JP2001317998A - Interference filter transmitted wavelength scan type photometer - Google Patents

Interference filter transmitted wavelength scan type photometer

Info

Publication number
JP2001317998A
JP2001317998A JP2001053023A JP2001053023A JP2001317998A JP 2001317998 A JP2001317998 A JP 2001317998A JP 2001053023 A JP2001053023 A JP 2001053023A JP 2001053023 A JP2001053023 A JP 2001053023A JP 2001317998 A JP2001317998 A JP 2001317998A
Authority
JP
Japan
Prior art keywords
interference filter
component
wavelength
measurement
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001053023A
Other languages
Japanese (ja)
Other versions
JP3532870B2 (en
Inventor
Atsuo Watanabe
敦夫 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001053023A priority Critical patent/JP3532870B2/en
Publication of JP2001317998A publication Critical patent/JP2001317998A/en
Application granted granted Critical
Publication of JP3532870B2 publication Critical patent/JP3532870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an interference filter transmitted wavelength scan type photometer, capable of quantitatively determining a component under measure ment, without being influenced by interference components. SOLUTION: The inclination angle of the optical axis to the normal of an interference filter 3 is varied periodically to vary the wavelength in a narrow range, the center of the wavelength variation is set to a maximum absorption wavelength of a component under measurement, thus a modulated light passes through a simple, to generate a light the varying intensity of which is detected by an infrared detector 11 as an electrical signal, an a-c amplifier 14 amplifiers the a-c component of the detected electrical signal to obtain the zero-cross points of the rise and fall of the a-c signal, a microprocessor 16 obtains the times from one rise to the next rise, and from the rise to the next fall to calculate the value of (total period-2×half period)/total period, from the obtained total and half periods, and the density of the component under measurement is obtained from the variation of the obtained measured value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定妨害成分を含
有する試料中の測定対象成分を光吸収により測定するた
めの簡便かつ安価な分析装置に関する。さらに詳しく
は、周期的に最大透過波長を走査することが可能な干渉
フィルタを使用することにより、狭い波長範囲での試料
の光透過強度の変化を調べ、これを電気信号として検出
し、その周期から測定対象成分の定量を行うための装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple and inexpensive analyzer for measuring a component to be measured in a sample containing a measurement interfering component by light absorption. More specifically, by using an interference filter that can periodically scan the maximum transmission wavelength, a change in the light transmission intensity of the sample in a narrow wavelength range is examined, and this is detected as an electric signal. The present invention relates to an apparatus for quantifying a component to be measured from a sample.

【0002】[0002]

【従来の技術】試料中の特定成分の検出や定量を行うた
めに光を利用することは広く行われている。最も簡単な
ものとして、特定成分の吸収波長の単色光を試料に照射
したときに透過してくる単色光の光量の変化を測定する
方法がある。そのための装置として、例えば水質監視用
紫外線吸光光度計が知られている。これは、水中の有機
汚濁物が低圧水銀灯から出る水銀のスペクトル線25
3.7nmの波長の光を吸収することを利用するもの
で、光源、試料セル、受光器、増幅器などで構成されて
いる。単光束方式と呼ばれているこの方式は、光源の光
量に変化があるとその変化がそのまま検出器で検出さ
れ、それによる出力変動は成分の光吸収による変化と区
別がつかず、測定誤差が生じる。
2. Description of the Related Art Light is widely used to detect and quantify specific components in a sample. The simplest method is to measure a change in the amount of monochromatic light transmitted when a sample is irradiated with monochromatic light having an absorption wavelength of a specific component. As an apparatus for that purpose, for example, an ultraviolet absorption photometer for monitoring water quality is known. This is because the organic pollutants in the water are the mercury spectral lines 25
It utilizes the absorption of light having a wavelength of 3.7 nm and comprises a light source, a sample cell, a light receiver, an amplifier, and the like. In this method, called the single beam method, when there is a change in the light amount of the light source, the change is detected by the detector as it is, and the output fluctuation due to it is indistinguishable from the change due to the light absorption of the component, and the measurement error is reduced. Occurs.

【0003】この単光束方式の欠点を解消するための一
つの手段として複光束方式がある。この方式は光線束を
二つに分け、一方を測定光線束、他方を比較光線束と
し、それぞれの光線束の強さの差又は比をとり、比較光
線束の光量を基準に測定光線束の変化を求めるものであ
る。この方式により、光源の変化の影響を受けない測定
ができる。
As one means for solving the drawbacks of the single beam system, there is a double beam system. In this method, the light beam is divided into two, one is the measurement light beam, the other is the comparison light beam, and the difference or ratio of the intensity of each light beam is calculated. It seeks change. With this method, measurement can be performed without being affected by changes in the light source.

【0004】光源の影響を受けないもう一つの方式に二
波長測光方式がある。これは測定試料に波長の異なる二
つの波長の光を交互に透過又は反射させ、それにより生
じる両者の光強度の差又は比から測定試料に含まれる測
定対象成分による吸収の強さを求める方式である。一つ
の波長を測定試料による吸収のない波長に選び、この波
長の光線束の強度を基準に対象成分の吸収波長の光線束
の強度を求めるので、光源の影響を受けない測定ができ
る。
Another method which is not affected by a light source is a two-wavelength photometric method. This is a method in which light of two different wavelengths is alternately transmitted or reflected by a measurement sample, and the intensity of absorption by the measurement target component contained in the measurement sample is determined from the difference or ratio of the resulting light intensities. is there. One wavelength is selected as a wavelength that is not absorbed by the measurement sample, and the intensity of the light beam having the absorption wavelength of the target component is obtained based on the intensity of the light beam of this wavelength, so that the measurement can be performed without being affected by the light source.

【0005】本発明は二波長測光方式のように単光束で
光源の光量変化の影響を受けない方式を目指しているの
で、この方式の従来技術について図1を用いて詳しく説
明する。図1はフィルタ相関式赤外線分析計を示す図面
であって、赤外線光源101から放射された赤外線12
1は、試料セル102を通過し、透過赤外線122とし
て回転変調器103に向う。試料セル102は円筒形の
筒で、両端面に赤外線透過窓を有し、試料ガスの出入口
が両端面の近くに設けられている。試料ガスには測定対
象ガスが含まれ、透過赤外線122は測定対象ガスによ
る赤外吸収分だけ強度が失われたものとなっている。回
転変調器103は、回転する円盤に測定対象成分ガスの
吸収波長で最大の透過率を持つ測定フィルタ104と試
料ガスに吸収がない波長で最大の透過率を持つ参照フィ
ルタ105が取り付けられ、円盤の回転により周期的に
透過赤外線122と交差する。これにより透過赤外線1
22は変調され、測定フィルタ104を透過、遮光、参
照フィルタ105を透過、遮光という順に、周期的に変
わる変調赤外線123として出ていく。変調赤外線12
3は赤外線集光レンズ107で集光され、検出器108
に入り、電気信号として検出される。検出された電気信
号は前置増幅器110で増幅され、同期整流器111に
入る。一方、回転変調器の回転周期を同期信号検出器1
06で検出し、位相調整器109で同期整流に適した位
相に調整し、同期整流器111に入る。同期整流器11
1では、これらの入力信号から測定対象ガス成分の濃度
に依存する信号を得る。
Since the present invention aims at a system which is not affected by a change in light amount of a light source with a single light beam like a two-wavelength photometric system, the prior art of this system will be described in detail with reference to FIG. FIG. 1 is a drawing showing a filter correlation type infrared spectrometer.
1 passes through the sample cell 102 and travels to the rotary modulator 103 as transmitted infrared rays 122. The sample cell 102 is a cylindrical tube having infrared transmission windows on both end surfaces, and a sample gas inlet / outlet is provided near both end surfaces. The sample gas contains the gas to be measured, and the transmitted infrared rays 122 lose their intensity by the infrared absorption of the gas to be measured. The rotation modulator 103 is provided with a measurement filter 104 having a maximum transmittance at the absorption wavelength of the component gas to be measured and a reference filter 105 having a maximum transmittance at a wavelength at which the sample gas does not absorb the light. Periodically intersects with the transmitted infrared light 122 by the rotation of. This allows transmitted infrared 1
22 is modulated, and exits as a modulated infrared ray 123 that changes periodically in the order of transmission through the measurement filter 104, light blocking, transmission through the reference filter 105, and blocking. Modulated infrared 12
3 is condensed by an infrared condensing lens 107, and a detector 108
And is detected as an electric signal. The detected electric signal is amplified by a preamplifier 110 and enters a synchronous rectifier 111. On the other hand, the rotation period of the rotation modulator is determined by the synchronization signal detector 1.
At 06, the phase is adjusted to a phase suitable for synchronous rectification by the phase adjuster 109, and the phase enters the synchronous rectifier 111. Synchronous rectifier 11
In step 1, a signal depending on the concentration of the gas component to be measured is obtained from these input signals.

【0006】ところで気体又は液体の試料には、測定対
象成分と共に多数の成分が共存する場合が多い。これら
共存成分の中には、例えば排煙中の一酸化窒素を測定対
象成分とする場合の水蒸気、水中のグルコースを測定対
象とする場合の食塩を初めとする電解質及び主成分の水
のように測定を妨害する成分が含まれる場合がある。図
2に示すように、これらの測定を妨害する成分の吸収1
52は、測定対象成分の吸収151の最大吸収波長15
3と同じ波長に吸収の極値を持たないが、吸収の裾が重
なっている。吸収の裾は緩やかな変化であるが、その濃
度が高ければ測定に致命的な影響を与える。上述の二波
長測光方式の場合、通常、参照波長154を最大吸収波
長153に近い波長に選ぶが、図2のように吸収の裾に
勾配がある場合には共存成分の影響は避けられないとい
う問題があった。
By the way, in a gas or liquid sample, many components coexist with the component to be measured in many cases. Among these coexisting components are, for example, water vapor when nitric oxide in flue gas is a measurement target component, electrolyte such as salt and water of a main component when measuring glucose in water as a measurement target component. There may be components that interfere with the measurement. As shown in FIG. 2, the absorption 1 of the component interfering with these measurements
52 is the maximum absorption wavelength 15 of the absorption 151 of the component to be measured.
It has no absorption extreme at the same wavelength as 3, but the absorption tails overlap. The tail of the absorption is a gradual change, but a high concentration has a fatal effect on the measurement. In the case of the above-described two-wavelength photometry method, the reference wavelength 154 is usually selected to be a wavelength close to the maximum absorption wavelength 153, but when there is a gradient in the absorption tail as shown in FIG. 2, the influence of the coexisting component cannot be avoided. There was a problem.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明の目的
は、光吸収を利用する分光分析測定において、このよう
な測定対象成分の最大吸収波長に吸収の裾が伸びている
ような妨害成分が共存する試料中の測定対象成分を、妨
害成分による影響を回避して定量することが可能な分析
装置を提供することにある。本発明の他の目的は、非破
壊あるいは人体に対して無侵襲で測定できる、簡単かつ
安価な分析装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a spectroscopic measurement utilizing light absorption in which interfering components whose absorption skirt extends to the maximum absorption wavelength of the component to be measured coexist. It is an object of the present invention to provide an analyzer capable of quantifying a component to be measured in a sample while avoiding the influence of an interfering component. Another object of the present invention is to provide a simple and inexpensive analyzer that can measure nondestructively or noninvasively on a human body.

【0008】[0008]

【課題を解決するための手段】すなわち本発明によれ
ば、測定妨害成分を含有する試料中の測定対象成分を光
吸収により計測するための装置であって、光源と最大透
過波長を周期的に走査させる手段を持つ干渉フィルタ
と、赤外線検出器と、ゼロクロスデテクタとからなり、
干渉フィルタの周期的な走査により生ずる狭い範囲の波
長の変化の中心を、前記測定成分による最大吸収波長に
一致するように、干渉フィルタの走査の波長の中心を決
め、前記光源からの光を干渉フィルタとその前又は後ろ
に置かれた前記試料に透過または反射させたのち、赤外
線検出器に入れ電気信号として検出し、電気信号の周期
的に変化する成分の信号の全周期及び半周期(各ゼロク
ロス点間の時間)をゼロクロスデテクタにより求め、全
周期に対する半周期の変化量から前記成分を定量するよ
うにしたことを特徴とする干渉フィルタ透過波長走査式
光度計が提供される。
According to the present invention, there is provided an apparatus for measuring a component to be measured in a sample containing a measurement interfering component by light absorption, wherein a light source and a maximum transmission wavelength are periodically measured. It consists of an interference filter with a means for scanning, an infrared detector, and a zero-cross detector,
The center of the wavelength of the scanning of the interference filter is determined so that the center of the wavelength change in a narrow range caused by the periodic scanning of the interference filter coincides with the maximum absorption wavelength of the measurement component, and the light from the light source interferes. After being transmitted or reflected by the filter and the sample placed in front of or behind the filter, it is put into an infrared detector and detected as an electric signal. (Interval between zero-cross points) is obtained by a zero-cross detector, and the component is quantified based on a change amount of a half cycle with respect to the entire cycle.

【0009】なお、上記干渉フィルタにより最大透過波
長を走査する方法はいくつか知られている。一つは金属
膜と金属膜間のスペーサ層を気体とし、その気体の圧力
を変え、スペーサ層の屈折率を変化させる方法がある。
またスペーサ層の厚さを変える方法も知られている。本
発明においては、干渉フィルタの傾斜角を変える方法が
適している。即ち本発明の最も好ましい実施態様は干渉
フィルタ透過波長走査式光度計において、干渉フィルタ
面の法線と光軸のなす角度が周期的に変わるように回動
させることにより最大透過波長走査を行うことを特徴と
している。
There are several known methods for scanning the maximum transmission wavelength using the interference filter. One method is to use a gas as a spacer layer between metal films and change the pressure of the gas to change the refractive index of the spacer layer.
A method of changing the thickness of the spacer layer is also known. In the present invention, a method of changing the inclination angle of the interference filter is suitable. That is, the most preferred embodiment of the present invention is to perform maximum transmission wavelength scanning by rotating an interference filter transmission wavelength scanning type photometer so that the angle between the normal line of the interference filter surface and the optical axis changes periodically. It is characterized by.

【0010】[0010]

【発明の実施の形態】本発明の干渉フィルタ透過波長走
査式光度計の構造の1例及びそれを用いた測定対象成分
測定法の原理を添付の図面を用いて以下に説明する。本
発明においては、干渉フィルタを光軸に対し傾斜角を変
えるように単一周波数で回動振動させ、図2の測定対象
成分の最大吸収波長153を中心に短透過波長161と
長透過波長162のような狭い波長の間に干渉フィルタ
を透過する波長の極値を走査させるものである。干渉フ
ィルタが光軸に対し傾斜することにより最大透過波長が
変わることは知られている。図3は、実験により得た干
渉フィルタの法線と光軸の間の傾斜角を15度、20度
及び25度と変えて得た干渉フィルタのスペクトル17
1、172及び173である。それぞれのピークの波長
は、2289nm、2273nm及び2257nmであ
る(尚、図のスペクトルの横軸は、波数リニアで描かれ
ていて、波長に対してはノンリニアである。文中の数値
は、議論の一貫性を保つため、波長に換算してい
る。)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the structure of an interference filter transmission wavelength scanning photometer of the present invention and the principle of a method for measuring a component to be measured using the same will be described below with reference to the accompanying drawings. In the present invention, the interference filter is rotated and oscillated at a single frequency so as to change the tilt angle with respect to the optical axis, and the short transmission wavelength 161 and the long transmission wavelength 162 around the maximum absorption wavelength 153 of the component to be measured in FIG. The extreme value of the wavelength transmitted through the interference filter is scanned between the narrow wavelengths as described above. It is known that the maximum transmission wavelength changes when the interference filter is tilted with respect to the optical axis. FIG. 3 shows the spectrum 17 of the interference filter obtained by changing the inclination angle between the normal line and the optical axis of the interference filter obtained by the experiment to 15, 20, and 25 degrees.
1, 172 and 173. The wavelengths of the respective peaks are 2289 nm, 2273 nm, and 2257 nm. (The horizontal axis of the spectrum in the figure is drawn as a linear wave number, and is non-linear with respect to the wavelength. The numerical values in the text are consistent with the discussion.) It is converted to a wavelength to maintain the property.)

【0011】傾斜角度が15度のとき、干渉フィルタの
最大透過波長が図2の長透過波長162となり、25度
のときに短透過波長161に来るように、干渉フィルタ
を15度と25度の間を周期的に振動させると、試料を
透過する光の透過率は、高透過率163と低透過率16
4の間を同じ周期で変化する。このため光の強度も変化
し、検出器で検出される電気信号は、図4の測定を妨害
する成分の信号181のように正弦波状に変化する。こ
の場合の信号の方向は、干渉フィルタの角度が25度、
すなわち透過率が高透過率163のときに正側に最高値
を、15度のとき、すなわち透過率が低透過率164の
ときに負側に最低値をとるものとする。
When the inclination angle is 15 degrees, the maximum transmission wavelength of the interference filter becomes the long transmission wavelength 162 in FIG. When the gap is periodically vibrated, the transmittance of the light transmitted through the sample becomes high transmittance 163 and low transmittance 16.
It changes in the same cycle between four. Therefore, the light intensity also changes, and the electric signal detected by the detector changes in a sine wave like the signal 181 of the component that interferes with the measurement in FIG. In this case, the direction of the signal is such that the angle of the interference filter is 25 degrees,
That is, when the transmittance is high, the maximum value is on the positive side when the transmittance is 163, and when the transmittance is 15 degrees, that is, when the transmittance is low, the minimum value is on the negative side.

【0012】次に試料中の測定対象成分が増え、それに
伴い測定対象成分の吸収151が増加したとする。この
測定吸収成分の吸収151により、干渉フィルタの角度
が15度と25度の中間付近で透過率が無成分透過率1
65から有成分透過率166へ下がる。これにより図4
の測定を妨害する成分の信号181の最高値と最低値の
中間付近、すなわちゼロクロス点で負側の極値を示す測
定対象成分の信号182が増加される。そのため測定対
象成分の増加後に観測される信号は、測定を妨害する成
分の信号181と測定対象成分の信号182の和として
得られる測定信号183である。ここで求めたい量は、
測定対象成分の増加により生じた測定対象成分の信号1
82の振幅である。
Next, it is assumed that the number of components to be measured in the sample increases, and the absorption 151 of the components to be measured increases accordingly. Due to the absorption 151 of the measured absorption component, the transmittance becomes the non-component transmittance 1 when the angle of the interference filter is about halfway between 15 degrees and 25 degrees.
From 65 the component transmittance 166 drops. As a result, FIG.
The signal 182 of the component to be measured, which is near the midpoint between the highest value and the lowest value of the signal 181 of the component that interferes with the measurement, that is, exhibits a negative extreme value at the zero crossing point, is increased. Therefore, the signal observed after the increase of the measurement target component is the measurement signal 183 obtained as the sum of the signal 181 of the component that interferes with the measurement and the signal 182 of the measurement target component. The amount we want to find here is
Signal 1 of the measurement target component caused by the increase of the measurement target component
82.

【0013】次に観測される測定信号183から、求め
たい量である測定対象成分の信号182の振幅を得る方
法について述べる。測定を妨害する成分の信号181は
大きい信号で、振幅をAとすると、信号Fは次のように
表される。
Next, a method for obtaining the amplitude of the signal 182 of the component to be measured, which is the quantity to be obtained, from the observed measurement signal 183 will be described. The signal 181 of the component that disturbs the measurement is a large signal. Assuming that the amplitude is A, the signal F is expressed as follows.

【0014】[0014]

【数1】F=Asinωt ここでωは角周波数で、周期をTとするとω=2π/T
である。
## EQU1 ## where ω is an angular frequency and the period is T, ω = 2π / T
It is.

【0015】測定対象成分の信号182は、測定を妨害
する成分の信号181に比べて非常に小さい信号なの
で、その信号が増加しても測定を妨害する成分の信号1
81は殆ど変わらない。しかしその信号の最高値と最低
値の中間点、すなわちゼロクロス点に着目すると、測定
対象成分の信号182の増加は、増加分の振幅をεとす
ると、測定を妨害する成分の信号181のゼロクロス点
付近の信号を(1/2)εだけ下げる働きをする。ここ
で近似的に測定を妨害する成分の信号181が−(1/
2)εだけ平行移動したものとしてゼロクロス点の時間
移動を求める。まず測定を妨害する成分の信号181の
ゼロクロス点の勾配は、次式のとおり信号Fの微分から
得ることができる。
The signal 182 of the component to be measured is much smaller than the signal 181 of the component that interferes with the measurement.
81 is almost the same. However, focusing on the midpoint between the highest value and the lowest value of the signal, that is, the zero-crossing point, the increase in the signal 182 of the component to be measured is represented by the zero-crossing point of the signal 181 of the component that interferes with the measurement, assuming that the amplitude of the increase is ε. It serves to lower the nearby signal by (1/2) ε. Here, the signal 181 of the component that approximately disturbs the measurement is-(1 /
2) The time movement of the zero-cross point is determined assuming that the movement is parallel movement by ε. First, the gradient of the zero crossing point of the signal 181 of the component that disturbs the measurement can be obtained from the derivative of the signal F as in the following equation.

【数2】dF/dt=Aωcosωt## EQU2 ## dF / dt = Aωcosωt

【0016】この結果、ωt=π及び2πでの勾配は、
それぞれ−Aω=−2πA/T及びAω=2πA/Tと
なる。それぞれの点で−(1/2)εだけ平行移動する
と、信号181がゼロクロス点に達するまでの時間はω
t=πの点でεT/4πAだけ速まり、ωt=2πの点
でεT/4πAだけ遅れる。測定を妨害する成分の信号
181に測定対象成分の信号182を付加された測定信
号183において、延長する半周期T2と短縮する半周
期T1の差は、以上の近似により次のようになる。
As a result, the gradient at ωt = π and 2π is
-Aω = -2πA / T and Aω = 2πA / T, respectively. When each point is translated by-(1/2) ε, the time required for the signal 181 to reach the zero-cross point is ω
At the point of t = π, it is accelerated by εT / 4πA, and at the point of ωt = 2π, it is delayed by εT / 4πA. In the measurement signal 183 in which the signal 182 of the component to be measured is added to the signal 181 of the component obstructing the measurement, the difference between the extended half cycle T2 and the shortened half cycle T1 is as follows by the above approximation.

【0017】[0017]

【数3】T2−T1=εT/πA 周期Tに対する比を求めると、T2−T1/T=ε/π
Aとなり、測定対象成分の信号182の振幅εに比例す
る値になる。全周期と半周期の一方が求まればもう一方
の半周期が求められるので、全周期と一つの半周期を測
定することにより、共存成分や主成分の影響を受けない
で測定対象成分の定量が可能である。
T2-T1 = εT / πA When the ratio to the period T is obtained, T2-T1 / T = ε / π
A, which is a value proportional to the amplitude ε of the signal 182 of the component to be measured. If one of the full cycle and half cycle is determined, the other half cycle is determined.Thus, by measuring the full cycle and one half cycle, the quantification of the component to be measured is not affected by coexisting components or principal components. Is possible.

【0018】次に図5により本発明の干渉フィルタ透過
波長走査式光度計の構造を説明する。図5の全体は、斜
視図で示した光学系とブロック線図で示した電子回路系
の二つの部分に大きく分かれている。
Next, the structure of an interference filter transmission wavelength scanning type photometer of the present invention will be described with reference to FIG. 5 is largely divided into two parts, an optical system shown in a perspective view and an electronic circuit system shown in a block diagram.

【0019】図5において、光源1から発せられた光線
は、短波長光阻止フィルタ2で短波長光部分が阻止さ
れ、長波長部分が透過し、干渉フィルタ3に達する。干
渉フィルタ3は駆動コイル7に固定され、軸4を中心に
回動振動するように組み込まれている。最外周にある駆
動コイル7の両側には、巻線部に磁界を与えるためのS
極5及びN極6が設けられており、駆動コイル7に交流
電流を流すことにより干渉フィルタ3が軸4を中心に回
動振動するようになっている。干渉フィルタ3の法線と
光軸とのなす角が15度と25度の間になるように、初
期角度は20度付近に設定されている。
In FIG. 5, the light emitted from the light source 1 is blocked by the short-wavelength light blocking filter 2 at the short-wavelength light portion, passes through the long-wavelength portion, and reaches the interference filter 3. The interference filter 3 is fixed to the drive coil 7 and is installed so as to rotate and vibrate around the shaft 4. S on both sides of the outermost drive coil 7 for applying a magnetic field to the winding portion
A pole 5 and an N pole 6 are provided. When an alternating current is passed through the drive coil 7, the interference filter 3 rotates and vibrates about the shaft 4. The initial angle is set near 20 degrees so that the angle between the normal line of the interference filter 3 and the optical axis is between 15 degrees and 25 degrees.

【0020】干渉フィルタ3の回動振動により、波長が
変調された光線はレンズ8で集光され、石英ロッド9の
端面に入射する。石英ロッド9は光線を試料10の近く
まで導き、もう一方の端面より光線を試料10に向け照
射する。照射された光線は試料10の表面を拡散反射
し、反射光の一部は赤外線検出器11に達する。赤外線
検出器11は、回動している干渉フィルタで変調され、
試料10を拡散反射することにより受けた光量の変化を
電気信号として検出する。ここで検出された電気信号が
電子回路部へ送られる。
The light beam whose wavelength is modulated by the rotation vibration of the interference filter 3 is condensed by the lens 8 and enters the end face of the quartz rod 9. The quartz rod 9 guides the light beam to the vicinity of the sample 10 and irradiates the light beam toward the sample 10 from the other end face. The irradiated light is diffusely reflected on the surface of the sample 10, and a part of the reflected light reaches the infrared detector 11. The infrared detector 11 is modulated by a rotating interference filter,
A change in the amount of light received by diffusely reflecting the sample 10 is detected as an electric signal. The electric signal detected here is sent to the electronic circuit unit.

【0021】電子回路部には、干渉フィルタ3を回動振
動させる駆動コイル7へ交流電流を供給する発振回路1
2が置かれている。交流電流により発生する回動振動が
信号の発生源となるので、回動振動の安定が測定上きわ
めて重要である。このため駆動コイル7と同じ位置に検
出コイルを置き、回動振動の速度を検出し、回動振動の
エネルギーが一定となるようにフィードバック制御を行
っている。この回動振動の周波数を基本周波数として、
光学系で発生し、赤外線検出器11で検出された電気信
号は前置増幅器13で増幅され、交流増幅器14により
交流成分の信号のみ増幅された後、ゼロクロスデテクタ
15に入る。ゼロクロスデテクタ15は、交流信号が零
になる立上り時及び立下り時に信号を発生させ、マイク
ロプロセッサ16に割りこみをかける働きをする。マイ
クロプロセッサ16は、内蔵のタイマで立上り及び立下
りの瞬間の時間を記憶する。立上りの時間を周期の初め
とすれば、次の立上がりまでの間での時間が全周期で、
立下りまでの時間が半周期として測定される。
An oscillation circuit 1 for supplying an alternating current to a drive coil 7 for rotating and rotating the interference filter 3 is provided in the electronic circuit section.
2 is placed. Since the rotation vibration generated by the alternating current is a signal generation source, the stability of the rotation vibration is extremely important for measurement. For this reason, a detection coil is placed at the same position as the drive coil 7, the speed of the rotational vibration is detected, and feedback control is performed so that the energy of the rotational vibration is constant. Using the frequency of this rotational vibration as the fundamental frequency,
The electric signal generated in the optical system and detected by the infrared detector 11 is amplified by the preamplifier 13, and the AC amplifier 14 amplifies only the signal of the AC component, and then enters the zero-cross detector 15. The zero-cross detector 15 generates a signal when the AC signal becomes zero and rises and falls when the AC signal becomes zero, and functions to interrupt the microprocessor 16. The microprocessor 16 stores the rising and falling moments using a built-in timer. If the rise time is the beginning of the cycle, the time until the next rise is the whole cycle,
The time to fall is measured as a half cycle.

【0022】この測定を予め決めた回数繰返した後、全
周期の積算値から半周期の積算値の2倍を減算し、その
値を全周期の積算値で除算する。この値を歪率と定義す
れば、歪率が計測量となる。この歪率と測定対象成分の
濃度(例えば血中のグルコース濃度測定の場合は血糖
値)を校正しておけば、計測量からグルコースの定量値
が求められ、その結果を表示及び送信を行う。マイクロ
プロセッサには、定量結果などを表示する表示器17、
装置を操作するキー18及び結果の送信などを行う通信
ポート19などが付随している。
After repeating this measurement a predetermined number of times, twice the integrated value of the half cycle is subtracted from the integrated value of the entire cycle, and the value is divided by the integrated value of the entire cycle. If this value is defined as a distortion factor, the distortion factor becomes a measured amount. If the distortion factor and the concentration of the measurement target component (for example, a blood glucose level in the case of measuring the blood glucose concentration) are calibrated, a quantitative value of glucose is obtained from the measured amount, and the result is displayed and transmitted. The microprocessor 17 has a display 17 for displaying quantitative results and the like.
A key 18 for operating the apparatus and a communication port 19 for transmitting a result are provided.

【0023】[0023]

【実施例】本発明を血中のグルコースの定量に適用した
例を示す。
An example in which the present invention is applied to the determination of glucose in blood will be described.

【0024】人間の唇には表皮近くに毛細血管が集まっ
ており、肉眼でも赤く見える。ここの表面の拡散反射を
利用して、干渉フィルタ透過波長走査式光度計による血
中のグルコース濃度の計測を試みた。図6に光学的サン
プリング部を示す。31は石英ロッドで図5の9に相当
する。32はヘッダーで石英ロッドからの光を唇34の
表面に照射し、唇34からの拡散反射光を赤外線検出器
33で受けられるようにそれぞれの位置を決め、固定し
ている。唇34の表面と赤外線検出器33の間の空洞部
分を吸引圧調整器36を附属した吸引ポンプ35で負圧
に引き、唇34の表面とヘッダ32の密着を良くしてい
る。
Human lips have capillaries gathered near the epidermis and appear red to the naked eye. Using the diffuse reflection of the surface here, the measurement of the glucose concentration in blood was attempted by an interference filter transmission wavelength scanning photometer. FIG. 6 shows an optical sampling unit. A quartz rod 31 corresponds to 9 in FIG. Reference numeral 32 denotes a header which irradiates light from a quartz rod onto the surface of the lip 34 and determines and fixes the respective positions so that the diffusely reflected light from the lip 34 can be received by the infrared detector 33. The cavity between the surface of the lips 34 and the infrared detector 33 is pulled to a negative pressure by a suction pump 35 provided with a suction pressure adjuster 36 to improve the close contact between the surface of the lips 34 and the header 32.

【0025】図7は、血液の主な成分のスペクトルを示
す図面であって、図7(A)は水のスペクトル、図7(B)は
血液から水分を除いた血糊のスペクトルである。図7
(C)は、グルコースの水溶液から水のスペクトルを差し
引いたグルコースの差スペクトルである。本実施例では
2273nm(41の位置)の波長の透過率の変化を利用
してグルコースの濃度を定量するように設計した。干渉
フィルタの最大透過波長の変化範囲は、2273nmを
中心に、2289nm(42の位置)から2258nm
(43の位置)の間に収まるようにした。
FIG. 7 is a drawing showing spectra of main components of blood. FIG. 7 (A) is a spectrum of water, and FIG. 7 (B) is a spectrum of blood glue obtained by removing water from blood. FIG.
(C) is a difference spectrum of glucose obtained by subtracting the spectrum of water from the aqueous solution of glucose. In the present example, the glucose concentration was designed to be determined by using the change in the transmittance at a wavelength of 2273 nm (position 41). The change range of the maximum transmission wavelength of the interference filter is from 2289 nm (at position 42) to 2258 nm, centering on 2273 nm.
(Position 43).

【0026】その他の設計仕様は次の通りである。 [設計仕様] 回動振動の周波数 150Hz 石英ロッド 外径1.5mm×長さ160mm 周期計測用タイマの周波数 8MHz 測定時間 300秒 マイクロプロセッサのクロック 8MHzOther design specifications are as follows. [Design Specifications] Rotational vibration frequency 150Hz Quartz rod 1.5mm outer diameter x 160mm length Frequency of cycle measurement timer 8MHz Measurement time 300sec Microprocessor clock 8MHz

【0027】上記の設計仕様に基づき干渉フィルタ透過
波長走査式光度計を試作し、無侵襲で血中のグルコース
濃度の計測を行った。測定時間を10分割し、分割した
時間内の歪率を計算し、それらの中央値6点の平均を一
つの計測値とした。健康な被験者の空腹時の血糖値を市
販の血糖計で測定し89mg/dLを得た。この状態で本発明
の干渉フィルタ透過波長走査式光度計により、被験者の
唇の拡散反射による歪率を5点計測した。次ぎに被験者
が75gのグルコースを溶かしたお湯を飲み、40分後
から70分後までの間に被験者の唇の拡散反射による歪
率を3点計測した。60分後には被験者の血糖値を測定
し308mg/dLを得た。
Based on the above design specifications, a prototype of an interference filter transmission wavelength scanning photometer was manufactured, and the glucose concentration in blood was measured noninvasively. The measurement time was divided into ten, the distortion rate within the divided time was calculated, and the average of the median six points was taken as one measured value. The fasting blood glucose level of a healthy subject was measured with a commercially available blood glucose meter to obtain 89 mg / dL. In this state, the distortion rate of the subject's lips due to diffuse reflection was measured at five points using the transmission wavelength scanning photometer of the present invention. Next, the subject drank hot water in which 75 g of glucose was dissolved, and measured the three points of the distortion rate due to the diffuse reflection of the subject's lips from 40 minutes to 70 minutes later. After 60 minutes, the blood glucose level of the subject was measured to obtain 308 mg / dL.

【0028】グルコースを飲んだ後40分から70分の
間は被験者の血糖値は一定とみなし、データをまとめた
結果を図8に示す。市販の血糖計で得られた血糖値と干
渉フィルタ透過波長走査式光度計で計測された歪率の相
関係数は0.98で、よい相関性が得られた。この結果によ
り本発明の干渉フィルタ透過波長走査式光度計による無
侵襲で血中のグルコース濃度測定が可能であることを証
明できた。
The blood glucose level of the subject is assumed to be constant from 40 minutes to 70 minutes after drinking glucose, and the data are summarized in FIG. The correlation coefficient between the blood glucose level obtained with a commercially available blood glucose meter and the distortion factor measured with an interference filter transmission wavelength scanning photometer was 0.98, indicating a good correlation. From these results, it was proved that the measurement of the glucose concentration in blood was possible without invasion using the transmission wavelength scanning photometer of the present invention.

【0029】[0029]

【発明の効果】物質の光吸収を利用した計測は、非破壊
あるいは人体に対して無侵襲でできるなど望ましい特徴
を持っている。しかし多くの場合、対象成分の吸収波長
に共存成分の吸収が重なり、一つの波長の光強度を測定
するだけでは難しい。そこで多波長の測定、すなわちス
ペクトロメトリが使われる。これでかなり応用範囲が広
がっているが、装置が大きくなり、また費用もかかる。
このような事情で注目されている割には、汎用的な計測
器としてあまり普及していない。例えば血糖計の日本の
市場では、電極式と比色式だけで、光吸収を利用した製
品はまだ見当たらない。
The measurement utilizing the light absorption of a substance has desirable characteristics such as being non-destructive or noninvasive to the human body. However, in many cases, the absorption of the coexisting component overlaps the absorption wavelength of the target component, and it is difficult to measure only the light intensity of one wavelength. Therefore, multi-wavelength measurement, that is, spectrometry is used. This offers a considerable range of applications, but at the expense of equipment and cost.
Despite attention in such circumstances, it is not widely used as a general-purpose measuring instrument. For example, in the Japanese market for blood glucose meters, there has not yet been found any product using light absorption that uses only an electrode type and a colorimetric type.

【0030】本発明は、1成分について簡単な構成でス
ペクトロメトリと同等の性能が得られている。光計測の
良さを生かし、コストパーフォーマンスのよい計測器に
道を開くことができ、産業分野、環境計測分野及び医療
分野に広く貢献することが期待され、その工業的価値は
大きい。
In the present invention, performance equivalent to that of spectrometry is obtained with a simple structure for one component. Taking advantage of the advantages of optical measurement, it is possible to open the way to a cost-effective measuring instrument, and it is expected to contribute widely to the industrial field, environmental measuring field, and medical field, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術の一例として、フィルタ相関式赤外線
分析計を示す図である。
FIG. 1 is a diagram illustrating a filter correlation type infrared spectrometer as an example of a conventional technique.

【図2】測定対象成分のスペクトルとその測定を妨害す
る共存成分の関係を示す図面である。
FIG. 2 is a diagram showing a relationship between a spectrum of a component to be measured and a coexisting component which hinders the measurement.

【図3】干渉フィルタを光軸に対して傾斜させて得たス
ペクトルの測定例を示す図面である。
FIG. 3 is a drawing showing a measurement example of a spectrum obtained by inclining an interference filter with respect to an optical axis.

【図4】測定対象成分の信号と妨害する共存成分の信号
の関係を示す図面である。
FIG. 4 is a diagram illustrating a relationship between a signal of a component to be measured and a signal of a coexisting component that interferes.

【図5】本発明の干渉フィルタ透過波長走査式光度計の
構成の一例を示す図面である。
FIG. 5 is a drawing showing an example of a configuration of an interference filter transmission wavelength scanning type photometer of the present invention.

【図6】人間の唇の拡散反射からグルコースの濃度情報
を取り出すための光学的サンプリング部を示す図であ
る。
FIG. 6 is a diagram showing an optical sampling unit for extracting glucose concentration information from diffuse reflection of a human lip.

【図7】本発明の実施例として取り上げた成分のスペク
トルを示す図面である。
FIG. 7 is a drawing showing spectra of components taken as examples of the present invention.

【図8】本発明の干渉フィルタ透過波長走査式光度計を
用いて、血中のグルコース濃度を計測した結果を示す図
面である。
FIG. 8 is a drawing showing the result of measuring the glucose concentration in blood using the transmission wavelength scanning photometer of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 短波長光阻止フィルタ 3 干渉フィルタ 4 軸 5 S極 6 N極 7 駆動コイル 8 レンズ 9 石英ロッド 10 試料 11 赤外線検出器 12 発振回路 13 前置増幅器 14 交流増幅器 15 ゼロクロスデテクタ 16 マイクロプロセッサ 17 表示器 18 キー 19 通信ポート 31 石英ロッド 32 ヘッダー 33 赤外線検出器 34 唇 35 吸引ポンプ 36 吸引圧調整器 101 赤外線光源 102 試料セル 103 回転変調器 104 測定フィルタ 105 参照フィルタ 106 同期信号調整器 110 前置増幅器 111 同期整流器 151 測定対象成分の吸収 152 測定妨害成分の吸収 161 短透過波長 162 長透過波長 163 高透過率 164 低透過率 165 無成分透過率 166 有成分透過率 181 測定妨害成分の信号 182 測定対象成分の信号 183 測定信号 REFERENCE SIGNS LIST 1 light source 2 short-wavelength light blocking filter 3 interference filter 4 axis 5 S pole 6 N pole 7 drive coil 8 lens 9 quartz rod 10 sample 11 infrared detector 12 oscillation circuit 13 preamplifier 14 AC amplifier 15 zero cross detector 16 microprocessor 17 Display 18 Key 19 Communication port 31 Quartz rod 32 Header 33 Infrared detector 34 Lip 35 Suction pump 36 Suction pressure adjuster 101 Infrared light source 102 Sample cell 103 Rotation modulator 104 Measurement filter 105 Reference filter 106 Synchronous signal adjuster 110 Front Amplifier 111 Synchronous rectifier 151 Absorption of measurement target component 152 Absorption of measurement interference component 161 Short transmission wavelength 162 Long transmission wavelength 163 High transmittance 164 Low transmittance 165 Non-component transmittance 166 Component transmittance 181 Signal of measurement interference component 82 measured components of the signal 183 measurement signal

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G020 AA03 BA02 BA14 CA02 CA13 CB04 CB07 CC26 CC48 CC62 CD04 CD12 CD13 CD22 CD36 CD37 CD51 2G059 AA01 BB13 CC16 DD13 EE01 EE02 EE12 GG07 HH01 JJ02 JJ11 KK01 MM01 MM10 NN01 PP04 4C038 KK10 KL05 KL07 KM01 KX02 KY01 KY04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G020 AA03 BA02 BA14 CA02 CA13 CB04 CB07 CC26 CC48 CC62 CD04 CD12 CD13 CD22 CD36 CD37 CD51 2G059 AA01 BB13 CC16 DD13 EE01 EE02 EE12 GG07 HH01 JJ02 JJ11 KK01 MM01 MM10 KL07 KM01 KX02 KY01 KY04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定妨害成分を含有する試料中の測定対
象成分を光吸収により計測するための装置であって、光
源と最大透過波長を周期的に走査させる手段を持つ干渉
フィルタと、検出器と、ゼロクロスデテクタとからな
り、干渉フィルタの周期的な走査により生ずる狭い範囲
の波長の変化の中心を、前記測定成分による最大吸収波
長に一致するように、干渉フィルタの走査の波長の中心
を決め、前記光源からの光を干渉フィルタとその前又は
後ろに置かれた前記試料に透過または反射させたのち、
検出器に入れ電気信号として検出し、電気信号の周期的
に変化する成分の信号の全周期及び半周期(各ゼロクロ
ス点間の時間)をゼロクロスデテクタにより求め、全周
期に対する半周期の変化量から前記成分を定量するよう
にしたことを特徴とする干渉フィルタ透過波長走査式光
度計。
1. An interference filter for measuring a component to be measured in a sample containing a measurement interference component by light absorption, the interference filter having a light source and a means for periodically scanning a maximum transmission wavelength, and a detector. And a zero-cross detector, and determine the center of the wavelength of the scanning of the interference filter so that the center of the wavelength change in a narrow range caused by the periodic scanning of the interference filter coincides with the maximum absorption wavelength by the measurement component. After transmitting or reflecting the light from the light source to the interference filter and the sample placed before or after it,
It is detected as an electric signal by entering the detector, and the full cycle and half cycle (time between each zero cross point) of the signal of the component that changes periodically are obtained by the zero cross detector. An interference filter transmission wavelength scanning type photometer, wherein the component is quantified.
【請求項2】 干渉フィルタ面の法線と光軸のなす角度
が周期的に変わるように回動させることにより最大透過
波長走査を行うことを特徴とする請求の範囲1記載の干
渉フィルタ透過波長走査式光度計。
2. The transmission wavelength of the interference filter according to claim 1, wherein the maximum transmission wavelength is scanned by rotating the interference filter so that the angle between the normal line of the interference filter surface and the optical axis changes periodically. Scanning photometer.
JP2001053023A 2000-02-28 2001-02-27 Interference filter transmission wavelength scanning photometer Expired - Fee Related JP3532870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053023A JP3532870B2 (en) 2000-02-28 2001-02-27 Interference filter transmission wavelength scanning photometer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000051329 2000-02-28
JP2000-51329 2000-02-28
JP2001053023A JP3532870B2 (en) 2000-02-28 2001-02-27 Interference filter transmission wavelength scanning photometer

Publications (2)

Publication Number Publication Date
JP2001317998A true JP2001317998A (en) 2001-11-16
JP3532870B2 JP3532870B2 (en) 2004-05-31

Family

ID=26586225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053023A Expired - Fee Related JP3532870B2 (en) 2000-02-28 2001-02-27 Interference filter transmission wavelength scanning photometer

Country Status (1)

Country Link
JP (1) JP3532870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500539A (en) * 2014-10-24 2018-01-11 モナシュ ユニバーシティ Method and system for detection of pathogens in blood
JP2018048825A (en) * 2016-09-20 2018-03-29 九州電子技研株式会社 Raman scattered light detector and raman scattered light detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310249B2 (en) * 2013-12-20 2018-04-11 日機装株式会社 Wavelength scanning analyzer and method
JP6262554B2 (en) * 2014-02-04 2018-01-17 日機装株式会社 Wavelength scanning analyzer and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018500539A (en) * 2014-10-24 2018-01-11 モナシュ ユニバーシティ Method and system for detection of pathogens in blood
US10697955B2 (en) 2014-10-24 2020-06-30 Monash University Method and system for detection of disease agents in blood
JP2018048825A (en) * 2016-09-20 2018-03-29 九州電子技研株式会社 Raman scattered light detector and raman scattered light detection method

Also Published As

Publication number Publication date
JP3532870B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US5250186A (en) HPLC light scattering detector for biopolymers
US5269937A (en) HPLC light scattering detector for biopolymers
WO2001063249A1 (en) Interference filter transmission wavelength scanning photometer
EP0781988B1 (en) Method and apparatus for determining the alcohol concentration in a gas mixture
CN109283141B (en) Exhaled gas spectrum detection system and method capable of removing water vapor interference
US4521111A (en) Apparatus for measurement of molecular orientation
JPH07151684A (en) Infrared ray type gas analyzer
JPH08327545A (en) Infrared gas analyzer
JP2001317998A (en) Interference filter transmitted wavelength scan type photometer
JP2004020539A (en) Infrared circular dichroism measuring instrument and infrared circular dichroism measuring method
JPH1164217A (en) Component quantity detecting device for spectral analyzer
JPS60205336A (en) System for removing and processing interference spectrum of mixed material in spectrochemical analyzing apparatus
JPH0777492A (en) Absorption photometer and self-diagnostic method for the absorption photometer
JP6310249B2 (en) Wavelength scanning analyzer and method
JPH0442041A (en) Isotope analyzer
Jin et al. Study on the accuracy of photoacoustic spectroscopy system based on multiple linear regression correction algorithm
CN109342344B (en) Calibration-free device of mercury analyzer and determination method thereof
JPS5910484B2 (en) spectrometer
JPS6038209Y2 (en) analyzer
JPS58190743A (en) Infrared ray gas analyser
JP6262554B2 (en) Wavelength scanning analyzer and method
JPS61160047A (en) Optical cell detecting assembly and infrared spectrophotometer
KR820001025B1 (en) Infrared analysis equipment for gas
CN111141695A (en) Non-dispersive infrared multi-component Freon gas detection system
JP2003057177A (en) Infrared gas analyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160312

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees