JP2001310985A - Flame retardant thermoblastic resin composition - Google Patents
Flame retardant thermoblastic resin compositionInfo
- Publication number
- JP2001310985A JP2001310985A JP2001032830A JP2001032830A JP2001310985A JP 2001310985 A JP2001310985 A JP 2001310985A JP 2001032830 A JP2001032830 A JP 2001032830A JP 2001032830 A JP2001032830 A JP 2001032830A JP 2001310985 A JP2001310985 A JP 2001310985A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- component
- parts
- flame
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐衝撃性、耐熱
性、流動性、難燃性および押出生産安定性に優れた非ハ
ロゲン系の難燃性熱可塑性樹脂組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-halogen flame-retardant thermoplastic resin composition having excellent impact resistance, heat resistance, fluidity, flame retardancy and extrusion production stability.
【0002】[0002]
【従来の技術】従来、難燃性を付与したABS樹脂は、
成形品表面外観、成形加工性、機械的性質などが優れて
いることより、電気・電子分野、OA機器分野に幅広く
使用されている。近年、これらの製品においては、環境
保護の立場よりハロゲン系難燃剤の使用を自粛する傾向
があり、PC(ポリカーボネート)/ABSアロイ樹脂
をベースにリン酸エステル系難燃剤を組み合わせた難燃
材料が上市されている。しかしながら、PC/ABSア
ロイ樹脂にリン酸エステル系難燃剤を組み合わせた場合
には、押出生産安定性が悪く、また、耐薬品性に劣る場
合がある。リン酸エステル系難燃剤を組み合わせ、かつ
押出生産安定性を向上させるために、ポリカーボネート
樹脂の分子量が低いものを使用する場合には、押出生産
安定性は向上しても耐衝撃性が低下する。さらに、ドリ
ッピング防止剤としてポリテトラフルオロエチレンを一
般的に添加するが、ポリテトラフルオロエチレンは、通
常、分子量100万以上の高分子量化合物であるため、
均一分散し難く、得られる組成物の耐衝撃強度低下や、
押出機でのペレット化時にストランドが安定して引けな
くなるなどの問題がある。2. Description of the Related Art Conventionally, ABS resins provided with flame retardancy are:
Due to their excellent surface appearance, moldability, and mechanical properties, they are widely used in the fields of electrical and electronic equipment and OA equipment. In recent years, in these products, there has been a tendency to refrain from using halogen-based flame retardants from the standpoint of environmental protection, and flame-retardant materials combining phosphate ester-based flame retardants based on PC (polycarbonate) / ABS alloy resin have been used. Has been launched. However, when a phosphate ester-based flame retardant is combined with a PC / ABS alloy resin, the extrusion production stability is poor and the chemical resistance may be poor. When a polycarbonate resin having a low molecular weight is used in combination with a phosphate ester flame retardant and the extrusion production stability is improved, the impact resistance is reduced even though the extrusion production stability is improved. Further, polytetrafluoroethylene is generally added as an anti-dripping agent, but polytetrafluoroethylene is usually a high molecular weight compound having a molecular weight of 1,000,000 or more.
Difficult to uniformly disperse, lowering the impact strength of the resulting composition,
There is a problem that the strand cannot be stably pulled at the time of pelletization in the extruder.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記従来技
術の課題を背景になされたもので、上記問題点を解決で
きる、耐衝撃性、耐熱性、流動性、難燃性および押出生
産安定性に優れた非ハロゲン系の難燃性熱可塑性樹脂組
成物を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and can solve the above-mentioned problems by providing impact resistance, heat resistance, fluidity, flame retardancy, and stable extrusion production. An object of the present invention is to provide a non-halogen flame-retardant thermoplastic resin composition having excellent heat resistance.
【0004】[0004]
【課題を解決するための手段】本発明の難燃性熱可塑性
樹脂組成物は、下記(A)ゴム強化樹脂10〜40重量
部、および(B)粘度平均分子量が16,000〜3
0,000の芳香族ポリカーボネート90〜60重量部
〔ただし、(A)+(B)=100重量部〕の合計10
0重量部に対して、(C)下記一般式(I)で表される
リン酸エステル化合物8〜25重量部、ならびに、
(D)ポリテトラフルオロエチレン(d1)および滑剤
(d2)を、(d1)10〜70重量%および(d2)
90〜30重量%〔ただし、(d1)+(d2)=10
0重量%〕の割合で、合計0.1〜10重量部を配合し
てなることを特徴とする。 (A);粒子径150nm以下の粒子が15重量%以
下、150nmを超え350nm未満が60重量%以
上、350nm以上が25重量%以下である粒子径分布
を有するゴム質重合体の存在下に、芳香族ビニル化合物
およびシアン化ビニル化合物を主成分とする単量体成分
をグラフト重合して得られるゴム強化樹脂。The flame-retardant thermoplastic resin composition of the present invention has the following (A) 10 to 40 parts by weight of a rubber-reinforced resin, and (B) a viscosity-average molecular weight of 16,000 to 3
90 to 60 parts by weight of 0000 aromatic polycarbonate (provided that (A) + (B) = 100 parts by weight)
(C) 8 to 25 parts by weight of a phosphoric ester compound represented by the following general formula (I), and
(D) 10 to 70% by weight of (d1) and (d2) polytetrafluoroethylene (d1) and a lubricant (d2)
90 to 30% by weight [(d1) + (d2) = 10
0% by weight] and a total of 0.1 to 10 parts by weight. (A); in the presence of a rubbery polymer having a particle size distribution in which 15% by weight or less of particles having a particle diameter of 150 nm or less, 60% by weight or more and less than 350 nm and 150% or more and 25% by weight or less of 350 nm or more, A rubber reinforced resin obtained by graft polymerization of a monomer component containing an aromatic vinyl compound and a vinyl cyanide compound as main components.
【0005】[0005]
【化2】 Embedded image
【0006】〔ただし、R1 ,R2 ,R3 およびR4
は、それぞれ相互に独立して選ばれるフェニル基または
キシレニル基、Xはm−フェニレン基または2,2−ビ
ス(4′−フェニレン)プロパン基を表し、nは0.5
〜1.2である。〕[However, R 1 , R 2 , R 3 and R 4
Represents a phenyl group or a xylenyl group each independently selected, X represents an m-phenylene group or a 2,2-bis (4'-phenylene) propane group, and n represents 0.5
1.21.2. ]
【0007】本発明に係わる(A)ゴム強化樹脂は、特
定の粒子径分布を有するゴム質重合体の存在下に、芳香
族ビニル化合物およびシアン化ビニル化合物を主成分と
する単量体成分をグラフト重合して得られる。なお、上
記(A)ゴム強化樹脂は、上記グラフト重合して得られ
るグラフト共重合体に、上記単量体成分の群から選ばれ
た少なくとも1種の単量体成分の(共)重合体を別に製
造し、ブレンドしたものでもよい。The rubber-reinforced resin (A) according to the present invention comprises a monomer component containing an aromatic vinyl compound and a vinyl cyanide compound as main components in the presence of a rubbery polymer having a specific particle size distribution. Obtained by graft polymerization. The rubber-reinforced resin (A) is obtained by adding a (co) polymer of at least one monomer component selected from the group of the monomer components to a graft copolymer obtained by the graft polymerization. It may be manufactured separately and blended.
【0008】上記ゴム質重合体としては、ポリブタジエ
ン、スチレン−ブタジエン共重合体、スチレン−イソプ
レン共重合体、ブタジエン−アクリロニトリル共重合
体、エチレン−プロピレン−(非共役ジエン)系共重合
体、エチレン−ブテン−1−(非共役ジエン)共重合
体、イソブチレン−イソプレン共重合体、アクリルゴ
ム、スチレン−ブタジエン−スチレンブロック共重合
体、スチレン−イソプレン−スチレンブロック共重合
体、ポリウレタンゴムおよびシリコーンゴムなどが挙げ
られる。上記スチレン−ブタジエン共重合体の具体例と
しては、スチレン−ブタジエンランダム共重合体、スチ
レン−ブタジエンブロック共重合体などが挙げられる。
さらに、上記ポリブタジエン、スチレン−ブタジエン共
重合体などの水素添加物を用いることもできる。上記ゴ
ム質重合体は、1種単独で使用することも、あるいは2
種以上を混合して使用することもできる。これらの中
で、ポリブタジエン、スチレン−ブタジエン共重合体、
エチレン−プロピレン−(非共役ジエン)系共重合体、
水素添加ジエン系(共)重合体、およびシリコーンゴム
が好ましい。Examples of the rubbery polymer include polybutadiene, styrene-butadiene copolymer, styrene-isoprene copolymer, butadiene-acrylonitrile copolymer, ethylene-propylene- (non-conjugated diene) copolymer, ethylene- Butene-1- (non-conjugated diene) copolymer, isobutylene-isoprene copolymer, acrylic rubber, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, polyurethane rubber, silicone rubber and the like. No. Specific examples of the styrene-butadiene copolymer include a styrene-butadiene random copolymer and a styrene-butadiene block copolymer.
Further, hydrogenated products such as the above-mentioned polybutadiene and styrene-butadiene copolymer can also be used. The above-mentioned rubbery polymer may be used alone or
A mixture of more than one species can be used. Among these, polybutadiene, styrene-butadiene copolymer,
An ethylene-propylene- (non-conjugated diene) copolymer,
Hydrogenated diene (co) polymers and silicone rubbers are preferred.
【0009】上記ゴム質重合体の粒子径分布は、本発明
の重要な要件である。この粒子径分布は、粒子径150
nm以下のゴム質重合体が15重量%以下、好ましくは
12重量%以下であり、粒子径150nmを超え350
nm未満のゴム質重合体が60重量%以上、好ましくは
65重量%以上、粒子径350nm以上のゴム質重合体
が25重量%以下、好ましくは20重量%以下である。
上記ゴム質重合体の粒子径分布は、成形時のゴムの配向
に大きな関連があり、粒子径分布がこの範囲であれば、
実用耐衝撃強度が良好となる。ゴムの配向とは、成形時
の剪断応力により、ゴム粒子が流動方向に変形する現象
であり、配向が大きくなると実用耐衝撃強度が低下す
る。粒子径150nm以下のゴム質重合体が多すぎる場
合は、ゴム粒子の応力分散効果が低下するため実用耐衝
撃強度が低下し、350nm以上のゴム質重合体が多す
ぎる場合には、配向が大きくなり、実用耐衝撃強度が低
下し、さらに燃焼性評価(難燃性)も低下する。[0009] The particle size distribution of the rubbery polymer is an important requirement of the present invention. This particle size distribution has a particle size of 150
The rubbery polymer having a particle size of 15 nm or less is 15% by weight or less, preferably 12% by weight or less,
The rubbery polymer having a particle size of less than nm is 60% by weight or more, preferably 65% by weight or more, and the rubbery polymer having a particle diameter of 350 nm or more is 25% by weight or less, preferably 20% by weight or less.
The particle size distribution of the rubbery polymer is significantly related to the orientation of the rubber during molding, and if the particle size distribution is within this range,
Practical impact resistance is improved. Rubber orientation is a phenomenon in which rubber particles are deformed in the flow direction due to shearing stress during molding. When the orientation is increased, the practical impact strength decreases. When the amount of the rubbery polymer having a particle diameter of 150 nm or less is too large, the practical impact strength is reduced because the stress dispersion effect of the rubber particles is reduced. When the amount of the rubbery polymer of 350 nm or more is too large, the orientation is large. As a result, the practical impact resistance decreases, and the flammability evaluation (flame retardancy) also decreases.
【0010】上記ゴム質重合体のゲル分率は、好ましく
は40〜90重量%、さらに好ましくは50〜90重量
%、特に好ましくは60〜90重量%である。ゲル分率
が小さすぎると耐衝撃性、剛性、難燃性等の低下を招
き、一方、ゲル分率が高すぎる場合も耐衝撃性の低下を
招く。なお、ゴム質重合体のゲル分率(トルエン不溶
分)は、ゴム質重合体1gをトルエン100ml中に加
え、48時間室温で放置したのち、100メッシュ金網
でろ過し、分散したろ液からトルエンを除去、乾燥して
トルエン可溶分(g)を求め、次式により算出できる。 ゲル分率(%)=〔1(g)−トルエン可溶分(g)〕
×100The gel fraction of the rubbery polymer is preferably 40 to 90% by weight, more preferably 50 to 90% by weight, and particularly preferably 60 to 90% by weight. If the gel fraction is too small, the impact resistance, rigidity, flame retardancy and the like will be reduced, while if the gel fraction is too high, the impact resistance will be reduced. The gel fraction (toluene-insoluble matter) of the rubbery polymer was determined by adding 1 g of the rubbery polymer to 100 ml of toluene, leaving the mixture at room temperature for 48 hours, filtering through a 100-mesh wire gauze, and dissolving the toluene from the dispersed filtrate. Is removed and dried to obtain a toluene-soluble component (g), which can be calculated by the following equation. Gel fraction (%) = [1 (g) -toluene soluble matter (g)]
× 100
【0011】また、上記(A)ゴム強化樹脂中のゴム質
重合体の含有量は、好ましくは10〜60重量%、さら
に好ましくは20〜50重量%、特に好ましくは25〜
45重量%である。(A)成分中のゴム質重合体の含有
量が10重量%以上であると、耐衝撃性が特に優れ、一
方、60重量%以下であると、流動性、燃焼性評価が特
に優れる。(A)成分中のゴム質重合体の含有量が少な
いと、耐衝撃性が低下し、一方、多すぎると流動性、難
燃性が低下する傾向がある。The content of the rubbery polymer in the rubber reinforced resin (A) is preferably 10 to 60% by weight, more preferably 20 to 50% by weight, and particularly preferably 25 to 50% by weight.
45% by weight. When the content of the rubbery polymer in the component (A) is 10% by weight or more, impact resistance is particularly excellent, and when it is 60% by weight or less, fluidity and flammability evaluation are particularly excellent. If the content of the rubbery polymer in the component (A) is small, the impact resistance tends to decrease. On the other hand, if it is too large, the fluidity and the flame retardancy tend to decrease.
【0012】(A)成分のグラフト重合に用いられる単
量体成分中の芳香族ビニル化合物としては、スチレン、
α−メチルスチレン、o−メチルスチレン、p−メチル
スチレン、t−ブチルスチレン、ビニルトルエン、メチ
ル−α−メチルスチレン、ジビニルベンゼン、1,1−
ジフェニルスチレン、N,N−ジエチル−p−アミノエ
チルスチレン、N,N−ジエチル−p−アミノメチルス
チレン、ビニルピリジン、ビニルキシレンなどが挙げら
れ、特にスチレン、α−メチルスチレンが好ましい。単
量体成分中に、α−メチルスチレンを10〜50重量
%、好ましくは20〜30重量%用いると、本発明の難
燃性熱可塑性樹脂組成物の耐熱性を特に向上させること
ができる。As the aromatic vinyl compound in the monomer component used for the graft polymerization of the component (A), styrene,
α-methylstyrene, o-methylstyrene, p-methylstyrene, t-butylstyrene, vinyltoluene, methyl-α-methylstyrene, divinylbenzene, 1,1-
Examples include diphenylstyrene, N, N-diethyl-p-aminoethylstyrene, N, N-diethyl-p-aminomethylstyrene, vinylpyridine, vinylxylene and the like, with styrene and α-methylstyrene being particularly preferred. When α-methylstyrene is used in the monomer component in an amount of 10 to 50% by weight, preferably 20 to 30% by weight, the heat resistance of the flame-retardant thermoplastic resin composition of the present invention can be particularly improved.
【0013】上記芳香族ビニル化合物の共重合量は、
(A)成分中に好ましくは30〜70重量%、さらに好
ましくは40〜70重量%、特に好ましくは45〜70
重量%である。The copolymerization amount of the aromatic vinyl compound is as follows:
(A) Component is preferably 30 to 70% by weight, more preferably 40 to 70% by weight, particularly preferably 45 to 70% by weight.
% By weight.
【0014】単量体成分中のシアン化ビニル化合物とし
ては、アクリロニトリル、メタクリロニトリルなどが挙
げられ、アクリロニトリルが好ましい。上記シアン化ビ
ニル化合物の共重合量は、(A)成分中に好ましくは5
〜40重量%、さらに好ましくは10〜35重量%、特
に好ましくは10〜30重量%である。上記芳香族ビニ
ル化合物の共重合量が多すぎるかあるいはシアン化ビニ
ル化合物の共重合量が少なすぎると耐薬品性、難燃性等
が低下し、一方、芳香族ビニル化合物の共重合量が少な
すぎるかあるいはシアン化ビニル化合物の共重合量が多
すぎると流動性、耐衝撃性等が低下する。Examples of the vinyl cyanide compound in the monomer component include acrylonitrile and methacrylonitrile, and acrylonitrile is preferred. The copolymerization amount of the vinyl cyanide compound is preferably 5% in the component (A).
It is preferably from 40 to 40% by weight, more preferably from 10 to 35% by weight, particularly preferably from 10 to 30% by weight. If the copolymerization amount of the aromatic vinyl compound is too large or the copolymerization amount of the vinyl cyanide compound is too small, chemical resistance, flame retardancy, etc. are reduced, while the copolymerization amount of the aromatic vinyl compound is small. If it is too large or the copolymerization amount of the vinyl cyanide compound is too large, the fluidity, impact resistance and the like will be reduced.
【0015】上記単量体成分には、さらに必要に応じて
共重合可能なその他の単量体を使用することができる。
その他の単量体としては、例えば、不飽和酸無水物、不
飽和酸、不飽和ジカルボン酸のイミド化合物などが挙げ
られる。不飽和酸無水物としては、無水マレイン酸、無
水イタコン酸、無水シトラコン酸などが挙げられ、無水
マレイン酸が好ましい。不飽和酸としては、アクリル
酸、メタクリル酸などが挙げられる。不飽和ジカルボン
酸のイミド化合物としては、マレイミド、N−メチルマ
レイミド、N−ブチルマレイミド、N−フェニルマレイ
ミド、N−(2−メチルフェニル)マレイミド、N−
(4−ヒドロキシフェニル)マレイミド、N−シクロヘ
キシルマレイミドなどが挙げられ、N−フェニルマレイ
ミドが好ましい。上記(A)成分に使用される単量体成
分は、単独であるいは2種以上混合して用いられる。As the monomer component, other copolymerizable monomers can be used if necessary.
Examples of the other monomer include an unsaturated acid anhydride, an unsaturated acid, and an imide compound of an unsaturated dicarboxylic acid. Examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride and the like, with maleic anhydride being preferred. Examples of the unsaturated acid include acrylic acid and methacrylic acid. Examples of imide compounds of unsaturated dicarboxylic acids include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N-
(4-Hydroxyphenyl) maleimide, N-cyclohexylmaleimide, etc. are mentioned, and N-phenylmaleimide is preferable. The monomer components used in the component (A) are used alone or in combination of two or more.
【0016】さらに、上記単量体成分には、必要に応じ
て、官能基含有ビニル単量体を使用することもできる。
官能基含有ビニル単量体としては、グリシジルアクリレ
ート、グリシジルメタクリレート、アリルグリシジルエ
ーテルなどのエポキシ基含有不飽和化合物;3−ヒドロ
キシ−1−プロペン、4−ヒドロキシ−1−ブテン、シ
ス−4−ヒドロキシ−2−ブテン、トランス−4−ヒド
ロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1
−プロペン、2−ヒドロキシエチルアクリレート、2−
ヒドロキシエチルメタクリレート、ヒドロキシスチレン
などの水酸基含有不飽和化合物;アクリルアミド、メタ
クリルアミドなどの不飽和カルボン酸アミド;アクリル
アミン、メタクリル酸アミノメチル、メタクリル酸アミ
ノエーテル、メタクリル酸アミノプロピル、アミノスチ
レンなどのアミノ基含有不飽和化合物;アクリル酸、メ
タクリル酸などの不飽和酸;ビニルオキサゾリンなどの
オキサゾリン基含有不飽和化合物などが挙げられる。上
記官能基含有ビニル単量体は、単独であるいは2種以上
混合して用いられる。これらの官能基含有ビニル単量体
を共重合することで、他の樹脂を配合した場合に、該樹
脂との界面密着(相溶性)を高めることができる。Further, a vinyl monomer having a functional group may be used as the monomer component, if necessary.
Examples of the functional group-containing vinyl monomer include epoxy group-containing unsaturated compounds such as glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl ether; 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy- 2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1
-Propene, 2-hydroxyethyl acrylate, 2-
Hydroxy group-containing unsaturated compounds such as hydroxyethyl methacrylate and hydroxystyrene; unsaturated carboxylic amides such as acrylamide and methacrylamide; amino groups such as acrylamine, aminomethyl methacrylate, aminoether methacrylate, aminopropyl methacrylate and aminostyrene Unsaturated compounds such as acrylic acid and methacrylic acid; and unsaturated compounds containing an oxazoline group such as vinyl oxazoline. The above functional group-containing vinyl monomers are used alone or in combination of two or more. By copolymerizing these functional group-containing vinyl monomers, when another resin is blended, the interface adhesion (compatibility) with the resin can be increased.
【0017】上記(A)ゴム強化樹脂のグラフト率は、
好ましくは60〜120%、特に好ましくは60〜90
%である。ここで、グラフト率(%)は、ゴム質重合体
にグラフトした単量体成分の割合であり、次記により求
められる値である。即ち、(A)ゴム強化樹脂のアセト
ン不溶分のゴム成分量を、例えばゴム成分がポリブタジ
エンの場合、赤外分光法による967cm-1のトランス
二重結合C−H面外変角振動の吸光度比を用いて事前に
作成した検量線から求め、その重量をxとし、アセトン
不溶分重量をyとすると、次式により求められる。 グラフト率(%)=100×(y−x)/x ここで、アセトン不溶分は、(A)ゴム強化樹脂1gを
50mlのアセトン中で室温下、24時間振とう機で振
とうし、遊離の(共)重合体を溶解させ、遠心分離し、
得られる不溶分を真空乾燥により120℃で1時間乾燥
して得られる。グラフト率が小さすぎると、得られる難
燃性熱可塑性樹脂組成物の耐衝撃性および難燃性が劣
る。一方、グラフト率が高すぎると、流動性が劣る。The graft ratio of the rubber-reinforced resin (A) is as follows:
Preferably 60 to 120%, particularly preferably 60 to 90%
%. Here, the graft ratio (%) is a ratio of the monomer component grafted to the rubbery polymer, and is a value determined as follows. That is, (A) the amount of the rubber component of the acetone-insoluble portion of the rubber reinforced resin, for example, when the rubber component is polybutadiene, the absorbance ratio of 967 cm −1 trans double bond C—H out-of-plane bending vibration by infrared spectroscopy Is obtained from a calibration curve prepared in advance using, and the weight is defined as x, and the weight of the acetone-insoluble component is defined as y. Graft ratio (%) = 100 × (y−x) / x Here, the acetone-insoluble matter was obtained by shaking (A) 1 g of a rubber-reinforced resin in 50 ml of acetone at room temperature for 24 hours with a shaker, and Dissolve the (co) polymer of and centrifuge,
The obtained insoluble matter is obtained by drying at 120 ° C. for 1 hour by vacuum drying. If the graft ratio is too small, the resulting flame retardant thermoplastic resin composition will have poor impact resistance and flame retardancy. On the other hand, if the graft ratio is too high, the fluidity is poor.
【0018】なお、本発明に係わる(A)ゴム強化樹脂
中のマトリックス成分であるメチルエチルケトン可溶分
の極限粘度〔η〕(30℃、メチルエチルケトン中で測
定)は、好ましくは0.2〜1.2dl/g、さらに好
ましくは0.2〜1dl/g、特に好ましくは0.3〜
1dl/gである。極限粘度〔η〕が上記範囲内である
と、特に、耐衝撃性、耐熱性、流動性が優れている本発
明の難燃性熱可塑性樹脂組成物が得られる。なお、上記
グラフト率(%)、極限粘度〔η〕は、ゴム強化樹脂を
重合するときの、重合開始剤、連鎖移動剤、乳化剤、溶
剤などの種類や量、さらに重合時間、重合温度などを変
えることにより、容易に制御することができる。The intrinsic viscosity [η] (measured in methyl ethyl ketone at 30 ° C.) of the soluble component of methyl ethyl ketone as a matrix component in the rubber-reinforced resin (A) according to the present invention is preferably 0.2 to 1. 2 dl / g, more preferably 0.2 to 1 dl / g, particularly preferably 0.3 to 1 dl / g
It is 1 dl / g. When the intrinsic viscosity [η] is within the above range, the flame-retardant thermoplastic resin composition of the present invention having particularly excellent impact resistance, heat resistance and fluidity can be obtained. The above graft ratio (%) and intrinsic viscosity [η] are determined based on the types and amounts of a polymerization initiator, a chain transfer agent, an emulsifier, a solvent, and the like, and a polymerization time and a polymerization temperature when polymerizing a rubber-reinforced resin. By changing, it can be easily controlled.
【0019】本発明に係わるゴム強化樹脂は、ゴム質重
合体の存在下に、芳香族ビニル化合物およびシアン化ビ
ニル化合物を主成分とする単量体成分を、公知の乳化重
合、溶液重合、塊状重合、懸濁重合などでラジカルグラ
フト重合を行い、製造することができる。この際、乳化
重合には、重合開始剤、連鎖移動剤(分子量調節剤)、
乳化剤、水などが用いられる。なお、ゴム強化樹脂を製
造するのに用いるゴム質重合体および単量体成分は、ゴ
ム質重合体全量の存在下に、単量体成分を一括添加して
重合してもよく、分割もしくは連続添加して重合しても
よい。また、これらを組み合わせた方法で、重合しても
よい。さらに、ゴム質重合体の全量または一部を、重合
途中で添加して重合してもよい。The rubber-reinforced resin according to the present invention is obtained by subjecting a monomer component mainly composed of an aromatic vinyl compound and a vinyl cyanide compound to a known emulsion polymerization, solution polymerization, bulk polymerization in the presence of a rubbery polymer. Radical graft polymerization can be performed by polymerization, suspension polymerization, or the like. At this time, a polymerization initiator, a chain transfer agent (molecular weight regulator),
Emulsifiers, water and the like are used. Incidentally, the rubbery polymer and the monomer component used for producing the rubber reinforced resin may be polymerized by adding the monomer component all at once in the presence of the total amount of the rubbery polymer, and may be divided or continuously. It may be added and polymerized. Moreover, you may superpose | polymerize by the method which combined these. Further, the whole or a part of the rubbery polymer may be added during the polymerization to carry out the polymerization.
【0020】重合開始剤としては、クメンハイドロパー
オキサイド、ジイソプロピルベンゼンハイドロパーオキ
サイド、パラメンタンハイドロパーオキサイドなどで代
表される有機ハイドロパーオキサイド類と含糖ピロリン
酸処方、スルホキシレート処方などで代表される還元剤
との組み合わせによるレドックス系、あるいは過硫酸カ
リウムなどの過硫酸塩、アゾビスイソブチロニトリル
(AIBN)、ベンゾイルパーオキサイド(BPO)、
ラウロイルパーオキサイド、t−ブチルパーオキシラウ
レイト、t−ブチルパーオキシモノカーボネートなどの
油溶性過酸化物が使用される。さらに、重合開始剤は、
重合系に一括または連続的に添加することができる。重
合開始剤の使用量は、単量体成分量に対し、通常、0.
1〜1.5重量%である。Examples of the polymerization initiator include organic hydroperoxides represented by cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramenthane hydroperoxide and the like, sugar-containing pyrophosphoric acid formulations, sulfoxylate formulations and the like. Redox system in combination with a reducing agent, or a persulfate such as potassium persulfate, azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO),
Oil-soluble peroxides such as lauroyl peroxide, t-butyl peroxylaurate, t-butyl peroxy monocarbonate are used. Further, the polymerization initiator is
It can be added to the polymerization system all at once or continuously. The amount of the polymerization initiator to be used is usually 0.1 to the amount of the monomer component.
1 to 1.5% by weight.
【0021】連鎖移動剤は、公知のものが使用できる。
具体的には、オクチルメルカプタン、n−ドデシルメル
カプタン、t−ドデシルメルカプタン、n−ヘキシルメ
ルカプタン、n−ヘキサデシルメルカプタン、n−テト
ラデシルメルカプタン、t−テトラデシルメルカプタン
などのメルカプタン類、テトラエチルチウラムスルフィ
ド、四塩化炭素、臭化エチレン、ペンタフェニルエタン
などの炭化水素塩類、テルペン類、またはアクロレイ
ン、メタクロレイン、アリルアルコール、2−エチルヘ
キシルチオグリコール、α−メチルスチレンのダイマー
などが挙げられる。連鎖移動剤の使用量は、単量体成分
量に対して、通常、0.05〜2重量%用いられる。Known chain transfer agents can be used.
Specifically, mercaptans such as octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, t-tetradecyl mercaptan, tetraethylthiuram sulfide, Examples thereof include hydrocarbon salts such as carbon chloride, ethylene bromide, and pentaphenylethane, terpenes, and dimers of acrolein, methacrolein, allyl alcohol, 2-ethylhexylthioglycol, and α-methylstyrene. The amount of the chain transfer agent to be used is usually 0.05 to 2% by weight based on the amount of the monomer component.
【0022】乳化重合の場合に使用する乳化剤は、公知
のものが使用できる。具体的には、高級アルコールの硫
酸エステル、ドデシルベンゼンスルホン酸ナトリウムな
どのアルキルベンゼンスルホン酸塩;ラウリル硫酸ナト
リウムなどの脂肪族スルホン酸塩;高級脂肪族カルボン
酸塩、リン酸系などのアニオン性界面活性剤;ポリエチ
レングリコールのアルキルエステル型、アルキルエーテ
ル型などのノニオン系界面活性剤が挙げられる。乳化剤
の使用量は、通常、単量体成分量に対して、通常、0.
3〜5重量%である。As the emulsifier used in the emulsion polymerization, known emulsifiers can be used. Specifically, sulfates of higher alcohols, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylate, anionic surfactants such as phosphoric acid Agents: Nonionic surfactants such as polyethylene glycol alkyl ester type and alkyl ether type. The amount of the emulsifier to be used is usually 0.1 to the amount of the monomer component.
It is 3 to 5% by weight.
【0023】ゴム強化樹脂を乳化重合により製造する場
合、通常、凝固剤により凝固して得られた粉末を水洗
後、乾燥することによって精製される。この凝固剤とし
ては、塩化カルシウム、硫酸マグネシウム、塩化マグネ
シウム、塩化ナトリウムなどの無機塩や、硫酸、塩酸な
どの無機酸を使用することができる。When the rubber-reinforced resin is produced by emulsion polymerization, the powder obtained by coagulation with a coagulant is usually washed with water and then dried to be purified. As the coagulant, inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride, and inorganic acids such as sulfuric acid and hydrochloric acid can be used.
【0024】なお、上記(A)ゴム強化樹脂には、必要
に応じて、上記単量体成分の群から選ばれた少なくとも
1種の単量体成分の(共)重合体を配合してもよい。こ
こで、(共)重合体の単量体成分は、上記グラフト重合
に使用される単量体成分と同一の組成であっても、異な
っていてもよい。また、上記(共)重合体は、幾つかの
(共)重合体成分の組み合わせであってもよい。上記
(共)重合体は、例えば、上記と同様に重合して得るこ
とができる。上記(共)重合体のメチルエチルケトン可
溶分の極限粘度〔η〕(30℃、メチルエチルケトン中
で測定)は、好ましくは0.2〜1dl/g、さらに好
ましくは0.3〜1dl/g、特に好ましくは0.3〜
0.8dl/gである。極限粘度〔η〕が上記範囲内で
あると、特に、耐衝撃性、耐熱性、流動性に優れてい
る。なお、極限粘度〔η〕は、上記と同様に制御するこ
とができる。The rubber-reinforced resin (A) may be blended, if necessary, with a (co) polymer of at least one monomer component selected from the group of the monomer components. Good. Here, the monomer component of the (co) polymer may have the same composition as the monomer component used for the graft polymerization, or may have a different composition. Further, the (co) polymer may be a combination of several (co) polymer components. The (co) polymer can be obtained by, for example, polymerizing in the same manner as described above. The intrinsic viscosity [η] of the (co) polymer soluble in methyl ethyl ketone (measured in methyl ethyl ketone at 30 ° C.) is preferably 0.2 to 1 dl / g, more preferably 0.3 to 1 dl / g, and particularly preferably 0.3 to 1 dl / g. Preferably 0.3 to
0.8 dl / g. When the intrinsic viscosity [η] is within the above range, it is particularly excellent in impact resistance, heat resistance, and fluidity. The intrinsic viscosity [η] can be controlled in the same manner as described above.
【0025】代表的な(A)ゴム強化樹脂としては、下
記のような組成が挙げられるが、本発明の権利範囲は、
その請求範囲を超えないかぎり、下記の例示に何ら限定
されるものではない。 アクリロニトリル−ブタジエン−スチレン樹脂 メチルメタクリレート−ブタジエン−スチレン樹脂The typical rubber-reinforced resin (A) has the following composition, but the scope of the present invention is as follows:
The present invention is not limited to the following examples unless it exceeds the claims. Acrylonitrile-butadiene-styrene resin Methyl methacrylate-butadiene-styrene resin
【0026】(A)成分の配合量は、(A)および
(B)成分合計100重量部中に、10〜40重量部、
好ましくは10〜30重量部、特に好ましくは15〜3
0重量部である。(A)成分の配合量が少なすぎると流
動性が低下し、一方、多すぎると燃焼性評価に劣る。Component (A) is added in an amount of 10 to 40 parts by weight based on 100 parts by weight of components (A) and (B) in total.
Preferably 10 to 30 parts by weight, particularly preferably 15 to 3 parts by weight.
0 parts by weight. If the amount of the component (A) is too small, the fluidity decreases, while if it is too large, the flammability evaluation is poor.
【0027】本発明の難燃性熱可塑性樹脂組成物に用い
られる(B)芳香族ポリカーボネート樹脂としては、種
々のジヒドロキシアリール化合物とホスゲンとの反応に
よって得られるもの(ホスゲン法)、あるいはジヒドロ
キシアリール化合物とジフェニルカーボネートとのエス
テル交換反応によって得られるもの(エステル交換法)
が挙げられる。As the aromatic polycarbonate resin (B) used in the flame-retardant thermoplastic resin composition of the present invention, those obtained by reacting various dihydroxyaryl compounds with phosgene (phosgene method) or dihydroxyaryl compounds Obtained by the transesterification reaction of diphenyl carbonate with diphenyl carbonate (ester exchange method)
Is mentioned.
【0028】ここで、ポリカーボネートの原料となるジ
ヒドロキシアリール化合物としては、ビス(4−ヒドロ
キシフェニル)メタン、1,1′−ビス(4−ヒドロキ
シフェニル)エタン、2,2′−ビス(4−ヒドロキシ
フェニル)プロパン、2,2′−ビス(4−ヒドロキシ
フェニル)ブタン、2,2′−ビス(4−ヒドロキシフ
ェニル)オクタン、2,2′−ビス(4−ヒドロキシフ
ェニル)フェニルメタン、2,2′−ビス(4−ヒドロ
キシ−3−メチルフェニル)プロパン、2,2′−ビス
(4−ヒドロキシ−3−t−ブチルフェニル)プロパ
ン、2,2′−ビス(4−ヒドロキシ−3−ブロモフェ
ニル)プロパン、2,2′−ビス(4−ヒドロキシ−
3,5−ジクロロフェニル)プロパン、1,1′−ビス
(4−ヒドロキシフェニル)シクロペンタン、1,1′
−ビス(4−ヒドロキシフェニル)シクロヘキサン、
4,4′−ジヒドロキシジフェニルエーテル、4,4′
−ジヒドロキシ−3,3′−ジメチルジフェニルエーテ
ル、4,4′−ジヒドロキシフェニルスルフィド、4,
4′−ジヒドロキシフェニルスルフィド、4,4′−ジ
ヒドロキシ−3,3′−ジメチルフェニルスルフィド、
4,4′−ジヒドロキシジフェニルスルホキシド、4,
4′−ジヒドロキシフェニルスルホキシド、4,4′−
ジヒドロキシ−3,3′−ジメチルジフェニルスルホキ
シド、4,4′−ジヒドロキシジフェニルスルホン、
4,4′−ジヒドロキシ−3,3′−ジメチルジフェニ
ルスルホン、ヒドロキノン、レゾルシンなどが挙げら
れ、これらは、1種または2種以上で用いられる。特に
好ましいものは、2,2′−ビス(4−ヒドロキシフェ
ニル)プロパン、すなわちビスフェノールAである。代
表的な芳香族ポリカーボネートとしては、2,2′−ビ
ス(4−ヒドロキシフェニル)プロパン、すなわちビス
フェノールAとホスゲンとの反応によって得られるポリ
カーボネートである。Here, the dihydroxyaryl compounds used as the raw materials for the polycarbonate include bis (4-hydroxyphenyl) methane, 1,1'-bis (4-hydroxyphenyl) ethane, and 2,2'-bis (4-hydroxyphenyl) methane. Phenyl) propane, 2,2'-bis (4-hydroxyphenyl) butane, 2,2'-bis (4-hydroxyphenyl) octane, 2,2'-bis (4-hydroxyphenyl) phenylmethane, 2,2 '-Bis (4-hydroxy-3-methylphenyl) propane, 2,2'-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2'-bis (4-hydroxy-3-bromophenyl ) Propane, 2,2'-bis (4-hydroxy-
3,5-dichlorophenyl) propane, 1,1'-bis (4-hydroxyphenyl) cyclopentane, 1,1 '
-Bis (4-hydroxyphenyl) cyclohexane,
4,4'-dihydroxydiphenyl ether, 4,4 '
-Dihydroxy-3,3'-dimethyldiphenyl ether, 4,4'-dihydroxyphenyl sulfide, 4,
4'-dihydroxyphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethylphenyl sulfide,
4,4'-dihydroxydiphenylsulfoxide, 4,
4'-dihydroxyphenylsulfoxide, 4,4'-
Dihydroxy-3,3'-dimethyldiphenylsulfoxide, 4,4'-dihydroxydiphenylsulfone,
Examples thereof include 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfone, hydroquinone, and resorcin, and these are used alone or in combination of two or more. Particularly preferred is 2,2'-bis (4-hydroxyphenyl) propane, or bisphenol A. A typical aromatic polycarbonate is 2,2'-bis (4-hydroxyphenyl) propane, a polycarbonate obtained by reacting bisphenol A with phosgene.
【0029】上記(B)芳香族ポリカーボネートの粘度
平均分子量は、16,000〜30,000、好ましく
は17,000〜28,000、さらに好ましくは1
8,000〜26,000である。粘度平均分子量が小
さすぎると難燃性、耐衝撃性が劣り、一方、大きすぎる
と流動性が劣る。また、分子量の異なる2種以上の芳香
族ポリカーボネートを用いることもできる。(B)成分
の配合量は、(A)および(B)成分合計100重量部
中に、90〜60重量部、好ましくは90〜70重量
部、特に好ましくは85〜70重量部である。(B)配
合量が少なすぎると燃焼性評価に劣り、一方、多すぎる
と流動性が低下する。The aromatic polycarbonate (B) has a viscosity average molecular weight of 16,000 to 30,000, preferably 17,000 to 28,000, and more preferably 1 to 30,000.
8,000-26,000. If the viscosity average molecular weight is too small, flame retardancy and impact resistance will be poor, while if too large, fluidity will be poor. Also, two or more aromatic polycarbonates having different molecular weights can be used. The compounding amount of the component (B) is 90 to 60 parts by weight, preferably 90 to 70 parts by weight, particularly preferably 85 to 70 parts by weight, per 100 parts by weight of the total of the components (A) and (B). (B) If the amount is too small, the evaluation of the flammability is inferior, while if it is too large, the fluidity decreases.
【0030】本発明に係わる(C)リン酸エステル化合
物は、上記一般式(I)で表される。ここで、上記一般
式(I)で表されるリン酸エステル化合物は、1種類の
化合物として、または2種類以上の異なるリン酸エステ
ルの混合物としてのいずれの形態でも使用することがで
きる。上記R1 〜R4 中のフェニル基またはキシレニル
基は、その芳香族環の水素原子がアルキル基などにより
置換されていてもよい。また、上記Xは、ジヒドロキシ
化合物であるレゾルシノールまたはビスフェノールAか
ら誘導される2価の有機基、すなわちm−フェニレン基
または2,2−ビス(4′−フェニレン)プロパン基で
ある。上記一般式(I)のR1 ,R2 ,R3 およびR4
はキシレニル基、Xはm−フェニレン基であることが好
ましい。(C)成分が混合物の場合は、nの値は、縮合
リン酸エステルの混合物中の平均値(平均重合度)を表
す。平均重合度nは0.5〜1.2、好ましくは0.7
〜1.2、さらに好ましくは0.9〜1.1である。平
均重合度nが0.5未満の場合には、耐熱性が低下し、
金型汚染が生じたり、成形品にシルバーが発生するなど
外観不良を発生しやすくなる。一方、平均重合度nが
1.2を超えるリン酸エステル化合物は、製造が困難で
あるため高価格であり経済的に利用し難い。The phosphoric ester compound (C) according to the present invention is represented by the above general formula (I). Here, the phosphate ester compound represented by the above general formula (I) can be used either as a single compound or as a mixture of two or more different phosphate esters. In the phenyl group or xylenyl group in R 1 to R 4 , the hydrogen atom of the aromatic ring may be substituted by an alkyl group or the like. X is a divalent organic group derived from resorcinol or bisphenol A, which is a dihydroxy compound, that is, an m-phenylene group or a 2,2-bis (4′-phenylene) propane group. R 1 , R 2 , R 3 and R 4 in the above general formula (I)
Is preferably a xylenyl group, and X is preferably an m-phenylene group. When the component (C) is a mixture, the value of n represents an average value (average degree of polymerization) in the mixture of the condensed phosphate esters. The average degree of polymerization n is 0.5 to 1.2, preferably 0.7
To 1.2, more preferably 0.9 to 1.1. When the average degree of polymerization n is less than 0.5, heat resistance is reduced,
Mold appearance is likely to occur, such as mold contamination and silver on the molded product. On the other hand, a phosphate compound having an average degree of polymerization n of more than 1.2 is difficult to produce and therefore expensive and difficult to use economically.
【0031】本発明に係わる(C)リン酸エステルの配
合量は、(A)成分および(B)成分の合計量100重
量部に対し、8〜25重量部、好ましくは10〜20重
量部、さらに好ましくは10〜15重量部である。上記
(C)リン酸エステルの配合量が少なすぎると、流動
性、難燃性が不充分であり、一方、多すぎると、耐熱
性、耐衝撃性が低下する。The compounding amount of the phosphoric acid ester (C) according to the present invention is 8 to 25 parts by weight, preferably 10 to 20 parts by weight, based on 100 parts by weight of the total amount of the components (A) and (B). More preferably, it is 10 to 15 parts by weight. If the amount of the (C) phosphate ester is too small, fluidity and flame retardancy are insufficient, while if too large, heat resistance and impact resistance are reduced.
【0032】本発明に係わる(D)成分は、ポリテトラ
フルオロエチレン(d1)および滑剤(d2)を、(d
1)10〜70重量%および(d2)90〜30重量%
〔ただし、(d1)+(d2)=100重量%〕の割合
で配合されるものである。ポリテトラフルオロエチレン
(d1)は、燃焼時のドリッピング防止剤として使用さ
れるものであり、数平均分子量100万以上の高分子量
のものが好ましく、150万以上のものがより好まし
い。数平均分子量が100万未満ではドリッピング防止
効果が低下する惧れがある。ポリテトラフルオロエチレ
ン(d1)の平均粒径は、好ましくは100〜700μ
m、特に好ましくは100〜600μmである。平均粒
径が小さすぎると、取り扱いが困難であり、また、平均
粒径が大きすぎると、ドリッピング防止効果が低下する
惧れがある。ポリテトラフルオロエチレンの粒径分布
は、600μm以上の粒子が、好ましくは30重量%以
下、特に好ましくは25重量%以下である。600μm
以上の粒子が多すぎると、難燃性、耐衝撃性が低下しや
すい。また、ポリテトラフルオロエチレンの嵩密度は、
好ましくは100〜1000g/l、特に好ましくは3
00〜900g/lである。嵩密度が小さすぎるか、ま
たは大きすぎると、ポリテトラフルオロエチレンの分散
状態が悪化し、難燃性、耐衝撃性が低下しやすい。さら
に、ポリテトラフルオロエチレンの融点は、好ましくは
250〜350℃、特に好ましくは300〜340℃で
ある。融点が低すぎるか、または高すぎると、ドリッピ
ング効果が低下しやすくなる。ポリテトラフルオロエチ
レンの比重は、好ましくは1.8〜2.5、特に好まし
くは2〜2.4である。比重が小さすぎると、ドリッピ
ング効果が低下し、一方、比重が大きすぎると、配合量
を多くする必要が生じ、耐衝撃性が低下する場合があ
る。ポリテトラフルオロエチレンの製造方法としては、
乳化重合、懸濁重合などが挙げられる。The component (D) according to the present invention comprises polytetrafluoroethylene (d1) and a lubricant (d2),
1) 10 to 70% by weight and (d2) 90 to 30% by weight
[However, (d1) + (d2) = 100% by weight] is blended. Polytetrafluoroethylene (d1) is used as an anti-dripping agent during combustion, and preferably has a number average molecular weight of 1,000,000 or more and more preferably 1.5 million or more. If the number average molecular weight is less than 1,000,000, the effect of preventing dripping may be reduced. The average particle size of the polytetrafluoroethylene (d1) is preferably 100 to 700 μm.
m, particularly preferably 100 to 600 μm. If the average particle size is too small, handling is difficult, and if the average particle size is too large, the anti-dripping effect may be reduced. The particle size distribution of polytetrafluoroethylene is such that particles having a size of 600 μm or more are preferably 30% by weight or less, particularly preferably 25% by weight or less. 600 μm
If the amount of the above particles is too large, flame retardancy and impact resistance are liable to be reduced. The bulk density of polytetrafluoroethylene is
Preferably 100 to 1000 g / l, particularly preferably 3
It is 00 to 900 g / l. If the bulk density is too small or too large, the dispersion state of polytetrafluoroethylene is deteriorated, and the flame retardancy and impact resistance are likely to be reduced. Further, the melting point of polytetrafluoroethylene is preferably from 250 to 350 ° C, particularly preferably from 300 to 340 ° C. If the melting point is too low or too high, the dripping effect tends to decrease. The specific gravity of polytetrafluoroethylene is preferably 1.8 to 2.5, particularly preferably 2 to 2.4. If the specific gravity is too small, the dripping effect is reduced. On the other hand, if the specific gravity is too large, the blending amount needs to be increased, and the impact resistance may be reduced. As a method for producing polytetrafluoroethylene,
Examples include emulsion polymerization and suspension polymerization.
【0033】また、滑剤(d2)はポリテトラフルオロ
エチレンの分散性向上を目的として使用される。滑剤
(d2)の具体例としては、(1)炭化水素系、例え
ば、流動パラフィン、パラフィンワックス、マイクロワ
ックスおよびポリエチレンワックス、(2)脂肪族系・
高級アルコール系、例えば、ステアリン酸、ベヘニン酸
および12-ヒドロキシステアリン酸、(3)エステル
系、例えば、ステアリン酸ブチル、ステアリン酸モノグ
リセリド、ペンタエリスリトールなどのポリオールと脂
肪酸のエステル類、例えばペンタエリスリトールテトラ
ステアレート、硬化ヒマシ油ワックスや硬化大豆油ワッ
クスなどのグリセライド、ステアリルステアレートなど
の一価脂肪酸とのエステル類、(4)高級アルコール
系、例えばステアリルアルコールなどが挙げられる。特
に、上記のうちエステル系滑剤、例えば、硬化ヒマシ油
ワックスや硬化大豆油ワックスなどのグリセライド、ペ
ンタエリスリトールなどのポリオールと脂肪酸のエステ
ル類、ステアリルステアレートなどの一価脂肪酸とのエ
ステル類が好ましい。滑剤(d2)の融点は、好ましく
は40℃以上、例えば40〜150℃である。融点が4
0℃未満のものは常温で液状であるため、樹脂組成物中
に均一分散させることが難しい。これらの滑剤は、1種
もしくは2種以上組み合わせて用いることができ、ある
いは他の滑剤、例えば、シリコーンオイルなどと併用す
ることができる。The lubricant (d2) is used for the purpose of improving the dispersibility of polytetrafluoroethylene. Specific examples of the lubricant (d2) include (1) hydrocarbon-based, for example, liquid paraffin, paraffin wax, microwax and polyethylene wax, (2) aliphatic-based.
Higher alcohols, for example, stearic acid, behenic acid and 12-hydroxystearic acid, (3) esters, for example, esters of polyols and fatty acids such as butyl stearate, monoglyceride stearate, and pentaerythritol, for example, pentaerythritol tetrastearate And glycerides such as hardened castor oil wax and hardened soybean oil wax; esters with monovalent fatty acids such as stearyl stearate; and (4) higher alcohols such as stearyl alcohol. In particular, ester lubricants, for example, esters of glycerides such as hardened castor oil wax and hardened soybean oil wax, esters of polyols such as pentaerythritol and fatty acids, and esters of monovalent fatty acids such as stearyl stearate are preferred. The melting point of the lubricant (d2) is preferably 40 ° C or more, for example, 40 to 150 ° C. Melting point 4
Those having a temperature of less than 0 ° C. are liquid at room temperature, so that it is difficult to uniformly disperse them in the resin composition. These lubricants can be used alone or in combination of two or more, or can be used in combination with other lubricants such as silicone oil.
【0034】ポリテトラフルオロエチレン(d1)と滑
剤(d2)との配合比率は、(d1)/(d2)=10
〜70/90〜30(重量%)、好ましくは(d1)/
(d2)=30〜70/70〜30(重量%)、さらに
好ましくは(d1)/(d2)=40〜70/60〜3
0(重量%)である〔ただし、(d1)+(d2)=1
00重量%〕。滑剤(d2)の配合量が少ないと、ドリ
ッピング防止を目的として配合する(D)成分の必要量
が結果的に多くなり、必然的にポリテトラフルオロエチ
レン(d1)を多く配合することになる。このようにし
て、ポリテトラフルオロエチレン(d1)の配合量が多
くなりすぎると、目的とする耐衝撃性の向上と、押出機
による生産安定性が得られない。The mixing ratio of polytetrafluoroethylene (d1) and lubricant (d2) is (d1) / (d2) = 10
~ 70/90 ~ 30 (wt%), preferably (d1) /
(D2) = 30 to 70/70 to 30 (% by weight), more preferably (d1) / (d2) = 40 to 70/60 to 3
0 (% by weight) [where (d1) + (d2) = 1]
00% by weight]. If the blending amount of the lubricant (d2) is small, the necessary amount of the component (D) to be blended for the purpose of preventing dripping will eventually increase, and the polytetrafluoroethylene (d1) will necessarily be blended inevitably. . If the amount of polytetrafluoroethylene (d1) is too large in this way, the desired improvement in impact resistance and the production stability by the extruder cannot be obtained.
【0035】本発明では、さらに耐衝撃性、難燃性およ
び押出生産安定性を向上させるために、好ましくは、上
記ポリテトラフルオロエチレン(d1)成分と滑剤(d
2)成分とを予め均一に混合したものが、(D)成分と
して使用される。しかしながら、ポリテトラフルオロエ
チレン(d1)成分と滑剤(d2)成分とは混合されず
に別々に本発明の難燃性熱可塑性樹脂組成物に配合ある
いは添加することができる。混合する際には一定以上の
高速混合が必要であり、例えば、ヘンシェルミキサー、
スーパーミキサーなどにより行われる。In the present invention, the polytetrafluoroethylene (d1) component and the lubricant (d) are preferably used in order to further improve impact resistance, flame retardancy and extrusion production stability.
2) A component obtained by uniformly mixing the components in advance is used as the component (D). However, the polytetrafluoroethylene (d1) component and the lubricant (d2) component can be separately blended or added to the flame-retardant thermoplastic resin composition of the present invention without being mixed. When mixing, high speed mixing over a certain level is necessary, for example, Henschel mixer,
It is performed by a super mixer or the like.
【0036】上記(D)組成物の配合量は、(A)成分
および(B)成分の合計量100重量部に対し、0.1
〜10重量部、好ましくは0.1〜3重量部、さらに好
ましくは0.1〜2重量部である。上記(D)組成物の
配合量が少なすぎるとドリッピング防止効果が得られ
ず、一方、多すぎると、耐衝撃性、流動性が低下する。The amount of the composition (D) is 0.1 parts by weight based on 100 parts by weight of the total of the components (A) and (B).
10 to 10 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.1 to 2 parts by weight. If the amount of the composition (D) is too small, the effect of preventing dripping cannot be obtained, while if it is too large, the impact resistance and the fluidity deteriorate.
【0037】また、本発明の難燃性熱可塑性樹脂組成物
において、有機酸およびオリゴマー成分からなる成分
(以下「(E)成分」という)の含有量は、(A)成分
および(B)成分の合計100重量部に対して、好まし
くは3重量部以下、より好ましくは2.5重量部以下、
さらに好ましくは2重量部以下である。(E)成分の含
有量が重量部以下であると、成形時において金型成形面
の汚染が少ないため、金型成形面の清掃の回数が少な
く、その結果、より長時間の連続成形が可能となる。な
お、有機酸、オリゴマー成分の含有量の測定方法は、下
記実施例に示された方法で測定することができる。In the flame-retardant thermoplastic resin composition of the present invention, the content of a component comprising an organic acid and an oligomer component (hereinafter referred to as “component (E)”) is determined by the content of component (A) and component (B). 3 parts by weight or less, more preferably 2.5 parts by weight or less,
It is more preferably at most 2 parts by weight. When the content of the component (E) is not more than part by weight, the mold molding surface is less contaminated during molding, so the number of times of cleaning the mold molding surface is small, and as a result, continuous molding for a longer time is possible. Becomes In addition, the measuring method of content of an organic acid and an oligomer component can be measured by the method shown in the following example.
【0038】上記有機酸は、例えば、(A)成分の原料
として使用されるゴム質重合体中の乳化剤、(A)成分
の製造時に使用される乳化剤などの乳化剤成分が、
(A)成分の製造時に使用される凝固剤(硫酸、塩酸な
どの強酸)により遊離して有機酸となり(A)成分中に
存在するもの、そのほか、原料に含有される有機酸、安
定剤、滑剤として用いられる有機酸が挙げられる。上記
有機酸としては、例えば、オレイン酸、ステアリン酸、
ロジン酸などが挙げられる。The above-mentioned organic acid includes, for example, an emulsifier component such as an emulsifier in a rubbery polymer used as a raw material of the component (A) and an emulsifier used in the production of the component (A).
(A) a component which is released by a coagulant (a strong acid such as sulfuric acid or hydrochloric acid) used in the production of the component to become an organic acid and is present in the component (A); Organic acids used as lubricants can be mentioned. Examples of the organic acid include oleic acid, stearic acid,
Rosin acid and the like.
【0039】上記有機酸含有量を上記好ましい範囲内に
する方法としては、乳化重合法で得られた(A)成分の
ラテックスから(A)成分の粉体を回収する凝固工程
で、例えば、塩化マグネシウム、硫酸マグネシウム、塩
化カルシウムなどの無機塩を用いる方法、または有機酸
含有量の高い(A)成分の粉体をアルカリ洗浄する方法
が挙げられる。しかし、上記方法を実施すれば、当然、
有機酸含有量が上記好ましい範囲に入るものでなく、該
有機酸含有量は、凝固工程の段階やアルカリ処理での、
温度、水量、処理時間、凝固剤量、凝固剤の混合方法、
撹拌方法、アルカリ物質の濃度などの条件を適宜選択す
ることで、達成される。また、上記オリゴマー成分は、
(A)成分の重合中に生成される。オリゴマー成分の組
成は、(A)成分の重合時に使用される単量体からなる
ダイマー、トリマーなどである。あるいは、上記のよう
に、別に上記単量体を重合しておいて、(A)成分に配
合される場合ものも含まれる。上記オリゴマー成分含有
量を本発明の範囲内にする方法としては、重合時の温度
を下げる、アゼオトロープ組成に近づける、などの方法
が挙げられる。さらに、(A)の重合の際、熱重合より
触媒重合を行うほうが、効果が大きい。As a method for keeping the content of the organic acid within the above-mentioned preferred range, a solidification step of recovering the powder of the component (A) from the latex of the component (A) obtained by the emulsion polymerization method includes, for example, chloride Examples thereof include a method using an inorganic salt such as magnesium, magnesium sulfate, and calcium chloride, and a method of alkali-cleaning the powder of the component (A) having a high organic acid content. However, if the above method is implemented, naturally,
The organic acid content does not fall within the above preferred range, and the organic acid content is at the stage of coagulation step or alkali treatment,
Temperature, water amount, treatment time, coagulant amount, coagulant mixing method,
This is achieved by appropriately selecting conditions such as the stirring method and the concentration of the alkali substance. Further, the oligomer component,
Formed during the polymerization of component (A). The composition of the oligomer component is a dimer, a trimer, or the like composed of a monomer used in the polymerization of the component (A). Alternatively, as described above, the case where the above-mentioned monomer is separately polymerized and then added to the component (A) is also included. Examples of a method for keeping the content of the oligomer component within the range of the present invention include a method of lowering the temperature at the time of polymerization, approaching the azeotropic composition, and the like. Further, in the case of the polymerization of (A), it is more effective to perform catalytic polymerization than thermal polymerization.
【0040】さらに、本発明の難燃性熱可塑性樹脂組成
物には、必要に応じて、ガラス繊維、炭素繊維、ワラス
トナイト、タルク、マイカ、カオリン、ガラスビーズ、
ガラスフレーク、ミルドファイバー、酸化亜鉛ウィスカ
ー、チタン酸カリウムウィスカーなどの充填材を配合す
ることができる。これらの充填材を配合することで、本
発明の難燃性熱可塑性樹脂組成物に剛性を付与すること
ができる。また、タルクなどを配合することで、本発明
の難燃性熱可塑性樹脂組成物に艶消し性を付与すること
ができる。Further, the flame-retardant thermoplastic resin composition of the present invention may contain, if necessary, glass fiber, carbon fiber, wollastonite, talc, mica, kaolin, glass beads,
Fillers such as glass flakes, milled fibers, zinc oxide whiskers, and potassium titanate whiskers can be blended. By blending these fillers, rigidity can be imparted to the flame-retardant thermoplastic resin composition of the present invention. Further, by blending talc or the like, it is possible to impart matting properties to the flame-retardant thermoplastic resin composition of the present invention.
【0041】また、本発明の難燃性熱可塑性樹脂組成物
には、アンチモン化合物などの難燃助剤、公知のカップ
リング剤、抗菌剤、防カビ剤、酸化防止剤、耐候(耐
光)剤、可塑剤、着色剤(顔料、染料など)、帯電防止
剤などの添加物を、要求される性能を損なわない範囲で
配合することができる。The flame-retardant thermoplastic resin composition of the present invention contains a flame-retardant auxiliary such as an antimony compound, a known coupling agent, an antibacterial agent, a fungicide, an antioxidant, and a weather (light-resistant) agent. And additives such as a plasticizer, a colorant (eg, a pigment and a dye), and an antistatic agent can be blended within a range that does not impair the required performance.
【0042】さらに、本発明の難燃性熱可塑性樹脂組成
物には、要求される性能に応じて、他の(共)重合体を
配合することができる。ここで、他の重合体としては、
ポリアミド、ポリエステル、ポリスルホン、ポリエーテ
ルスルホン、ポリフェニレンスルフィド、液晶ポリマ
ー、ポリフッ化ビニリデン、スチレン−酢酸ビニル共重
合体、ポリアミドエラストマー、ポリアミドイミドエラ
ストマー、ポリエステルエラストマー、フェノール樹
脂、エポキシ樹脂、ノボラック樹脂などが挙げられる。Further, the flame-retardant thermoplastic resin composition of the present invention may contain other (co) polymers according to the required performance. Here, as another polymer,
Polyamide, polyester, polysulfone, polyether sulfone, polyphenylene sulfide, liquid crystal polymer, polyvinylidene fluoride, styrene-vinyl acetate copolymer, polyamide elastomer, polyamide imide elastomer, polyester elastomer, phenol resin, epoxy resin, novolak resin, etc. .
【0043】本発明の難燃性熱可塑性樹脂組成物は、各
種押出機、バンバリーミキサー、ニーダー、ロール、フ
ィーダールーダーなどを用い、各成分を混練りすること
により得られる。好ましい製造方法は、押出機、バンバ
リーミキサーを用いる方法である。また、各成分を混練
りするに際しては、各成分を一括して混練りしてもよ
く、数回に分けて添加混練りしてもよい。混練りは、押
出機で多段添加式で混練りしてもよく、またバンバリー
ミキサー、ニーダーなどで混練りし、その後、押出機で
ペレット化することもできる。The flame-retardant thermoplastic resin composition of the present invention can be obtained by kneading the components using various extruders, Banbury mixers, kneaders, rolls, feeder ruders and the like. A preferred production method is a method using an extruder and a Banbury mixer. When kneading each component, each component may be kneaded at once, or may be added and kneaded in several times. For kneading, kneading may be performed in a multi-stage addition method using an extruder, or kneading using a Banbury mixer, a kneader, or the like, and then, pelletizing using an extruder.
【0044】このようにして得られる本発明の難燃性熱
可塑性樹脂組成物は、射出成形、シート押出、真空成
形、異形押出成形、発泡成形、インジェクションプレ
ス、プレス成形、ブロー成形などによって、各種成形品
に成形することができる。The flame-retardant thermoplastic resin composition of the present invention thus obtained can be prepared by injection molding, sheet extrusion, vacuum molding, profile extrusion molding, foam molding, injection press, press molding, blow molding, etc. It can be molded into molded articles.
【0045】上記成形法によって得られる各種成形品
は、耐衝撃性、耐熱性、流動性、難燃性、押出生産安定
性に優れており、OA・家電分野、電気・電子・通信分
野、コンピュータ分野、雑貨分野、サニタリー分野、車
両分野などで好適に使用することができる。The various molded articles obtained by the above molding method are excellent in impact resistance, heat resistance, fluidity, flame retardancy, extrusion production stability, OA / home electric appliances field, electric / electronic / communications field, computer It can be suitably used in the field, miscellaneous goods field, sanitary field, vehicle field and the like.
【0046】本発明の難燃性熱可塑性樹脂組成物は押出
生産安定性に優れ、これを用いて得られた成形品は、U
L94規格のV−0難燃性が達成され、優れたアイゾッ
ト衝撃強度及び落錘衝撃強度を同時に実現する。このう
ち、落錘衝撃強度は300〜550kgf−mm、より
好ましくは350〜520kgf−mm、更に好ましく
は380〜500kgf−mmとすることができる。ま
た、耐熱性の指標としての熱変形温度は好ましくは85
〜100℃、より好ましくは85〜95℃、更に好まし
くは88〜95℃とすることができる。The flame-retardant thermoplastic resin composition of the present invention is excellent in extrusion production stability.
V-0 flame retardancy of L94 standard is achieved, and excellent Izod impact strength and falling weight impact strength are simultaneously realized. Among them, the falling weight impact strength can be 300 to 550 kgf-mm, more preferably 350 to 520 kgf-mm, and still more preferably 380 to 500 kgf-mm. The heat distortion temperature as an index of heat resistance is preferably 85.
-100 ° C, more preferably 85-95 ° C, even more preferably 88-95 ° C.
【0047】[0047]
【発明の実施の形態】以下、実施例を挙げ本発明をさら
に具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に何等制約されるものではない。な
お、実施例において、部および%は特に断らない限り重
量基準である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. In the examples, parts and percentages are by weight unless otherwise specified.
【0048】1.評価方法 実施例中の各種評価は、次のようにして測定したもので
ある。 〈1〉ゴム質重合体の粒子径 ゴム質重合体の粒子径は、電子顕微鏡法と画像解析法に
より計測した。なお、ゴム質重合体がラテックスである
場合は、あらかじめ乳化状態で合成したラテックスの粒
径がそのままゴム強化樹脂中の分散粒子の粒径を示すこ
とを、電子顕微鏡で確認したのち、ラテックス中の分散
粒子の粒子径を光散乱法で測定した。測定機器は、大塚
電子(株)製、レーザー粒径解析システムLPA−31
00であり、70回積算で、キュムラント法を用いて、
粒子径を測定した。1. Evaluation method Various evaluations in the examples were measured as follows. <1> Particle size of rubbery polymer The particle size of the rubbery polymer was measured by an electron microscope method and an image analysis method. When the rubbery polymer is a latex, after confirming with an electron microscope that the particle size of the latex synthesized in advance in an emulsified state directly indicates the particle size of the dispersed particles in the rubber reinforced resin, The particle size of the dispersed particles was measured by a light scattering method. The measuring device is a laser particle size analysis system LPA-31 manufactured by Otsuka Electronics Co., Ltd.
00, 70 times, using the cumulant method,
The particle size was measured.
【0049】〈2〉ゲル分率(トルエン不溶分) 本文中に記載した。 〈3〉グラフト率 本文中に記載した。 〈4〉極限粘度〔η〕 (A)成分1gを20mlのメチルエチルケトン中に投
入し、振とう機で室温下、2時間振とうし、遊離の
(共)重合体を溶解させ、遠心分離器を用いて、この溶
液を15,000rpmで30分間、遠心分離し、分離
乾燥後の不溶分を除いた可溶分を得た。この可溶分を真
空乾燥機で充分乾燥した。この可溶分をメチルエチルケ
トンに溶解させ、濃度の異なるものを5点作った。ウベ
ローデ粘度管を用い、30℃で各濃度の還元粘度を測定
した結果から、極限粘度〔η〕を求めた。単位はdl/
gである。<2> Gel fraction (toluene-insoluble content) This is described in the text. <3> Graft ratio This is described in the text. <4> Intrinsic viscosity [η] 1 g of the component (A) is put into 20 ml of methyl ethyl ketone, shaken at room temperature for 2 hours with a shaker to dissolve the free (co) polymer, and the centrifuge is This solution was centrifuged at 15,000 rpm for 30 minutes to obtain a soluble matter excluding insoluble matter after separation and drying. This soluble matter was sufficiently dried with a vacuum dryer. This soluble matter was dissolved in methyl ethyl ketone to prepare five different concentrations. The intrinsic viscosity [η] was determined from the results of measuring the reduced viscosity at each concentration at 30 ° C. using an Ubbelohde viscosity tube. The unit is dl /
g.
【0050】〈5〉有機酸含有量 難燃性熱可塑性樹脂組成物を溶媒(1,4−ジオキサ
ン)に溶解させた後、含有される有機酸をジアゾメタン
でメチルエステル化し、水素炎イオン化検出器を備えた
ガスクロマトグラフィーを用いて有機酸含有量(%)を
測定した。 〈6〉オリゴマー成分含有量 難燃性熱可塑性樹脂組成物をメチルエチルケトンに溶解
させた後、n-ペンタンでポリマー分を再沈し、その上
澄み液をガスクロマトグラフィーにて分析し、ダイマ
ー、トリマーの合計から、オリゴマー成分含有量(%)
を定量した。 〈7〉粘度平均分子量 芳香族ポリカーボネートを、メチレンクロライドに溶解
させ、濃度の異なるものを5点作った。ウベローデ粘度
管を用い、20℃で各濃度の還元粘度を測定した結果か
ら、極限粘度値を得た。得られた極限粘度値より、Ma
rk−Houwink式を使用して、粘度平均分子量を
計算した。使用したMark−Houwink定数は、
Kが1.23×10-4、aが0.83である。<5> Organic Acid Content After the flame-retardant thermoplastic resin composition is dissolved in a solvent (1,4-dioxane), the contained organic acid is methyl-esterified with diazomethane, and the flame ionization detector is used. The organic acid content (%) was measured using a gas chromatography equipped with. <6> Content of oligomer component After dissolving the flame-retardant thermoplastic resin composition in methyl ethyl ketone, the polymer component was reprecipitated with n-pentane, and the supernatant was analyzed by gas chromatography to obtain a dimer and a trimer. From the total, the oligomer component content (%)
Was quantified. <7> Viscosity average molecular weight Aromatic polycarbonate was dissolved in methylene chloride, and five samples having different concentrations were prepared. The intrinsic viscosity value was obtained from the result of measuring the reduced viscosity at each concentration at 20 ° C. using an Ubbelohde viscosity tube. From the obtained intrinsic viscosity value, Ma
The viscosity average molecular weight was calculated using the rk-Houwink equation. The Mark-Houwink constant used is
K is 1.23 × 10 −4 and a is 0.83.
【0051】〈8〉耐衝撃性(アイゾット衝撃強度) (株)日本製鋼所製の射出成形機J100E−C5を用
い、シリンダー温度220℃、金型温度50℃で、JI
S K7110の2号型試験片を成形し、アイゾット衝
撃強度を測定した。単位は、kgf−cm/cmであ
る。 〈9〉熱変形温度(HDT) 幅12.8mm×高さ12.8mm×長さ128mmの
試験片を使用し、JIS K7207に準拠して、曲げ
応力18.5kgf/cm2 で熱変形温度(℃)を測定
した。 〈10〉流動性(メルトフローレート、MFR) JIS K7210に準じて測定した。測定温度は24
0℃、荷重は98N、単位はg/10分である。<8> Impact Resistance (Izod Impact Strength) Using an injection molding machine J100E-C5 manufactured by Nippon Steel Works, the cylinder temperature was 220 ° C., the mold temperature was 50 ° C., and the JI was used.
A No. 2 test piece of SK7110 was molded and the Izod impact strength was measured. The unit is kgf-cm / cm. <9> Heat Deformation Temperature (HDT) Using a test piece having a width of 12.8 mm, a height of 12.8 mm and a length of 128 mm, a heat distortion temperature of 18.5 kgf / cm 2 and a bending stress of 18.5 kgf / cm 2 in accordance with JIS K7207 ° C). <10> Fluidity (melt flow rate, MFR) Measured according to JIS K7210. Measurement temperature is 24
The temperature is 0 ° C., the load is 98 N, and the unit is g / 10 minutes.
【0052】〈11〉落錘衝撃強度 (株)島津製作所製、高速衝撃試験機サーボパルサEH
F−2H−20Lを用い、50×80×2.4mm厚み
の試験片の破壊エネルギーを測定した。測定条件は、試
験片受け台径30mmφ、打撃棒先端12.7mmR、
打撃速度3.1m/sであった。単位は、kgf−mm
である。 〈12〉燃焼性評価(難燃性) UL94規格に定められた方法により、長さ127mm
×幅12.7mm×厚み2.5mmの試験片について垂
直燃焼試験を行った。評価結果としては、「V−0」は
垂直試験結果でV−0合格を、「BN」は燃焼(bur
ning)で不適合を、「D」はドリッピングで不適合
を表す。 〈13〉押出生産安定性 ナカタニ機械(株)製NVC50押出機を用い、シリン
ダー設定温度220℃でペレット化して、下記の評価基
準で示した。 良好;安定して押出生産が可能であった。 不良;押出機ダイスの両末端のストランド切れが発生し
た。<11> Drop Weight Impact Strength Servo Pulser EH, a high-speed impact tester manufactured by Shimadzu Corporation
Using F-2H-20L, the breaking energy of a test piece having a thickness of 50 × 80 × 2.4 mm was measured. The measurement conditions were as follows: test specimen holder diameter 30 mmφ, impact rod tip 12.7 mmR,
The impact speed was 3.1 m / s. The unit is kgf-mm
It is. <12> Flammability evaluation (flame retardancy) 127 mm long according to the method specified in UL94 standard
A vertical combustion test was performed on a test piece having a width of 12.7 mm and a thickness of 2.5 mm. As the evaluation results, “V-0” was a vertical test result and passed V-0, and “BN” was a combustion (bur)
ning), and "D" indicates a dripping mismatch. <13> Extrusion production stability Using an NVC50 extruder manufactured by Nakatani Machinery Co., Ltd., the product was pelletized at a cylinder set temperature of 220 ° C. and indicated by the following evaluation criteria. Good; stable extrusion production was possible. Poor; strand breaks at both ends of the extruder die occurred.
【0053】2.参考例1〔ゴム質重合体の調製〕 ゴム質重合体(イ)〜(ハ)として表1に示すポリブタ
ジエンラテックスを使用した。2. Reference Example 1 [Preparation of rubbery polymer] Polybutadiene latex shown in Table 1 was used as rubbery polymers (a) to (c).
【0054】[0054]
【表1】 [Table 1]
【0055】3.参考例2〔(A)成分の調製〕 表2に示す配合割合で、ゴム質重合体(イ)〜(ハ)、
単量体成分としてスチレンおよびアクリロニトリル単量
体成分を用いて乳化重合を行い、グラフト率を変えたグ
ラフト共重合体(A−1〜2)および(A′−1〜6)
を得た。また、表2に示す配合割合で、単量体成分だけ
で溶液重合し、共重合体(a−1)を得た。得られたグ
ラフト共重合体および共重合体の評価結果を表2に示
す。3. Reference Example 2 [Preparation of Component (A)] At the compounding ratios shown in Table 2, rubbery polymers (a) to (c),
Emulsion polymerization using styrene and acrylonitrile monomer components as monomer components, and graft copolymers (A-1-2) and (A'-1-6) having different graft ratios
I got Further, at the compounding ratio shown in Table 2, solution polymerization was carried out using only the monomer components to obtain a copolymer (a-1). Table 2 shows the evaluation results of the obtained graft copolymer and the copolymer.
【0056】[0056]
【表2】 [Table 2]
【0057】4.参考例3〔芳香族ポリカーボネート
(B)成分の調製〕 (B)成分として下記に示す芳香族ポリカーボネート
(B−1〜3)、(B′−1〜2)を使用した。 (B−1):粘度平均分子量が18,000のポリカー
ボネート (B−2):粘度平均分子量が23,000のポリカー
ボネート (B−3):粘度平均分子量が28,000のポリカー
ボネート (B′−1):粘度平均分子量が15,000のポリカ
ーボネート (B′−2):粘度平均分子量が31,000のポリカ
ーボネート4. Reference Example 3 [Preparation of aromatic polycarbonate (B) component] As the component (B), the following aromatic polycarbonates (B-1 to 3) and (B'-1 to 2) were used. (B-1): a polycarbonate having a viscosity average molecular weight of 18,000 (B-2): a polycarbonate having a viscosity average molecular weight of 23,000 (B-3): a polycarbonate having a viscosity average molecular weight of 28,000 (B'-1) ): Polycarbonate having a viscosity average molecular weight of 15,000 (B′-2): polycarbonate having a viscosity average molecular weight of 31,000
【0058】5.参考例4〔リン酸エステル化合物
(C)成分の調製〕 (C)成分として下記に示すリン酸エステル(C−1〜
3)、(C′−1〜2)を使用した。 (C−1):上記一般式(I)のR1 〜R4 がフェニル
基、Xが2,2−ビス(4′−フェニレン)プロパン
基、nが1.1のリン酸エステル化合物。 (C−2):上記一般式(I)のR1 〜R4 が2,6−
キシレニル基、Xがm−フェニレン基、nが1.0のリ
ン酸エステル化合物。 (C−3):上記一般式(I)のR1 〜R4 がフェニル
基、Xが2,2−ビス(4′−フェニレン)プロパン
基、nが0.6のリン酸エステル化合物。 (C′−1):トリフェニルフォスフェート〔上記一般
式(I)のR1 〜R4がフェニル基、nが0のリン酸エ
ステル〕。 (C′−2):上記一般式(I)のR1 〜R4 がフェニ
ル基、Xが2,2−ビス(4′−フェニレン)プロパン
基、nが0.3のリン酸エステル化合物。5. Reference Example 4 [Preparation of phosphate ester compound (C) component] As the component (C), the following phosphate esters (C-1 to C-1)
3) and (C'-1 to 2) were used. (C-1): a phosphoric ester compound of the above general formula (I) wherein R 1 to R 4 are a phenyl group, X is a 2,2-bis (4′-phenylene) propane group, and n is 1.1. (C-2): R 1 to R 4 in the general formula (I) are 2,6-
A phosphoric ester compound in which a xylenyl group, X is a m-phenylene group, and n is 1.0. (C-3): A phosphate compound in which R 1 to R 4 in the general formula (I) are a phenyl group, X is a 2,2-bis (4′-phenylene) propane group, and n is 0.6. (C'-1): Triphenyl phosphate [R 1 to R 4 in the above general formula (I) are phenyl groups and n is 0). (C'-2): a phosphoric ester compound of the above general formula (I) in which R 1 to R 4 are a phenyl group, X is a 2,2-bis (4′-phenylene) propane group, and n is 0.3.
【0059】6.参考例5〔(D)成分の調製〕 (D)成分の(d1)としてダイニオン株式会社製、商
品名ホスタフロンTF1620(平均粒径220μm、
粒径分布:600μm以上の粒径の粒子25重量%以
下、嵩密度850g/l、融点327℃、比重2.1
5、分子量700万)を、(d2)として硬化ヒマシ油
ワックスを使用し、下記に示す(D−1〜4)および
(D′−1〜2)を調製した。 (D−1):(d1)50部および(d2)50部を、
ヘンシェルミキサーで5分間ミキシングした。 (D−2):(d1)20部および(d2)80部を、
ヘンシェルミキサーで5分間ミキシングした。 (D−3):(d1)70部および(d2)30部を、
ヘンシェルミキサーで5分間ミキシングした。 (D−4):(d1)50部および(d2)50部を、
ヘンシェルミキサーで5分間ミキシングした。 (D′−1):(d1)80部および(d2)20部
を、ヘンシェルミキサーで5分間ミキシングした。6. Reference Example 5 [Preparation of component (D)] As component (d1), Hostaflon TF1620 (trade name, manufactured by Dyneon Co., Ltd.)
Particle size distribution: 25% by weight or less of particles having a particle size of 600 μm or more, bulk density of 850 g / l, melting point of 327 ° C., specific gravity of 2.1
5, molecular weight 7,000,000) and (D2) a hydrogenated castor oil wax was used to prepare (D-1-4) and (D'-1-2) shown below. (D-1): 50 parts of (d1) and 50 parts of (d2)
Mix for 5 minutes with Henschel mixer. (D-2): 20 parts of (d1) and 80 parts of (d2)
Mix for 5 minutes with Henschel mixer. (D-3): 70 parts of (d1) and 30 parts of (d2)
Mix for 5 minutes with Henschel mixer. (D-4): 50 parts of (d1) and 50 parts of (d2)
Mix for 5 minutes with Henschel mixer. (D'-1): 80 parts of (d1) and 20 parts of (d2) were mixed with a Henschel mixer for 5 minutes.
【0060】7.実施例1〜11、比較例1〜13 上記各成分を、表3〜6に示す配合割合でヘンシェルミ
キサーにより3分間混合したのち、ナカタニ機械(株)
製、NVC型50mmベント付き押出機でシリンダー設
定温度220〜250℃で溶融押出し、ペレットを得
た。得られたペレットを充分に乾燥し、(株)日本製鋼
所製の射出成形機J100E−C5を用い、シリンダー
温度240℃、金型温度50℃で射出成形し、各種評価
用試験片を得た。この試験片を用い、上記評価法で評価
した。評価結果を表3〜6に示す。7. Examples 1 to 11 and Comparative Examples 1 to 13 After the above components were mixed in a mixing ratio shown in Tables 3 to 6 using a Henschel mixer for 3 minutes, Nakatanani Machine Co., Ltd.
Was extruded at a cylinder set temperature of 220 to 250 ° C. using an NVC type extruder with a 50 mm vent to obtain pellets. The obtained pellets were sufficiently dried, and injection-molded at a cylinder temperature of 240 ° C. and a mold temperature of 50 ° C. using an injection molding machine J100E-C5 manufactured by Nippon Steel Works to obtain various test pieces for evaluation. . This test piece was evaluated by the above evaluation method. The evaluation results are shown in Tables 3 to 6.
【0061】[0061]
【表3】 [Table 3]
【0062】[0062]
【表4】 [Table 4]
【0063】[0063]
【表5】 [Table 5]
【0064】[0064]
【表6】 [Table 6]
【0065】実施例の効果 表3〜4の実施例1〜11より明らかなように、本発明
の難燃性熱可塑性樹脂組成物は、いずれも耐衝撃性、耐
熱性、流動性、難燃性、押出生産安定性に優れている。
一方、表5〜6より明らかなように、比較例1,2は、
(A)成分中のゴム粒子径の150nm以下の比率を本
発明の範囲外に多くした例であり、落錘衝撃強度が劣
る。比較例3,4は、(A)成分中のゴム粒子径の35
0nm以上の比率を本発明の範囲外に多くした例であ
り、落錘衝撃強度および難燃性が劣る。比較例5は、
(A)成分の配合量を本発明の範囲外に少なく、(B)
成分の配合量を本発明の範囲外に多くした例であり、流
動性が劣る。比較例6は、(A)成分の配合量を本発明
の範囲外に多く、(B)成分の配合量を本発明の範囲外
に少なくした例であり、難燃性が劣る。Effects of Examples As is clear from Examples 1 to 11 in Tables 3 and 4, all of the flame-retardant thermoplastic resin compositions of the present invention have impact resistance, heat resistance, fluidity and flame retardancy. Excellent extrudability and extrusion production stability.
On the other hand, as is clear from Tables 5 and 6, Comparative Examples 1 and 2
This is an example in which the ratio of the rubber particle diameter in the component (A) of 150 nm or less is outside the range of the present invention, and the falling weight impact strength is inferior. Comparative Examples 3 and 4 have a rubber particle diameter of 35 in the component (A).
This is an example in which the ratio of 0 nm or more is out of the range of the present invention, and the falling weight impact strength and the flame retardancy are inferior. Comparative Example 5
(B) the amount of the component (A) is small outside the scope of the present invention;
This is an example in which the amount of the component is increased outside the range of the present invention, and the fluidity is poor. Comparative Example 6 is an example in which the amount of the component (A) is large outside the range of the present invention, and the amount of the component (B) is small outside the range of the present invention, and the flame retardancy is inferior.
【0066】比較例7は、(B)成分の粘度平均分子量
が本発明の範囲外に低い例であり、落錘衝撃強度が劣
る。比較例8は、(B)成分の粘度平均分子量が本発明
の範囲外に大きい例であり、流動性が劣る。比較例9,
10は、(C)成分の重合度が本発明の範囲外で小さい
例であり、耐熱性が劣る。比較例11は、(C)成分の
配合量が本発明の範囲外で少ない例であり、難燃性が劣
る。比較例12は、(C)成分の配合量が本発明の範囲
外で多い例であり、耐熱性が劣る。比較例13は、
(D)成分の(d1)と(d2)の配合比において、
(d1)成分が多く、(d2)成分の少ない例であり、
落錘衝撃強度、難燃性、および押出生産安定性が劣る。Comparative Example 7 is an example in which the viscosity average molecular weight of the component (B) is low outside the range of the present invention, and the falling weight impact strength is inferior. Comparative Example 8 is an example in which the viscosity average molecular weight of the component (B) is large outside the range of the present invention, and the fluidity is poor. Comparative Example 9,
No. 10 is an example where the polymerization degree of the component (C) is small outside the range of the present invention, and the heat resistance is inferior. Comparative Example 11 is an example in which the blending amount of the component (C) is out of the range of the present invention and is small, and the flame retardancy is poor. Comparative Example 12 is an example in which the blending amount of the component (C) is large outside the range of the present invention, and the heat resistance is inferior. Comparative Example 13
In the compounding ratio of (d1) and (d2) of the component (D),
This is an example in which the component (d1) is large and the component (d2) is small.
Poor drop impact strength, flame retardancy, and extrusion production stability.
【0067】[0067]
【発明の効果】本発明の難燃性熱可塑性樹脂組成物は、
非ハロゲン系であり、耐衝撃性、耐熱性、流動性、難燃
性および押出生産安定性に優れている。そして、その成
形品は、OA・家電分野、電気・電子・通信分野、コン
ピュータ分野、雑貨分野、サニタリー分野、車両分野な
どで好適に使用することができる。The flame-retardant thermoplastic resin composition of the present invention comprises:
It is non-halogen and has excellent impact resistance, heat resistance, fluidity, flame retardancy and extrusion production stability. Then, the molded article can be suitably used in the OA / home electric appliance field, the electric / electronic / communication field, the computer field, the sundries field, the sanitary field, the vehicle field, and the like.
フロントページの続き (72)発明者 檜垣 圭吾 東京都中央区京橋一丁目18番1号 テクノ ポリマー株式会社内 (72)発明者 宮崎 広秋 東京都中央区京橋一丁目18番1号 テクノ ポリマー株式会社内 Fターム(参考) 4J002 AE03Z AE05Z BB03Z BD15Y BN14W BN15W BN16W CG01X CP03Z EF056 EH057 EW066 FD17Z FD177 GN00 GQ00Continued on the front page (72) Inventor Keigo Higaki 1-18-1 Kyobashi, Chuo-ku, Tokyo Techno Polymer Co., Ltd. (72) Inventor Hiroaki Miyazaki 1-1-18 Kyobashi 1-Chome, Chuo-ku, Tokyo Techno Polymer Co., Ltd. F term (reference) 4J002 AE03Z AE05Z BB03Z BD15Y BN14W BN15W BN16W CG01X CP03Z EF056 EH057 EW066 FD17Z FD177 GN00 GQ00
Claims (2)
部、および(B)粘度平均分子量が16,000〜3
0,000の芳香族ポリカーボネート90〜60重量部
〔ただし、(A)+(B)=100重量部〕の合計10
0重量部に対して、 (C)下記一般式(I)で表されるリン酸エステル化合
物8〜25重量部、ならびに、 (D)ポリテトラフルオロエチレン(d1)および滑剤
(d2)を、(d1)10〜70重量%および(d2)
90〜30重量%〔ただし、(d1)+(d2)=10
0重量%〕の割合で、合計0.1〜10重量部を配合し
てなることを特徴とする難燃性熱可塑性樹脂組成物。 (A);粒子径150nm以下の粒子が15重量%以
下、150nmを超え350nm未満が60重量%以
上、350nm以上が25重量%以下である粒子径分布
を有するゴム質重合体の存在下に、芳香族ビニル化合物
およびシアン化ビニル化合物を主成分とする単量体成分
をグラフト重合して得られるゴム強化樹脂。 【化1】 〔ただし、R1 ,R2 ,R3 およびR4 は、それぞれ相
互に独立して選ばれるフェニル基またはキシレニル基、
Xはm−フェニレン基または2,2−ビス(4′−フェ
ニレン)プロパン基を表し、nは0.5〜1.2であ
る。〕1. The following (A) 10 to 40 parts by weight of a rubber reinforced resin, and (B) a viscosity average molecular weight of 16,000 to 3
90 to 60 parts by weight of 0000 aromatic polycarbonate (provided that (A) + (B) = 100 parts by weight)
(C) 8 to 25 parts by weight of a phosphoric ester compound represented by the following general formula (I), and (D) polytetrafluoroethylene (d1) and a lubricant (d2) based on 0 parts by weight, d1) 10 to 70% by weight and (d2)
90 to 30% by weight [(d1) + (d2) = 10
0% by weight] and a total of 0.1 to 10 parts by weight. (A); in the presence of a rubbery polymer having a particle size distribution in which 15% by weight or less of particles having a particle diameter of 150 nm or less, 60% by weight or more and less than 350 nm and 150% or more and 25% by weight or less of 350 nm or more, A rubber reinforced resin obtained by graft polymerization of a monomer component containing an aromatic vinyl compound and a vinyl cyanide compound as main components. Embedded image Wherein R 1 , R 2 , R 3 and R 4 are each independently selected from a phenyl group or a xyenyl group,
X represents an m-phenylene group or a 2,2-bis (4'-phenylene) propane group, and n is 0.5 to 1.2. ]
1)および滑剤(d2)をあらかじめブレンドしておく
ことを特徴とする請求項1記載の難燃性熱可塑性樹脂組
成物。2. The polytetrafluoroethylene (d)
The flame-retardant thermoplastic resin composition according to claim 1, wherein 1) and the lubricant (d2) are blended in advance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001032830A JP2001310985A (en) | 2000-02-24 | 2001-02-08 | Flame retardant thermoblastic resin composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-47118 | 2000-02-24 | ||
JP2000047118 | 2000-02-24 | ||
JP2001032830A JP2001310985A (en) | 2000-02-24 | 2001-02-08 | Flame retardant thermoblastic resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001310985A true JP2001310985A (en) | 2001-11-06 |
Family
ID=26585976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001032830A Withdrawn JP2001310985A (en) | 2000-02-24 | 2001-02-08 | Flame retardant thermoblastic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001310985A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002317110A (en) * | 2001-04-20 | 2002-10-31 | Asahi Kasei Corp | Colored flame-retardant polycarbonate composition and production method therefor |
JP2009179667A (en) * | 2008-01-29 | 2009-08-13 | Mitsubishi Rayon Co Ltd | Olefinic resin composition and molded product of it |
JP2011224895A (en) * | 2010-04-21 | 2011-11-10 | Daicel Polymer Ltd | Composite molded article |
JP2015127414A (en) * | 2013-12-27 | 2015-07-09 | 奇美實業股▲分▼有限公司 | Polycarbonate composition, manufacturing method thereof and molded article |
CN106398163A (en) * | 2016-09-30 | 2017-02-15 | 福建华塑新材料有限公司 | Low temperature resistant and high impact resistant polycarbonate and preparation method thereof |
CN109810461A (en) * | 2018-12-27 | 2019-05-28 | 聚石化学(苏州)有限公司 | A kind of proof stress whitens table tennis PC/MABS composite material and preparation method and application |
-
2001
- 2001-02-08 JP JP2001032830A patent/JP2001310985A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002317110A (en) * | 2001-04-20 | 2002-10-31 | Asahi Kasei Corp | Colored flame-retardant polycarbonate composition and production method therefor |
JP2009179667A (en) * | 2008-01-29 | 2009-08-13 | Mitsubishi Rayon Co Ltd | Olefinic resin composition and molded product of it |
JP2011224895A (en) * | 2010-04-21 | 2011-11-10 | Daicel Polymer Ltd | Composite molded article |
JP2015127414A (en) * | 2013-12-27 | 2015-07-09 | 奇美實業股▲分▼有限公司 | Polycarbonate composition, manufacturing method thereof and molded article |
CN106398163A (en) * | 2016-09-30 | 2017-02-15 | 福建华塑新材料有限公司 | Low temperature resistant and high impact resistant polycarbonate and preparation method thereof |
CN109810461A (en) * | 2018-12-27 | 2019-05-28 | 聚石化学(苏州)有限公司 | A kind of proof stress whitens table tennis PC/MABS composite material and preparation method and application |
CN109810461B (en) * | 2018-12-27 | 2021-06-01 | 聚石化学(苏州)有限公司 | PC/MABS composite material for stress-resistant whitening table tennis and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1123350B1 (en) | Polycarbonate resin blends containing titanium dioxide | |
JP6024757B2 (en) | Natural rubber-containing thermoplastic resin composition and molded article thereof | |
KR20070064364A (en) | Stabilized blends of polycarbonate with emulsion derived polymers | |
JP2002525415A (en) | Polycarbonate resin / graft copolymer blend | |
KR20010074740A (en) | Flame retardant polycarbonate/rubber-modified graft copolymer resin blend having a metallic appearance | |
JPH11269368A (en) | Flame retardant polycarbonate resin/abs graft copolymer blend | |
KR101134016B1 (en) | High Heat-Resistant, Scratch-Resistant and Flameproof Thermoplastic Resin Composition | |
US20020022686A1 (en) | Thermoplastic resin composition | |
JP4603653B2 (en) | Thermoplastic resin composition | |
JP2000290462A (en) | Flame-retardant resin composition | |
JP2001310985A (en) | Flame retardant thermoblastic resin composition | |
JP4333857B2 (en) | Flame retardant thermoplastic resin composition and regenerated molding material thereof | |
US6737453B2 (en) | Flame retardant thermoplastic resin composition | |
JP2003327639A (en) | Rubber-reinforced resin and resin composition thereof | |
JP4916623B2 (en) | Thermoplastic resin composition | |
JP4333856B2 (en) | Flame retardant thermoplastic resin composition | |
US6590016B2 (en) | Flame retardant thermoplastic resin composition | |
JP2002146146A (en) | Flame-retardant thermoplastic resin composition | |
JP2001226556A (en) | Flame-retardant thermoplastic resin composition | |
JP2001214023A (en) | Thermoplastic resin composition | |
JP2001131398A (en) | Thermoplastic resin composition having excellent heat resistance | |
JPH11199747A (en) | Thermoplastic resin composition | |
JP2000086848A (en) | Thermoplastic resin composition for extrusion molding and molding made therefrom | |
JP2002146147A (en) | Flame-retardant thermoplastic resin composition | |
JP4160646B2 (en) | Thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080513 |