JP2001318025A - Method and device for evaluating shape of lens face - Google Patents

Method and device for evaluating shape of lens face

Info

Publication number
JP2001318025A
JP2001318025A JP2000132571A JP2000132571A JP2001318025A JP 2001318025 A JP2001318025 A JP 2001318025A JP 2000132571 A JP2000132571 A JP 2000132571A JP 2000132571 A JP2000132571 A JP 2000132571A JP 2001318025 A JP2001318025 A JP 2001318025A
Authority
JP
Japan
Prior art keywords
shape
lens
curvature
partial
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000132571A
Other languages
Japanese (ja)
Other versions
JP3722464B2 (en
Inventor
Kohei Shinpo
晃平 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000132571A priority Critical patent/JP3722464B2/en
Priority to US09/845,274 priority patent/US6546357B2/en
Publication of JP2001318025A publication Critical patent/JP2001318025A/en
Priority to US10/358,151 priority patent/US6778940B2/en
Application granted granted Critical
Publication of JP3722464B2 publication Critical patent/JP3722464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape evaluating method applicable for an optional lens face and having high correletion with an optical characteristic, by estimating the optical characteristic based on a shape-measured result, and by evaluating lens performance based thereon. SOLUTION: This method is constituted of a shape measuring process for measuring a contour shape of a measured subject, a shape error extracting process for finding a shape error of a deviation deviated from a design shape, a partial curvature finding process for finding a partial curvature in a each lens height based on the shape error, and a focal point shifting amount estimating process for finding a curvature proportional constant of an optical-axis-directional focal point shifting amount in an image plane per a unit curvature in the each lens height, to estimate the focal point shifting amount based thereon and the partial curvature. The shape error extracting process is constituted of an attaching error correcting process for finding the deviation from the design shape after translational-rotational coordinate transformation is conducted for all or partial coordinate data, so as to find the optimum values of translational values and rotational angles in the all or the partial to minimize a square-sum thereof, and a design shape separation process for finding a difference. form the design shape after the optimized translational and rotational transformation are conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レンズの形状評価方法
及び形状評価装置に係るもので、特に光走査用レンズ、
プラスチックレンズの評価に利用して有効なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating the shape of a lens.
It is effective for use in evaluating plastic lenses.

【0002】[0002]

【従来の技術】近年、デジタルコピーやレーザプリンタ
に用いられる光書き込み装置内の光学部品に、非球面形
状を採用した光学素子が採用されてきている。以下に非
球面式の一例を示す。
2. Description of the Related Art In recent years, an optical element having an aspherical shape has been used as an optical component in an optical writing device used for digital copying or a laser printer. The following is an example of the aspherical expression.

【式1】 ここでhはレンズ高さ、Cは近軸曲率、kは円錐定数、
は多項式の係数である。このような光学素子は主に
射出成形で製造したプラスチックレンズで実現される。
(Equation 1) Where h is the lens height, C is the paraxial curvature, k is the conic constant,
e i is the coefficient of the polynomial. Such an optical element is realized mainly by a plastic lens manufactured by injection molding.

【0003】従来から利用されている光書き込み装置と
して図4に示すようなものがある。構成について簡単に
説明すると、半導体レーザ1から出射した光束はコリメ
ータレンズ2を透過してポリゴンモータ3に照射され、
ポリゴンモータの回転角度に依存して反射、偏向された
光束は走査レンズ4を透過して像面5近傍で集光する。
FIG. 4 shows an optical writing device that has been conventionally used. In brief, the configuration is such that a light beam emitted from a semiconductor laser 1 is transmitted through a collimator lens 2 and irradiated on a polygon motor 3.
The light flux reflected and deflected depending on the rotation angle of the polygon motor passes through the scanning lens 4 and is collected near the image plane 5.

【0004】こうした装置に用いられている走査レンズ
面の有効範囲は、ポリゴンモータの偏向方向(以下主走
査方向)に数十mmから数百mmあるのに対してこれに
直交する方向(以下副走査方向)には十mm前後と偏平
している。このようなレンズをプラスチックを射出成形
で製作する場合、樹脂の不均一な収縮などの影響による
設計値からの偏差(以下これを「形状誤差」と呼ぶ)が
発生してしまう。そのため形状誤差を評価することが重
要になってくるが、方法としては成形品を触針式の輪郭
形状測定装置で長手方向設計原点を通る面(母線)の輪
郭形状を測定し、これを基に形状誤差を評価するのが一
般的である。形状測定装置としては、例えばRank Taylo
r Hobson社のFORM TALYSURF が知られている。
The effective range of the scanning lens surface used in such an apparatus is several tens mm to several hundred mm in the deflection direction of the polygon motor (hereinafter, main scanning direction), while it is perpendicular to this direction (hereinafter, sub scanning direction). In the scanning direction), the distance is about 10 mm. When such a lens is manufactured by injection molding of plastic, a deviation from a design value due to the influence of uneven shrinkage of the resin (hereinafter referred to as “shape error”) occurs. Therefore, it is important to evaluate the shape error. The method is to measure the profile of the surface (generating line) passing through the design origin in the longitudinal direction using a stylus-type profile shape measuring device. Generally, the shape error is evaluated. As a shape measuring device, for example, Rank Taylo
r FORM TALYSURF by Hobson is known.

【0005】形状誤差が十分に小さいかどうかの評価と
しては、特開平6−129944号公報、特開平7−3
5541号公報に記載されているもの、すなわち、形状
誤差の自乗和を最小にするように非球面式の近軸曲率半
径を最適化したもの(以下、ベストフィットR)や、こ
れを用いた非球面式からの差(以下、形状誤差)などを
評価パラメータとして用いる方法が知られている。しか
しながら、設計形状の球面からの差である非球面量が増
えるに従い、ベストフィットRや形状誤差の評価パラメ
ータと光学性能との相関が低くなっており、光学シュミ
レ−ション等で性能が不合格とならないように公差を割
り振った場合、形状評価では不合格でも光学特性では合
格となるものが出てしまうという問題がある。
[0005] To evaluate whether the shape error is sufficiently small, see JP-A-6-129944 and JP-A-7-3930.
No. 5541, that is, one in which the paraxial radius of curvature of the aspheric surface is optimized so as to minimize the sum of squares of the shape error (hereinafter, best fit R), A method is known in which a difference from a spherical equation (hereinafter, a shape error) is used as an evaluation parameter. However, as the amount of aspherical surface, which is the difference between the design shape and the spherical surface, increases, the correlation between the evaluation parameters of the best fit R and the shape error and the optical performance decreases, and the performance is rejected by optical simulation or the like. When the tolerances are assigned so as not to be inconsistent, there is a problem that even if the shape evaluation is rejected, some optical characteristics pass.

【0006】これに対して、光学特性との相関がより高
い評価パラメータを提案するものの例として特開平9−
89713号公報に記載されているものがある。これは
形状誤差の近似関数の2階導関数や、隣接する座標デー
タの差分による2次微分、またこの2つの値の差を求
め、これが特定の範囲に収めることによりレンズ性能を
保証しようとするものである。しかしながら、この方法
は光学特性との相関が従来の方法に比べて高いことを実
際の作成例から経験的に示しているに過ぎず、作成例以
外のレンズ面に対してどの程度有効であるかが未知であ
るという問題がある。
[0006] On the other hand, Japanese Patent Application Laid-Open No. Hei 9-1997 discloses an example in which an evaluation parameter having a higher correlation with optical characteristics is proposed.
There is one described in JP 89713. This finds the second derivative of the approximation function of the shape error, the second derivative by the difference between adjacent coordinate data, and the difference between these two values, and attempts to guarantee the lens performance by keeping the difference within a specific range. Things. However, this method merely shows empirically that the correlation with the optical characteristics is higher than that of the conventional method, based on actual production examples, and how effective is it for lens surfaces other than the production examples. There is a problem that is unknown.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、形状
測定結果より光学特性を推定し、これに基づいてレンズ
性能を評価することにより、任意のレンズ面に適応可能
で、光学特性との相関の高い形状評価法を提供すること
をその課題とする。
Accordingly, the present invention estimates the optical characteristics from the shape measurement results and evaluates the lens performance based on the results, so that the present invention can be applied to an arbitrary lens surface and the correlation with the optical characteristics can be obtained. It is an object of the present invention to provide a shape evaluation method with high quality.

【0008】[0008]

【課題解決のために講じた手段】上記課題解決のために
講じた手段は、被測定物の輪郭形状測定を行う形状測定
行程と、設計形状からの偏差である形状誤差を求める形
状誤差抽出行程と、形状誤差から各レンズ高さにおける
部分曲率を求める部分曲率導出行程と、各レンズ高さに
おける単位曲率あたりの像面での光軸方向の焦点ずれ量
である曲率比例係数を求め、これと部分曲率より焦点ず
れ量を推定する焦点ずれ量推定行程からなるよう構成し
たことである。また、形状誤差抽出行程が、全部または
一部の座標データに対して並進、回転座標変換をした
後、設計形状からの偏差を求め、この自乗和を最小化す
るような一部または全部の並進量、回転角の最適値を求
める取り付け誤差補正行程と、最適化された並進、回転
変換をした後の設計形状からの差を求める設計形状分離
行程とからなるよう構成した。また、部分曲率導出行程
が、形状誤差データを分割し、各分割データを球面に最
小自乗近似したときの曲率を求めるよう構成した。ま
た、部分曲率導出行程が、形状誤差データを分割し、各
分割データを多項式に最小自乗近似し、その自乗項の2
倍を部分曲率とするよう構成した。また、部分曲率導出
行程が、形状誤差を多項式に近似し、その2階導関数の
値を求めるよう構成した。また、焦点ずれ量推定行程
が、レンズ面設計値に対して対象レンズ面のみサンプル
形状誤差を重畳した場合のレンズ高さと対応する像面で
の光軸方向の焦点ずれ量を光学シミュレーションにより
求め、サンプル形状誤差の部分曲率を求め、各レンズ高
さに対応する単位曲率あたりの焦点ずれ量である部分曲
率比例係数を求め、この関係を関数近似して各パラメー
タを保存する焦点ずれ推定準備行程と、保存してあるパ
ラメータを用いて近似関数を解くことにより部分曲率比
例係数を求め、これを用いて像面における焦点ずれ曲線
を導出する像面焦点ずれ量導出行程よりなるよう構成し
た。また、焦点ずれ量推定行程が、レンズ面設計値に対
して対象レンズ面のみサンプル形状誤差を重畳した場合
のレンズ高さと対応する像高と、像面での光軸方向の焦
点ずれ量を光学シミュレーションにより求め、レンズ高
さと像高の関係を関数に近似して各パラメータを保存
し、またサンプル形状誤差の部分曲率を求め、各レンズ
高さにおける単位曲率あたりの焦点ずれ量である部分曲
率比例係数を求め、レンズ高さとの関係を関数近似して
各パラメータを保存する焦点ずれ推定準備行程と、保存
してあるパラメータを用いて近似関数を解くことにより
像高および部分曲率比例係数を求め、これを用いて像面
における焦点ずれ曲線を導出する像面焦点ずれ量導出行
程よりなるよう構成した。また、サンプル形状誤差を、
球面形状とした。また、サンプル形状誤差を、放物面形
状とした。また、評価対象であるレンズの第1面の像高
と焦点ずれ量の関係をモデル式で近似する行程と、当該
レンズの第2面の像高と焦点ずれ量の関係をモデル式で
近似する行程と、この2つのモデル式の和を求めること
によりレンズの総合焦点ずれ量を求める行程よりなるよ
う構成した。また、被測定物の輪郭形状を測定する形状
測定手段と、測定形状から設計形状を差し引くことによ
り形状誤差を求める形状誤差抽出手段と、形状誤差から
複数のレンズ高さにおける部分曲率を導出する部分曲率
導出手段と、各レンズ高さにおける単位曲率あたりの像
面における焦点ずれ量の比例係数を求め、これと部分曲
率より各レンズ高さにおける焦点ずれ量を導出する焦点
ずれ量推定手段を持つよう構成した。
Means taken to solve the problem include a shape measuring step for measuring the contour shape of the object to be measured and a shape error extracting step for obtaining a shape error which is a deviation from the design shape. And a partial curvature derivation process of obtaining a partial curvature at each lens height from the shape error, and a curvature proportionality coefficient which is a defocus amount in an optical axis direction on an image plane per unit curvature at each lens height, and It is configured to include a defocus amount estimation step of estimating the defocus amount from the partial curvature. Further, after the shape error extraction process performs translation and rotation coordinate conversion on all or a part of the coordinate data, a deviation from the design shape is obtained, and a part or all of the translation is performed so as to minimize the sum of squares. It is configured to include a mounting error correction process for obtaining the optimal values of the amount and the rotation angle, and a design shape separation process for obtaining the difference from the design shape after the optimized translation and rotation conversion. In addition, the partial curvature derivation process is configured to divide the shape error data and obtain a curvature when each divided data is least-squares approximated to a spherical surface. In addition, the partial curvature derivation process divides the shape error data, performs a least square approximation of each divided data to a polynomial, and calculates the square
The double was configured to be a partial curvature. Further, the partial curvature derivation process approximates the shape error to a polynomial, and obtains the value of the second derivative. Further, the defocus amount estimation process obtains the defocus amount in the optical axis direction on the image plane corresponding to the lens height when the sample shape error is superimposed only on the target lens surface with respect to the lens surface design value by optical simulation, Find the partial curvature of the sample shape error, find the partial curvature proportional coefficient that is the amount of defocus per unit curvature corresponding to each lens height, approximate the relationship as a function and save each parameter A partial curvature proportionality coefficient is obtained by solving an approximation function using the stored parameters, and an image plane defocus amount derivation process of deriving a defocus curve on an image plane using the obtained coefficient is configured. In addition, the defocus amount estimation process optically calculates the image height corresponding to the lens height when the sample shape error is superimposed only on the target lens surface with respect to the lens surface design value, and the defocus amount in the optical axis direction on the image surface. Calculated by simulation, approximating the relationship between lens height and image height as a function and storing each parameter, and calculating partial curvature of sample shape error, partial curvature proportional to the amount of defocus per unit curvature at each lens height Finding the coefficients, the function of approximating the relationship with the lens height and saving each parameter is defocus estimation preparation process, and the image height and partial curvature proportional coefficient are found by solving the approximation function using the saved parameters, An image plane defocus amount deriving process for deriving a defocus curve on the image plane using this is configured. Also, the sample shape error is
The shape was spherical. The sample shape error was defined as a parabolic shape. Further, the process of approximating the relationship between the image height of the first surface of the lens to be evaluated and the defocus amount by a model formula, and the process of approximating the relationship between the image height of the second surface of the lens and the defocus amount by a model formula. It is configured to include a process and a process of obtaining the total defocus amount of the lens by calculating the sum of these two model expressions. A shape measuring means for measuring a contour shape of the object to be measured; a shape error extracting means for obtaining a shape error by subtracting a design shape from the measured shape; and a part for deriving partial curvatures at a plurality of lens heights from the shape error. A curvature deriving unit and a defocus amount estimating unit that obtains a proportional coefficient of a defocus amount on an image plane per unit curvature at each lens height, and derives a defocus amount at each lens height from this and a partial curvature. Configured.

【作用】上記構成によれば、形状誤差から焦点ずれ量を
推定することができるため、形状評価結果と光学性能の
相関が高くなる。これにより精度の高いレンズ評価が行
えるとともに、種々のタイプのレンズ評価に適用可能と
なる。また、被測定物の治具への取り付け時の誤差を補
正することにより、繰り返し再現性のより高い評価を行
うことが可能となる。また、輪郭形状測定データを概略
光束の直径と同じ長さの部分データに分離し、それぞれ
曲率を求めることにより、レンズ面内の一部に局在する
形状誤差に対して、より高精度の形状評価が可能とな
る。また、2次多項式へ近似するようにしたので、球面
近似に比してより短い時間での評価が可能となる。ま
た、形状誤差を多項式に近似することにより、形状測定
時に被測定物表面に乗っている微少なゴミ等による座標
が局部的に大きく変動する異常データの影響を小さくす
ることができる。また、単位曲率あたりの像面における
焦点ずれの比例係数を予め光学シミュレーションで求
め、レンズ高さとの関係を適当な関数に近似して保存し
ておくことにより、任意のレンズ高さにおける比例係数
を簡単に求めることができ、より少ない時間で評価を行
うことが可能となる。また、像面における像高と焦点ず
れ量の関係を求めるようにしたので、これを実際のレン
ズの光学性能測定結果と比較することで、評価精度の検
討、比例係数の修正などを行うことができる。また、サ
ンプル形状誤差として、球面又は放物線を用いるように
すれば、サンプル形状の曲率を評価する行程が短縮でき
る。また、レンズの第1面と第2面の焦点ずれを足し合
せることにより、レンズ自体の総合精度を評価すること
ができる。このためレンズの反り等の影響で、単独の面
としては公差内に入らないレンズでも、総合精度では公
差内に入る場合などの適切な総合評価が可能となる。
According to the above arrangement, since the amount of defocus can be estimated from the shape error, the correlation between the shape evaluation result and the optical performance increases. This enables highly accurate lens evaluation and can be applied to various types of lens evaluation. In addition, by correcting an error at the time of mounting the device under test to the jig, it is possible to perform evaluation with higher reproducibility. In addition, the contour shape measurement data is separated into partial data having the same length as the diameter of the approximate light beam, and the curvature is obtained. Evaluation becomes possible. In addition, since the approximation is made to a second-order polynomial, the evaluation can be performed in a shorter time than the spherical approximation. Further, by approximating the shape error to a polynomial, it is possible to reduce the influence of abnormal data in which coordinates due to minute dust or the like on the surface of the object to be measured at the time of shape measurement locally vary greatly. In addition, the proportionality coefficient of the defocus on the image plane per unit curvature is obtained in advance by an optical simulation, and the relationship with the lens height is approximated and stored as an appropriate function, so that the proportionality coefficient at an arbitrary lens height can be calculated. This can be easily obtained, and the evaluation can be performed in less time. In addition, since the relationship between the image height and the amount of defocus on the image plane is obtained, by comparing this with the measurement result of the optical performance of the actual lens, it is possible to examine the evaluation accuracy, correct the proportionality coefficient, etc. it can. Further, if a spherical surface or a parabola is used as the sample shape error, the process of evaluating the curvature of the sample shape can be shortened. Also, by adding the defocus of the first surface and the second surface of the lens, the overall accuracy of the lens itself can be evaluated. For this reason, even if the lens does not fall within the tolerance as a single surface due to the influence of the warpage of the lens or the like, it is possible to perform appropriate comprehensive evaluation such as when the overall accuracy falls within the tolerance.

【0009】[0009]

【実施例】本発明の実施例では、設計形状の各レンズ高
さにおいて像面における光軸方向の焦点ずれ量が設計形
状近傍ではレンズ面の形状誤差の部分曲率に概略比例す
ることを用いて、被測定物の輪郭形状測定結果から設計
形状からの偏差を求め、この部分曲率を求め、任意のレ
ンズ高さにおける焦点位置ずれ量を推定し、これをもっ
てレンズを評価する。
The embodiment of the present invention uses the fact that the amount of defocus in the optical axis direction on the image plane at each lens height of the design shape is approximately proportional to the partial curvature of the shape error of the lens surface near the design shape. Then, a deviation from the design shape is obtained from the measurement result of the contour shape of the object to be measured, the partial curvature is obtained, the amount of focal position shift at an arbitrary lens height is estimated, and the lens is evaluated based on this.

【0010】さらに詳細に説明するにあたって、まず、
全てのレンズが理想形状をしている場合について説明す
る。任意の時間において、ポリゴンモータの回転角に依
存して、各レンズの特定位置でレンズの有効領域の一部
を光束が通過するとき、像面近傍の決まった位置に焦点
を結ぶ。これは、任意の時間における光学系がそれぞれ
独立していると考えることが可能である。すなわち、そ
れぞれについて光学系の焦点距離等を求めることがで
き、また全てのレンズ面は滑らかにつながっているの
で、焦点距離等の光学特性も滑らかにつながっていると
考えられる。ここで、レンズが理想状態であっても、任
意の時間における焦点位置は、正確には像面からずれて
いるが、今回は理想形状のレンズに微少の形状誤差が加
わった時の理想状態における焦点位置からのずれ量を考
えるため、この影響は別途考慮することとする。
In describing in more detail, first,
A case where all lenses have the ideal shape will be described. At an arbitrary time, depending on the rotation angle of the polygon motor, when a light beam passes through a part of the effective area of the lens at a specific position of each lens, it focuses on a fixed position near the image plane. This can be considered that the optical systems at any time are independent of each other. That is, the focal length and the like of the optical system can be obtained for each lens, and all the lens surfaces are smoothly connected, so that it is considered that the optical characteristics such as the focal length are also smoothly connected. Here, even if the lens is in the ideal state, the focal position at an arbitrary time is accurately shifted from the image plane, but this time, in the ideal state when a slight shape error is added to the ideally shaped lens. In order to consider the amount of deviation from the focal position, this effect is separately considered.

【0011】次に評価対象のレンズに形状誤差がある場
合について説明する。任意の時間において、形状誤差は
設計形状に対して十分小さいので、任意の時間における
光束内での形状誤差による光学特性への影響は、近軸理
論で近似できる範囲にあるとする。ここで、現在の走査
光学系においては、形状誤差の影響による焦点ずれが、
製造工程における歩留まりのネックとなっており、この
主要因が部分曲率の変動の影響であることが、光学シミ
ュレーションの結果で確認されている。よって、本実施
例では形状誤差による部分曲率の変動の影響による像面
での焦点ずれ量を推定する。
Next, a case where a lens to be evaluated has a shape error will be described. At any time, the shape error is sufficiently small with respect to the design shape, so that the influence of the shape error in the light beam at any time on the optical characteristics is within a range that can be approximated by paraxial theory. Here, in the current scanning optical system, the defocus due to the influence of the shape error,
It has been confirmed by the results of optical simulations that the yield is a bottleneck in the manufacturing process, and that the main factor is the influence of the variation of the partial curvature. Therefore, in this embodiment, the amount of defocus on the image plane due to the influence of the variation of the partial curvature due to the shape error is estimated.

【0012】任意のレンズ面前後における形状誤差の影
響について、スネルの公式を用いて考察する。まず理想
状態におけるスネルの式は次のとおりである。
The effect of a shape error before and after an arbitrary lens surface will be considered using Snell's formula. First, Snell's equation in an ideal state is as follows.

【式2】 上記sは物体側結像位置、sd´は像側結像位置、nは
物体側屈折率、n´は像側屈折率、Cは、レンズ面の
曲率である。そして、図1のごとく形状誤差により曲率
が変化してCになったとすると、形状誤差を含んだ光
学系の像側焦点位置sr´は、次のようになる。
(Equation 2) The s the object side imaging position, s d'image side imaging position, n represents the object-side refractive index, n'the image side refractive index, C d is the curvature of the lens surface. Then, when the curvature becomes C r varies by as shape errors in FIG. 1, the image-side focal position s r'optical contained shape error system is as follows.

【式3】 像側の焦点位置変化Δs´は以下のようになる[Equation 3] The focal position change Δs ′ on the image side is as follows

【式4】 (Equation 4)

【0013】ここで、曲率誤差ΔCは設計値での曲率C
に比べ十分に小さいので、焦点変動Δs´は焦点距離
s' に比べ小さく、近似的に表される。
Here, the curvature error ΔC is the curvature C at the design value.
Since it is sufficiently smaller than d , the focus variation Δs ′ is smaller than the focal length s ′ and is approximately expressed.

【式5】 このレンズ面以降のレンズ系が設計値どおりであるとす
ると倍率も一定であるから像面における焦点ずれ量も曲
率誤差に比例する。この比例係数は、設計値形状に依存
する定数である。
(Equation 5) Assuming that the lens system following this lens surface has the designed value, the magnification is also constant, so that the defocus amount on the image surface is also proportional to the curvature error. This proportional coefficient is a constant depending on the design value shape.

【0014】従って、各レンズ面において、任意のレン
ズ高さにおける単位曲率あたりの像面における焦点ずれ
量である比例係数と、任意のレンズ高さにおける曲率誤
差を求めることにより、像面における焦点ずれ量を推定
することができる。図2に測定データの処理手順を示
す。
Therefore, by calculating the proportional coefficient, which is the amount of defocus on the image plane per unit curvature at an arbitrary lens height, and the curvature error at an arbitrary lens height on each lens surface, the defocus on the image surface is obtained. The amount can be estimated. FIG. 2 shows a processing procedure of the measurement data.

【0015】形状測定結果は、点列データとして出力さ
れる。つまり各点は測定機に依存する座標系における座
標データとして出力される。ここで、測定データから設
計形状成分を分離するためには、測定座標系と各レンズ
の設計時の座標系が同一である必要がある。しかし、測
定時における被測定物の取り付け精度などの問題があ
り、全く同一とすることはできない。よって、測定座標
系の点列を設計時の座標系で表わすため座標変換が必要
である。また、この座標変換行列を直接求めることがで
きないので、「最も誤差の小さい」座標系へ変換するこ
とにより代用する。これは、形状誤差を最小にするよう
に座標変換行列を最適化することにより実現できる。2
次元データの場合、座標変換行列は光軸方向のシフトs
xとこれに直交する方向のシフトsy、回転角θの3自
由度のうち少なくともsyとθの2自由度の最適化を行
う。実際の取り付け誤差補正方法としては、例えば座標
変換後の形状誤差の自乗和を評価関数として、3次元の
最適化を行うことにより実現する。
The shape measurement result is output as point sequence data. That is, each point is output as coordinate data in a coordinate system depending on the measuring machine. Here, in order to separate the design shape component from the measurement data, the measurement coordinate system and the coordinate system at the time of designing each lens need to be the same. However, there are problems such as the mounting accuracy of the object to be measured at the time of measurement, and the two cannot be exactly the same. Therefore, coordinate conversion is required to represent the point sequence of the measurement coordinate system in the coordinate system at the time of design. In addition, since this coordinate conversion matrix cannot be directly obtained, it is substituted by converting to a coordinate system having the “minimum error”. This can be realized by optimizing the coordinate transformation matrix so as to minimize the shape error. 2
In the case of dimensional data, the coordinate transformation matrix is a shift s in the optical axis direction.
Optimization of at least two degrees of freedom of sy and θ among three degrees of freedom of x and a shift sy in a direction orthogonal thereto and a rotation angle θ is performed. The actual mounting error correction method is realized by, for example, performing three-dimensional optimization using the sum of squares of the shape error after coordinate conversion as an evaluation function.

【0016】形状誤差から部分曲率を求める方法として
は、まず、形状誤差データを複数の点列に分離する。各
部分点列のy軸方向の長さは、光束の幅近辺が望まし
い。そしてそれぞれの部分点列を球面に最小自乗近似
し、その曲率を求める。以下に近似する球面の式を示
す。
As a method of obtaining the partial curvature from the shape error, first, the shape error data is separated into a plurality of point sequences. The length of each partial point sequence in the y-axis direction is preferably near the width of the light beam. Then, each partial point sequence is least-squares-approximately approximated to a spherical surface, and its curvature is obtained. The approximate spherical equation is shown below.

【式6】 ここで、(x0,y0)は球面の頂点の座標、cは球面
の曲率である。実際の演算法としては、非線形の最小自
乗法によりこれらのパラメータを最適化することにより
cが求まる。
(Equation 6) Here, (x0, y0) is the coordinates of the vertices of the spherical surface, and c is the curvature of the spherical surface. As an actual calculation method, c is obtained by optimizing these parameters by a nonlinear least squares method.

【0017】次に、形状誤差から部分曲率を求める別の
方法を示す。まず、形状誤差データを複数の点列に分離
する。各部分点列のy軸方向の長さは、光束の幅近辺が
望ましい。そしてそれぞれの部分点列を2次多項式に最
小自乗近似し、その自乗項を2倍したものを曲率とす
る。実際の演算法としては、特異値分解法などの線形の
最小自乗法を用いる。
Next, another method for obtaining the partial curvature from the shape error will be described. First, the shape error data is separated into a plurality of point sequences. The length of each partial point sequence in the y-axis direction is preferably near the width of the light beam. Then, each partial point sequence is least-squares approximated to a quadratic polynomial, and a value obtained by doubling the square term is defined as a curvature. As an actual operation method, a linear least square method such as a singular value decomposition method is used.

【0018】形状誤差から部分曲率を求めるさらに別の
方法としては、まず、形状誤差データを適当な次数の多
項式に近似し、各項の係数を求める。次に近似多項式の
2階導関数の各係数を求める。以下に多項式と、その2
階導関数の式を示す。
As still another method for obtaining the partial curvature from the shape error, first, the shape error data is approximated to a polynomial of an appropriate order, and the coefficient of each term is obtained. Next, each coefficient of the second derivative of the approximate polynomial is obtained. The polynomial and its 2
Here is the expression for the first derivative.

【式7】 最後にこれを複数のレンズ高さについて解く。Equation 7 Finally, this is solved for multiple lens heights.

【0019】焦点ずれ量の推定法を示す。まず準備段階
として、特定のレンズ面の設計値に対して適当なモデル
式のサンプル形状誤差を加えた状態で複数の偏向器角度
で光学シミュレーションを行い、各偏向器角度での主光
線と特定のレンズ面との交点の主走査方向レンズ高さ
と、像面における設計値での焦点からのずれ量を求め
る。また、これらと同じレンズ高さにおける多項式形状
誤差の部分曲率を前述の方法を用いて求める。各レンズ
高さにおいて焦点ずれ量を部分曲率で除算して単位曲率
あたりの焦点ずれ量である部分曲率比例係数を求める。
そしてレンズ高さと部分曲率比例係数の関係を適当な関
数、たとえば多項式に近似してそのパラメータを保存す
ることにより、任意のレンズ高さに対応する焦点ずれ量
の比例係数を求めることが可能となる。実際のサンプル
の測定結果に対して、複数のレンズ高さにおいて、部分
曲率と比例係数を求め、これらを積算することにより焦
点ずれ量を推定する。図3に測定データの処理手順を示
す。
A method for estimating the amount of defocus will be described. First, as a preparation stage, an optical simulation is performed at a plurality of deflector angles with a sample shape error of an appropriate model formula added to the design value of a specific lens surface, and the principal ray at each deflector angle and a specific The lens height in the main scanning direction at the intersection with the lens surface and the amount of deviation from the focal point at the design value on the image plane are determined. In addition, the partial curvature of the polynomial shape error at the same lens height is obtained using the above-described method. At each lens height, the amount of defocus is divided by the partial curvature to obtain a partial curvature proportional coefficient, which is the amount of defocus per unit curvature.
By approximating the relationship between the lens height and the partial curvature proportional coefficient to an appropriate function, for example, a polynomial and storing the parameters, it is possible to obtain the proportional coefficient of the defocus amount corresponding to an arbitrary lens height. . With respect to the measurement result of the actual sample, the partial curvature and the proportional coefficient are obtained at a plurality of lens heights, and these are integrated to estimate the defocus amount. FIG. 3 shows a processing procedure of the measurement data.

【0020】次に、もう1つの焦点ずれ量の推定法を示
す。まず準備段階として、特定のレンズ面の設計値に対
して適当なモデル式のサンプル形状誤差を加えた状態で
複数の偏向器角度で光学シミュレーションを行い、各偏
向器角度での主光線と特定のレンズ面との交点の主走査
方向レンズ高さと、像面における像高と、設計値での焦
点からのずれ量を求める。また、これらと同じレンズ高
さにおける多項式形状誤差の部分曲率を前述の方法を用
いて求める。つぎにレンズ高さと像高の関係をモデル
式、例えば多項式に近似し、各パラメータを保存してお
く。また各レンズ高さにおける焦点ずれ量を部分曲率で
除算して単位曲率あたりの焦点ずれ量である比例係数を
求める。そしてこれを適当な関数、たとえば多項式に近
似してそのパラメータを保存することにより、任意のレ
ンズ高さに対応する焦点ずれの比例係数を求めることが
可能となる。さらに実際のサンプルの測定結果に対し
て、複数のレンズ高さにおいて、像高、部分曲率と比例
係数の積をもとめ、像高と焦点ずれ量の関係を導出す
る。
Next, another method of estimating the amount of defocus will be described. First, as a preparation stage, an optical simulation is performed at a plurality of deflector angles with a sample shape error of an appropriate model formula added to the design value of a specific lens surface, and the principal ray at each deflector angle and a specific The lens height in the main scanning direction at the intersection with the lens surface, the image height on the image plane, and the deviation from the focal point at the design value are obtained. In addition, the partial curvature of the polynomial shape error at the same lens height is obtained using the above-described method. Next, the relationship between the lens height and the image height is approximated by a model formula, for example, a polynomial, and each parameter is stored. Further, a proportional coefficient which is a defocus amount per unit curvature is obtained by dividing the defocus amount at each lens height by the partial curvature. Then, by approximating this to an appropriate function, for example, a polynomial and storing the parameters, it becomes possible to obtain a proportional coefficient of defocus corresponding to an arbitrary lens height. Furthermore, the relationship between the image height and the amount of defocus is derived from the product of the image height, partial curvature, and the proportionality coefficient at a plurality of lens heights with respect to the measurement results of the actual sample.

【0021】前述のサンプル形状誤差が、ある曲率の球
面である場合、任意のレンズ高さにおいて形状誤差の部
分曲率が同一となるので、部分曲率を求める必要が無く
なる。この場合、焦点ずれ量を定数の曲率で割ることに
より比例係数を導出する。
When the sample shape error is a spherical surface having a certain curvature, the partial curvature of the shape error becomes the same at an arbitrary lens height, so that it is not necessary to obtain the partial curvature. In this case, a proportional coefficient is derived by dividing the defocus amount by a constant curvature.

【0022】また、前述のサンプル形状誤差が放物線形
状である場合、その部分曲率は前述の方法のうち2階導
関数を求める方法を用いると、全レンズ高さで定数とな
る。よって、球面であるときと同じにサンプル形状誤差
の部分曲率を求める必要が無くなる。
When the sample shape error is a parabolic shape, the partial curvature becomes a constant at all lens heights by using the method for obtaining the second derivative among the above methods. Therefore, it is not necessary to obtain the partial curvature of the sample shape error as in the case of a spherical surface.

【0023】焦点ずれ量の評価法として、像面における
像高と焦点ずれ量の関係を導出し、これを評価する場
合、レンズの第1面の影響と第2面の影響が、同じ像面
での焦点ずれ量である像面湾曲として評価されるので、
これを足し合せることによりレンズ単体での焦点ずれ量
を評価することが可能となる。
As a method of evaluating the amount of defocus, the relationship between the image height and the amount of defocus on the image plane is derived, and when this is evaluated, the effects of the first surface and the second surface of the lens are the same. Is evaluated as field curvature, which is the amount of defocus at
By adding this, it is possible to evaluate the amount of defocus of the lens alone.

【0024】以上の処理機能を有したPCなどを形状測
定器に接続することにより、形状測定の処理行程はPC
上でのソフトウエアで実現できる。
By connecting a PC or the like having the above processing functions to the shape measuring instrument, the process of shape measurement can be performed by the PC.
It can be realized by the above software.

【0025】[0025]

【発明の効果】請求項1の構成によれば、形状誤差から
焦点ずれ量を推定することができ、これを基にレンズ評
価が可能となる。これにより、形状評価結果と光学性能
の相関が高くなり、歩留まりの向上、加工時の諸パラメ
ータの公差の拡大、そしてレンズの生産コスト減少につ
ながる。また、請求項2の構成によれば、被測定物の治
具への取り付け時の誤差を補正でき、より繰り返し再現
性の高い評価を行うことが可能となる。また、請求項3
の構成によれば、輪郭形状測定データを概略光束の直径
と同じ長さの部分データに分離し、それぞれ曲率を求め
ることができ、レンズ面内の一部に局在する形状誤差に
対して、より高精度の形状評価が可能となる。また、請
求項4の構成によれば、球面への近似に比べ、2次多項
式への近似のほうがより安定し、より短い時間での評価
が可能となる。また、請求項5の構成によれば、形状誤
差を多項式に近似することにより、形状測定時に被測定
物表面に乗っている微少なゴミ等による座標が局部的に
大きく変動する異常データの影響を小さくすることがで
きるので、より安定した形状評価が可能となる。また、
請求項6の構成によれば、単位曲率あたりの像面におけ
る焦点ずれの比例係数をあらかじめ光学シミュレーショ
ンで求め、レンズ高さとの関係を適当な関数に近似して
保存しておくことができ、任意のレンズ高さにおける比
例係数が簡単に求められ、より少ない時間で評価を行う
ことが可能となる。また、請求項7の構成によれば、最
終的に像面における像高と焦点ずれ量の関係が求まるの
で、これを実際のレンズの光学性能測定結果と比較し、
評価精度の検討、比例係数の修正などを行うことができ
る。また、請求項8の構成によれば、サンプル形状誤差
として球面を用いたので、サンプル形状の曲率を評価す
る行程が短縮される。また、請求項9の構成によれば、
サンプル形状誤差として、放物線を用いたので、サンプ
ル形状の曲率を評価する行程が短縮される。また、多項
式の2次項は光学シミュレータの非球面係数の一部とし
て予め組み込まれているが、使用されていない場合が多
く、そこに数値を入れるだけで使用可能となる。そのた
め、シミュレータの改造を必要とせず、仮に必要である
としても改造範囲が少なくて済む。また、請求項10の
構成によれば、レンズの第1面と第2面の焦点ずれを足
し合せることにより、レンズ自体の総合精度を評価する
ことができる。例えばレンズの反り等の影響で、単独の
面としては公差内に入らないレンズでも総合精度では公
差内に入る場合があるが、そうしたレンズに対し適切な
評価が可能である。よって、歩留まりが向上する。ま
た、請求項11の構成によれば、光学特性と相関の高い
形状評価装置が実現する。
According to the first aspect of the present invention, the amount of defocus can be estimated from the shape error, and the lens evaluation can be performed based on this. As a result, the correlation between the shape evaluation result and the optical performance increases, leading to an improvement in yield, an increase in the tolerance of various parameters during processing, and a reduction in lens production cost. Further, according to the configuration of the second aspect, it is possible to correct an error when the object to be measured is attached to the jig, and it is possible to repeatedly perform evaluation with high reproducibility. Claim 3
According to the configuration, the contour shape measurement data can be separated into partial data having the same length as the diameter of the approximate light beam, the curvature can be obtained for each, and for a shape error localized in a part of the lens surface, Higher precision shape evaluation becomes possible. According to the configuration of the fourth aspect, the approximation to the quadratic polynomial is more stable than the approximation to the spherical surface, and the evaluation can be performed in a shorter time. Further, according to the configuration of the fifth aspect, by approximating the shape error to a polynomial, the influence of abnormal data in which coordinates due to minute dust or the like on the surface of the object to be measured at the time of shape measurement are locally largely fluctuated. Since the size can be reduced, more stable shape evaluation can be performed. Also,
According to the configuration of claim 6, the proportionality coefficient of defocus on the image plane per unit curvature can be obtained in advance by optical simulation, and the relationship with the lens height can be approximated and stored as an appropriate function. The proportional coefficient at the lens height is easily obtained, and the evaluation can be performed in a shorter time. According to the configuration of claim 7, since the relationship between the image height and the defocus amount on the image plane is finally obtained, this is compared with the actual measurement result of the optical performance of the lens.
The evaluation accuracy can be examined, the proportional coefficient can be corrected, and the like. Further, according to the configuration of the eighth aspect, since the spherical shape is used as the sample shape error, the process of evaluating the curvature of the sample shape is shortened. According to the ninth aspect,
Since a parabola is used as the sample shape error, the process of evaluating the curvature of the sample shape is shortened. Although the second-order terms of the polynomial are pre-installed as a part of the aspherical coefficients of the optical simulator, they are not used in many cases, and can be used simply by inserting a numerical value therein. Therefore, it is not necessary to remodel the simulator, and even if necessary, the range of remodeling can be reduced. According to the configuration of claim 10, the total accuracy of the lens itself can be evaluated by adding the defocus of the first surface and the defocus of the second surface of the lens. For example, a lens that does not fall within the tolerance as a single surface may fall within the tolerance with total accuracy due to the influence of the warpage of the lens, for example, but such a lens can be appropriately evaluated. Therefore, the yield is improved. Further, according to the configuration of the eleventh aspect, a shape evaluation device having a high correlation with optical characteristics is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】はあるポリゴンモータ回転角に対応する光束近
傍の光学系を取り出した際の概念図である。
FIG. 1 is a conceptual diagram when an optical system near a light beam corresponding to a certain rotation angle of a polygon motor is taken out.

【図2】は焦点ずれ量推定フローチャート図である。FIG. 2 is a flowchart of a defocus amount estimation flowchart.

【図3】は他の焦点位置ずれ量推定フローチャート図で
ある。
FIG. 3 is a flowchart of another focus position shift amount estimation.

【図4】は光書き込み装置の模式図である。 図1〜図4における符号の説明 1・・・・・・・・半導体レーザ 2・・・・・・・・コリメータレンズ 3・・・・・・・・ポリゴンモータ 4・・・・・・・・走査レンズ 5・・・・・・・・像面FIG. 4 is a schematic diagram of an optical writing device. Description of reference numerals in FIGS. 1 to 4 1... Semiconductor laser 2... Collimator lens 3... Polygon motor 4. .Scanning lens 5 ...

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】被測定物の輪郭形状測定を行う形状測定行
程と、設計形状からの偏差である形状誤差を求める形状
誤差抽出行程と、形状誤差から各レンズ高さにおける部
分曲率を求める部分曲率導出行程と、各レンズ高さにお
ける単位曲率あたりの像面での光軸方向の焦点ずれ量で
ある曲率比例係数を求め、これと部分曲率より焦点ずれ
量を推定する焦点ずれ量推定行程からなることを特徴と
するレンズ面形状の評価方法。
1. A shape measurement step for measuring a contour shape of an object to be measured, a shape error extraction step for obtaining a shape error which is a deviation from a design shape, and a partial curvature for obtaining a partial curvature at each lens height from the shape error. A derivation process and a defocus amount estimating process of calculating a curvature proportionality coefficient, which is a defocus amount in the optical axis direction on the image plane per unit curvature at each lens height, and estimating the defocus amount from the partial curvature. A method for evaluating a lens surface shape, characterized in that:
【請求項2】前記形状誤差抽出行程が、全部または一部
の座標データに対して並進、回転座標変換をした後、設
計形状からの偏差を求め、この自乗和を最小化するよう
な一部または全部の並進量、回転角の最適値を求める取
り付け誤差補正行程と、最適化された並進、回転変換を
した後の設計形状からの差を求める設計形状分離行程と
からなることを特徴とする請求項1記載のレンズ面形状
の評価方法。
2. The method according to claim 2, wherein the shape error extracting step performs a translation and rotation coordinate conversion on all or a part of the coordinate data, obtains a deviation from the design shape, and minimizes the sum of squares. Alternatively, it is characterized by a mounting error correction process for obtaining an optimum value of all translation amounts and rotation angles, and a design shape separation process for obtaining a difference from a design shape after the optimized translation and rotation conversion. The method for evaluating a lens surface shape according to claim 1.
【請求項3】前記部分曲率導出行程が、形状誤差データ
を分割し、各分割データを球面に最小自乗近似したとき
の曲率を求めることを特徴とする請求項1又は請求項2
のレンズ面形状の評価方法。
3. The partial curvature deriving step divides the shape error data and obtains a curvature when each divided data is least square approximated to a spherical surface.
Evaluation method of lens surface shape.
【請求項4】前記部分曲率導出行程が、形状誤差データ
を分割し、各分割データを多項式に最小自乗近似し、そ
の自乗項の2倍を部分曲率とすることを特徴とする請求
項1又は請求項2のレンズ面形状の評価方法。
4. The method according to claim 1, wherein the partial curvature deriving step divides the shape error data, performs a least square approximation of each divided data to a polynomial, and sets a double of the square term as a partial curvature. The method for evaluating a lens surface shape according to claim 2.
【請求項5】前記部分曲率導出行程が、形状誤差を多項
式に近似し、その2階導関数の値を求めることを特徴と
する請求項1又は請求項2のレンズ面形状の評価方法。
5. The lens surface shape evaluation method according to claim 1, wherein said partial curvature derivation step approximates a shape error to a polynomial and obtains a value of a second derivative thereof.
【請求項6】前記焦点ずれ量推定行程が、レンズ面設計
値に対して対象レンズ面のみサンプル形状誤差を重畳し
た場合のレンズ高さと対応する像面での光軸方向の焦点
ずれ量を光学シミュレーションにより求め、サンプル形
状誤差の部分曲率を求め、各レンズ高さに対応する単位
曲率あたりの焦点ずれ量である部分曲率比例係数を求
め、この関係を関数近似して各パラメータを保存する焦
点ずれ推定準備行程と、保存してあるパラメータを用い
て近似関数を解くことにより部分曲率比例係数を求め、
これを用いて像面における焦点ずれ曲線を導出する像面
焦点ずれ量導出行程よりなることを特徴とする請求項1
乃至請求項5のレンズ面形状の評価方法。
6. The defocus amount estimating step includes calculating a defocus amount in an optical axis direction on an image plane corresponding to a lens height when a sample shape error is superimposed only on a target lens surface with respect to a lens surface design value. Calculate by simulation, find the partial curvature of the sample shape error, find the partial curvature proportional coefficient, which is the amount of defocus per unit curvature corresponding to each lens height, and approximate this relationship as a function and save each parameter Estimation preparation process and the partial curvature proportionality coefficient are obtained by solving an approximation function using the stored parameters,
2. An image plane defocus amount deriving step of deriving a defocus curve on an image plane by using this.
6. The method for evaluating a lens surface shape according to claim 5.
【請求項7】前記焦点ずれ量推定行程が、レンズ面設計
値に対して対象レンズ面のみサンプル形状誤差を重畳し
た場合のレンズ高さと対応する像高と、像面での光軸方
向の焦点ずれ量を光学シミュレーションにより求め、レ
ンズ高さと像高の関係を関数に近似して各パラメータを
保存し、またサンプル形状誤差の部分曲率を求め、各レ
ンズ高さにおける単位曲率あたりの焦点ずれ量である部
分曲率比例係数を求め、レンズ高さとの関係を関数近似
して各パラメータを保存する焦点ずれ推定準備行程と、
保存してあるパラメータを用いて近似関数を解くことに
より像高および部分曲率比例係数を求め、これを用いて
像面における焦点ずれ曲線を導出する像面焦点ずれ量導
出行程よりなることを特徴とする請求項1乃至請求項5
のレンズ面形状の評価方法。
7. An image height corresponding to a lens height when a sample shape error is superimposed only on a target lens surface with respect to a lens surface design value, and a focus in an optical axis direction on the image surface. The amount of shift is obtained by optical simulation, the relationship between the lens height and the image height is approximated to a function, and each parameter is stored.The partial curvature of the sample shape error is obtained, and the defocus amount per unit curvature at each lens height is obtained. A defocus estimation preparation step of obtaining a partial curvature proportional coefficient, approximating the relationship with the lens height as a function, and saving each parameter,
Finding the image height and the partial curvature proportionality coefficient by solving an approximation function using the stored parameters, and using this to derive an out-of-focus curve on the image plane, comprises an image plane defocus amount derivation process. Claim 1 to Claim 5
Evaluation method of lens surface shape.
【請求項8】前記サンプル形状誤差が、球面形状である
ことを特徴とする請求項6又は請求項7のレンズ面形状
の評価方法。
8. The method according to claim 6, wherein the sample shape error is a spherical shape.
【請求項9】前記サンプル形状誤差が、放物面形状であ
ることを特徴とする請求項6又は請求項7のレンズ面形
状の評価方法。
9. The method according to claim 6, wherein the sample shape error is a parabolic shape.
【請求項10】評価対象であるレンズの第1面の像高と
焦点ずれ量の関係をモデル式で近似する行程と、当該レ
ンズの第2面の像高と焦点ずれ量の関係をモデル式で近
似する行程と、この2つのモデル式の和を求めることに
よりレンズの総合焦点ずれ量を求める行程よりなる請求
項1乃至請求項9のレンズ面形状の評価方法。
10. The process of approximating the relationship between the image height of the first surface of the lens to be evaluated and the defocus amount by a model formula, and the relationship between the image height of the second surface of the lens and the defocus amount by a model formula. 10. The method for evaluating a lens surface shape according to claim 1, comprising a step of approximating by: and a step of calculating a total defocus amount of the lens by calculating a sum of the two model expressions.
【請求項11】被測定物の輪郭形状を測定する形状測定
手段と、測定形状から設計形状を差し引くことにより形
状誤差を求める形状誤差抽出手段と、形状誤差から複数
のレンズ高さにおける部分曲率を導出する部分曲率導出
手段と、各レンズ高さにおける単位曲率あたりの像面に
おける焦点ずれ量の比例係数を求め、これと部分曲率よ
り各レンズ高さにおける焦点ずれ量を導出する焦点ずれ
量推定手段を持つことを特徴とするレンズ面形状の評価
装置。
11. A shape measuring means for measuring a contour shape of an object to be measured, a shape error extracting means for obtaining a shape error by subtracting a design shape from the measured shape, and a partial curvature at a plurality of lens heights from the shape error. Derived partial curvature deriving means, and a defocus amount estimating means for obtaining a proportional coefficient of defocus amount on an image plane per unit curvature at each lens height, and deriving a defocus amount at each lens height from this and the partial curvature A lens surface shape evaluation apparatus characterized by having:
JP2000132571A 2000-05-01 2000-05-01 Lens surface shape evaluation method and shape evaluation device Expired - Fee Related JP3722464B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000132571A JP3722464B2 (en) 2000-05-01 2000-05-01 Lens surface shape evaluation method and shape evaluation device
US09/845,274 US6546357B2 (en) 2000-05-01 2001-05-01 Estimation of the configuration of an optical element for an optical writing device
US10/358,151 US6778940B2 (en) 2000-05-01 2003-02-05 Estimation of the configuration of an optical element for an optical writing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000132571A JP3722464B2 (en) 2000-05-01 2000-05-01 Lens surface shape evaluation method and shape evaluation device

Publications (2)

Publication Number Publication Date
JP2001318025A true JP2001318025A (en) 2001-11-16
JP3722464B2 JP3722464B2 (en) 2005-11-30

Family

ID=18641246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000132571A Expired - Fee Related JP3722464B2 (en) 2000-05-01 2000-05-01 Lens surface shape evaluation method and shape evaluation device

Country Status (1)

Country Link
JP (1) JP3722464B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333442A (en) * 2006-06-13 2007-12-27 Canon Inc Shape measurement method
JP2009150822A (en) * 2007-12-21 2009-07-09 Mitsutoyo Corp Shape measuring device, shape measuring method, and shape measuring program
CN117664021A (en) * 2023-03-06 2024-03-08 中国科学院长春光学精密机械与物理研究所 Aspherical surface shape error fitting method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333442A (en) * 2006-06-13 2007-12-27 Canon Inc Shape measurement method
JP2009150822A (en) * 2007-12-21 2009-07-09 Mitsutoyo Corp Shape measuring device, shape measuring method, and shape measuring program
CN117664021A (en) * 2023-03-06 2024-03-08 中国科学院长春光学精密机械与物理研究所 Aspherical surface shape error fitting method and apparatus

Also Published As

Publication number Publication date
JP3722464B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP5971965B2 (en) Surface shape measuring method, surface shape measuring apparatus, program, and optical element manufacturing method
KR20100119526A (en) Method and apparatus for measuring relative positions of a specular reflection surface
CN108917639A (en) Depth Imaging system and its temperature error bearing calibration
JP5025106B2 (en) Eccentricity measuring method, eccentricity measuring device, and manufacturing method of aspherical single lens
TWI467262B (en) Lens aligning device and image capturing lens
CN113435050B (en) Multi-medium imaging analysis method for underwater medium surface position compensation
JP3982999B2 (en) Optical element manufacturing method
JP2012003055A (en) Manufacturing method for imaging optical element and optical scanner using imaging optical element manufactured with same method
JP3722464B2 (en) Lens surface shape evaluation method and shape evaluation device
JP2015064241A (en) Shape measurement method and shape measurement device
US6546357B2 (en) Estimation of the configuration of an optical element for an optical writing device
JP4125074B2 (en) Three-dimensional shape measurement method
JPH07332952A (en) Method for measuring and analyzing spherical surface by interferometer
JPH11257945A (en) Probe type shape measuring apparatus and shape measuring method
JP2001056217A (en) Optical element shape measuring method and device
CN110440715B (en) Error compensation method of photoelectric autocollimator under long-distance working condition
JP2006126103A (en) Aspheric surface shape measuring method
JP2001194266A (en) Method and device for evaluating surface shape of lens
JP2017009405A (en) Shape measurement method, shape measurement device and shape measurement program
JP2012088601A (en) Method for manufacturing optical element and optical element manufactured by the method
JP2006133059A (en) Device for measuring interference
US20220179202A1 (en) Compensation of pupil aberration of a lens objective
KR900007133B1 (en) Laser scanner
JP3385819B2 (en) Shape evaluation method and device
JP7289780B2 (en) Eccentricity measuring method and eccentricity measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees