〕を用い、配合設計の与条件となる硬化体強度および中和沈殿物量の決定後、式〔1〕と式〔2〕および式〔3〕から、上記材料の配合を決定できることを見出した。
W=α×JH+β×ωL−γ×s+δ ・・・〔1〕
ただし、ωL=〔P×ωLp/100〕+〔B×cl/100×ωLcl/100〕
α,β,γ,δ:実験定数
W:単位水量(kg/m3)
JH:混練から所定時間経過後のJHフロー値(mm)
P :中和沈殿物量(kg/m3)
ωLp:中和沈殿物の液性限界時の含水比(質量%)
B :建設残土量(kg/m3)
cl:建設残土中の75μm未満部分(質量%)
s :建設残土中の75μm以上部分(kg/m3)
ωLcl:建設残土の液性限界時の含水比(質量%)
Based on the above study, the present invention is based on the above study, in a filling material composed of cement, neutralized sediment, construction residual soil, and water, the flowability (JH flow) after the lapse of a predetermined time from kneading and the unit amount of each material. It has been found that the relationship can be expressed by the following formula [1]. Furthermore, using the relational expression [2] between the cement water ratio and the hardening body strength and the expression [3] indicating that the volume sum of each material becomes the unit capacity of the filling material, After determining the amount of the neutralized precipitate, it was found that the blending of the above materials can be determined from the formula [1], the formula [2] and the formula [3].
W = α × JH + β × ω L −γ × s + δ (1)
However, ω L = [P × ω Lp / 100] + [B × cl / 100 × ω Lcl / 100]
α, β, γ, δ: Experimental constant W: Unit water volume (kg / m 3 )
JH: JH flow value (mm) after elapse of a predetermined time
P: Amount of neutralized precipitate (kg / m 3 )
ω Lp : Water content ratio at the liquid limit of neutralized precipitate (% by mass)
B: Construction soil volume (kg / m 3 )
cl: Less than 75μm (mass%) in construction soil
s: 75μm or more in the construction residual soil (kg / m 3 )
ω Lcl : Moisture content ratio (% by mass) at the liquid limit of construction residual soil

σ28=n×C/W+m ・・・〔2〕
ただし、σ28:28日材齢時の硬化体強度(N/mm2)
n、m:配合試験に基づく定数
C:単位セメント量(kg/m3)
σ 28 = n × C / W + m [2]
However, σ 28 : Hardened body strength at the age of 28 days (N / mm 2 )
n, m: Constant based on blending test C: Unit cement amount (kg / m 3 )

V+CV+BV+W=1000・・・〔3〕
ただし、PV:中和沈殿物容量(L/m3)
V:セメント容量(L/m3)
V:建設残土容量(L/m3)
P V + C V + B V + W = 1000 (3)
However, P V : neutralized sediment volume (L / m 3 )
C V : Cement capacity (L / m 3 )
b V : Construction residual soil capacity (L / m 3 )

上記式〔1〕において、一般に中和沈殿物に含まれる粗粒子は少ないので粗粒子部分は省略されている。中和沈殿物に粗粒子が含まれる場合には液性限界時の水量は細粒子を対象として算出し、中和沈殿物の粗粒子量を建設残土中の粗粒子量に加算する。この場合、液性限界時の水量は次式によって与えられる。また、式〔1〕のsは中和沈殿物および建設残土中の75μm以上部分の合計量(kg/m3)になる。
ωL=〔P×pl/100×ωLp/100〕+〔B×cl/100×ωLcl/100〕
pl:中和沈殿物中の75μm未満部分(質量%)
なお、式〔1〕による配合設計において、液性限界時の含水量、細粒子量、粗粒子量は、使用する中和沈殿物および建設残土について事前に測定される。
In the above formula [1], since there are generally few coarse particles contained in the neutralized precipitate, the coarse particle portion is omitted. If the neutralized precipitate contains coarse particles, the amount of water at the liquid limit is calculated for fine particles, and the amount of coarse particles in the neutralized precipitate is added to the amount of coarse particles in the construction residual soil. In this case, the amount of water at the liquid limit is given by the following equation. Further, s in the formula [1] is the total amount (kg / m 3 ) of the portion of 75 μm or more in the neutralized precipitate and the construction residual soil.
ω L = [P × pl / 100 × ω Lp / 100] + [B × cl / 100 × ω Lcl / 100]
pl: Less than 75 μm portion (% by mass) in the neutralized precipitate
In addition, in the blending design according to the formula [1], the water content, the fine particle amount, and the coarse particle amount at the liquid limit are measured in advance for the neutralized precipitate and construction residual soil to be used.

充填材料の配合設計に先立ち、使用する中和沈殿物、セメント、建設残土および水について、事前の試験によって上記式〔1〕の実験定数α、β、γおよびδを定める。この事前の試験は、上記の実験定数が求められる範囲で実施すればよい。 Prior to the blending design of the filling material, the experimental constants α, β, γ and δ of the above equation [1] are determined by a prior test for the neutralized precipitate, cement, construction residual soil and water to be used. This preliminary test may be performed within a range where the above experimental constants are obtained.

例えば、実施例1のデータに基づいて、混練後90分のフロー値との関係について以下の重回帰式が得られる(決定係数0.961)。
W=0.337×JH(90)+0.159×ωL−0.222×s+667.982
For example, based on the data of Example 1, the following multiple regression equation is obtained for the relationship with the flow value for 90 minutes after kneading (determination coefficient 0.961).
W = 0.337 × JH (90) + 0.159 × ω L −0.222 × s + 667.982.

また、例えば、混練直後のフロー値について以下の重回帰式が得られる(決定係数0.962)。
W=0.296×JH(0)+0.274×ωL−0.191×s+598.633
さらに、例えば、混練60分後のフロー値について以下の重回帰式が得られる(決定係数0.964)。
W=0.317×JH(60)+0.170×ωL−0.219×s+658.308
Further, for example, the following multiple regression equation is obtained for the flow value immediately after kneading (determination coefficient 0.962).
W = 0.296 × JH (0) + 0.274 × ω L −0.191 × s + 598.633
Further, for example, the following multiple regression equation is obtained for the flow value after 60 minutes of kneading (determination coefficient 0.964).
W = 0.317 × JH (60) + 0.170 × ω L −0.219 × s + 658.308

上記式〔2〕によって、単位水量Wと単位セメント量Cの比から28日材齢時の硬化体強度が示される。式〔2〕のn、mは配合試験に基づく定数である。実施例で使用する中和沈殿物A、Bについて、配合試験に基づく定数n、mは、例えば以下のとおりである。
(イ)中和沈殿物Aについて、中和沈殿物の単位量44kg/m3におけるnは6.905、mは−0.453、単位量132kg/m3におけるnは0.970、mは−0.055であり、式〔2〕は以下のとおりである。
σ28=6.905×C/W−0.453
σ28=0.970×C/W−0.055
(ロ)中和沈殿物Bについて、中和沈殿物の単位量45kg/m3におけるnは4.610、mは−0.268、単位量135kg/m3におけるnは0.470、mは−0.039であり、式〔2〕は以下のとおりである。
σ28=4.610×C/W−0.268
σ28=0.470×C/W−0.039
From the above formula [2], the cured body strength at the age of 28 days is shown from the ratio of the unit water amount W and the unit cement amount C. N and m in the formula [2] are constants based on the blending test. For the neutralized precipitates A and B used in the examples, the constants n and m based on the blending test are, for example, as follows.
(I) For neutralized precipitate A, n in the unit amount of 44 kg / m 3 of the neutralized precipitate is 6.905, m is -0.453, n in the unit amount of 132 kg / m 3 is 0.970, m is −0.055, and the formula [2] is as follows.
σ 28 = 6.905 × C / W−0.453
σ 28 = 0.970 × C / W−0.055
(B) Regarding the neutralized precipitate B, n in the unit amount of 45 kg / m 3 of the neutralized precipitate is 4.610, m is -0.268, n in the unit amount of 135 kg / m 3 is 0.470, m is -0.039, and the formula [2] is as follows.
σ 28 = 4.610 × C / W−0.268
σ 28 = 0.470 × C / W−0.039

ここで、中和沈殿物の性状は、その発生する鉱山などによって異なる。また、中和沈殿物の単位量によって強度発現が異なる。そのため、上記式〔2〕の配合試験による定数nとmは、配合設計の対象である中和沈殿物の単位量を加えた単位水量Wと単位セメント量Cの比を変えた事前の試験によって予め求める。 Here, the properties of the neutralized precipitate vary depending on the mine where it is generated. In addition, the strength expression varies depending on the unit amount of the neutralized precipitate. Therefore, the constants n and m by the blending test of the above formula [2] are determined by a prior test in which the ratio of the unit water amount W and the unit cement amount C to which the unit amount of the neutralized precipitate that is the subject of the blending design is added is changed. Find in advance.

上記式〔3〕によって充填材料における各材料の単位容量が示される。 The unit capacity of each material in the filling material is shown by the above equation [3].

単位水量Wと細粒分容量Xに基づき以下の式〔4〕に従って材料分離抵抗性(ブリーディング率5%以下)を判断することができる。W/Xが8以上では材料分離抵抗性が低くなり、ブリーディング率が5%超えるので、例えば、建設残土が細粒分を含む場合には建設残土量を増やして配合を補正し、またはセメント量を増やして配合を補正する。
単位水量W/細粒分容量X<8 ・・・〔4〕
(細粒分容量はセメントと中和沈殿物および建設残土の細粒分容量の合量)
Based on the unit water amount W and the fine particle volume X, the material separation resistance (bleeding rate 5% or less) can be determined according to the following equation [4]. When W / X is 8 or more, the material separation resistance becomes low and the bleeding rate exceeds 5%. For example, when construction residual soil contains fine grains, the amount of cement is corrected by increasing the amount of construction residual soil. To correct the formulation.
Unit water amount W / fine-grained volume X <8 (4)
(The fine grain volume is the total of the fine grain volume of cement, neutralized sediment and construction residual soil)

細粒分容量Xに基づき、以下の式〔5〕に従って遮水性(透水係数1×10-5cm/s以下)を判断することができる。Xが100L/m3より小さいと、遮水性が不十分になり、透水係数1×10-5cm/sを越えるため、例えば、建設残土が細粒分を含む場合は建設残土量を増やして配合を補正し、またはセメント量を増やして配合を補正する。
細粒分容量X>100L/m3 ・・・〔5〕
(細粒分容量はセメントと中和沈殿物および建設残土の細粒分容量の合量)
Based on the fine particle volume X, water impermeability (water permeability 1 × 10 −5 cm / s or less) can be determined according to the following equation [5]. If X is less than 100 L / m 3 , the water-imperviousness will be insufficient and the water permeability will exceed 1 × 10 -5 cm / s. For example, if the construction soil contains fine particles, increase the amount of construction soil. Correct the formulation or increase the amount of cement to correct the formulation.
Fine grain volume X> 100L / m 3 [5]
(The fine grain volume is the total of the fine grain volume of cement, neutralized sediment and construction residual soil)

事前の試験によって定めたα,β,γ,δ、およびn、mに基づき、式〔1〕および式〔2〕と式〔3〕に従って決定した配合によって、セメント、中和沈殿物、建設残土、および水を混合して充填材料を製造する。なお、所定のブリーディング率(材料分離抵抗性)や透水係数(遮水性)が定められる場合には、式〔4〕および式〔5〕を用いて配合を再検討し、建設残土に細粒分を含む場合には建設残土の単位量を、含まない場合にはセメントの単位量を設定し、式〔1〕および式〔2〕と式〔3〕に基づいて配合を再度決定する。 Based on α, β, γ, δ, and n, m determined by prior tests, cement, neutralized sediment, construction residual soil by the formulation determined according to formula [1], formula [2] and formula [3] , And water to produce a filling material. In addition, when a predetermined bleeding rate (material separation resistance) and water permeability coefficient (water-imperviousness) are determined, the formulation is re-examined using Formula [4] and Formula [5], and the fine soil fraction in the construction residual soil If it contains, the unit amount of construction residual soil is set. If not, the unit amount of cement is set, and the blending is determined again based on the equations [1], [2] and [3].

本発明において、セメントは早強ポルトランドセメント、普通ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、フライアッシュセメント、セメント系固化材などを使用することができる。 In the present invention, as the cement, early-strength Portland cement, ordinary Portland cement, medium heat Portland cement, low heat Portland cement, blast furnace cement, fly ash cement, cement-based solidified material, and the like can be used.

本発明において、中和沈殿物は鉱山の廃水を中和処理して発生した中和沈殿物を使用することができる。建設残土は建設工事などで発生するものをそのまま使用することができる。混練水は水道水、中和沈殿物の上澄み水などを好適に使用することができる。流動性の調整、凝結時間の調整または材料分離低減などのために、化学混和剤などの添加物を必要に応じて使用することができる。 In the present invention, neutralized precipitates generated by neutralizing mine wastewater can be used as neutralized precipitates. The remaining construction soil can be used as it is due to construction work. As the kneading water, tap water, the supernatant water of the neutralized precipitate, or the like can be preferably used. Additives such as chemical admixtures can be used as necessary to adjust fluidity, adjust setting time or reduce material separation.

本発明によれば、セメント、中和沈殿物、建設残土および水からなる充填材料について、配合を容易に決定することができ、目標の流動性を有する充填材料を容易に製造することができる。 According to the present invention, the filling material composed of cement, neutralized sediment, construction residual soil and water can be easily determined, and a filling material having a target fluidity can be easily manufactured.

目標流動性(混練90分後のJHフロー値)を300mmとした場合の単位水量と重回帰式(式〔1〕)で得られた単位水量との関係を示すグラフ。The graph which shows the relationship between the unit water quantity when the target fluidity (JH flow value after 90 minutes of kneading | mixing) is 300 mm, and the unit water quantity obtained by the multiple regression equation (Formula [1]).

本発明の実施例において使用した材料を以下に示す。
<セメント>高炉セメントB種、細粒分量は100%
<中和沈殿物>鉱山の廃水を中和処理して発生した中和沈殿物A(鉱山A)、B(鉱山B)を使用した。中和沈殿物A、Bの物理的性状を表1に示す。
中和沈殿物A〔液性限界の含水比120.2%、細粒分量は実質的に100%〕
中和沈殿物B〔液性限界の含水比198.4%、細粒分量は63%〕
なお、中和沈殿物Bの回帰分析では、中和沈殿物の細粒分量を63%、粗粒分量を37%とし、液性限界時の水量は細粒子を対象として算出し、中和沈殿物の粗粒子量を建設残土中の粗粒子量に加算して行った。
The materials used in the examples of the present invention are shown below.
<Cement> Blast Furnace Cement Class B, fine grain content is 100%
<Neutralized precipitate> Neutralized precipitates A (Mine A) and B (Mine B) generated by neutralizing mine wastewater were used. Table 1 shows the physical properties of the neutralized precipitates A and B.
Neutralized precipitate A (water content limit water content 120.2%, fine particle content is substantially 100%)
Neutralized precipitate B (liquid content limit water content 198.4%, fine grain content 63%)
In the regression analysis of the neutralized precipitate B, the amount of fine particles of the neutralized precipitate is 63%, the amount of coarse particles is 37%, and the amount of water at the liquid limit is calculated for fine particles. The amount of coarse particles was added to the amount of coarse particles in the construction residual soil.

Figure 2015067481
Figure 2015067481

<建設残土>表2に示す物理的性状の砂質土、粘性土を、単独および混合使用した。
砂質土〔液性限界の含水比0%(測定不能)、細粒分量は実質的に0%〕
粘性土〔液性限界の含水比64.4%、細粒分量は実質的に100%〕
<その他の材料>混練水は水道水を使用した。
<Remaining construction soil> Sandy soil and clay soil having physical properties shown in Table 2 were used alone and in combination.
Sandy soil [moisture content of liquid limit 0% (measurable), fine grain content is substantially 0%]
Viscous soil (water content limit water content 64.4%, fine grain content is substantially 100%)
<Other materials> Tap water was used as the kneading water.

Figure 2015067481
Figure 2015067481

<流動性試験>
旧日本道路公団基準「エアモルタル及びエアミルクの試験方法」1.2シリンダー法(JHS A 313-1992)により、フロー値(JHフロー)を測定した。
<材料分離抵抗性>
土木学会基準JSCE−F 522-2007「プレパックドコンクリートの注入モルタルのブリーディング率及び膨張率試験方法(ポリエチレン袋法)(案)」に準じ、混練から3時間経過後のブリーディングの有無を確認した。
<強度性状>
JIS A 1216:2009「土の一軸圧縮試験方法」に準じて、硬化体の材齢7日および28日強度を測定した。
<透水試験>
JIS A 1218:2009「土の透水試験方法」の変水位透水試験により測定した。
<Fluidity test>
The flow value (JH flow) was measured by the former Japan Highway Public Corporation Standard “Testing method of air mortar and air milk” 1.2 cylinder method (JHS A 313-1992).
<Material separation resistance>
According to Japan Society of Civil Engineers JSCE-F 522-2007 "Testing method for bleeding rate and expansion rate of pre-packed concrete mortar (polyethylene bag method) (draft)", the presence or absence of bleeding after 3 hours from kneading was confirmed.
<Strength properties>
According to JIS A 1216: 2009 “Soil uniaxial compression test method”, the strength of the hardened material was measured at 7 days and 28 days.
<Water permeability test>
It was measured by a water level permeability test of JIS A 1218: 2009 “Soil permeability test method”.

〔実施例1〕
表3および表4に例示する配合を含む189配合での試験結果を用いた重回帰分析によって、混練直後、混練後60分、混練後90分における式〔1〕の実験定数α、β、γ、δをそれぞれ導いた。
[Example 1]
Experimental constants α, β, γ of the formula [1] immediately after kneading, 60 minutes after kneading, and 90 minutes after kneading by multiple regression analysis using test results with 189 formulations including the formulations exemplified in Table 3 and Table 4 , Δ were derived, respectively.

混練後90分後の、α、β、γ、δはおのおの0.337、0.159、0.222、667.982であり、式〔1〕は以下のとおりであった(重回帰式の決定係数0.961)。
W=0.337×JH(90)+0.159×ωL−0.222×s+667.982
同様に、混練直後は次式のとおり(重回帰式の決定係数0.962)。
W=0.296×JH(0)+0.274×ωL−0.191×s+598.633
混練後60分は次式のとおりであった(重回帰式の決定係数0.964)。
W=0.317×JH(60)+0.170×ωL−0.219×s+658.308
After 90 minutes of kneading, α, β, γ, and δ were 0.337, 0.159, 0.222, and 667.982, respectively, and equation [1] was as follows (multiple regression equation Coefficient of determination 0.961).
W = 0.337 × JH (90) + 0.159 × ω L −0.222 × s + 667.982.
Similarly, immediately after kneading, the following equation is obtained (determination coefficient 0.962 of the multiple regression equation).
W = 0.296 × JH (0) + 0.274 × ω L −0.191 × s + 598.633
60 minutes after kneading was as follows (decision coefficient 0.964 of multiple regression equation).
W = 0.317 × JH (60) + 0.170 × ω L −0.219 × s + 658.308

表3の試料A-4では、中和沈殿物の液性限界の含水比ωLpは120.2%であり、また、建設残土(粘性土)の液性限界の含水比ωLcl=64.4%であるから、ωLは次式で与えられる。
ωL=〔P×ωLp/100+B×ωLcl/100〕
さらに、中和沈殿物Aの量Pは88kg/m3であり、建設残土(粘性土)の量Bは297kg/m3であるからωLは以下のようになる。
ωL=88×120.2/100+297×64.4/100=297
次に、建設残土(粘性土)の75μm以上部分の質量sは実質0%(細粒分量は実質的に100%)であるから、s=0である。ここでJH(混練90分後)の目標値300mmとすると、単位水量Wは次式で与えられる。
W=0.337×300+0.159×297−0.222×0+667.982=816.3
表3の試料A-4の単位水量は807kg/m3であるから、式〔1〕に基づいて求めた単位水量は表3の単位水量に近く、式〔1〕は信頼性の高いことが確認された。
In sample A-4 in Table 3, the water content ratio ω Lp at the liquid limit of the neutralized precipitate is 120.2%, and the water content ratio ω Lcl at the liquid limit of the construction residual soil (viscous soil) is 64. Since it is 4%, ω L is given by the following equation.
ω L = [P × ω Lp / 100 + B × ω Lcl / 100]
Further, since the amount P of the neutralized precipitate A is 88 kg / m 3 and the amount B of the construction residual soil (cohesive soil) is 297 kg / m 3 , ω L is as follows.
ω L = 88 × 120.2 / 100 + 297 × 64.4 / 100 = 297
Next, since the mass s of the 75 μm or more portion of the construction residual soil (cohesive soil) is substantially 0% (the amount of fine particles is substantially 100%), s = 0. If the target value of JH (90 minutes after kneading) is 300 mm, the unit water amount W is given by the following equation.
W = 0.337 × 300 + 0.159 × 297−0.222 × 0 + 667.982 = 816.3
Since the unit water amount of Sample A-4 in Table 3 is 807 kg / m 3 , the unit water amount obtained based on Equation [1] is close to the unit water amount shown in Table 3, and Equation [1] is highly reliable. confirmed.

単位水量と式〔1〕に基づいて算出した単位水量(図中、重回帰式より得られた単位水量)の関係を図1に示した。図示するように、これらの単位水量はほぼ直線状に分布し、良く一致することを示している。 FIG. 1 shows the relationship between the unit water amount and the unit water amount calculated based on the equation [1] (unit water amount obtained from the multiple regression equation in the figure). As shown in the figure, these unit water amounts are distributed almost linearly, indicating a good match.

表4の試料B-5では、中和沈殿物の細粒分量が63%、液性限界の含水比ωLpは198.4%であり、建設残土(粘性土)の液性限界の含水比ωLcl=64.4%であるから、ωLは次式で与えれる。
ωL=〔P×pl/100×ωLp/100+B×ωLcl/100〕
次に、中和沈殿物Bの量Pは135kg/m3であり、建設残土(粘性土)の量Bは190kg/m3であるからωLは以下のようになる。
ωL=135×63/100×198.4/100+190×64.4/100=291
また、建設残土(粘性土)の75μm以上部分の質量sは実質0%(細粒分量は実質的に100%)であるが、中和沈殿物Bの粗粒分量が37%であるから、s=135×37/100=50である。ここでJH(混練90分後)の目標値300mmとすると、単位水量Wは次式で与えられる。
W=0.337×300+0.159×291−0.222×50+667.982=804
試料B-5の単位水量は842kg/m3であるから、式〔1〕に基づいて求めた単位水量は表3の単位水量に近く、式〔1〕は信頼性の高いことが確認された。
In sample B-5 in Table 4, the fine particle content of the neutralized precipitate is 63%, the water content ratio ω Lp of the liquid limit is 198.4%, and the water content ratio of the liquid limit of the construction residual soil (viscous soil) Since ω Lcl = 64.4%, ω L is given by the following equation.
ω L = [P × pl / 100 × ω Lp / 100 + B × ω Lcl / 100]
Next, since the amount P of the neutralized precipitate B is 135 kg / m 3 and the amount B of the construction residual soil (cohesive soil) is 190 kg / m 3 , ω L is as follows.
ω L = 135 × 63/100 × 198.4 / 100 + 190 × 64.4 / 100 = 291
Moreover, although the mass s of the 75 μm or more portion of the construction residual soil (viscous soil) is substantially 0% (the fine particle content is substantially 100%), the coarse particle content of the neutralized precipitate B is 37%. s = 135 × 37/100 = 50. If the target value of JH (90 minutes after kneading) is 300 mm, the unit water amount W is given by the following equation.
W = 0.337 × 300 + 0.159 × 291-0.222 × 50 + 667.982 = 804
Since the unit water amount of Sample B-5 is 842 kg / m 3 , the unit water amount obtained based on Equation [1] is close to the unit water amount shown in Table 3, and it was confirmed that Equation [1] is highly reliable. .

Figure 2015067481
Figure 2015067481

Figure 2015067481
Figure 2015067481

〔実施例2〕
目標流動性(混練90分後のJHフロー値)300mmとし、中和沈殿物Aでは中和沈殿物の乾燥単位質量を132(kg/m3)、中和沈殿物Bでは135(kg/m3)、材齢28日での一軸圧縮強さを0.04(N/mm2)、建設残土として砂質土および粘性土を用いて以下の式に従って充填材料の4配合(表5No.1〜4)を計算した。
W=0.337×JH(90)+0.159×ωL−0.222×s+667.982
σ28=0.970×C/W−0.055(中和沈殿物A)
σ28=0.470×C/W−0.039(中和沈殿物B)
V+CV+BV+W=1000
[Example 2]
The target fluidity (JH flow value after 90 minutes of kneading) is set to 300 mm. In the neutralized precipitate A, the dry unit mass of the neutralized precipitate is 132 (kg / m 3 ), and in the neutralized precipitate B, 135 (kg / m 3 ), uniaxial compressive strength at the age of 28 days is 0.04 (N / mm 2 ), sandy clay and cohesive soil are used as construction residual soil, and 4 combinations of filling materials according to the following formula (Table 5 No. 1) ~ 4) was calculated.
W = 0.337 × JH (90) + 0.159 × ω L −0.222 × s + 667.982.
σ 28 = 0.970 × C / W−0.055 (neutralized precipitate A)
σ 28 = 0.470 × C / W−0.039 (neutralized precipitate B)
P V + C V + B V + W = 1000

配合計算の結果、砂質土(表5No.1、No.3)では中和沈殿物AとBのいずれも、細粒分量が不足して式〔4〕と式〔5〕の条件を満たさなかったため、セメント量を増加させて配合を補正し、単位質量を定めた。この結果を表5に示す。表5の配合に従って充填材料を製造した。製造した充填材料のJHフロー値、ブリーディング率、一軸圧縮強さ、透水係数を表6に示す。
表6に示すように、製造した充填材料の混練90分後のJHフロー値は目標流動性に極めて近く、また3時間後のブリーディングが発生せず、十分な強度を有する充填材料が得られた。
As a result of the blending calculation, in the sandy soil (No. 1 and No. 3 in Table 5), both of the neutralized precipitates A and B satisfy the conditions of the equations [4] and [5] because the amount of fine particles is insufficient. Because there was not, the amount of cement was increased to correct the formulation, and the unit mass was determined. The results are shown in Table 5. Filling materials were produced according to the formulations in Table 5. Table 6 shows the JH flow value, bleeding rate, uniaxial compressive strength, and water permeability of the produced filling material.
As shown in Table 6, the JH flow value after 90 minutes of kneading of the produced filling material was very close to the target fluidity, and bleeding after 3 hours did not occur, and a filling material having sufficient strength was obtained. .

Figure 2015067481
Figure 2015067481

Figure 2015067481
Figure 2015067481

本発明によれば、セメント、中和沈殿物、建設残土および水等からなる充填材料の配合を容易に決定できるので、目標の流動性を有する充填材料を容易に製造することが可能となり、産業上有用である。 According to the present invention, since it is possible to easily determine the composition of the filling material composed of cement, neutralized sediment, construction residual soil, water, and the like, it becomes possible to easily manufacture the filling material having the target fluidity, It is useful above.

Claims (3)

セメント、中和沈殿物、建設残土、および水を配合してなる充填材料において、混練から所定時間経過後の流動性(JHフロー)と材齢28日での一軸圧縮強度(硬化体強度)の目標値を満足する充填材料について、以下の式〔1〕および式〔2〕および式〔3〕に従って上記各材料の単位量を決定し、決定した単位量に基づいて上記各材料を配合して充填材料を製造する方法。

W=α×JH+β×ωL−γ×s+δ ・・・〔1〕
ただし、ωL=〔P×pl/100×ωLp/100〕+〔B×cl/100×ωLcl/100〕
α,β,γ,δ:実験定数
W:単位水量(kg/m3)
JH:混練から所定時間経過後のJHフロー値(mm)
P :中和沈殿物量(kg/m3)
pl:中和沈殿物中の75μm未満部分(質量%)
ωLp:中和沈殿物の液性限界時の含水比(質量%)
B :建設残土量(kg/m3)
cl:建設残土中の75μm未満部分(質量%)
s :中和沈殿物および建設残土中の75μm以上部分(kg/m3)
ωLcl:建設残土の液性限界時の含水比(質量%)

σ28=n×C/W+m ・・・〔2〕
ただし、σ28:28日材齢時の硬化体強度(N/mm2)
n、m:配合試験に基づく定数
C:単位セメント量(kg/m3)

V+CV+BV+W=1000・・・〔3〕
ただし、PV:中和沈殿物容量(L/m3)
V:セメント容量(L/m3)
V:建設残土容量(L/m3)
In the filling material composed of cement, neutralized sediment, construction residual soil, and water, the flowability (JH flow) after lapse of a predetermined time from kneading and uniaxial compressive strength (hardened body strength) at the age of 28 days For the filling material satisfying the target value, the unit amount of each material is determined according to the following formula [1], formula [2] and formula [3], and the above materials are blended based on the determined unit amount. A method for producing a filling material.

W = α × JH + β × ω L −γ × s + δ (1)
However, ω L = [P × pl / 100 × ω Lp / 100] + [B × cl / 100 × ω Lcl / 100]
α, β, γ, δ: Experimental constant W: Unit water volume (kg / m 3 )
JH: JH flow value (mm) after elapse of a predetermined time from kneading
P: Amount of neutralized precipitate (kg / m 3 )
pl: Less than 75 μm portion (% by mass) in the neutralized precipitate
ω Lp : Water content ratio at the liquid limit of neutralized precipitate (% by mass)
B: Construction soil volume (kg / m 3 )
cl: Less than 75μm (mass%) in construction soil
s: 75 μm or more portion (kg / m 3 ) in neutralized sediment and construction residual soil
ω Lcl : Moisture content ratio (% by mass) at the liquid limit of construction residual soil

σ 28 = n × C / W + m [2]
However, σ 28 : Hardened body strength at the age of 28 days (N / mm 2 )
n, m: Constant based on blending test C: Unit cement amount (kg / m 3 )

P V + C V + B V + W = 1000 (3)
However, P V : neutralized sediment volume (L / m 3 )
C V : Cement capacity (L / m 3 )
B V : Construction soil capacity (L / m 3 )
単位水量と細粒分容量に基づき以下の式〔4〕に従って材料分離抵抗性(ブリーディング率5%以下)を判断する請求項1に記載する充填材料の製造方法。
単位水量/細粒分容量<8 ・・・〔4〕
(細粒分容量はセメントと中和沈殿物および建設残土の細粒分容量の合量)
The method for producing a filling material according to claim 1, wherein the material separation resistance (bleeding rate: 5% or less) is determined according to the following formula [4] based on the unit water amount and the fine particle volume.
Unit water volume / fine-grained volume <8 (4)
(The fine grain volume is the total of the fine grain volume of cement, neutralized sediment and construction residual soil)
細粒分容量に基づき以下の式〔5〕に従って遮水性(透水係数1×10-5cm/s以下)を判断する請求項1または請求項2に記載する充填材料の製造方法。
細粒分容量>100L/m3 ・・・〔5〕
(細粒分容量はセメントと中和沈殿物および建設残土の細粒分容量の合量)
The method for producing a filling material according to claim 1 or 2, wherein the water-imperviousness (water permeability coefficient of 1 x 10-5 cm / s or less) is determined according to the following formula [5] based on the fine particle volume.
Fine grain volume> 100L / m 3 [5]
(The fine grain volume is the total of the fine grain volume of cement, neutralized sediment and construction residual soil)
JP2013202801A 2013-09-27 2013-09-27 Manufacturing method of filling material Active JP6191866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202801A JP6191866B2 (en) 2013-09-27 2013-09-27 Manufacturing method of filling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202801A JP6191866B2 (en) 2013-09-27 2013-09-27 Manufacturing method of filling material

Publications (2)

Publication Number Publication Date
JP2015067481A true JP2015067481A (en) 2015-04-13
JP6191866B2 JP6191866B2 (en) 2017-09-06

Family

ID=52834540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202801A Active JP6191866B2 (en) 2013-09-27 2013-09-27 Manufacturing method of filling material

Country Status (1)

Country Link
JP (1) JP6191866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031656A (en) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 Weight fluidization treatment soil
JP2021147850A (en) * 2020-03-18 2021-09-27 日本製鉄株式会社 Roller compacted concrete material mixing method and roller compacted concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164499A (en) * 1987-12-17 1989-06-28 Mitsubishi Metal Corp Method for converting precipitate formed by neutralizing waste water from pit of mine into soil
JP2001321759A (en) * 2000-05-16 2001-11-20 Kajima Corp Method for determining compounding for improving physical properties of building surplus soil
JP2004091535A (en) * 2002-08-29 2004-03-25 Sumitomo Osaka Cement Co Ltd Grout for frozen ground, its preparation and grouting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164499A (en) * 1987-12-17 1989-06-28 Mitsubishi Metal Corp Method for converting precipitate formed by neutralizing waste water from pit of mine into soil
JP2001321759A (en) * 2000-05-16 2001-11-20 Kajima Corp Method for determining compounding for improving physical properties of building surplus soil
JP2004091535A (en) * 2002-08-29 2004-03-25 Sumitomo Osaka Cement Co Ltd Grout for frozen ground, its preparation and grouting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031656A (en) * 2015-07-31 2017-02-09 三菱マテリアル株式会社 Weight fluidization treatment soil
JP2021147850A (en) * 2020-03-18 2021-09-27 日本製鉄株式会社 Roller compacted concrete material mixing method and roller compacted concrete
JP7393650B2 (en) 2020-03-18 2023-12-07 日本製鉄株式会社 Mixing method of compacted concrete materials and compacted concrete

Also Published As

Publication number Publication date
JP6191866B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
Koohestani et al. Experimental investigation into the compressive strength development of cemented paste backfill containing Nano-silica
JP4902356B2 (en) Composition for ground improvement material, injection material using the same, and method of using the same
Rojo-López et al. Rheology, durability, and mechanical performance of sustainable self-compacting concrete with metakaolin and limestone filler
CN110781587B (en) Multi-objective optimization method for anti-segregation waste rock filling slurry by using low-quality solid waste
CN104446207B (en) A kind of flyash concrete and mixing proportion design method thereof
CN107651921A (en) Underwater C35 ~ C40 the concrete formulating methods of high pressure resistant high-thin arch dam poured under ultra-deep water environment
CN103214217A (en) Composite superfine cement grout slurry and preparation method thereof
CN106946530A (en) Ultra-retardation concrete
CN104817298A (en) Pumpable steel slag concrete for controlling physical expansion and preparation method thereof
JP6322452B2 (en) Backfill material
CN106630882A (en) Medium/high-strength concrete prepared from modified phosphogypsum based binding material and manufacturing method of concrete
CN106866076A (en) Shield grouting material for harsh environment
JP6191866B2 (en) Manufacturing method of filling material
JP2006231208A (en) Method for solidifying soft soil
KR20180003272A (en) flowable fills using fly ash of cogeneration plant
CN108424066A (en) A kind of grouting material and its preparation method and application
JP6713736B2 (en) PH adjuster for cement composition, concrete composition, cement composition, and method of using pH adjuster for cement composition
Todorova et al. Influence of metakaolinite and stone flour on the properties of selfcompacting concrete
JP2011059044A (en) Grout injection method
JP3806420B2 (en) Low strength mortar filler using shirasu
Khadiry et al. Evaluation of properties of self-compacting concrete specimenshaving rice husk ash and shell lime powderas fillers
Aissa et al. Designing Self-Compacting Concrete Using Local Materials from the Arid Region of Adrar, Algeria
JP5709046B2 (en) Cement composition
JP2016102031A (en) Cavity filler
JPH0827462A (en) Refilling material having fluidity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170726

R150 Certificate of patent or registration of utility model

Ref document number: 6191866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250