JPH08211045A - Method for estimating strength of soil cement - Google Patents
Method for estimating strength of soil cementInfo
- Publication number
- JPH08211045A JPH08211045A JP16159095A JP16159095A JPH08211045A JP H08211045 A JPH08211045 A JP H08211045A JP 16159095 A JP16159095 A JP 16159095A JP 16159095 A JP16159095 A JP 16159095A JP H08211045 A JPH08211045 A JP H08211045A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- content
- strength
- sample
- soil cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はソイルセメントの強度予
測方法に関し、特に、まだ固まらないソイルセメント体
に対しその固化強度を短時間で的確に判定するためのソ
イルセメントの強度予測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting strength of soil cement, and more particularly to a method for predicting strength of soil cement for accurately determining the solidification strength of a soil cement body that has not yet solidified.
【0002】[0002]
【従来の技術】遮水性山留め壁として近年、ソイル柱列
壁工法と称するソイルセメントの地中連続壁が急速に普
及してきている。このソイルセメントは、原位置土を骨
材とすることからコンクリートのようにあらかじめ正確
に強度を設定することが困難なため、現場での強度の測
定が必要である。これについては従来、一般的に、材令
28日後の固化強度をJIS A 1216の「土の一
軸圧縮強度試験方法」に準じて測定している。2. Description of the Related Art In recent years, a soil cement underground wall called a soil column wall construction method has rapidly become widespread as a water barrier wall. Since this soil cement uses aggregate in situ, it is difficult to accurately set the strength in advance like concrete, so it is necessary to measure the strength on site. For this, conventionally, the solidification strength after 28 days of age is generally measured according to JIS A 1216 "Soil uniaxial compressive strength test method".
【0003】[0003]
【発明が解決しようとする課題】しかし、上記の方法で
は固化強度を判定できるまでになるまで28日を要し、
施工が完了したにもかかわらず目的の固化強度が得られ
たのかどうか不明である。また上記の方法では、強度測
定のために費用や供試体の切り出し、作製の手間がかか
る等の問題があった。さらに目的の固化強度が得られな
かった施工ミスの場合には、面倒な手直し工事が必要と
なった。However, in the above method, it takes 28 days until the solidification strength can be determined,
It is unknown whether the desired solidification strength was obtained despite the completion of construction. In addition, the above-mentioned method has problems such as cost for cutting the strength, cutting out of the specimen, and labor for manufacturing. Furthermore, in the case of a construction error in which the desired solidification strength was not obtained, troublesome repair work was required.
【0004】[0004]
【課題を解決するための手段】本発明者は従来の方法の
欠点を克服するため鋭意研究を重ねた結果、施工直後の
ソイルセメントの比重、ソイルセメント中の水分、細礫
分、砂分、粘土+シルト分(以下、単に粘土分という)
およびセメント分の合計6つの因子と28日経過後の固
化強度が一定の相関関係にあることを見出し、この知見
に基づいて本発明をなすに至った。すなわち本発明は、
施工直後のまだ固まらないソイルセメントからその固化
強度を短時間で判定するソイルセメントの強度予測方法
であって、ソイルセメント体の所定箇所から試料を採取
し、該試料の比重、水分、細礫分、砂分、粘土+シルト
分およびセメント分を測定し、水分、細礫分、砂分、粘
土+シルト分およびセメント分とソイルセメントの強度
との相関関係を示す重回帰式の予測式としての下記式
(1)をC/(Cl+Sd)≦0.15の場合、0.1
5<C/(Cl+Sd)≦0.20の場合、C/(Cl
+Sd)>0.20の場合に分けてたて、各予測式から
固化強度を算出予測するソイルセメントの強度予測方法
を提供するものである。 式(1) Y=a0 +(a1 ×W)+(a2 ×C)+(a3 ×Cl)+(a4 ×Sd)+ (a5 ×R) (式中、Yはソイルセメントの予測固化強度(kgf/
cm2 )、Wは水分(kg/m3 )、Cはセメント分
(kg/m3 )、Clは粘土分(kg/m3 )、Sdは
砂分(kg/m3 )、Rは細礫分(kg/m3 )を示
す。a0 〜a5 は重回帰分析により得られた係数を示
す。) 本発明の上記のC/(Cl+Sd)の値に従ってたてた
3種の予測式は次のように表わすことができる。 式(2) Y=α0 +(α1 ×W)+(α2 ×C)+(α3 ×Cl)+(α4 ×Sd)+ (α5 ×R) 式(3) Y=β0 +(β1 ×W)+(β2 ×C)+(β3 ×Cl)+(β4 ×Sd)+ (β5 ×R) 式(4) Y=γ0 +(γ1 ×W)+(γ2 ×C)+(γ3 ×Cl)+(γ4 ×Sd)+ (γ5 ×R) (式中、W、C、Cl、Sd及びRは前記と同じ意味を
もつ。α0 〜α5 、β0〜β5 、γ0 〜γ5 は(i)C
/(Cl+Sd)≦0.15、(ii) 0.15<C/
(Cl+Sd)≦0.20、(iii)C/(Cl+Sd)
>0.20、それぞれの場合の、前記a0 〜a5 に対応
する重回帰分析により得られた係数を示す。)Means for Solving the Problems As a result of intensive studies conducted by the present inventor to overcome the drawbacks of the conventional methods, the specific gravity of soil cement immediately after construction, the water content in the soil cement, the gravel content, the sand content, Clay + silt (hereinafter simply referred to as clay)
Further, it was found that a total of 6 factors of cement content and the solidification strength after 28 days have a certain correlation, and the present invention was completed based on this finding. That is, the present invention
A method for predicting strength of soil cement that determines the solidification strength of soil cement that has not solidified immediately after construction in a short period of time, in which a sample is collected from a predetermined location of the soil cement body, and the specific gravity, water content, and fine gravel content of the sample. , Sand content, clay + silt content, and cement content were measured, and as a multiple regression prediction formula showing the correlation between moisture, gravel content, sand content, clay + silt content, and cement content, and the strength of soil cement, If C / (Cl + Sd) ≦ 0.15, the following formula (1) is set to 0.1
When 5 <C / (Cl + Sd) ≦ 0.20, C / (Cl
+ Sd)> 0.20, and provides a method for predicting strength of soil cement by calculating and predicting solidification strength from each prediction formula. Equation (1) Y = in a 0 + (a 1 × W ) + (a 2 × C) + (a 3 × Cl) + (a 4 × Sd) + (a 5 × R) ( wherein, Y is soil Predicted solidification strength of cement (kgf /
cm 2 ), W is water content (kg / m 3 ), C is cement content (kg / m 3 ), Cl is clay content (kg / m 3 ), Sd is sand content (kg / m 3 ), and R is fine. The gravel content (kg / m 3 ) is shown. a 0 to a 5 represent coefficients obtained by multiple regression analysis. ) Three types of prediction formulas according to the above C / (Cl + Sd) value of the present invention can be expressed as follows. Formula (2) Y = α 0 + (α 1 × W) + (α 2 × C) + (α 3 × Cl) + (α 4 × Sd) + (α 5 × R) Formula (3) Y = β 0 + (β 1 × W) + (β 2 × C) + (β 3 × Cl) + (β 4 × Sd) + (β 5 × R) Formula (4) Y = γ 0 + (γ 1 × W ) + (Γ 2 × C) + (γ 3 × Cl) + (γ 4 × Sd) + (γ 5 × R) (wherein W, C, Cl, Sd and R have the same meanings as described above). α 0 to α 5 , β 0 to β 5 , and γ 0 to γ 5 are (i) C.
/(Cl+Sd)≦0.15, (ii) 0.15 <C /
(Cl + Sd) ≦ 0.20, (iii) C / (Cl + Sd)
> 0.20, in each case, shows a coefficient obtained by multiple regression analysis corresponding to the a 0 ~a 5. )
【0005】以下、本発明をさらに詳細に説明する。本
発明においてソイルセメントとは原位置土に所定量のセ
メントミルクを注入させながら混練させたものを指し、
原位置土、セメント、適宜の量の補足材料などを均一に
混合した組成のものである。ソイルセメントは、通常、
柱状体として形成される。より詳しくは、削孔混練機構
を装備した削孔混練機で地盤を削孔する際、その先端よ
り目的に適応した硬化液を注入しつつ、土中において原
位置土とミキシングし、削孔混練を行い、原位置にソイ
ルセメント柱状体を形成する。このソイルセメント柱状
体を連続して形成してソイル柱列壁が形成される。本発
明方法を適用しうる地盤の種類や条件は特に制限はな
く、ソイル柱列壁工法が実施される全現場に対して適用
することができる。The present invention will be described in more detail below. In the present invention soil cement refers to what is kneaded while injecting a predetermined amount of cement milk into in-situ soil,
It has a composition in which in-situ soil, cement, and an appropriate amount of supplementary materials are uniformly mixed. Soil cement is usually
It is formed as a columnar body. More specifically, when drilling the ground with a drilling kneader equipped with a drilling kneading mechanism, while injecting a hardening liquid suitable for the purpose from the tip, mixing with in-situ soil in the soil and drilling kneading And the soil cement columnar body is formed in situ. This soil cement columnar body is continuously formed to form a soil columnar wall. The type and conditions of the ground to which the method of the present invention can be applied are not particularly limited, and can be applied to all sites where the soil column wall construction method is implemented.
【0006】本発明では固化強度を予測するために、削
孔終了直後(ソイルセメント硬化前)ソイルセメント体
の任意の位置より試料を採取し、その比重、水分、細礫
分、砂分、粘土分およびセメント分の6つの因子を測定
する。この結果と、ソイルセメントの固化強度の相関関
係を示す予測式から、固化強度を予測する。上記の6つ
の因子について測定するために、まずソイルセメント体
の強度を判定すべき所定箇所から試料を採取する。試料
の採取方法としては、例えば掘削孔よりオーバーフロー
してくるものを採取する、芯材にサンプリング箱を取り
付けて深部より採取する、等が挙げられる。まず、試料
の比重の測定を行う。一方、採取した試料の一部の重量
を測定した後、試料の水分を蒸発させて乾燥重量を測定
し、水分の重量を算出する。ここで水分を蒸発させる方
法は特に制限はないが、例えば試料を電子レンジ、フラ
イパン等を用いて加熱する方法が簡便に実施できる。ま
た試料の重量を測定するには、電子天秤等各種重量測定
機器を用いることができる。あるいは赤外線水分計を用
いて、重量を測定しながら直接水分を蒸発させて水分を
求めてもよい。次いで、水分測定後の乾燥した試料を粉
砕し、一定量の水と酸を加えて撹拌、反応させ、消費し
た酸の量をアルカリを用いて測定し、セメントの種類、
銘柄によってあらかじめわかっている酸消費量を用いて
セメント量を算出する。このとき酸としては塩酸、硫酸
等、アルカリとしては水酸化ナトリウム等を用いること
ができる。あるいは、乾燥した試料に酸を加えてセメン
ト分を溶解除去し、洗浄、乾燥して残渣の重量を測定し
て、セメント重量を算出する方法も用いることができ
る。この場合も酸としては塩酸、硫酸等を用いることが
できる。In the present invention, in order to predict the solidification strength, a sample is taken from an arbitrary position of the soil cement body immediately after the completion of drilling (before the hardening of the soil cement), and its specific gravity, water content, gravel content, sand content, clay Six factors are measured: min and cement. The solidification strength is predicted from the prediction formula showing the correlation between this result and the solidification strength of soil cement. In order to measure the above six factors, first, a sample is taken from a predetermined place where the strength of the soil cement body is to be judged. Examples of the method of collecting the sample include collecting the material that overflows from the excavation hole, attaching a sampling box to the core material, and collecting from the deep portion. First, the specific gravity of the sample is measured. On the other hand, after measuring the weight of a part of the collected sample, the moisture of the sample is evaporated and the dry weight is measured to calculate the weight of the moisture. The method of evaporating the water is not particularly limited, but a method of heating the sample using a microwave oven, a frying pan or the like can be easily carried out. To measure the weight of the sample, various weight measuring devices such as an electronic balance can be used. Alternatively, the moisture may be obtained by directly evaporating the moisture while measuring the weight using an infrared moisture meter. Then, the dried sample after water content measurement is crushed, a certain amount of water and acid are added and stirred, reacted, the amount of acid consumed is measured using an alkali, the type of cement,
Calculate the amount of cement using the amount of acid consumption that is known in advance by the brand. At this time, hydrochloric acid, sulfuric acid or the like can be used as the acid, and sodium hydroxide or the like can be used as the alkali. Alternatively, a method of calculating the cement weight by adding an acid to the dried sample to dissolve and remove the cement content, washing and drying, and measuring the weight of the residue can also be used. Also in this case, hydrochloric acid, sulfuric acid or the like can be used as the acid.
【0007】また、あらかじめ重量を測定した残りの試
料を、目の大きさの異なる二種類の篩を上下に重ねてに
篩い分け、十分に水洗を行った後、残分を水分測定と同
様の方法で乾燥して細礫分および砂分の重量を測定す
る。篩は0.05〜2mmおよび2〜20mmのものが
好ましく、4.75〜2mmの篩の残分を細礫、2〜
0.074mmの篩の残分を砂とする。以上の結果から
水、セメント、細礫、砂の割合(重量%)を算出し、1
00よりそれらの合計を引いた値を粘土分の割合(重量
%)とする。The remaining sample, whose weight was previously measured, was sieved by laying two kinds of sieves having different mesh sizes on top of each other and thoroughly washed with water. Dry by method and weigh fines and sand. The sieves are preferably 0.05 to 2 mm and 2 to 20 mm, and the residue of the sieve of 4.75 to 2 mm is fine pebbles, 2 to
The residue of the 0.074 mm sieve is sand. From the above results, the ratio of water, cement, fine gravel, and sand (% by weight) was calculated, and 1
The value obtained by subtracting the sum of these values from 00 is the proportion (wt%) of the clay content.
【0008】本発明によればソイルセメントの固化強度
を的確に予測できるが、これにより同じ現場の次の掘削
作業で施工ミスを回避するためにセメント量、注入量等
を調節する上でも参考にできる値が得られる。According to the present invention, it is possible to accurately predict the solidification strength of soil cement, but this is also a reference when adjusting the cement amount, injection amount, etc. to avoid construction errors in the next excavation work at the same site. You get the value you can.
【0009】[0009]
【実施例】次に、本発明を実施例に基づいてさらに詳細
に説明する。なお実施例において、予測式は下記の式
(5)、(6)および(7)の中から選択して用いた。EXAMPLES Next, the present invention will be described in more detail based on examples. In the examples, the prediction formula was selected from the following formulas (5), (6) and (7) and used.
【0010】 式(5) Y=−78.59+(−0.015×W)+(−0.037×C)+(0.1 65×Cl)+(0.135×Sd)+(−0.008×R)Formula (5) Y = −78.59 + (− 0.015 × W) + (− 0.037 × C) + (0.165 × Cl) + (0.135 × Sd) + (− 0.008 x R)
【0011】 式(6) Y=−30.51+(−0.032×W)+(0.041×C)+(0.09 2×Cl)+(0.068×Sd)+(0.001×R)Formula (6) Y = −30.51 + (− 0.032 × W) + (0.041 × C) + (0.092 × Cl) + (0.068 × Sd) + (0. (001 x R)
【0012】 式(7) Y=24.45+(−0.070×W)+(−0.051×C)+(0.08 0×Cl)+(0.023×Sd)+(0.078×R)Formula (7) Y = 24.45 + (− 0.070 × W) + (− 0.051 × C) + (0.080 × Cl) + (0.023 × Sd) + (0. 078 x R)
【0013】(式中、Yはソイルセメントの予測固化強
度(kgf/cm2 )、Wは水分(kg/m3 )、Cは
セメント分(kg/m3 )、Clは粘土分(kg/m
3 )、Sdは砂分(kg/m3 )、Rは細礫分(kg/
m3 )を示す。C/(Cl+Sd)≦0.15の場合は
前記式(5)、0.15<C/(Cl+Sd)≦0.2
0の場合は前記式(6)、C/(Cl+Sd)>0.2
0の場合は前記式(7)を採用する。)(Where Y is the predicted solidification strength (kgf / cm 2 ) of soil cement, W is the water content (kg / m 3 ), C is the cement content (kg / m 3 ), and Cl is the clay content (kg / kg 3 ). m
3 ), Sd is sand content (kg / m 3 ), R is fine gravel content (kg / m 3 ).
m 3 ) is shown. When C / (Cl + Sd) ≦ 0.15, the above formula (5), 0.15 <C / (Cl + Sd) ≦ 0.2
When 0, the above formula (6), C / (Cl + Sd)> 0.2
When it is 0, the formula (7) is adopted. )
【0014】実施例1 水にベントナイトと普通ポルトランドを加えたセメント
ミルクを用いてソイル柱列壁工法を施工した現場1で、
以下の手順によりソイルセメントの試料を分析し、予測
固化強度と実測固化強度を求めた。 〔試料採取〕掘削種後行の削孔作業で削孔終了直後(ソ
イルセメント硬化前)に、芯材(H鋼)にサンプリング
箱を取り付けて深さ10mのところから試料を採取し
た。 〔比重測定〕乾いた500ml容の共栓付きメスシリン
ダーを電子天秤にのせ、天秤の指示値を0.00(風袋
除去)とした。次いでメスシリンダーの中にソイルセメ
ントを100〜200ml程度投入した(Sa (g)と
する)。そのメスシリンダー内に水を適量注入し、栓を
して振り混ぜセメントミルク中の空気を脱気した。さら
にメスシリンダー内壁の付着物を水洗し、水洗後の容積
(Va (ml)とする)と重量(Wa (g)とする)を
読み取った。比重を次式より求められた。Example 1 At the site 1 where the soil column wall construction method was constructed using cement milk obtained by adding bentonite and ordinary Portland to water,
A sample of soil cement was analyzed by the following procedure, and a predicted solidification strength and an actually measured solidification strength were obtained. [Sample collection] Immediately after the completion of drilling (before hardening of soil cement) in the drilling work following the drilling, a sampling box was attached to the core material (H steel) and a sample was taken from a depth of 10 m. [Measurement of Specific Gravity] A dry measuring graduated cylinder having a stopper of 500 ml was placed on an electronic balance, and the indicated value of the balance was set to 0.00 (tare removal). Then turned about 100~200ml a soil cement in graduated cylinder (and S a (g)). An appropriate amount of water was injected into the graduated cylinder, the stopper was closed, and the mixture was shaken to remove air in the cement milk. Further, the deposit on the inner wall of the graduated cylinder was washed with water, and the volume after washing with water (assumed to be V a (ml)) and the weight (assumed to be W a (g)) were read. The specific gravity was calculated by the following formula.
【0015】[0015]
【数1】 [Equation 1]
【0016】〔水分測定〕採取した試料を4.75mm
の篩を通過させ、電子天秤で重量を測定した。この試料
を電子レンジにより恒量まで乾燥し、重量を測定した。
乾燥は短時間で数回繰り返し、布や紙で試料の飛散を防
いで行った。これらの重量より水分Wp (重量%)を算
出した。[Measurement of Water Content] The collected sample is 4.75 mm.
After passing through a sieve of No. 2, the weight was measured with an electronic balance. This sample was dried to a constant weight in a microwave oven and weighed.
Drying was repeated several times in a short period of time to prevent scattering of the sample with a cloth or paper. The water content W p (% by weight) was calculated from these weights.
【0017】[0017]
【数2】 [Equation 2]
【0018】(式中、Wp は水分(重量%)、Sbは試
料の重量(g)、Sb’は試料の乾燥重量(g)を表わ
す。)(In the formula, W p represents water content (wt%), S b represents sample weight (g), and S b ′ represents sample dry weight (g).)
【0019】〔セメント分測定〕水分測定後の乾燥試料
10〜20gを乳鉢により粉砕し、これを約3gビーカ
ーに取って水を約5ml加えスラリー状にした。これに
5N塩酸5mlを添加し、軽く振り混ぜた後5〜10分
放置した後、蒸留水で75〜100mlまで希釈した。
撹拌子と撹拌機を用いて撹拌しながらこの液体のpHを
pHメーターで測定し、pH4.0になるまで1N水酸
化ナトリウム溶液をビュレットを用いて滴下して滴下量
を測定した。この滴下量と、表1に示したセメントの種
類、銘柄ごとのセメント酸消費量からセメント分Cp
(重量%)を算出した。[Measurement of Cement Content] 10 to 20 g of a dried sample after water content measurement was crushed in a mortar, and this was placed in a beaker of about 3 g, and about 5 ml of water was added to form a slurry. To this, 5 ml of 5N hydrochloric acid was added, and the mixture was lightly shaken, allowed to stand for 5 to 10 minutes, and then diluted with distilled water to 75 to 100 ml.
The pH of this liquid was measured with a pH meter while stirring using a stirrer and a stirrer, and a 1N sodium hydroxide solution was dropped using a buret until the pH reached 4.0, and the dropping amount was measured. From this drop amount and the cement acid consumption for each type and brand of cement shown in Table 1, the cement content C p
(Wt%) was calculated.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【数3】 (Equation 3)
【0022】(式中、Cp はセメント分(重量%)、W
p は水分(重量%)、Aは水酸化ナトリウムの滴下量
(ml)を表わす。) (この現場では普通ポルトランド種のセメントを使用し
たので、セメント酸消費量には25.59を代入して算
出する。)(Where C p is the cement content (% by weight), W
p represents water content (% by weight), and A represents the amount of sodium hydroxide added dropwise (ml). (Because ordinary Portland type cement was used at this site, 25.59 is substituted for the cement acid consumption amount for calculation.)
【0023】〔細礫、砂、粘土分測定〕2mmおよび
0.074mmの篩を上下に重ねて、あらかじめ重量を
測定した試料と水との混合物をさらに水を用いて完全に
篩の上に流し込み、水で十分篩い分けた後、それぞれの
篩の残留物を回収し、電子レンジを用いて水分の測定と
同様に乾燥重量を測定して、細礫分Rp (重量%)およ
び砂分Sdp (重量%)を算出した。[Measurement of fine gravel, sand, and clay content] 2 mm and 0.074 mm sieves are stacked on top of each other, and a mixture of a sample and water whose weight is measured in advance is further poured completely onto the sieve using water. after sufficient sieved with water, the residue of each of the sieve was collected and the dry weight was measured similarly to the measurement of water content by using a microwave oven, Hosotsubute component R p (wt%) and sand fraction Sd p (% by weight) was calculated.
【0024】[0024]
【数4】 [Equation 4]
【0025】[0025]
【数5】 (Equation 5)
【0026】(式中、Rp は細礫分(重量%)、Sdp
は砂分(重量%)、Sc は試料の重量(g)、Sc ”は
2mmの篩の残留物の乾燥重量(g)、Sc"' は0.0
74mmの篩の残留物の乾燥重量(g)を表わす。) 水、セメント、細礫、砂以外の成分を粘土として、粘土
分Clp (重量%)を算出した。 Clp =100−(Wp +Cp +Sdp +Rp ) (式中、Clp は粘土分(重量%)、Wp は水分(重量
%)、Cp はセメント分(重量%)、Sdp は砂分(重
量%)、Rp は細礫分(重量%)を表わす。)(In the formula, R p is fine gravel content (% by weight), Sd p
Is the sand content (wt%), S c is the weight of the sample (g), S c ″ is the dry weight (g) of the residue of a 2 mm sieve, and S c ″ is 0.0
Represents the dry weight (g) of the residue on a 74 mm sieve. ) The clay content Cl p (% by weight) was calculated using clay as a component other than water, cement, fine gravel and sand. Cl p = 100− (W p + C p + Sd p + R p ) (wherein Cl p is clay content (wt%), W p is water content (wt%), C p is cement content (wt%), Sd p Represents sand content (% by weight), and R p represents fine gravel content (% by weight).)
【0027】こうして求められた水分Wp (重量%)、
セメント分Cp (重量%)、粘土分Clp (重量%)、
砂分Sdp (重量%)、細礫分Rp (重量%)に前記で
求めた比重×10の値をかけて、各成分の1m3 あたり
の重量(kg)を算出した。The water content W p (% by weight) thus obtained,
Cement content C p (wt%), clay content Cl p (wt%),
The sand content Sd p (wt%) and the fine gravel content R p (wt%) were multiplied by the value of the specific gravity × 10 obtained above to calculate the weight (kg) per 1 m 3 of each component.
【0028】以上の結果より、セメント分と砂分+粘土
分の比(C/(Sd+Cl))の値は0.12であるの
で前記式(5)を用いて予測される固化強度を算出し
た。一方、前記試料を塩化ビニール製モールドに充填し
て硬化させ、5×10cmの強度測定用供試体とした。
さらに供試体を20℃の恒温水槽で28日間養生した後
に圧縮強度試験を行い、固化強度を測定した。供試体は
3つ作製し、これらの固化強度の平均を実測固化強度と
した。From the above results, the value of the ratio of the cement content to the sand content + the clay content (C / (Sd + Cl)) is 0.12. Therefore, the expected solidification strength was calculated using the above formula (5). . On the other hand, the above sample was filled in a vinyl chloride mold and cured to obtain a 5 × 10 cm specimen for strength measurement.
Further, the specimen was aged in a constant temperature water bath at 20 ° C. for 28 days, and then a compressive strength test was conducted to measure the solidification strength. Three test pieces were prepared, and the average of these solidification strengths was taken as the measured solidification strength.
【0029】実施例2〜6 ソイル柱列壁工法を施工した別の現場2〜6から、実施
例1と同様の手順でソイルセメントの試料を採取、分析
した。使用したセメント種、ベントナイト種、掘削種お
よび採取位置は表2に示す。分析結果のセメント分と砂
分+粘土分の比(C/(Sd+Cl))の値から前記式
(5)〜(7)のいずれかを選択して予測固化強度を算
出した。一方、実施例1と同様の方法でそれぞれの試料
の実測固化強度を測定した。以上の実施例1〜6の結果
を表2に示す。Examples 2 to 6 Samples of soil cement were collected and analyzed in the same procedure as in Example 1 from the other sites 2 to 6 where the soil column wall construction method was applied. Table 2 shows the cement type, bentonite type, excavation type and sampling position used. The predicted solidification strength was calculated by selecting one of the above formulas (5) to (7) from the value of the ratio of the cement content to the sand content + the clay content (C / (Sd + Cl)) as the analysis result. On the other hand, the measured solidification strength of each sample was measured by the same method as in Example 1. The results of Examples 1 to 6 above are shown in Table 2.
【0030】[0030]
【表2】 [Table 2]
【0031】表2の予測固化強度と実測固化強度の比較
より、本発明方法によれば、28日後の固化強度が施工
当日中に十分的確に予測できたことがわかる。From the comparison between the predicted solidification strength and the actually measured solidification strength in Table 2, it can be seen that according to the method of the present invention, the solidification strength after 28 days could be accurately predicted within the working day.
【0032】[0032]
【発明の効果】以上のように、本発明によれば、施工直
後のソイルセメント体中のセメント含有量を確認すると
同時に、そのソイルセメントの分析によって施工28日
後の固化強度を予測することができ、ソイル柱列工事の
信頼性を高めることができる。すなわち、予測される固
化強度を参考にして同じ現場の次の掘削作業でセメント
量、注入量等を適宜調節することにより、所定の固化強
度を安定して達成でき、施工ミスを回避することができ
る。また、本発明方法によれば、固化後に行う場合のよ
うな固化強度測定用の供試体を切り出す手間を省くこと
ができ、強度測定費用を削減することができる。As described above, according to the present invention, the cement content in the soil cement body immediately after construction can be confirmed, and at the same time, the solidification strength after 28 days of construction can be predicted by analyzing the soil cement. The reliability of soil column construction can be increased. That is, by appropriately adjusting the cement amount, the injection amount, etc. in the next excavation work at the same site with reference to the predicted solidification strength, it is possible to stably achieve the predetermined solidification strength and avoid construction errors. it can. Further, according to the method of the present invention, it is possible to save the labor of cutting out the specimen for measuring the solidification strength, which is required after the solidification, and to reduce the strength measurement cost.
Claims (1)
トからその固化強度を短時間で判定するソイルセメント
の強度予測方法であって、ソイルセメント体の所定箇所
から試料を採取し、該試料の比重、水分、細礫分、砂
分、粘土+シルト分およびセメント分を測定し、水分、
細礫分、砂分、粘土+シルト分およびセメント分とソイ
ルセメントの強度との相関関係を示す重回帰式の予測式
としての下記式(1)をC/(Cl+Sd)≦0.15
の場合、0.15<C/(Cl+Sd)≦0.20の場
合、C/(Cl+Sd)>0.20の場合に分けてた
て、各予測式から固化強度を算出予測するソイルセメン
トの強度予測方法。 式(1) Y=a0 +(a1 ×W)+(a2 ×C)+(a3 ×C
l)+(a4 ×Sd)+(a5 ×R) (式中、Yはソイルセメントの予測固化強度(kgf/
cm2 )、Wは水分(kg/m3 )、Cはセメント分
(kg/m3 )、Clは粘土+シルト分(kg/m
3 )、Sdは砂分(kg/m3 )、Rは細礫分(kg/
m3 )を示す。a0 〜a5 は重回帰分析により得られた
係数を示す。)1. A method for predicting the strength of soil cement that determines the solidification strength of soil cement that has not yet solidified immediately after construction, in a short time, by collecting a sample from a predetermined location of the soil cement body, and measuring the specific gravity of the sample. Moisture, fine gravel, sand, clay + silt and cement are measured,
C / (Cl + Sd) ≦ 0.15 as the multiple regression equation prediction formula showing the correlation between the fine gravel content, sand content, clay + silt content, and cement content and the strength of soil cement.
In the case of 0.15 <C / (Cl + Sd) ≦ 0.20, and in the case of C / (Cl + Sd)> 0.20, the solidification strength is calculated from each prediction formula. Prediction method. Formula (1) Y = a 0 + (a 1 × W) + (a 2 × C) + (a 3 × C
l) + (a 4 × Sd) + (a 5 × R) (where Y is the predicted solidification strength of soil cement (kgf /
cm 2 ), W is water content (kg / m 3 ), C is cement content (kg / m 3 ), Cl is clay + silt content (kg / m 3 ).
3 ), Sd is sand content (kg / m 3 ), R is fine gravel content (kg / m 3 ).
m 3 ) is shown. a 0 to a 5 represent coefficients obtained by multiple regression analysis. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16159095A JP3406121B2 (en) | 1994-11-30 | 1995-06-06 | Strength prediction method for soil cement |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31953294 | 1994-11-30 | ||
JP6-319532 | 1994-11-30 | ||
JP16159095A JP3406121B2 (en) | 1994-11-30 | 1995-06-06 | Strength prediction method for soil cement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08211045A true JPH08211045A (en) | 1996-08-20 |
JP3406121B2 JP3406121B2 (en) | 2003-05-12 |
Family
ID=26487669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16159095A Expired - Lifetime JP3406121B2 (en) | 1994-11-30 | 1995-06-06 | Strength prediction method for soil cement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3406121B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012215013A (en) * | 2011-03-31 | 2012-11-08 | Mitani Sekisan Co Ltd | Foundation pile construction method in consideration of site condition |
JP2019019449A (en) * | 2017-07-11 | 2019-02-07 | 清水建設株式会社 | Strength prospect method for foundation part |
JP2019105112A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for low strength soil cement |
JP2019105118A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for soil cement |
CN114034839A (en) * | 2021-11-03 | 2022-02-11 | 广东中煤江南工程勘测设计有限公司 | Soil bonding curing agent and soil detection method |
CN118292502A (en) * | 2024-04-12 | 2024-07-05 | 广东迪科建设工程检测有限公司 | Pile foundation monitoring method and system based on big data analysis |
-
1995
- 1995-06-06 JP JP16159095A patent/JP3406121B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012215013A (en) * | 2011-03-31 | 2012-11-08 | Mitani Sekisan Co Ltd | Foundation pile construction method in consideration of site condition |
JP2019019449A (en) * | 2017-07-11 | 2019-02-07 | 清水建設株式会社 | Strength prospect method for foundation part |
JP2019105112A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for low strength soil cement |
JP2019105118A (en) * | 2017-12-14 | 2019-06-27 | 清水建設株式会社 | Strength determination method and strength determination system for soil cement |
CN114034839A (en) * | 2021-11-03 | 2022-02-11 | 广东中煤江南工程勘测设计有限公司 | Soil bonding curing agent and soil detection method |
CN118292502A (en) * | 2024-04-12 | 2024-07-05 | 广东迪科建设工程检测有限公司 | Pile foundation monitoring method and system based on big data analysis |
Also Published As
Publication number | Publication date |
---|---|
JP3406121B2 (en) | 2003-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Avirneni et al. | Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses | |
Al-Amoudi et al. | Correlation between compressive strength and certain durability indices of plain and blended cement concretes | |
Meck et al. | Field indicator of chloride penetration depth | |
Yodsudjai et al. | Chemical shrinkage behavior of pastes made with different types of cements | |
JP6197520B2 (en) | Method for estimating the compressive strength of soil cement | |
Saha et al. | Rebound hammer test to predict in-situ strength of concrete using recycled concrete aggregates, brick chips and stone chips | |
CN104876477B (en) | Stable regeneration method of cement fly-ash gravel base reclaimed material cement based on mortar content control | |
Benaicha et al. | Porosity effects on rheological and mechanical behavior of self-compacting concrete | |
JPH08211045A (en) | Method for estimating strength of soil cement | |
Robertson et al. | Determining the water to cement ratio of fresh concrete by evaporation | |
Aginam et al. | Influence of mix design methods on the compressive strength of concrete | |
JP6804739B2 (en) | Estimating method of strength characteristics of soil cement, estimation device, quality control method of rooted part during pile construction, quality control device | |
Blankenagel et al. | Laboratory characterization of recycled concrete for use as pavement base material | |
JP6979792B2 (en) | Method for determining the strength of the root compaction | |
JP4228301B2 (en) | Quality control test method for cement improved ground | |
Achampong et al. | Chemical stabilization of laterite soils for road construction | |
Abdelouahab et al. | Characterising the segregation of self-consolidating concrete using ultrasonic pulse velocity | |
JPH05322881A (en) | Method for discriminating quality of soil mortar in early stage for peristyle continuous underground wall constructing method | |
RU2578700C1 (en) | Method of determining composition of concrete mixture | |
McCarter et al. | WATER CONTENT ASSESSMENT OF FRESH CONCRETE. | |
Ghosh et al. | Effect of w/c ratio on fresh electrical resistivity of various pumice based HPC and computation of setting time | |
Distlehorst et al. | Development of precision statement for determining air void characteristics of fresh concrete with use of air void analyzer | |
Lindh et al. | Hardening accelerators (X-Seed 100 BASF, PCC, LKD and SALT) as strength-enhancing admixture solutions for soil stabilization | |
Hohberg et al. | Development of a leaching protocol for concrete | |
Lee Jr | Method to rapidly assess the index properties of fine-grained dredged materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140307 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |