JP2001317920A - Method and apparatus for measuring length of conveying material - Google Patents

Method and apparatus for measuring length of conveying material

Info

Publication number
JP2001317920A
JP2001317920A JP2000136899A JP2000136899A JP2001317920A JP 2001317920 A JP2001317920 A JP 2001317920A JP 2000136899 A JP2000136899 A JP 2000136899A JP 2000136899 A JP2000136899 A JP 2000136899A JP 2001317920 A JP2001317920 A JP 2001317920A
Authority
JP
Japan
Prior art keywords
photoelectric sensor
length
camera
ccd camera
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136899A
Other languages
Japanese (ja)
Inventor
Osamu Takehisa
修 竹久
Jiro Katayama
二郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000136899A priority Critical patent/JP2001317920A/en
Publication of JP2001317920A publication Critical patent/JP2001317920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable measurement of length with higher accuracy, regardless of difference in response speed between a photoelectric sensor and a CCD camera, even when the scanning cycle of the CCD camera is delayed. SOLUTION: A CCD camera 22 is made to scan a plurality number of times, before and after the detection timing of a photoelectric sensor 20, and the conveying speed of a conveying material 12 is computed from the image obtained and the period of the scanning. The time delay, until the detection of the position of the other end thereof with a CCD camera after the generation of a photoelectric sensor detection signal, is corrected using the resultant conveying speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、搬送材料の長さ測
定方法及び装置に係り、特に、材料の温度により自発光
量が大幅に変動する熱間鋼材の長さを、光電センサとC
CDカメラの組合せにより測定する際に用いるのに好適
な、搬送材料の一端の位置を光電センサで検出し、該光
電センサの検出タイミングでの搬送材料の他端の位置を
カメラで撮像して、搬送材料の長さを測定する搬送材料
の長さ測定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the length of a conveyed material.
Suitable for use when measuring by a combination of a CD camera, the position of one end of the transport material is detected by a photoelectric sensor, and the position of the other end of the transport material at the detection timing of the photoelectric sensor is imaged by a camera. The present invention relates to a method and an apparatus for measuring the length of a transport material for measuring the length of the transport material.

【0002】[0002]

【従来の技術】熱間鋼材のように高速で搬送されている
搬送材料の長さを測定する装置として、従来より、
(1)特開平11−237214に記載されているよう
に、材料搬送方向に多数の光電センサを設けて、搬送材
料の先端及び後端によってオン・オフされる光電センサ
の位置に基づいて搬送材料の長さを測定する方法、
(2)特開昭55−12478に記載されているよう
に、搬送材料の上流側に複数の光電センサ、下流側にC
CDカメラを設けて、光電センサの検出信号出力のタイ
ミングでのCCDカメラ情報から、搬送材料の長さを測
定する方法、(3)特公平3−16602に記載されて
いるように、同じテレビカメラにより搬送材料の先端位
置が検出されてから後端位置が検出されるまでの移動距
離を、別体の速度計で検出した移動速度を積分すること
によって求めて、搬送材料の長さを測定する方法等が知
られている。
2. Description of the Related Art As a device for measuring the length of a conveyed material, such as a hot steel material, which is conveyed at a high speed, conventionally,
(1) As described in JP-A-11-237214, a large number of photoelectric sensors are provided in the material transport direction, and the transport material is turned on / off by the leading and trailing ends of the transport material. How to measure the length of
(2) As described in JP-A-55-12478, a plurality of photoelectric sensors are provided on the upstream side of the conveyed material, and C is provided on the downstream side.
A method of providing a CD camera and measuring the length of a transported material from CCD camera information at the timing of detection signal output of a photoelectric sensor. (3) As described in JP-B-3-16602, the same television camera Calculate the moving distance from the detection of the front end position of the transfer material to the detection of the rear end position by integrating the movement speed detected by a separate speedometer to measure the length of the transfer material. Methods and the like are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例え
ば、複数の熱間鋼材を搬送するラインにおいては、例え
ば熱間鋼材の搬送速度は0〜7m/秒で、測定精度は材
料長さ±1mmを保証できる長さ測定装置が要求されて
いる。
However, for example, in a line for transporting a plurality of hot steel materials, for example, the transport speed of the hot steel materials is 0 to 7 m / sec, and the measurement accuracy is guaranteed to be ± 1 mm in material length. There is a need for a length measuring device that can be used.

【0004】このようなラインにおいて、前記(1)の
多数の光電センサの組合せにより長さ測定をした場合、
生産される材料全ての長さを測定するためには、多数の
センサが必要であり、実生産ラインにおいては、設置場
所の制約を受けるため、設置間隔が粗くなり、精度良く
測定することが困難である。
In such a line, when the length is measured by a combination of a large number of photoelectric sensors of the above (1),
In order to measure the length of all materials to be produced, a large number of sensors are required. In an actual production line, installation intervals are coarse because installation locations are limited, making it difficult to measure accurately. It is.

【0005】このような問題を解決するため、前記
(2)のように、搬送材料の下流側にCCDカメラを設
けて先端検出をする方法がある。このとき、CCDカメ
ラを用いて材料を検出するために、搬送テーブル上方に
CCDカメラを設け、搬送テーブル下方の相対する位置
に光源を設ける透過方式が知られているが、例えば圧延
ミル近傍に設置しようとした場合、搬送ロールに遮光さ
れる等の設備制約で、適用できないことが多い。又、設
置できたとしても、下部光源の投光量が少なくなると、
測定精度に影響が出るため、メンテナンスを高頻度で行
わなければならない。更に、メンテナンスを行うにして
も、環境が悪く、作業負荷の高いものとなってしまう。
[0005] In order to solve such a problem, there is a method of providing a CCD camera downstream of the conveyed material and detecting the leading end as described in (2) above. At this time, in order to detect a material using a CCD camera, a transmission system in which a CCD camera is provided above the transport table and a light source is provided at a position opposite to the lower portion of the transport table is known. If this is attempted, it cannot be applied in many cases due to equipment restrictions such as being shielded from light by the transport rolls. Also, even if it can be installed, if the lower light source emits less light,
Maintenance must be performed at high frequency because measurement accuracy is affected. Further, even if maintenance is performed, the environment is poor and the work load is high.

【0006】このため、高温の材料の熱による発光を利
用した自発光方式により材料を検出する方法が知られて
いる。しかしながら、材料の温度で自発光量が大幅に変
動するため、CCDカメラへの受光量が大きく変化し、
イメージセンサ素子を用いるCCDカメラの最適高精度
検出には、CCDカメラの走査周期、露光時間、絞り機
構の設定を変える必要がある。例えば900℃の高温材
では1ミリ秒の高速走査が要求されるのに対して、60
0℃の低温材では、5ミリ秒の低速走査とすることで、
受光時間を増やし、必要受光量を得る必要があり、この
ため、上流の光電センサの早い応答周期に対して、CC
Dカメラの検出周期に大幅なズレが発生し、大きな測定
誤差になるという問題があった。
For this reason, there is known a method of detecting a material by a self-luminous method utilizing light emission of a high-temperature material by heat. However, since the amount of self-emission greatly varies depending on the temperature of the material, the amount of light received by the CCD camera greatly changes,
For optimal high-precision detection of a CCD camera using an image sensor element, it is necessary to change the scanning cycle, exposure time, and aperture setting of the CCD camera. For example, a high-temperature material of 900 ° C. requires a high-speed scanning of 1 millisecond,
For low-temperature materials at 0 ° C, scan at a low speed of 5 ms,
It is necessary to increase the light receiving time and obtain the required light receiving amount.
There is a problem that a large deviation occurs in the detection cycle of the D camera, resulting in a large measurement error.

【0007】例えば図1に示すように、低温材でのCC
Dカメラの走査周期を5ミリ秒とすれば、(ii)の走査
時間中に光電センサの検出信号が入って来た場合、(ii
i)のCCDカメラの画像情報を用いると、光電センサ
の検出タイミングとの間に4ミリ秒の測定タイミングの
誤差が発生する。搬送材料の搬送速度が例えば7m/秒
であれば、材料長さの測定誤差は4×7=28mmとな
り、これに光電センサやCCDカメラの応答遅れを加え
ると約56mmとなり、要求精度を満足できないという
問題点を有していた。
For example, as shown in FIG.
Assuming that the scanning cycle of the D camera is 5 milliseconds, when a detection signal of the photoelectric sensor comes in during the scanning time of (ii), (ii)
When the image information of the CCD camera i) is used, an error of the measurement timing of 4 ms occurs between the detection timing of the photoelectric sensor and the detection timing of the photoelectric sensor. If the conveying speed of the conveyed material is, for example, 7 m / sec, the measurement error of the material length is 4 × 7 = 28 mm, and when adding the response delay of the photoelectric sensor or the CCD camera to about 56 mm, the required accuracy cannot be satisfied. There was a problem that.

【0008】一方、特公平3−16602に記載された
前記(3)のテレビカメラと速度計を用いる方法では、
別体の速度計が必要であり、構成が複雑となるだけでな
く、速度の測定誤差がそのまま長さ測定誤差につながる
という問題点を有していた。
On the other hand, in the method (3) using a television camera and a speedometer described in Japanese Patent Publication No. 3-16602,
A separate speedometer is required, which not only complicates the configuration, but also has a problem that a speed measurement error directly leads to a length measurement error.

【0009】本発明は、前記従来の問題点を解消するべ
くなされたもので、カメラの走査周期が遅い場合でも、
高精度の長さ測定を可能とすることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems.
It is an object to enable length measurement with high accuracy.

【0010】[0010]

【課題を解決するための手段】本発明は、搬送材料の一
端の位置を光電センサで検出し、該光電センサの検出タ
イミングでの搬送材料の他端の位置をカメラで撮像し
て、搬送材料の長さを測定する搬送材料の長さ測定方法
において、少なくとも前記光電センサ検出タイミングの
前後で、前記カメラを複数回走査し、得られた画像とそ
の走査周期から、搬送材料の搬送速度を演算して、前記
長さ測定に用いるようにして、前記課題を解決したもの
である。
According to the present invention, a position of one end of a conveyed material is detected by a photoelectric sensor, and a position of the other end of the conveyed material at a detection timing of the photoelectric sensor is imaged by a camera. In the method for measuring the length of a transporting material for measuring the length of the transporting material, the camera is scanned a plurality of times at least before and after the photoelectric sensor detection timing, and the transporting speed of the transporting material is calculated from the obtained image and its scanning cycle. Then, the problem is solved by using the length measurement.

【0011】又、前記演算された搬送速度を用いて、前
記光電センサ検出信号が発生されてから、前記カメラに
よる他端位置検出が行われるまでの時間遅れを補正する
ようにしたものである。
In addition, a time delay from when the photoelectric sensor detection signal is generated to when the position of the other end is detected by the camera is corrected using the calculated transport speed.

【0012】本発明は、又、搬送材料の長さ測定装置に
おいて、搬送材料の一端の位置を検出する光電センサ
と、少なくとも該光電センサの検出タイミングの前後
で、搬送材料の他端の位置を複数回走査して撮像するカ
メラと、該カメラによって得られた画像とその走査周期
から、搬送材料の搬送速度を演算する速度演算手段と、
該速度演算手段によって演算された搬送速度を用いて、
前記光電センサ検出信号が発生されてから、前記カメラ
による他端位置検出が行われるまでの時間遅れを補正す
る補正手段と、該補正手段によって補正された端部位置
データを用いて、搬送材料の長さを演算する長さ演算手
段と備えることにより、同じく前記課題を解決したもの
である。
According to another aspect of the present invention, there is provided a transport material length measuring apparatus, wherein a photoelectric sensor for detecting a position of one end of the transport material, and a position of the other end of the transport material at least before and after the detection timing of the photoelectric sensor. A camera that scans and captures a plurality of times, and a speed calculation unit that calculates a transport speed of the transport material from an image obtained by the camera and a scanning cycle thereof,
Using the transport speed calculated by the speed calculating means,
Correction means for correcting a time delay from when the photoelectric sensor detection signal is generated to when the other end position is detected by the camera, and using the end position data corrected by the correction means, By providing a length calculating means for calculating the length, the above-mentioned problem is also solved.

【0013】[0013]

【発明の実施の形態】以下図面を参照して、本発明の実
施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】本実施形態は、図2に示す如く、搬送テー
ブル10によって矢印Aの方向に搬送されている搬送材
料10の一端(ここでは後端12b)の位置を、上流側
で検出する光電センサ20と、下流側で、少なくとも該
光電センサ20の検出タイミングの前後で、前記搬送材
料12の自発光により、その他端(ここでは先端12
a)の位置を複数回走査して撮像するCCDカメラ22
と、前記光電センサ20の検出信号とCCDカメラ22
の走査タイミング毎の画像データから、搬送材料12の
長さを計算するデータ解析装置30とを備えている。
In this embodiment, as shown in FIG. 2, a photoelectric sensor for detecting the position of one end (here, a rear end 12b) of a conveyed material 10 being conveyed in the direction of arrow A by a conveying table 10 on the upstream side. 20 and at the downstream side, at least before and after the detection timing of the photoelectric sensor 20, the self-emission of the transport material 12 causes the other end (here, the tip 12
CCD camera 22 that scans the position of a) a plurality of times to take an image
And the detection signal of the photoelectric sensor 20 and the CCD camera 22
And a data analyzer 30 for calculating the length of the transport material 12 from the image data at each scan timing.

【0015】該データ解析装置30は、例えば、前記C
CDカメラ22によって得られた画像とその走査周期か
ら、搬送材料12の搬送速度を演算する速度演算部32
と、該速度演算部32によって演算された搬送速度を用
いて、前記光電センサ検出信号が発生されてから、前記
CCDカメラ22による先端位置検出が行われるまでの
時間遅れを補正する補正部34と、該補正部34によっ
て補正された端部位置データを用いて、搬送材料12の
長さを演算する長さ演算部36を含んでいる。
The data analyzer 30 is, for example,
A speed calculator 32 for calculating the transport speed of the transport material 12 from the image obtained by the CD camera 22 and the scanning cycle thereof.
And a correction unit 34 for correcting a time delay from when the photoelectric sensor detection signal is generated to when the tip position is detected by the CCD camera 22 using the transport speed calculated by the speed calculation unit 32. And a length calculation unit 36 for calculating the length of the transport material 12 using the end position data corrected by the correction unit 34.

【0016】以下、本実施形態の作用を説明する。今、
図3に示す(ii)の走査時間内に光電センサ20の検出
信号が送信されたとすると、このとき連続で測定してい
る画像データ(i)〜(iii)より搬送材料12の移動距
離が分かり、走査周期で割ることによって、搬送速度が
算出できる。
Hereinafter, the operation of the present embodiment will be described. now,
Assuming that the detection signal of the photoelectric sensor 20 is transmitted within the scanning time (ii) shown in FIG. 3, the moving distance of the transport material 12 can be determined from the image data (i) to (iii) continuously measured at this time. , The scanning speed, the transport speed can be calculated.

【0017】従って、この搬送速度から、既知の光電セ
ンサ20の応答遅れ及びCCDカメラ22の処理遅れに
よる誤差を補正し、光電センサ20の検出タイミングと
CCDカメラ22の検出タイミングを同期させることに
よって、(ii)の走査時間内での光電センサ20の正確
な検出タイミングが分かる。このデータと材料の速度デ
ータより、光電センサ検出時の正確な材料先端位置を知
ることができ、光電センサ20とCCDカメラ22の位
置の関係、及び、先端検出情報から、材料の長さを測定
することができる。
Accordingly, errors due to the known response delay of the photoelectric sensor 20 and the processing delay of the CCD camera 22 are corrected based on the transport speed, and the detection timing of the photoelectric sensor 20 and the detection timing of the CCD camera 22 are synchronized. The accurate detection timing of the photoelectric sensor 20 within the scanning time (ii) can be found. From this data and the speed data of the material, it is possible to know the accurate position of the material tip when the photoelectric sensor is detected, and to measure the length of the material from the relationship between the position of the photoelectric sensor 20 and the CCD camera 22 and the tip detection information. can do.

【0018】[0018]

【実施例】CCDカメラ22の走査周期は、材料温度が
900℃程度の高温の場合は、0.5ミリ秒でよいが、
600℃程度の低温になると、5ミリ秒程度ないと明瞭
な画像が得られない。そこで、CCDカメラ22の走査
周期を5ミリ秒とした場合、走査周期(i)〜(iii)の
材料の移動距離が図3中に示したように105mmであ
れば、搬送速度は7m/秒となる。このとき、光電セン
サ20の応答遅れを1ミリ秒、CCDカメラ22の処理
遅れを1ミリ秒とすると、それぞれ7mmの測定遅れが
あることが分かる。
The scanning cycle of the CCD camera 22 may be 0.5 millisecond when the material temperature is as high as about 900 ° C.
At a low temperature of about 600 ° C., a clear image cannot be obtained unless about 5 milliseconds. Therefore, when the scanning cycle of the CCD camera 22 is set to 5 milliseconds and the moving distance of the material in the scanning cycles (i) to (iii) is 105 mm as shown in FIG. 3, the transport speed is 7 m / sec. Becomes At this time, if the response delay of the photoelectric sensor 20 is 1 millisecond and the processing delay of the CCD camera 22 is 1 millisecond, it can be seen that there is a measurement delay of 7 mm each.

【0019】従って、(ii)の走査時間内(例えば走査
開始より3ミリ秒後)に光電センサ20の検出信号が入
ってきた場合、そのときの先端位置は、走査周期(ii)
の検出位置(図3の実線B)に対して、7×3=21m
m下流に進んだ位置となることが分かる。
Therefore, when a detection signal of the photoelectric sensor 20 is received within the scanning time of (ii) (for example, 3 milliseconds after the start of scanning), the tip position at that time is determined by the scanning period (ii)
7 × 3 = 21 m with respect to the detection position (solid line B in FIG. 3)
It can be seen that this is a position that has advanced to m downstream.

【0020】よって、光電センサ20及びCCDカメラ
22の応答遅れ量と、搬送速度による光電センサ検出タ
イミングでのCCDカメラ検出位置補正により、実際の
先端位置(図3破線C)が分かる。従って、この補正後
の先端検出位置Cと既知の光電センサ20及びCCDカ
メラ22の位置関係から、搬送材料12の長さを測定す
ることができる。
Therefore, the actual tip position (broken line C in FIG. 3) can be determined from the response delay amount of the photoelectric sensor 20 and the CCD camera 22 and the CCD camera detection position correction at the photoelectric sensor detection timing based on the transport speed. Therefore, the length of the transport material 12 can be measured from the positional relationship between the corrected tip detection position C and the known photoelectric sensor 20 and CCD camera 22.

【0021】なお、前記説明においては、光電センサ2
0により搬送材料12の後端12bを検出し、CCDカ
メラ22により搬送材料12の先端12aを検出するよ
うにされていたが、光電センサとCCDカメラの配置を
逆にして、光電センサ20により搬送材料12の先端1
2aが検出されたときの、CCDカメラ22により検出
される搬送材料12の後端12bの位置から長さ測定を
する場合にも、本発明が同様に適用できることは明らか
である。
In the above description, the photoelectric sensor 2
0, the rear end 12b of the transport material 12 is detected, and the front end 12a of the transport material 12 is detected by the CCD camera 22. However, the arrangement of the photoelectric sensor and the CCD camera is reversed, and the transport by the photoelectric sensor 20 is performed. Tip 1 of material 12
It is apparent that the present invention can be similarly applied to the case where the length is measured from the position of the rear end 12b of the conveyed material 12 detected by the CCD camera 22 when 2a is detected.

【0022】又、本発明は、自発光量の少ない低温材料
をCCDカメラで検出する際に好適なものであるが、本
発明の適用対象はこれに限定されず、CCDカメラ以外
のカメラを用いて、一般の搬送材料を測定する場合にも
同様に適用できることは明らかである。
The present invention is suitable for detecting a low-temperature material having a small amount of self-emission with a CCD camera, but the present invention is not limited to this, and the present invention is not limited to this. It is clear that the present invention can be similarly applied to the case of measuring a general transport material.

【0023】[0023]

【発明の効果】本発明によれば、カメラの走査周期が遅
い場合でも、光電センサとカメラの応答速度の違いによ
り発生する検出時間のズレの影響を解消して、搬送材料
の長さを精度良く測定することが可能となる。
According to the present invention, even when the scanning cycle of the camera is slow, the influence of the difference in the detection time caused by the difference in the response speed between the photoelectric sensor and the camera is eliminated, and the length of the conveyed material can be adjusted accurately. It becomes possible to measure well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の問題点を説明するための、光電センサの
検出信号、CCDカメラの走査タイミング及び画像情報
の関係の例を示す線図
FIG. 1 is a diagram showing an example of a relationship between a detection signal of a photoelectric sensor, a scanning timing of a CCD camera, and image information for explaining a conventional problem.

【図2】本発明の実施形態の全体構成を示す図FIG. 2 is a diagram showing an overall configuration of an embodiment of the present invention.

【図3】本発明の実施形態の作用を説明するための、光
電センサの検出信号、CCDカメラの走査タイミング及
び画像情報の関係の例を示す線図
FIG. 3 is a diagram illustrating an example of a relationship among a detection signal of a photoelectric sensor, a scanning timing of a CCD camera, and image information for explaining the operation of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…搬送テーブル 12…搬送材料 12a…先端 12b…後端 20…光電センサ 22…CCDカメラ 30…データ解析装置 32…速度演算回路 34…補正回路 36…長さ演算回路 DESCRIPTION OF SYMBOLS 10 ... Convey table 12 ... Convey material 12a ... Top 12b ... Rear end 20 ... Photoelectric sensor 22 ... CCD camera 30 ... Data analyzer 32 ... Speed calculation circuit 34 ... Correction circuit 36 ... Length calculation circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA07 AA12 AA22 BB13 CC06 DD03 EE00 EE03 FF04 FF26 FF32 FF34 JJ01 JJ03 JJ18 JJ26 MM03 MM22 MM28 PP01 PP16 QQ13 UU02 UU05 4K034 AA19 BA08 CA01 DA04 DB04 EA12 EB01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA07 AA12 AA22 BB13 CC06 DD03 EE00 EE03 FF04 FF26 FF32 FF34 JJ01 JJ03 JJ18 JJ26 MM03 MM22 MM28 PP01 PP16 QQ13 UU02 UU05 4K034 AA19 DB08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】搬送材料の一端の位置を光電センサで検出
し、該光電センサの検出タイミングでの搬送材料の他端
の位置をカメラで撮像して、搬送材料の長さを測定する
搬送材料の長さ測定方法において、 少なくとも前記光電センサ検出タイミングの前後で、前
記カメラを複数回走査し、 得られた画像とその走査周期から、搬送材料の搬送速度
を演算して、前記長さ測定に用いることを特徴とする搬
送材料の長さ測定方法。
1. A transfer material for detecting the position of one end of the transfer material by a photoelectric sensor, capturing the position of the other end of the transfer material at a detection timing of the photoelectric sensor by a camera, and measuring the length of the transfer material. In the length measuring method, at least before and after the photoelectric sensor detection timing, the camera is scanned a plurality of times, the transport speed of the transport material is calculated from the obtained image and its scanning cycle, and the length measurement is performed. A method for measuring the length of a transport material, which is used.
【請求項2】前記演算された搬送速度を用いて、前記光
電センサ検出信号が発生されてから、前記カメラによる
他端位置検出が行われるまでの時間遅れを補正すること
を特徴とする請求項1に記載の搬送材料の長さ測定方
法。
2. A time delay from when the photoelectric sensor detection signal is generated to when the other end position is detected by the camera is corrected using the calculated transport speed. 2. The method for measuring the length of a transport material according to 1.
【請求項3】搬送材料の一端の位置を検出する光電セン
サと、 少なくとも該光電センサの検出タイミングの前後で、搬
送材料の他端の位置を複数回走査して撮像するカメラ
と、 該カメラによって得られた画像とその走査周期から、搬
送材料の搬送速度を演算する速度演算手段と、 該速度演算手段によって演算された搬送速度を用いて、
前記光電センサ検出信号が発生されてから、前記カメラ
による他端位置検出が行われるまでの時間遅れを補正す
る補正手段と、 該補正手段によって補正された端部位置データを用い
て、搬送材料の長さを演算する長さ演算手段と、 備えたことを特徴とする搬送材料の長さ測定装置。
3. A photoelectric sensor for detecting a position of one end of a conveyed material, a camera for scanning and imaging a position of the other end of the conveyed material a plurality of times at least before and after the detection timing of the photoelectric sensor, From the obtained image and the scanning cycle thereof, a speed calculating means for calculating a conveying speed of the conveyed material, using the conveying speed calculated by the speed calculating means,
Correction means for correcting a time delay from when the photoelectric sensor detection signal is generated to when the other end position is detected by the camera, using the end position data corrected by the correction means, A length measuring device, comprising: a length calculating means for calculating a length;
JP2000136899A 2000-05-10 2000-05-10 Method and apparatus for measuring length of conveying material Pending JP2001317920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136899A JP2001317920A (en) 2000-05-10 2000-05-10 Method and apparatus for measuring length of conveying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136899A JP2001317920A (en) 2000-05-10 2000-05-10 Method and apparatus for measuring length of conveying material

Publications (1)

Publication Number Publication Date
JP2001317920A true JP2001317920A (en) 2001-11-16

Family

ID=18644770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136899A Pending JP2001317920A (en) 2000-05-10 2000-05-10 Method and apparatus for measuring length of conveying material

Country Status (1)

Country Link
JP (1) JP2001317920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020379A (en) * 2006-07-14 2008-01-31 Topy Ind Ltd System and method for measuring endless track shoe
CN103134454A (en) * 2013-02-01 2013-06-05 中联重科股份有限公司 Position detection method, device and system of rubbish compressor and pushing head
WO2022162796A1 (en) * 2021-01-27 2022-08-04 株式会社日立ハイテク Optical foreign matter inspection device and computer system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020379A (en) * 2006-07-14 2008-01-31 Topy Ind Ltd System and method for measuring endless track shoe
JP4716433B2 (en) * 2006-07-14 2011-07-06 トピー工業株式会社 Measuring system and measuring method for track plate for endless track
CN103134454A (en) * 2013-02-01 2013-06-05 中联重科股份有限公司 Position detection method, device and system of rubbish compressor and pushing head
WO2022162796A1 (en) * 2021-01-27 2022-08-04 株式会社日立ハイテク Optical foreign matter inspection device and computer system

Similar Documents

Publication Publication Date Title
JP2985323B2 (en) Pattern inspection method and apparatus
JP2011237210A (en) Position measurement system
US4700572A (en) Automatic ultrasonic flaw detecting system
JP2001317920A (en) Method and apparatus for measuring length of conveying material
JP3312564B2 (en) Measuring device for long objects
JP2004325338A (en) Device and method for inspecting printed circuit board
JP3533789B2 (en) Paper thickness detector
JPH05107038A (en) Image sensing apparatus
JPS63128890A (en) Image detector for surface region of travelling goods route
JP2000292123A (en) Shape measuring apparatus
JP2000283727A (en) Device for inspecting plywood manufacturing
JP3760780B2 (en) Paper sheet conveyance control device, paper sheet conveyance control method, and paper sheet conveyance control program
JP2000035320A (en) Inspection method using accumulation type line sensor and device thereof
JPH02268210A (en) Method for measuring width and length of slab
JPS6139286Y2 (en)
JP2004279378A (en) Dislocation correcting method and cross-direction profile measuring device for sheet product using the same
JP2001183112A (en) Position detecting device for carried material
JPH02212015A (en) End cutting method in hot billet rolling
CN116164689A (en) Method and device for measuring an object
JP2000105827A (en) Position shift detecting device
JP2000105828A (en) Position shift correcting device
JPH0534141A (en) Detecting device of length
JP2000126926A (en) Shearing device and shearing method
CN114472538A (en) Signal tracking method applied to steel rolling system
JPH10239019A (en) Moving body position measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803