JP2001318135A - Positioning system equipped with range finding function - Google Patents

Positioning system equipped with range finding function

Info

Publication number
JP2001318135A
JP2001318135A JP2000137992A JP2000137992A JP2001318135A JP 2001318135 A JP2001318135 A JP 2001318135A JP 2000137992 A JP2000137992 A JP 2000137992A JP 2000137992 A JP2000137992 A JP 2000137992A JP 2001318135 A JP2001318135 A JP 2001318135A
Authority
JP
Japan
Prior art keywords
gps
receiving antenna
distance
receiving
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000137992A
Other languages
Japanese (ja)
Inventor
Migaku Tanaka
琢 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2000137992A priority Critical patent/JP2001318135A/en
Publication of JP2001318135A publication Critical patent/JP2001318135A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a range finder measuring the distance to an object without emitting radio wave. SOLUTION: The range finder comprises a first receiving antenna receiving waves directly from GPS satellites, a first GPS receiver for calculating positioning data including time, position and speed based on signals received by the first receiving antenna, a second receiving antenna receiving signals from GPS satellites reflected on a reflector, a second GPS receiver for calculating positioning data including time, position and speed based on signals received by the second receiving antenna, and an operating section for calculating the distance from the reflector based on the positioning data outputted from the first and second GPS receivers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、測位装置に関
し、特に同一のGPS衛星からの信号を、別々のGPS
受信機により受信する事で、その経路差に基づいて反射
体からの距離(高度)を算出する測距機能を具備した測
位装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning device, and more particularly, to a method for converting signals from the same GPS satellite into separate GPS satellites.
The present invention relates to a positioning device having a distance measuring function of calculating a distance (altitude) from a reflector based on a difference in a route by receiving the signal by a receiver.

【0002】[0002]

【従来の技術】図5に従来の測位装置として動作するG
PS(Global Positioning System)受信機の一例を簡
略に示す。従来のGPS受信機は図5に示すように、G
PS衛星からの信号を受信アンテナ1で受信し、該受信
信号に基づきGPS受信機2で測位データを算出(測
位)する。該データは、GPS Time上の時刻と、
通常地球固定座標や、WGS−84(World Geodetic S
ystem-84)等の座標系における位置、速度等を含む測位
データである。該測位データは、上記座標系等での絶対
位置であり、実際の周囲環境との相対的な関係つまり、
相対的な距離関係は、他に測距装置を用いて検知しなく
てはならない。
2. Description of the Related Art FIG. 5 shows a G operating as a conventional positioning device.
An example of a PS (Global Positioning System) receiver is briefly shown. As shown in FIG. 5, a conventional GPS receiver has a G
A signal from a PS satellite is received by a receiving antenna 1, and positioning data is calculated (positioned) by a GPS receiver 2 based on the received signal. The data includes the time on the GPS Time,
Normally, earth fixed coordinates and WGS-84 (World Geodetic S
ystem-84) is positioning data including the position, speed, etc. in a coordinate system. The positioning data is an absolute position in the coordinate system or the like, and is relative to the actual surrounding environment, that is,
The relative distance relationship must be detected using another distance measuring device.

【0003】一方、図6に従来の測距装置の一例を簡略
に示す。従来の測距装置は図6に示すように、測定者の
持つ送信機3にて生成した信号を送信アンテナ4を介
し、外界に発射し、該信号が外界の反射面(反射物)に
反射し、測定者に戻ってくる信号を、測定者の持つ受信
アンテナ5で受信し、該受信信号を受信機6で検波し、
信号処理部7にて送信タイミング時刻T1[sec]と
受信タイミング時刻T2[sec]の差から以下の関係
により、反射面(反射物)からの相対距離Hを計測す
る。
FIG. 6 schematically shows an example of a conventional distance measuring device. As shown in FIG. 6, a conventional distance measuring device emits a signal generated by a transmitter 3 of a measurer to the outside world via a transmission antenna 4 and reflects the signal on a reflection surface (reflection object) of the outside world. Then, the signal returning to the subject is received by the receiving antenna 5 of the subject, and the received signal is detected by the receiver 6,
The signal processor 7 measures the relative distance H from the reflecting surface (reflecting object) from the difference between the transmission timing time T1 [sec] and the reception timing time T2 [sec] according to the following relationship.

【0004】H=(C×Δt)/2 H:反射面(反射物)からの距離[m] C:光速(≒3.0×108 [m/s]) Δt:送受信タイミング差(Δt=T2−T1[se
c]) 従って、従来の測距装置では反射面(反射物)との相対
的な距離Hのみが得られるだけであり、絶対的な位置等
を得るためには他に測位装置を用いなくてはならない。
H = (C × Δt) / 2 H: distance [m] from reflecting surface (reflecting object) C: speed of light (≒ 3.0 × 10 8 [m / s]) Δt: transmission / reception timing difference (Δt) = T2-T1 [se
c]) Therefore, in the conventional distance measuring device, only the relative distance H to the reflecting surface (reflecting object) can be obtained, and in order to obtain the absolute position and the like, no other positioning device is used. Not be.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来技
術においてGPS受信機では、座標系における絶対的な
位置等の検知のみであり、周囲環境との相対的な距離関
係の検知が困難である。この周囲環境との距離関係は、
実際に移動し得る物体にとり、その相対的な関係を知り
得ることは、重要な要素の一つである。この周囲環境と
の関係を検知するためには、他に測距装置により相対的
な距離関係を検知しなくてはならない。
As described above, in the prior art, the GPS receiver only detects the absolute position in the coordinate system, and it is difficult to detect the relative distance relationship with the surrounding environment. . The distance relationship with this surrounding environment is
It is one of the important factors for an object that can actually move to know its relative relationship. In order to detect the relationship with the surrounding environment, the relative distance relationship must be detected by a distance measuring device.

【0006】一方、従来の測距装置では、周囲環境との
相対的な距離関係を検知する事ができるだけであり、絶
対的な位置関係を知るためには、GPS受信機等による
測位装置を別に持つ必要性がある。このように、従来技
術にはそれぞれに一長一短があり、また全体システムに
おいては異なった方式を併用する点から、出力データの
整合(統合)性の問題、コストアップの問題及び図6に
示した測距装置のように自ずから電波を発信する場合に
は周波数利用効率の悪化、電波の漏れ等に対する各機器
間のアイソレーションの問題等、多くの問題点を抱える
ことになる。
On the other hand, the conventional distance measuring device can only detect a relative distance relationship with the surrounding environment. In order to know the absolute positional relationship, a positioning device using a GPS receiver or the like is separately provided. There is a need to have. As described above, each of the prior arts has advantages and disadvantages, and different systems are used together in the overall system. Therefore, the problem of matching (integration) of output data, the problem of cost increase, and the measurement shown in FIG. When a radio wave is naturally transmitted like a distance device, there are many problems such as deterioration of frequency use efficiency, isolation of each device due to radio wave leakage, and the like.

【0007】この発明の目的はGPS衛星から発信され
る電波を利用して本来の測位データを得ると共に、周囲
環境との相対的な距離関係をも得ることができる測距機
能を具備した測位装置を提供しようとするものである。
An object of the present invention is to provide a positioning device having a distance measuring function capable of obtaining original positioning data using radio waves transmitted from a GPS satellite and also obtaining a relative distance relationship with the surrounding environment. It is intended to provide.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1で
は、GPS衛星からの信号を受信する第1受信アンテナ
と、その第1受信アンテナの受信信号に基づき時刻、位
置、速度等を含む測位データを算出する第1GPS受信
機と、GPS衛星からの信号の反射体から反射した信号
を受信する第2受信アンテナと、この第2受信アンテナ
の受信信号に基づき時刻、位置、速度等を含む測位デー
タを算出する第2GPS受信機と、第1及び第2GPS
受信機から出力される測位データを基に反射体からの距
離を算出する演算部とによって構成した測距機能を具備
した測位装置を提案する。
According to a first aspect of the present invention, a first receiving antenna for receiving a signal from a GPS satellite, and positioning including time, position, speed, and the like based on the received signal from the first receiving antenna. A first GPS receiver for calculating data, a second receiving antenna for receiving a signal reflected from a reflector of a signal from a GPS satellite, and a positioning including time, position, speed, etc. based on the received signal of the second receiving antenna A second GPS receiver for calculating data, first and second GPS
The present invention proposes a positioning device having a distance measuring function constituted by an arithmetic unit for calculating a distance from a reflector based on positioning data output from a receiver.

【0009】この発明の請求項2では請求項1記載の測
位機能を具備した測位装置において、第1受信アンテナ
は測位データからGPS衛星を仰ぐ仰角θを測定し、第
2受信アンテナはこの仰角θに関連したφ=90°−θ
の角度で被測定反射面に向けられて反射面からの距離を
求める構成とした測距機能を具備した測位装置を提案す
る。 [作用]この発明によればGPS衛星が発信する電波を
利用して通常通り位置を測定すると共に、同一のGPS
衛星の電波を経路差を持たせて2台の受信機で受信し、
この2台の受信機の測位データにより経路差を生じさせ
た反射面までの距離を演算により求めることができる。
According to a second aspect of the present invention, in the positioning device having the positioning function according to the first aspect, the first receiving antenna measures an elevation angle θ facing the GPS satellite from the positioning data, and the second reception antenna measures the elevation angle θ. Φ = 90 ° -θ related to
The present invention proposes a positioning device having a distance measuring function configured to obtain a distance from the reflective surface by being directed to the reflective surface to be measured at an angle of. [Operation] According to the present invention, the position is measured as usual using radio waves transmitted from GPS satellites, and the same GPS is used.
The satellite radio waves are received by two receivers with a path difference,
The distance to the reflecting surface on which the path difference has occurred can be obtained by calculation based on the positioning data of the two receivers.

【0010】従って、この発明によればGPS受信機が
本来具備している測位機能に加えて測距機能を付加する
ことができる。特に高度の測定(高さ方向の距離)を測
定することに適し、自ずから電波を発射することなく測
距機能を得ることができる利点が得られる。
Therefore, according to the present invention, a distance measuring function can be added to the positioning function originally provided in the GPS receiver. Particularly, it is suitable for measuring altitude (distance in the height direction), and has an advantage that a distance measuring function can be obtained without naturally emitting radio waves.

【0011】[0011]

【発明の実施の形態】図1にこの発明による測距機能を
具備した測位装置の実施例を示す。この発明による測距
機能を具備した測位装置は第1及び第2受信アンテナR
1,R2と、2台の第1及び第2GPS受信機2A,2
Bと、演算部8とによって構成することができる。第1
受信アンテナR1は図2に示す例では通常の受信特性つ
まり、GPS衛星Tが発信する信号が右手系偏波である
ためこの右手系偏波を受信するために(右手系回転偏波
受信用アンテナ)を用いる。この第1受信アンテナR1
によりGPS衛星Tからの直接波を受信する。
FIG. 1 shows an embodiment of a positioning device having a distance measuring function according to the present invention. The positioning device having the distance measuring function according to the present invention includes first and second receiving antennas R.
1, R2 and two first and second GPS receivers 2A, 2A
B and the arithmetic unit 8. First
In the example shown in FIG. 2, the receiving antenna R1 has a normal receiving characteristic, that is, the signal transmitted by the GPS satellite T is a right-handed polarized wave. ) Is used. This first receiving antenna R1
Receives a direct wave from the GPS satellite T.

【0012】一方、第2受信アンテナR2は通常のGP
S衛星からの信号を受信するための第1アンテナR1と
は逆の左手系回転偏波受信特性のアンテナを用いる。左
手系回転偏波受信特性のアンテナを用いることにより物
体で反射した回転偏波特性が逆向の電波を受信すること
になる。GPS衛星の信号が右手系偏波であり、奇数回
反射した信号は左手系回転偏波特性を持つ。また、反射
回数が増えることで反射する毎に信号強度が劣化するた
めに、例えば適当なスレッショルドを設定することによ
り1回の反射信号のみを抽出することができる。従っ
て、第1GPS受信機2Aは直接波で得られる位置情報
を出力し、第2GPS受信機2Bは1回反射した反射波
で位置情報を生成する。
On the other hand, the second receiving antenna R2 has a normal GP
An antenna having a left-handed rotational polarization receiving characteristic opposite to the first antenna R1 for receiving a signal from the S satellite is used. By using the antenna having the left-handed rotationally polarized wave reception characteristic, a radio wave whose rotational polarization characteristic reflected by the object is reversed is received. The signal of the GPS satellite is right-handed polarization, and the signal reflected odd number of times has left-handed rotation polarization characteristics. In addition, since the signal strength is degraded each time the light is reflected due to an increase in the number of times of reflection, only one reflection signal can be extracted by setting an appropriate threshold, for example. Therefore, the first GPS receiver 2A outputs position information obtained by a direct wave, and the second GPS receiver 2B generates position information by a reflected wave reflected once.

【0013】第1受信アンテナR1で受信する直接波と
第2受信アンテナR2で受信する反射1回の反射波には
経路差ΔLが与えられる。演算器8はこの経路差ΔLか
ら、例えば第2受信アンテナR2と反射面S(図2参
照)までの距離H(高度)を演算する。図2を用いて、
その演算処理の方法を説明する。 GPS衛星の位置をT(x1 ,y1 ) ……測位データ 第1受信アンテナR1の位置をR1 (x2 ,y2 ) ……測位データ 第1受信アンテナR1からGPS衛星Tを見上げる角度をθ …測位データ (この角度θはGPS衛星Tの信号が反射体で反射するときの角度θに等しい) 第2受信アンテナR2の位置と第1受信アンテナR1の位置との差を(Δx ,Δy) ……既知のデータ GPS衛星Tの信号が反射面で反射する点をS、線分T
−R1と直交する線分と線分T−Sとの交点をD、反射
面からの距離をH[m]とする。
A path difference ΔL is given to a direct wave received by the first receiving antenna R1 and a single reflected wave received by the second receiving antenna R2. The arithmetic unit 8 calculates a distance H (altitude) from the path difference ΔL to, for example, the second receiving antenna R2 and the reflection surface S (see FIG. 2). Using FIG.
The method of the arithmetic processing will be described. The position of the GPS satellite is T (x 1 , y 1 ) Positioning data The position of the first receiving antenna R 1 is R 1 (x 2 , y 2 ) Positioning data The angle at which the GPS satellite T is looked up from the first receiving antenna R 1. θ Positioning data (this angle θ is equal to the angle θ when the signal of the GPS satellite T is reflected by the reflector) The difference between the position of the second receiving antenna R2 and the position of the first receiving antenna R1 is represented by (Δx, Δy ) ... known data The point at which the signal of the GPS satellite T is reflected by the reflecting surface is represented by S and the line segment T.
Let D be the intersection of a line segment perpendicular to -R1 and line segment TS, and let H [m] be the distance from the reflective surface.

【0014】また、GPS衛星Tは受信点から充分遠方
にあることから線分T−R1と線分T−D−Sは平行な
線分とみなす事ができる。従って、受信点間の経路差Δ
LはD−S−R2となる。この経路差ΔLは各々のGP
S受信機2A,2Bの測位データの擬似距離(衛星まで
の距離)の差分により、 ΔL=|PR1−PR2| PR1:GPS受信機2Aの擬似距離 ……測位データ PR2:GPS受信機2Bの擬似距離 ……測位データ として得られる。経路差ΔLが求められることにより反
射面から第2受信アンテナR2までの距離Hは、
Further, since the GPS satellite T is sufficiently far from the receiving point, the line segment TR1 and the line segment TDS can be regarded as parallel line segments. Therefore, the path difference Δ Δ between the receiving points
L is DSR2. This path difference ΔL is equal to each GP
ΔL = | PR1−PR2 | PR1: Pseudorange of GPS receiver 2A ... Positioning data PR2: Pseudo GPS receiver 2B Distance ... Obtained as positioning data. By obtaining the path difference ΔL, the distance H from the reflecting surface to the second receiving antenna R2 becomes

【0015】[0015]

【数1】 (Equation 1)

【0016】となり、GPS受信機の組合せだけで反射
面からの相対距離(高度)Hを計測することができる。
以下に(A)式の導出過程を説明する。 条件:線分T−R1とT−D−Sは平行である。衛星T
の座標をx1 ,y1 、第1受信アンテナR1の座標をx
2 ,y2 とした場合、線分T−R1は以下の式で表わさ
れる。
Thus, the relative distance (altitude) H from the reflecting surface can be measured only by the combination of the GPS receiver.
The process of deriving the expression (A) will be described below. Condition: Line segment T-R1 and TDS are parallel. Satellite T
Are the coordinates x 1 and y 1 , and the coordinates of the first receiving antenna R1 are x
2, when the y 2, line T-R1 is expressed by the following equation.

【0017】[0017]

【数2】 (Equation 2)

【0018】線分T−R1とT−Dは等しく従って受信
点R1とR2での経路差ΔLはDSR2となる。又線分
R2−Sを延ばし、D点から反射面に対し垂直におろし
た線分との交点をQとした時経路差ΔL(D−S−R)
を線分R2−S−Qの長さは等しい。従って点Qの座標
は以下の様に表すことが出来る。 Qx =x2 +Δx+ΔLcos θ ……(3) Qy =y2 −Δy−ΔLsin θ ……(4) 従って線分R1−D(式2)と線分D−Q(式3)との
交点は、
Since the line segments T-R1 and T-D are equal, the path difference ΔL between the receiving points R1 and R2 is DSR2. Further, when the line segment R2-S is extended and the intersection point with the line segment perpendicular to the reflecting surface from the point D is defined as Q, the path difference ΔL (DSR)
Are equal in length of the line segment R2-SQ. Therefore, the coordinates of the point Q can be expressed as follows. Q x = x 2 + Δx + ΔL cos θ (3) Q y = y 2 −Δy−ΔL sin θ (4) Therefore, the intersection of the line segment R1-D (equation 2) and the line segment DQ (equation 3) Is

【0019】[0019]

【数3】 (Equation 3)

【0020】[0020]

【数4】 従って反射面からの高さHは、(Equation 4) Therefore, the height H from the reflecting surface is

【0021】[0021]

【数5】 (Equation 5)

【0022】となり、(A)式が導出される。次に、第
1受信アンテナR1が直接波を受信し、第2受信アンテ
ナR2が1回反射波を受信する方法を説明する。一般に
受信アンテナに到来する信号は、直接波と物体等に反射
した反射波が合成した信号が入射される。この合成され
た信号の自己相関特性(GPSでは拡散通信方式を採っ
ているから受信側では自己相関を取って復調する)は、
偏波面特性、空間伝搬距離の影響により、信号精度の劣
化、bit誤り等により、最初に到来した信号より相関
値の低下が生じる。従って、この発明の構成ではアンテ
ナの偏波特性から、GPS受信機2Aには直接波+偶数
回の反射波(図3A)を、さらにGPS受信機2Bには
奇数回の反射波(図3B)を検知することになる。
Equation (A) is derived. Next, a method in which the first receiving antenna R1 receives a direct wave and the second receiving antenna R2 receives a reflected wave once will be described. In general, a signal arriving at a receiving antenna is a signal obtained by combining a direct wave and a reflected wave reflected on an object or the like. The autocorrelation characteristic of this combined signal (the receiving side demodulates by taking the autocorrelation on the receiving side since the GPS uses a spread communication system)
Due to the influence of the polarization plane characteristics and the spatial propagation distance, the signal accuracy deteriorates, the bit error and the like cause the correlation value to be lower than the signal arriving first. Therefore, in the configuration of the present invention, a direct wave + an even number of reflected waves (FIG. 3A) is applied to the GPS receiver 2A and an odd number of reflected waves (FIG. 3B) is applied to the GPS receiver 2B from the polarization characteristics of the antenna. ) Will be detected.

【0023】図3に示した様に、各GPS受信機2A,
2Bにおいて、適当なスレッショルドSH1,SH2を
設定することで、GPS受信機2Aでは、直接波のみ
を、また、GPS受信機2Bでは1回反射波のみを検知
することが可能となり、それ以降遅れてきた反射波や、
ノイズを分離する事が可能となる。さらに、検知した相
関間隔に同期させることで、不要な信号による影響を減
少させることが可能である。
As shown in FIG. 3, each GPS receiver 2A,
By setting appropriate thresholds SH1 and SH2 in 2B, the GPS receiver 2A can detect only a direct wave, and the GPS receiver 2B can detect only a single reflected wave. Reflected waves,
Noise can be separated. Further, by synchronizing with the detected correlation interval, it is possible to reduce the influence of unnecessary signals.

【0024】擬似距離PR1,PR2の測位タイミング
チャートについて、上記の各説明からも分かるように、
第1GPS受信機2Aでは、直接波の伝搬遅延時間を、
また第2GPS受信機2Bでは、1度反射して到来した
信号の伝搬遅延時間を計測することとなる。図4にGP
S受信機2Aと2Bの測位タイミングチャートを示す。
図4からもわかる様に、GPS測位条件の各同期後の計
測は、通常のGPSの測位間隔である1secに対し
て、1000回の計測が可能であり、これらのデータを
平均化することによる精度向上も可能である。また更新
レートも十分に対応可能である。
Regarding the positioning timing chart of the pseudo distances PR1 and PR2, as can be understood from the above description,
In the first GPS receiver 2A, the propagation delay time of the direct wave is
Also, the second GPS receiver 2B measures the propagation delay time of the signal that has been reflected once and arrived. In FIG.
4 shows a positioning timing chart of the S receivers 2A and 2B.
As can be seen from FIG. 4, the measurement after the synchronization of the GPS positioning conditions can be performed 1000 times for 1 second, which is a normal GPS positioning interval, and by averaging these data. Accuracy can also be improved. Also, the update rate can be sufficiently supported.

【0025】[0025]

【発明の効果】以上説明したようにこの発明によれば通
常のGPS測位システムに加えて左手系回転偏波用の第
2受信アンテナR2を用いたGPS受信システムと演算
部8とを追加した構成とすることにより、従来のGPS
受信機だけでは測定不能であった反射体からの距離を計
測することが可能となる。更に、この発明ではGPS受
信機同士の計測結果を演算部8に入力するからデータの
互換性が保持され、これにより演算部8を簡素に構成す
ることができる。
As described above, according to the present invention, in addition to the ordinary GPS positioning system, a configuration in which the GPS receiving system using the second receiving antenna R2 for left-handed rotational polarization and the arithmetic unit 8 are added. By using the conventional GPS
It is possible to measure the distance from the reflector, which could not be measured by the receiver alone. Furthermore, in the present invention, the measurement results between the GPS receivers are input to the calculation unit 8, so that the compatibility of data is maintained, whereby the calculation unit 8 can be simplified.

【0026】更に、この発明では比較的廉価に入手でき
るGPS受信機を用いて測距機能を得るから、従来より
用いている電波発射型の電波高度計と比較して低いコス
トで製造できる利点が得られる。また、この発明によれ
ば自ずからは電波を発射しないから周波数の利用効率を
向上できる利点が得られる。またこの発明による測距機
能を具備した測位装置を高度計として例えば航空機に搭
載した場合に、電波を発射しないから他の機器への干渉
がなく、組込が容易である。特に高々度を測定する電波
高度計はその送信電力が大きいため、他の機器への干渉
も大きく、その対策には大きなコストが掛るが、この発
明ではこの点でも低コストで航空機への搭載が可能であ
る。
Further, in the present invention, since the distance measuring function is obtained by using a GPS receiver which can be obtained at a relatively low price, there is obtained an advantage that it can be manufactured at a lower cost as compared with a conventionally used radio emission type radio altimeter. Can be Further, according to the present invention, since the radio wave is not naturally emitted, there is obtained an advantage that the frequency use efficiency can be improved. Further, when the positioning device having the distance measuring function according to the present invention is mounted on an aircraft, for example, as an altimeter, since it does not emit radio waves, it does not interfere with other devices and can be easily incorporated. In particular, the radio altimeter that measures altitude has a large transmission power, so it has a large interference with other devices, and its countermeasures are costly.However, this invention can be mounted on an aircraft at a low cost in this regard. is there.

【0027】更に、この発明によれば各GPS受信機2
A,2Bの擬似距離PR1,PR2の差分ΔLをとるこ
とで高度計測に対しGPS特有のSA(Selective Ava
ilability)、対流圏遅延、電離層遅延等による誤差成
分は、ほとんど無視可能となり、精度良く測定できる利
点が得られる。
Further, according to the present invention, each GPS receiver 2
By taking the difference ΔL between the pseudo-ranges PR1 and PR2 of A and 2B, a GPS-specific SA (Selective Ava
Error components due to ilability), tropospheric delay, ionospheric delay, etc., are almost negligible, providing the advantage of being able to measure accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を説明すたるめのブロック
図。
FIG. 1 is a block diagram for explaining an embodiment of the present invention.

【図2】この発明による測位装置の測距機能を説明する
ための図。
FIG. 2 is a diagram for explaining a distance measuring function of the positioning device according to the present invention.

【図3】この発明の動作を説明するためのタイミングチ
ャート。
FIG. 3 is a timing chart for explaining the operation of the present invention.

【図4】図3と同様にこの発明の動作を説明するための
タイミングチャート。
FIG. 4 is a timing chart for explaining the operation of the present invention as in FIG. 3;

【図5】従来の技術を説明するためのブロック図。FIG. 5 is a block diagram for explaining a conventional technique.

【図6】従来の技術の他の例を説明するためのブロック
図。
FIG. 6 is a block diagram for explaining another example of the related art.

【符号の説明】[Explanation of symbols]

R1 第1受信アンテナ R2 第2受信アンテナ 2A,2B GPS受信機 8 演算部 T GPS衛星 R1 First receiving antenna R2 Second receiving antenna 2A, 2B GPS receiver 8 Operation unit T GPS satellite

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 A.GPS衛星からの信号を受信する第
1受信アンテナと、 B.その第1受信アンテナの受信信号に基づき時刻、位
置、速度等を含む測位データを算出する第1GPS受信
機と、 C.上記GPS衛星からの信号の反射体から反射した信
号を受信する第2受信アンテナと、 D.この第2受信アンテナの受信信号に基づき時刻、位
置、速度等を含む測位データを算出する第2GPS受信
機と、 E.上記第1及び第2GPS受信機から出力される測位
データを基に反射体からの距離を算出する演算部と、に
よって構成したことを特徴とする測距機能を具備した測
位装置。
1. A. First Embodiment A. A first receiving antenna for receiving signals from GPS satellites; B. a first GPS receiver that calculates positioning data including time, position, speed, and the like based on the reception signal of the first reception antenna; B. a second receiving antenna for receiving a signal reflected from a reflector of the signal from the GPS satellite; B. a second GPS receiver that calculates positioning data including time, position, speed, and the like based on the reception signal of the second reception antenna; A positioning device having a distance measurement function, comprising: a calculation unit that calculates a distance from a reflector based on positioning data output from the first and second GPS receivers.
【請求項2】 請求項1記載の測距機能を具備した測位
装置において、上記第1受信アンテナは測位データから
上記GPS衛星を仰ぐ仰角θを測定し、上記第2受信ア
ンテナはこの仰角θに関連したφ=90°−θの角度で
被測定反射面に向けられて反射面からの距離を求めるこ
とを特徴とする測距機能を具備した測位装置。
2. The positioning device according to claim 1, wherein said first receiving antenna measures an elevation angle θ of said GPS satellite from positioning data, and said second reception antenna measures an elevation angle θ of said GPS satellite. A positioning device provided with a distance measuring function, which is directed to a reflection surface to be measured at an angle of φ = 90 ° −θ and calculates a distance from the reflection surface.
JP2000137992A 2000-05-11 2000-05-11 Positioning system equipped with range finding function Withdrawn JP2001318135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137992A JP2001318135A (en) 2000-05-11 2000-05-11 Positioning system equipped with range finding function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137992A JP2001318135A (en) 2000-05-11 2000-05-11 Positioning system equipped with range finding function

Publications (1)

Publication Number Publication Date
JP2001318135A true JP2001318135A (en) 2001-11-16

Family

ID=18645673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137992A Withdrawn JP2001318135A (en) 2000-05-11 2000-05-11 Positioning system equipped with range finding function

Country Status (1)

Country Link
JP (1) JP2001318135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250646A (en) * 2023-11-17 2023-12-19 毫厘智能科技(江苏)有限公司 Direction finding method and device based on chip, chip module and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250646A (en) * 2023-11-17 2023-12-19 毫厘智能科技(江苏)有限公司 Direction finding method and device based on chip, chip module and storage medium
CN117250646B (en) * 2023-11-17 2024-02-02 毫厘智能科技(江苏)有限公司 Direction finding method and device based on chip, chip module and storage medium

Similar Documents

Publication Publication Date Title
US6292132B1 (en) System and method for improved accuracy in locating and maintaining positions using GPS
US8908475B2 (en) Acoustic positioning system and method
EP1334465B1 (en) Remote attitude and position indicating system
US20220268909A1 (en) Methods and Apparatus for Characterising the Environment of a User Platform
US5886665A (en) GNSS local constellation/acquisition aiding system
US9810790B2 (en) Method for evaluating a satellite signal in a global navigation satellite system with respect to a multipath error, receiver for a global navigation satellite system and motor vehicle
US20080129587A1 (en) User equipment navigation solution with position determination of a navigation signal reflector
US7362655B1 (en) Time-synchronous acoustic signal ranging system and method
CN109471121A (en) Double dielectric space Laser Photoacoustic radars
US7671790B2 (en) Positioning system, positioning device, communication base station, control method, and recording medium storing program
CA2901647C (en) Sonar device and process for determining displacement speed of a naval vehicle on the sea bed
US20230266480A1 (en) Method for Determining an Integrity Datum regarding a GNSS-Based Localization of a Vehicle
US7088641B2 (en) Bistatic azimuth detection system and detection method
FR2823857A1 (en) Transmitter beacon satellite constellation position determination having terrestrial station directive antenna and calculating retransmitted signal combination position using least squares method determining residue/beacon position.
JP2001318135A (en) Positioning system equipped with range finding function
JP3851376B2 (en) Positioning system satellite signal receiver
KR102311606B1 (en) Apparatus for positioning using satellite information and method thereof
JP3484995B2 (en) Instantaneous passive distance measuring device
US20060083110A1 (en) Ambient bistatic echo ranging system and method
JP2009103509A (en) Gnss receiving device and positioning method
KR100972815B1 (en) Precise Navigation System based on the Radio Frequency Identification aided Global Navigation Satellite System
JP2010139318A (en) Gnss receiver and positioning method
JPH03295487A (en) Detecting method for space floating body
RU2002120568A (en) Method for detecting and determining the location of airborne objects
JP2001051041A (en) Selection system for kinematic gps satellite

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807