JP2001310957A - Intermediate material for composite and fiber reinforced composite - Google Patents

Intermediate material for composite and fiber reinforced composite

Info

Publication number
JP2001310957A
JP2001310957A JP2001043433A JP2001043433A JP2001310957A JP 2001310957 A JP2001310957 A JP 2001310957A JP 2001043433 A JP2001043433 A JP 2001043433A JP 2001043433 A JP2001043433 A JP 2001043433A JP 2001310957 A JP2001310957 A JP 2001310957A
Authority
JP
Japan
Prior art keywords
composite material
fiber
resin
molding
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001043433A
Other languages
Japanese (ja)
Other versions
JP4734729B2 (en
Inventor
Norimitsu Natsume
憲光 夏目
Itaru Endo
至 遠藤
Hajime Kishi
肇 岸
Takeshi Terashita
武 寺下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001043433A priority Critical patent/JP4734729B2/en
Priority to PCT/JP2001/007184 priority patent/WO2003018674A1/en
Publication of JP2001310957A publication Critical patent/JP2001310957A/en
Application granted granted Critical
Publication of JP4734729B2 publication Critical patent/JP4734729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Abstract

PROBLEM TO BE SOLVED: To provide an intermediate material for a fiber reinforced composite having high mechanical strength and excellent weatherability owing to a strong adhesion between the carbon fiber and the resin maintained even under a wet and hot environment, and to provide such a fiber reinforced composite. SOLUTION: This intermediate material comprises carbon fibers and a resin composition comprising a benzoxazine compound containing within the molecule a structural unit I expressed by the following structural formula (I) in which cross section of the single fiber of the carbon fibers is substantially circular (I) wherein R1 represents an aliphatic alkyl group having 1-12 carbons, a cycloalkyl group having 3-8 carbons, a phenyl group or a substituted phenyl group; and to the aromatic ring, a hydrogen atom is bound to at least one carbon at ortho- or para-position to the carbon bound with oxygen atom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、航空機用構造材料
をはじめとして、ゴルフシャフト、釣り竿等のスポーツ
用途、その他一般産業用途に好適に適用しうる繊維強化
複合材料を得るための複合材料成形用中間体及びそれか
ら得られる繊維強化複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to molding a composite material for obtaining a fiber reinforced composite material which can be suitably applied to sports applications such as golf shafts, fishing rods, etc., as well as aircraft structural materials. The present invention relates to an intermediate and a fiber-reinforced composite obtained therefrom.

【0002】[0002]

【従来の技術】炭素繊維強化複合材料は、比強度、比弾
性率等の機械強度に優れるため、ゴルフシャフトや釣り
竿等のスポーツ用途や航空機用構造材料等に広く使用さ
れている。
2. Description of the Related Art Carbon fiber reinforced composite materials are widely used for sports applications such as golf shafts and fishing rods and structural materials for aircraft because of their excellent mechanical strength such as specific strength and specific elastic modulus.

【0003】かかる複合材料を構成する樹脂には、含浸
性や耐熱性に優れる熱硬化性樹脂が用いられることが多
く、熱硬化性樹脂には、炭素繊維との接着性に優れるこ
と、成形性に優れること、高温、湿潤環境(以下、湿熱
環境と略記)にあっても高度の機械強度を発現すること
が必要とされる。
[0003] As the resin constituting such a composite material, a thermosetting resin having excellent impregnation and heat resistance is often used, and the thermosetting resin has excellent adhesiveness with carbon fiber, moldability, and the like. It is necessary to exhibit high mechanical strength even in a high-temperature, humid environment (hereinafter abbreviated as a moist heat environment).

【0004】この熱硬化性樹脂としては、フェノール樹
脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエ
ステル樹脂、エポキシ樹脂などが使用されている。
As the thermosetting resin, phenol resin, melamine resin, bismaleimide resin, unsaturated polyester resin, epoxy resin and the like are used.

【0005】中でも、エポキシ樹脂は、耐熱性、成形
性、炭素繊維との接着性に優れ、高度の機械強度を有す
る繊維強化複合材料を与える熱硬化性樹脂であるため広
く使用されている。
[0005] Above all, epoxy resins are widely used because they are excellent in heat resistance, moldability and adhesion to carbon fibers, and are thermosetting resins which provide fiber-reinforced composite materials having high mechanical strength.

【0006】強化繊維として炭素繊維、並びに、樹脂成
分として、テトラグリシジルジアミノジフェニルメタン
及びジアミノジフェニルスルフォンから構成されるプリ
プレグより得られる繊維強化複合材料は、ゴルフシャフ
トや釣り竿等のスポーツ用途や航空機用構造材料等の構
造部材に広く使用されている。
A fiber-reinforced composite material obtained from a prepreg composed of carbon fiber as a reinforcing fiber and tetraglycidyldiaminodiphenylmethane and diaminodiphenylsulfone as a resin component is used for sports applications such as golf shafts and fishing rods and structural materials for aircraft. Widely used for structural members such as.

【0007】かかる繊維強化複合材料は、室温下等の通
常の環境では、炭素繊維とマトリックス樹脂との間に発
現される接着性は充分に高く機械強度も良好であるが、
一旦湿潤環境下におかれると、接着性低下により機械強
度が損なわれることから、耐湿熱性の改善が強く望まれ
ている。
[0007] In such a fiber-reinforced composite material, under normal circumstances such as room temperature, the adhesiveness between the carbon fiber and the matrix resin is sufficiently high and the mechanical strength is good.
Once placed in a humid environment, the mechanical strength is impaired due to a decrease in adhesiveness, and thus improvement in wet heat resistance is strongly desired.

【0008】そのため、複合材料内部への水の侵入を抑
制する対策として、複合材料の空隙率を低下させたり、
樹脂の極性を減じたりする試みが行われている。
[0008] Therefore, as a measure to suppress the intrusion of water into the inside of the composite material, the porosity of the composite material is reduced,
Attempts have been made to reduce the polarity of the resin.

【0009】樹脂の極性を減じるには、樹脂を構成する
ポリマー分子にアルキル基等の側鎖を導入したり、主鎖
のアルキル鎖を長くしたり、エポキシ当量を高め、アミ
ン当量を減らすなどの手法が考えられる。
To reduce the polarity of the resin, it is necessary to introduce a side chain such as an alkyl group into a polymer molecule constituting the resin, lengthen the alkyl chain of the main chain, increase the epoxy equivalent, and reduce the amine equivalent. A method is conceivable.

【0010】しかし、アルキル基等の側鎖を導入すると
耐熱性が低下し、また、主鎖のアルキル鎖を長くする
と、弾性率と耐熱性が低下し、さらに、エポキシ当量を
高め、アミン当量を減らすと炭素繊維との接着性が低下
する等して、得られる複合材料において、繊維方向の圧
縮強度、非繊維方向の引張強度、剪断強度、及び剥離強
度等の機械強度が大きく低下する問題があった。
However, when a side chain such as an alkyl group is introduced, the heat resistance is reduced, and when the main chain alkyl chain is lengthened, the elastic modulus and the heat resistance are reduced, and the epoxy equivalent is increased and the amine equivalent is reduced. When the amount is reduced, the adhesion to carbon fiber is reduced, and the resulting composite material has a problem that the mechanical strength such as the compressive strength in the fiber direction, the tensile strength in the non-fiber direction, the shear strength, and the peel strength is greatly reduced. there were.

【0011】また、耐湿熱性に優れるベンゾオキサジン
化合物を使用する例として、Polymer Composites、17、
5(1996)、P710に、単繊維が空豆状の断面形状を有する
炭素繊維及びベンゾオキサジン化合物からなるプリプレ
グにより高度な曲げ剛性を有する炭素繊維強化複合材料
を得る方法が提案されている。
Examples of the use of a benzoxazine compound having excellent wet heat resistance include Polymer Composites, 17,
5 (1996), P710, proposes a method for obtaining a carbon fiber reinforced composite material having high bending rigidity by using a prepreg composed of a carbon fiber having a bean-shaped cross section and a benzoxazine compound.

【0012】ところが、かかる技術では、炭素繊維の比
表面積が大きいため、炭素繊維と樹脂の界面が吸湿によ
り劣化する問題があった。
However, such a technique has a problem that the interface between the carbon fiber and the resin is deteriorated due to moisture absorption because the specific surface area of the carbon fiber is large.

【0013】[0013]

【発明が解決しようとする課題】本発明は、湿熱環境下
にあっても、炭素繊維と樹脂との接着性が高レベルで維
持され、これにより、耐候性に優れ、高度の機械強度を
発現する繊維強化複合材料を与える複合材料成形用中間
体、及びそのような繊維強化複合材料を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention maintains a high level of adhesion between a carbon fiber and a resin even in a wet heat environment, thereby exhibiting excellent weather resistance and exhibiting high mechanical strength. It is an object of the present invention to provide an intermediate for molding a composite material that provides a fiber-reinforced composite material to be formed, and such a fiber-reinforced composite material.

【0014】[0014]

【課題を解決するための手段】本発明は、上記課題を解
決するために次の構成を有する。即ち、炭素繊維と、次
構造式(I)で表される構造単位Iを分子内に有するベ
ンゾオキサジン化合物を含む樹脂組成物とを構成要素と
する複合材料成形用中間体であって、前記炭素繊維の単
繊維の断面形状が実質的に真円状である複合材料成形用
中間体
The present invention has the following arrangement to solve the above-mentioned problems. That is, a composite material molding intermediate comprising a carbon fiber and a resin composition containing a benzoxazine compound having a structural unit I represented by the following structural formula (I) in a molecule, Intermediate for molding a composite material in which the cross-sectional shape of a single fiber of the fiber is substantially a perfect circle

【0015】[0015]

【化4】 Embedded image

【0016】(式中、R1は、炭素数1〜12の鎖状ア
ルキル基、炭素数3〜8の環状アルキル基、フェニル
基、又は置換フェニル基であり、芳香環には、酸素原子
が結合している炭素原子のオルソ位とパラ位の少なくと
も一方の炭素原子に水素が結合している。)である。
(Wherein R 1 is a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group or a substituted phenyl group, and an oxygen atom is contained in the aromatic ring. Hydrogen is bonded to at least one of the ortho and para carbon atoms of the bonded carbon atom.).

【0017】また、本発明は、上記課題を解決するため
に次の構成を有する。すなわち前記複合材料成形用中間
体が加熱され、硬化されてなる繊維強化複合材料であ
る。
The present invention has the following configuration in order to solve the above-mentioned problems. That is, the composite material molding intermediate is a fiber reinforced composite material obtained by heating and curing.

【0018】[0018]

【発明の実施の形態】本発明者らは、上記問題点に鑑
み、鋭意検討の結果、単繊維の断面形状が実質的に真円
状である炭素繊維と、ベンゾオキサジン化合物を含む樹
脂組成物とを構成要素とする複合材料成形用中間体によ
り、湿熱環境下にあっても、高度の機械強度を発現する
繊維強化複合材料が得られることを見いだし、本発明に
到達した。
BEST MODE FOR CARRYING OUT THE INVENTION In view of the above problems, the present inventors have conducted intensive studies, and as a result, have found that a resin composition containing a carbon fiber having a substantially perfect circular cross section and a benzoxazine compound is used. The present inventors have found that a fiber-reinforced composite material exhibiting a high degree of mechanical strength can be obtained even under a moist heat environment by using a composite material molding intermediate having the following components.

【0019】本発明において、ベンゾオキサジン化合物
とは、構造式(I)で表される構造単位Iを分子内に1
個以上有する化合物をいう。
In the present invention, the benzoxazine compound is a compound represented by the structural unit I represented by the structural formula (I).
Or more compounds.

【0020】[0020]

【化5】 Embedded image

【0021】(式中、R1は、炭素数1〜12の鎖状ア
ルキル基、炭素数3〜8の環状アルキル基、フェニル
基、又は置換フェニル基であり、芳香環には、酸素原子
が結合している炭素原子のオルソ位とパラ位の少なくと
も一方の炭素原子に水素が結合している。) ベンゾオキサジン化合物は、得られる複合材料の耐湿熱
性をさらに向上させる観点から、分子内に次構造式(I
I)
(Wherein, R 1 is a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group or a substituted phenyl group, and an oxygen atom is contained in the aromatic ring. Hydrogen is bonded to at least one of the ortho and para carbon atoms of the bonded carbon atom.) From the viewpoint of further improving the wet heat resistance of the obtained composite material, the benzoxazine compound has the following structure: Structural formula (I
I)

【0022】[0022]

【化6】 Embedded image

【0023】で表される構造単位IIを有しないものであ
るか、又は次式(1)を満足する範囲で構造単位IIを有
するものの少なくとも一方であるのが好ましい。
It is preferable that the compound does not have the structural unit II represented by the formula or that it has the structural unit II within a range satisfying the following formula (1).

【0024】 X1≧X2 (1) X1:分子内に存在する、次構造式(III)で表される構
造単位IIの個数 X2:分子内に存在する、次構造式(III)で表されない
構造単位IIの個数
X 1 ≧ X 2 (1) X 1 : the number of structural units II represented by the following structural formula (III) present in the molecule X 2 : the following structural formula (III) present in the molecule Number of structural units II not represented by

【0025】[0025]

【化7】 Embedded image

【0026】(式中、R1は、炭素数1〜12の鎖状ア
ルキル基、炭素数3〜8の環状アルキル基、フェニル
基、又は置換フェニル基である。) 本発明において、ベンゾオキサジン化合物は、対応する
フェノール、1級アミン及びホルムアルデヒド或いはそ
の誘導体から、特許第2595437号公報、或いは特
表平9−502452号公報に記載の方法に従って、次
反応式(2)で示される反応経路により合成することが
できる。
(In the formula, R 1 is a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a substituted phenyl group.) In the present invention, a benzoxazine compound Is synthesized from the corresponding phenol, primary amine and formaldehyde or a derivative thereof according to the reaction route represented by the following reaction formula (2) according to the method described in Japanese Patent No. 2595437 or Japanese Patent Publication No. 9-502452. can do.

【0027】[0027]

【化8】 Embedded image

【0028】(式中、R1は、炭素数1〜12の鎖状ア
ルキル基、炭素数3〜8の環状アルキル基、フェニル
基、又は置換フェニル基である。) 本発明において、ベンゾオキサジン化合物としては、例
えば次構造式(IV)で表される化合物からなる群から選
ばれる少なくとも1種が挙げられる。
(Wherein, R 1 is a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a substituted phenyl group.) In the present invention, a benzoxazine compound is used. Examples include at least one selected from the group consisting of compounds represented by the following structural formula (IV).

【0029】[0029]

【化9】 Embedded image

【0030】ベンゾオキサジン化合物は、モノマーのみ
からなるものでも良いし、数分子が重合してオリゴマー
状態となっていても良い。
The benzoxazine compound may be composed of only a monomer, or may be formed by oligomerizing several molecules by polymerization.

【0031】また、本発明では、樹脂組成物に、更にベ
ンゾオキサジン化合物用硬化剤や、該化合物用硬化助剤
及び/又は硬化触媒を含ませるのが良い。これにより、
得られる複合材料中間体の取り扱い性や硬化性が向上
し、機械物性に優れる繊維強化複合材料が得られるよう
になる。
In the present invention, the resin composition preferably further contains a curing agent for the benzoxazine compound, a curing aid for the compound, and / or a curing catalyst. This allows
The handleability and curability of the resulting composite material intermediate are improved, and a fiber-reinforced composite material having excellent mechanical properties can be obtained.

【0032】さらに、本発明による樹脂組成物には、熱
硬化性樹脂、熱可塑性樹脂等や、有機粒子、無機粒子等
の成分を含ませることもできる。
Further, the resin composition according to the present invention can contain components such as thermosetting resin, thermoplastic resin and the like, and organic particles and inorganic particles.

【0033】ベンゾオキサジン化合物用硬化助剤及び/
又は硬化触媒としては、フェノール化合物やカルボン酸
等の酸、又は芳香族アミンを用いるのが好ましい。中で
も、機械物性に優れる繊維強化複合材料が得られること
から、フェノール化合物及び芳香族アミンが好ましく使
用できる。フェノール化合物の具体例としては、国際公
開公報WO0027921に開示されているような、単官能フェ
ノールや、ビスフェノールA等の多官能フェノール、特
開平11-21336公報に開示されているような、レゾルシン
化合物等が使用できる。また、芳香族アミンとしてはジ
アミノジフェニルメタン、ジアミノジフェニルスルホン
(DDS)等が使用できる。
A curing aid for benzoxazine compounds and / or
Alternatively, it is preferable to use an acid such as a phenol compound or a carboxylic acid, or an aromatic amine as the curing catalyst. Among them, a phenol compound and an aromatic amine can be preferably used since a fiber-reinforced composite material having excellent mechanical properties can be obtained. Specific examples of the phenol compound include monofunctional phenols and polyfunctional phenols such as bisphenol A as disclosed in International Publication WO0027921, resorcinol compounds as disclosed in JP-A-11-21336, and the like. Can be used. Further, as the aromatic amine, diaminodiphenylmethane, diaminodiphenylsulfone (DDS) and the like can be used.

【0034】熱硬化性樹脂としては、エポキシ樹脂、ポ
リエステル樹脂、ポリウレタン樹脂、ユリア樹脂、フェ
ノール樹脂、メラミン樹脂、シアネートエステル樹脂等
が使用できる。尚、熱硬化性樹脂は、オリゴマーを一部
に含んでいるものでも良い。
As the thermosetting resin, epoxy resin, polyester resin, polyurethane resin, urea resin, phenol resin, melamine resin, cyanate ester resin and the like can be used. In addition, the thermosetting resin may partially contain an oligomer.

【0035】これら熱硬化性樹脂の中では、取り扱い性
が良好で、硬化性、機械物性にも優れる樹脂組成物を与
える樹脂として、エポキシ樹脂が好ましく使用できる。
Among these thermosetting resins, an epoxy resin can be preferably used as a resin which gives a resin composition having good handleability and excellent curability and mechanical properties.

【0036】エポキシ樹脂としては、ビスフェノールA
型エポキシ樹脂(ビスフェノールAとエピクロロヒドリ
ンの反応により得られるエポキシ樹脂)、ビスフェノー
ルF型エポキシ樹脂(ビスフェノールFとエピクロロヒ
ドリンの反応により得られるエポキシ樹脂)、ビスフェ
ノールS型エポキシ樹脂(ビスフェノールSとエピクロ
ロヒドリンの反応により得られるエポキシ樹脂)、ノボ
ラック型エポキシ樹脂(ノボラックとエピクロロヒドリ
ンの反応により得られるエポキシ樹脂)、テトラキス
(グリシジルオキシフェニル)エタンやトリス(グリシ
ジルオキシ)メタンのようなグリシジルエーテル型エポ
キシ樹脂、テトラグリシジルジアミノジフェニルメタ
ン、トリグリシジルアミノフェノール、トリグリシジル
アミノクレゾール、テトラグリシジルキシリレンジアミ
ン等のグリシジルアミン型エポキシ樹脂、及びそれらに
アルキル基又はハロゲン基置換体等が使用できる。中で
も、特に優れた機械物性及び耐熱性を有する繊維強化複
合材料が得られることから、テトラグリシジルジアミノ
ジフェニルメタン、トリグリシジルアミノフェノール、
トリグリシジルアミノクレゾール、テトラグリシジルキ
シリレンジアミンのようなグリシジルアミン型エポキシ
樹脂が、最適な樹脂として用いられる。
As the epoxy resin, bisphenol A
Epoxy resin (epoxy resin obtained by reaction of bisphenol A and epichlorohydrin), bisphenol F epoxy resin (epoxy resin obtained by reaction of bisphenol F and epichlorohydrin), bisphenol S epoxy resin (bisphenol S) Such as epoxy resin obtained by the reaction of novolak and epichlorohydrin), novolak-type epoxy resin (epoxy resin obtained by the reaction of novolak and epichlorohydrin), and tetrakis (glycidyloxyphenyl) ethane and tris (glycidyloxy) methane. Glycidyl ether type epoxy resin, glycidylamino such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, and tetraglycidylxylylenediamine Type epoxy resins, and alkyl group or a halogen substituted derivatives such as they can be used. Among them, since a fiber-reinforced composite material having particularly excellent mechanical properties and heat resistance can be obtained, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol,
Glycidylamine type epoxy resins such as triglycidylaminocresol and tetraglycidylxylylenediamine are used as the optimal resin.

【0037】本発明では、エポキシ樹脂が樹脂組成物中
に配合するとき、さらに該エポキシ樹脂の硬化剤を配合
するのが良い。これにより、更に強靱で硬化性に優れる
硬化物を与える樹脂組成物が得られるようになる。かか
る硬化剤としては、ジアミノジフェニルメタン、ジアミ
ノジフェニルスルホン(DDS)等の芳香族アミン、ト
リエチレンテトラミン、イソホロンジアミン等の脂肪族
アミン、イミダゾール誘導体、ジシアンジアミド、テト
ラメチルグアニジン、メチルヘキサヒドロフタル酸無水
物のようなカルボン酸無水物、アジピン酸ヒドラジド等
のカルボン酸ヒドラジド、カルボン酸アミド、ポリフェ
ノール化合物、ポリメルカプタン、三フッ化ホウ素エチ
ルアミン錯体名等のルイス酸錯体等が使用できる。
In the present invention, when the epoxy resin is blended in the resin composition, it is preferable to further blend a curing agent for the epoxy resin. This makes it possible to obtain a resin composition that gives a cured product that is tougher and has excellent curability. Examples of the curing agent include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone (DDS), aliphatic amines such as triethylenetetramine and isophoronediamine, imidazole derivatives, dicyandiamide, tetramethylguanidine and methylhexahydrophthalic anhydride. Such carboxylic anhydrides, carboxylic acid hydrazides such as adipic hydrazide, carboxylic acid amides, polyphenol compounds, polymercaptan, and Lewis acid complexes such as boron trifluoride ethylamine complex name can be used.

【0038】また、本発明では、樹脂成分として、これ
ら硬化剤とエポキシ樹脂とを反応させて得られる、硬化
活性をもつ付加物を用いることもできる。また、前記し
た各種の硬化剤をマイクロカプセル化したものも、プリ
プレグの保存安定性をさらに高める観点から、好ましく
使用できる。
In the present invention, as a resin component, an adduct having a curing activity and obtained by reacting these curing agents with an epoxy resin can also be used. Also, those obtained by microencapsulating the above-mentioned various curing agents can be preferably used from the viewpoint of further improving the storage stability of the prepreg.

【0039】また、これら硬化剤には、硬化活性を高め
るため、硬化促進剤を組み合わせることができる。例え
ば、ジシアンジアミドに、硬化促進剤として尿素誘導体
又はイミダゾール誘導体を組み合わせる例、カルボン酸
無水物やポリフェノール化合物に、硬化促進剤として第
三アミンやイミダゾール誘導体を組み合わせる例等が挙
げられる。
Further, these curing agents can be combined with a curing accelerator in order to enhance the curing activity. For example, examples include combining dicyandiamide with a urea derivative or an imidazole derivative as a curing accelerator, and combining carboxylic anhydride or a polyphenol compound with a tertiary amine or imidazole derivative as a curing accelerator.

【0040】前記尿素誘導体としては、第二アミンとイ
ソシアネートの反応により得られる化合物、例えば、3
- フェニル- 1, 1- ジメチル尿素、3- (3, 4- ジ
クロロフェニル)- 1, 1- ジメチル尿素(DCM
U)、3- (3−クロロ−4- メチルフェニル)- 1,
1- ジメチル尿素、2,4−ビス(3,3−ジメチルウ
レイド)トルエン等が好ましく使用できる。
As the urea derivative, a compound obtained by reacting a secondary amine with an isocyanate, for example, 3
-Phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCM
U), 3- (3-chloro-4-methylphenyl) -1,
1-dimethylurea, 2,4-bis (3,3-dimethylureido) toluene and the like can be preferably used.

【0041】熱可塑性樹脂としては、ナイロン樹脂、ポ
リエステル樹脂、ポリエーテルケトン系樹脂、ポリフェ
ニレンスルフィド系樹脂、ポリエーテルスルホン樹脂等
が好ましく使用できる。中でも、耐熱性及び得られる繊
維強化複合材料の機械物性を向上させる観点から、熱可
塑性ポリイミドポリエーテルイミド、ポリエーテルスル
ホンを特に好まし使用できる。
As the thermoplastic resin, a nylon resin, a polyester resin, a polyether ketone resin, a polyphenylene sulfide resin, a polyether sulfone resin and the like can be preferably used. Among them, thermoplastic polyimide polyetherimide and polyether sulfone can be particularly preferably used from the viewpoint of improving heat resistance and mechanical properties of the obtained fiber-reinforced composite material.

【0042】本発明において、樹脂組成物に配合する有
機粒子としては、ゴム粒子及び熱可塑性樹脂粒子が好ま
しい。これらの粒子は樹脂の靭性向上、繊維強化複合材
料の耐衝撃性向上の効果を有するものである。
In the present invention, rubber particles and thermoplastic resin particles are preferable as the organic particles to be added to the resin composition. These particles have the effect of improving the toughness of the resin and the impact resistance of the fiber-reinforced composite material.

【0043】ゴム粒子としては、架橋ゴム粒子、及び架
橋ゴム粒子の表面に異種ポリマーをグラフト重合したコ
アシェルゴム粒子等が好ましく使用できる。市販の架橋
ゴム粒子としては、カルボキシル変性のブタジエン−ア
クリロニトリル共重合体の架橋物からなるXER-91(日本
合成ゴム工業社製)、アクリルゴム微粒子からなるCX-M
Nシリーズ(日本触媒(株)製)、YR-500シリーズ(東
都化成(株)製)等が使用できる。
As the rubber particles, crosslinked rubber particles, core-shell rubber particles obtained by graft-polymerizing a different polymer on the surface of the crosslinked rubber particles, and the like can be preferably used. Commercially available crosslinked rubber particles include XER-91 (manufactured by Nippon Synthetic Rubber Industries, Ltd.) composed of a crosslinked product of a carboxyl-modified butadiene-acrylonitrile copolymer, and CX-M composed of acrylic rubber fine particles.
N series (manufactured by Nippon Shokubai Co., Ltd.) and YR-500 series (manufactured by Toto Kasei Co., Ltd.) can be used.

【0044】市販のコアシェルゴム粒子としては、例え
ば、ブタジエン・メタクリル酸アルキル・スチレン共重
合物からなる“パラロイド”EXL-2655(呉羽化学工業
(株)製)、アクリル酸エステル・メタクリル酸エステ
ル共重合体からなる“スタフィロイド”AC-3355、TR-212
2(武田薬品工業(株)製)、アクリル酸ブチル・メタ
クリル酸メチル共重合物からなる“PARALOID”EXL-261
1、EXL-3387(Rohm&Haas社製)等が使用できる。
Commercially available core-shell rubber particles include, for example, “PARALOID” EXL-2655 (available from Kureha Chemical Industry Co., Ltd.) made of butadiene / alkyl methacrylate / styrene copolymer, acrylic acid ester / methacrylic acid ester copolymer “Staphyroid” AC-3355, TR-212
2 (Takeda Pharmaceutical Co., Ltd.) "PARALOID" EXL-261 consisting of butyl acrylate / methyl methacrylate copolymer
1, EXL-3387 (Rohm & Haas) or the like can be used.

【0045】熱可塑性樹脂粒子としては、ポリアミド又
はポリイミドの粒子が好ましく用いられる。市販のポリ
アミド粒子として、東レ(株)製、SP-500、ATOCHEM社
製“オルガソール”等が使用できる。
As the thermoplastic resin particles, polyamide or polyimide particles are preferably used. As commercially available polyamide particles, SP-500 manufactured by Toray Industries, Inc., and “Orgasol” manufactured by ATOCHEM can be used.

【0046】また、本発明において、樹脂組成物に配合
する無機粒子としては、シリカ、アルミナ、スメクタイ
ト、合成マイカ等が好ましく使用できる。
In the present invention, silica, alumina, smectite, synthetic mica and the like can be preferably used as the inorganic particles to be blended in the resin composition.

【0047】これら無機粒子は、主として樹脂組成物の
増粘等のレオロジー制御、揺変性付与の効果を有するも
のである。
These inorganic particles mainly have the effect of controlling rheology such as thickening of the resin composition and imparting thixotropic properties.

【0048】また、本発明においては、その他添加剤と
して、エラストマーを用いることもできる。特にCTB
N(カルボキシル基末端ブタジエンニトリルゴム)は、
破壊靭性GICの向上に有効である。
In the present invention, an elastomer can be used as another additive. Especially CTB
N (carboxyl group-terminated butadiene nitrile rubber)
It is effective for improving the fracture toughness G IC .

【0049】本発明において、ベンゾオキサジン化合物
は、全樹脂組成物100重量部に対して、10〜100
重量部、好ましくは50〜100重量部、より好ましく
は70〜100重量部を樹脂組成物中に配合するのが良
い。10重量部未満であると、炭素繊維と樹脂との接着
性が低下し、得られる複合材料において、耐湿熱性が損
なわれることがある。
In the present invention, the benzoxazine compound is used in an amount of 10 to 100 parts by weight based on 100 parts by weight of the total resin composition.
It is good to mix the resin composition by weight, preferably 50 to 100 parts by weight, more preferably 70 to 100 parts by weight. If the amount is less than 10 parts by weight, the adhesiveness between the carbon fiber and the resin is reduced, and the wet heat resistance of the obtained composite material may be impaired.

【0050】本発明において、複合材料成形用中間体に
含まれる樹脂組成物は、未硬化の状態のものである。こ
こでいう未硬化の状態とは、樹脂組成物が完全硬化に至
っておらず、樹脂に流動性が残存した状態をいう。
In the present invention, the resin composition contained in the intermediate for molding a composite material is in an uncured state. Here, the uncured state refers to a state in which the resin composition has not been completely cured and the resin has fluidity remaining.

【0051】本発明においては、航空機用途分野で要求
されるような高度の耐湿熱性、比強度、比弾性率を繊維
強化複合材料に発現させるため、使用する炭素繊維の単
繊維の断面形状が実質的に真円状であることが必要であ
る。
In the present invention, since the fiber-reinforced composite material exhibits a high degree of wet heat resistance, specific strength, and specific elastic modulus required in the field of aircraft use, the cross-sectional shape of the monofilament of carbon fiber used is substantially It is necessary to be perfectly circular.

【0052】ここで、単繊維の断面形状が実質的に真円
状であるとは、単繊維の断面形状に外接する円の半径R
と内接する円の半径rとの比R/rが、1〜1.1、好
ましくは1〜1.05の範囲であることを意味する。炭
素繊維の単繊維の断面形状が真円状以外の形状、例えば
楕円状、卵状、空豆状、三つ葉状等であると、得られる
複合材料において、繊維方向の機械強度が不足すること
がある。
Here, that the cross-sectional shape of a single fiber is substantially a perfect circle means that the radius R of a circle circumscribing the cross-sectional shape of the single fiber
And the radius R of the inscribed circle is in the range of 1 to 1.1, preferably 1 to 1.05. If the cross-sectional shape of the single fiber of the carbon fiber is a shape other than a perfect circle, for example, an elliptical shape, an egg shape, a soybean shape, a three-leaf shape, or the like, the resulting composite material may have insufficient mechanical strength in the fiber direction. .

【0053】単繊維の断面形状が実質的に真円状の炭素
繊維としては、PAN系の炭素繊維として、”トレカ
(登録商標)”T700S(東レ(株)製)、”トレカ
(登録商標)”M30S(東レ(株)製)等が挙げられ
る。また、いわゆるピッチ系の炭素繊維も用いることが
できる。
As the carbon fiber having a substantially perfect circular cross-sectional shape of a single fiber, PAN-based carbon fibers include “Treca (registered trademark)” T700S (manufactured by Toray Industries, Inc.) and “Treca (registered trademark)”. "M30S (manufactured by Toray Industries, Inc.) and the like. Also, so-called pitch-based carbon fibers can be used.

【0054】炭素繊維の引張強度は、3800MPa以
上、好ましくは4000MPa以上、より好ましくは4
500MPa以上であるのが良い。3800MPa未満
であると、得られる複合材料の引張強度が不充分とな
り、高度の機械強度が要求される航空機用構造材料への
適用が困難となることがある。尚、炭素繊維の引張強度
は、7000MPa有れば、本発明の効果を奏するに充
分であることが多い。
The tensile strength of the carbon fiber is 3800 MPa or more, preferably 4000 MPa or more, and more preferably 4 MPa or more.
The pressure is preferably 500 MPa or more. If it is less than 3800 MPa, the tensile strength of the obtained composite material may be insufficient, and it may be difficult to apply the composite material to aircraft structural materials requiring high mechanical strength. In addition, if the tensile strength of the carbon fiber is 7000 MPa, it is often sufficient to achieve the effects of the present invention.

【0055】また、炭素繊維の引張弾性率は200〜8
00GPa、好ましくは220〜800GPaであるの
が良い。かかる高弾性率炭素繊維を用いることにより、
少量の材料で十分な製品の剛性を有する繊維強化複合材
料が得られるため、軽量かつ高剛性の航空機部材、レジ
ャー用品、一般産業部材が得られるようになり、好まし
い。
The tensile modulus of the carbon fiber is 200 to 8
It is good to be 00 GPa, preferably 220 to 800 GPa. By using such high modulus carbon fiber,
Since a fiber-reinforced composite material having sufficient product rigidity can be obtained with a small amount of material, lightweight and high-rigidity aircraft members, leisure goods, and general industrial members can be obtained, which is preferable.

【0056】本発明では、炭素繊維は、他種の強化繊
維、即ち、ガラス繊維、ボロン繊維等の無機繊維、アラ
ミド繊維、ナイロン繊維等の有機繊維等と組み合わせて
使用することもできる。
In the present invention, the carbon fibers can be used in combination with other types of reinforcing fibers, ie, inorganic fibers such as glass fibers and boron fibers, and organic fibers such as aramid fibers and nylon fibers.

【0057】本発明では、炭素繊維を含む強化繊維の形
態や配列については特に限定されず、織物、不織布、マ
ット、ニット、組み紐、一方向ストランド、ロービン
グ、チョップド等から適宜選択できるが、軽量、耐久性
がより高い水準にある繊維強化複合材料を得るために
は、強化繊維が、織物、一方向ストランド、ロービング
等連続繊維の形態であるのが良い。ここで、織物は従来
公知の二次元織物が適用できる。また、織物組織として
は、平織、綾織、絡み織、繻子織が良い。なお、織物に
色艶等の美観が付与されることから、織物の表面は炭素
繊維からなる織物とするのが好ましい。
In the present invention, the form and arrangement of the reinforcing fibers containing carbon fibers are not particularly limited, and can be appropriately selected from woven fabric, nonwoven fabric, mat, knit, braid, unidirectional strand, roving, chopped, etc. In order to obtain a fiber reinforced composite material having a higher level of durability, the reinforcing fibers are preferably in the form of continuous fibers such as woven fabrics, unidirectional strands, rovings and the like. Here, a conventionally known two-dimensional fabric can be applied to the fabric. As the woven structure, plain weave, twill weave, entangled weave, and satin weave are preferred. Note that the surface of the woven fabric is preferably a woven fabric made of carbon fiber, since the woven fabric is given an aesthetic appearance such as color and luster.

【0058】本発明による複合材料成形用中間体は、そ
の繊維体積分率が10〜75%、好ましくは30〜65
%であるのが良い。10%未満であると、得られる複合
材料の重量が過大となり、比強度、比弾性率に優れる繊
維強化複合材料の利点が損なわれることがあり、75%
を越えると樹脂の含浸不良が生じ、得られる複合材料
が、ボイドの多いものとなり易く、その機械強度が大き
く低下することがある。
The composite material molding intermediate according to the present invention has a fiber volume fraction of 10 to 75%, preferably 30 to 65%.
% Is good. If it is less than 10%, the weight of the obtained composite material becomes excessively large, and the advantage of the fiber-reinforced composite material having excellent specific strength and specific elastic modulus may be impaired.
When the ratio exceeds the above range, impregnation failure of the resin occurs, and the obtained composite material tends to have many voids, and the mechanical strength thereof may be largely reduced.

【0059】本発明においては、複合材料成形用中間体
は、ハンドレイアップ法、FW法(フィラメントワイン
ディング法)、プルトルージョン法、RTM法(レジン
・インジェクション・モールディング法)等の方法によ
って製造することができる。
In the present invention, the composite material molding intermediate is produced by a method such as a hand lay-up method, a FW method (filament winding method), a pultrusion method, and an RTM method (resin injection molding method). Can be.

【0060】ハンドレイアップ法は、強化繊維に樹脂を
含浸させ、所定の枚数積層して中間体を得る方法であ
る。FW法は、マンドレル等に樹脂を含浸せしめた繊維
束を所定の方向に巻き付けて中間体を得る方法である。
プルトルージョン法は、強化繊維に樹脂を浸漬後、金型
中で含浸させて中間体を得る方法である。RTM法は、
型枠内に強化繊維を予め配置しておき、その後樹脂を注
入して中間体を得る方法である。
The hand lay-up method is a method in which a reinforcing fiber is impregnated with a resin and a predetermined number of the fibers are laminated to obtain an intermediate. The FW method is a method in which a fiber bundle in which a resin is impregnated in a mandrel or the like is wound in a predetermined direction to obtain an intermediate.
The pultrusion method is a method in which a resin is immersed in a reinforcing fiber and then impregnated in a mold to obtain an intermediate. The RTM method is
This is a method in which reinforcing fibers are arranged in a mold in advance, and then a resin is injected to obtain an intermediate.

【0061】本発明による複合材料成形用中間体は、強
化繊維に未硬化のマトリックス樹脂を繊維を一方向に引
き揃えたシート、リボン、クロス、テープなどの状態と
して含浸して得られる中間体である、いわゆるプリプレ
グとしても使用できる。
The intermediate for molding a composite material according to the present invention is an intermediate obtained by impregnating a reinforcing fiber with an uncured matrix resin in the form of a sheet, ribbon, cloth, tape or the like in which the fibers are aligned in one direction. It can also be used as a so-called prepreg.

【0062】プリプレグは、樹脂を溶媒に溶解して低粘
度化し、含浸させるウェット法と、リリースペーパー上
に樹脂をコーティングし、その上に強化繊維を引き揃
え、加熱溶解した樹脂をロール或いはドクターブレード
等で加圧含浸させ、その後放冷するホットメルト法(ド
ライ法)によって製造することができる。ウェット法
は、ガラス繊維織物からなるプリプレグに好適に使用で
きる。
The prepreg is prepared by dissolving the resin in a solvent to reduce the viscosity and impregnating the resin, by coating the resin on a release paper, arranging reinforcing fibers on the release paper, and applying the heated and melted resin to a roll or doctor blade. It can be produced by a hot melt method (dry method) in which pressure impregnation is carried out with the method and the like and then the mixture is allowed to cool. The wet method can be suitably used for a prepreg made of a glass fiber fabric.

【0063】これら製造法は、目的とする複合材料の生
産量、規模、或いは形状等により適宜使い分けられる。
例えば、比較的、形状が単純な複合材料を、短時間で大
量生産する場合は、プルトルージョン法やホットメルト
法が適する。
These production methods can be appropriately used depending on the production amount, scale, shape, etc. of the target composite material.
For example, when a composite material having a relatively simple shape is mass-produced in a short time, a pultrusion method or a hot melt method is suitable.

【0064】また、これら製造法には、それぞれ適した
樹脂の粘度範囲があり、例えば、ハンドレイアップ法で
は、450〜550mP・s、プルトルージョン法で
は、10〜100mP・sが適する範囲である。なお、
樹脂の粘度は添加剤や希釈剤を配合したり、含浸温度を
制御することで調整できる。
Further, each of these production methods has a suitable resin viscosity range, for example, 450 to 550 mP · s for the hand lay-up method and 10 to 100 mP · s for the pultrusion method. . In addition,
The viscosity of the resin can be adjusted by adding an additive or a diluent or controlling the impregnation temperature.

【0065】本発明では、こうして所定の形状とした中
間体を加熱し、硬化させることで、繊維強化複合材料を
得ることができる。
In the present invention, a fiber-reinforced composite material can be obtained by heating and curing the intermediate having a predetermined shape.

【0066】[0066]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 <実施例1>溶媒を用いず、ビスフェノールAを228
重量部、アニリンを186重量部、パラホルムアルデヒ
ドを120重量部、それぞれフラスコに仕込み、油浴に
浸しメカニカルスターラーで110〜120℃で20分
間攪拌して溶解させ、次いで130〜140℃で20分
間攪拌後、フラスコを氷浴で冷却して次構造式(V)で
表されるベンゾオキサジン化合物を合成した。
The present invention will be described more specifically with reference to the following examples. <Example 1> 228 of bisphenol A was used without using a solvent.
Parts by weight, 186 parts by weight of aniline, and 120 parts by weight of paraformaldehyde were charged into a flask, respectively, immersed in an oil bath and dissolved by stirring with a mechanical stirrer at 110 to 120 ° C for 20 minutes, and then stirred at 130 to 140 ° C for 20 minutes. Thereafter, the flask was cooled in an ice bath to synthesize a benzoxazine compound represented by the following structural formula (V).

【0067】[0067]

【化10】 Embedded image

【0068】次に、このベンゾオキサジン化合物に酢酸
エチルを加えて液状としたものを、室温25℃の環境
下、単繊維の断面形状が実質的に真円状の、炭素繊維織
物(東レ(株)製、炭素繊維”トレカ(登録商標)”T
700S使用)に、含浸させ、さらに酢酸エチルを減圧
真空下で除去することにより複合材料成形用中間体を得
た。
Next, a liquid obtained by adding ethyl acetate to this benzoxazine compound was subjected to a carbon fiber woven fabric (Toray Industries, Inc.) having a substantially perfect cross section of a single fiber at room temperature of 25 ° C. ), Carbon fiber "Treca (registered trademark)" T
700S), and ethyl acetate was removed under reduced pressure and vacuum to obtain an intermediate for molding a composite material.

【0069】本中間体を6枚積層し、厚み5mmの金属板
上に配置し、耐熱フィルムで覆って真空密封した後、オ
ートクレーブ装置により200℃、圧力0.6MPaで
2時間加熱し成形体を得た。
Six intermediates were laminated, placed on a metal plate having a thickness of 5 mm, covered with a heat-resistant film, vacuum-sealed, and heated by an autoclave at 200 ° C. and a pressure of 0.6 MPa for 2 hours to form a molded body. Obtained.

【0070】本成形体から、12.7mm幅の短冊型試験
片を切り出し、吸水前の試験片の曲げ強度を、JIS
K6911に従い測定した。ここで、スパン(l)とサ
ンプル厚み(d)の比はl/d=32とし、曲げ試験機
のクロスヘッドスピードは2.5mm/分とした。
A 12.7 mm wide strip-shaped test piece was cut out from the molded article, and the bending strength of the test piece before water absorption was measured according to JIS.
It was measured according to K6911. Here, the ratio of the span (l) to the sample thickness (d) was l / d = 32, and the crosshead speed of the bending tester was 2.5 mm / min.

【0071】一方、吸水後の試験片の曲げ強度は、上記
試験片を沸騰水中に20時間浸漬後、JIS K691
1に従い、120℃曲げ試験により測定した。 <実施例2>ビスフェノールAの代わりに4,4'−ビフェ
ノールを186重量部を用いた以外は、実施例1と同様
にして、次構造式(VI)で表されるベンゾオキサジン化
合物を合成した。
On the other hand, the bending strength of the test piece after water absorption was determined by immersing the test piece in boiling water for 20 hours and then measuring the strength according to JIS K691.
According to No. 1, it was measured by a 120 ° C. bending test. <Example 2> A benzoxazine compound represented by the following structural formula (VI) was synthesized in the same manner as in Example 1 except that 186 parts by weight of 4,4'-biphenol was used instead of bisphenol A. .

【0072】[0072]

【化11】 Embedded image

【0073】得られたベンゾオキサジン化合物を乳鉢で
擦り潰し微粉化し、炭素繊維織物(東レ(株)製、炭素
繊維”トレカ(登録商標)”T700S使用)に付着さ
せ、これを6枚積層し、加熱プレス機により150℃で
加熱し、ベンゾオキサジン化合物を溶融させつつ織物に
含浸させ複合材料成形用中間体を得た。
The obtained benzoxazine compound was crushed in a mortar and pulverized to adhere to a carbon fiber fabric (manufactured by Toray Industries, Inc., carbon fiber “Treca (registered trademark)” using T700S). The fabric was heated at 150 ° C. by a heating press to impregnate the fabric while melting the benzoxazine compound to obtain an intermediate for molding a composite material.

【0074】本中間体を厚み5mmの金属板上に配置し、
耐熱フィルムで覆って真空密封した後、オートクレーブ
装置により210℃、圧力0.6MPaで2時間加熱し
成形体を得た。本成形体から、実施例1と同様にして、
吸水前後の試験片の曲げ強度を測定した。 <実施例3>構造式(V)で表されるベンゾオキサジン
化合物100重量部に、ビスフェノールA型グリシジル
エーテル型エポキシ樹脂(YD-128、東都化成(株)製)
100重量部、4,4'−DDSの33重量部を配合し、溶
融混練させて樹脂組成物を得た。
This intermediate was placed on a metal plate having a thickness of 5 mm,
After being covered with a heat-resistant film and vacuum-sealed, it was heated by an autoclave at 210 ° C. and a pressure of 0.6 MPa for 2 hours to obtain a molded body. From this molded body, in the same manner as in Example 1,
The bending strength of the test piece before and after water absorption was measured. <Example 3> Bisphenol A type glycidyl ether type epoxy resin (YD-128, manufactured by Toto Kasei Co., Ltd.) was added to 100 parts by weight of the benzoxazine compound represented by the structural formula (V).
100 parts by weight and 33 parts by weight of 4,4'-DDS were blended and melt-kneaded to obtain a resin composition.

【0075】次に、実施例1と同様にして、成形体を得
た後、吸水前後の試験片の曲げ強度を測定した。 <実施例4>構造式(V)で表されるベンゾオキサジン
化合物100重量部に、N,N,N',N'−テトラグリシジル
ジアミノジフェニルメタン(ELM434、住友化学工業
(株)製)100重量部、4,4'−DDSの10重量部を
配合し、溶融混練させて樹脂組成物を得た。
Next, after obtaining a molded body in the same manner as in Example 1, the bending strength of the test piece before and after water absorption was measured. <Example 4> 100 parts by weight of N, N, N ', N'-tetraglycidyldiaminodiphenylmethane (ELM434, manufactured by Sumitomo Chemical Co., Ltd.) was added to 100 parts by weight of the benzoxazine compound represented by the structural formula (V). , 4,4′-DDS were blended and melt-kneaded to obtain a resin composition.

【0076】次に、実施例1と同様にして、成形体を得
た後、吸水前後の試験片の曲げ強度を測定した。 <実施例5>構造式(V)で表されるベンゾオキサジン
化合物100重量部に、トリグリシジルm−メチル p
−アミノフェノール100重量部、3,3'-DDSの58重量
部を配合し、溶融混練させて樹脂組成物を得た。
Next, after obtaining a molded body in the same manner as in Example 1, the bending strength of the test piece before and after water absorption was measured. <Example 5> Triglycidyl m-methyl p was added to 100 parts by weight of the benzoxazine compound represented by the structural formula (V).
-100 parts by weight of aminophenol and 58 parts by weight of 3,3'-DDS were blended and melt-kneaded to obtain a resin composition.

【0077】次に、実施例1と同様にして、試験片の曲
げ強度を測定した。 <比較例1>ビスフェノールA型グリシジルエーテル型
エポキシ樹脂(YD−128、東都化成(株)製)10
0重量部に、4,4'−ジアミノジフェニルスルフォン(以
下、4,4'-DDSと略記)33重量部を配合し、溶融混練し
て樹脂組成物を得た。
Next, the bending strength of the test piece was measured in the same manner as in Example 1. Comparative Example 1 Bisphenol A type glycidyl ether type epoxy resin (YD-128, manufactured by Toto Kasei Co., Ltd.) 10
33 parts by weight of 4,4'-diaminodiphenylsulfone (hereinafter, abbreviated as 4,4'-DDS) was blended with 0 parts by weight, and melt-kneaded to obtain a resin composition.

【0078】次に、実施例1と同様にして、成形体を得
た後、吸水前後の試験片の曲げ強度を測定した。 <比較例2>N,N,N',N'−テトラグリシジルジアミノジ
フェニルメタン(ELM434、住友化学工業(株)
製)100重量部に、4,4'−DDSの52重量部を配合
し、溶融混練させて樹脂組成物を得た。
Next, after obtaining a molded body in the same manner as in Example 1, the bending strength of the test piece before and after water absorption was measured. <Comparative Example 2> N, N, N ', N'-tetraglycidyldiaminodiphenylmethane (ELM434, Sumitomo Chemical Co., Ltd.)
100 parts by weight) and 52 parts by weight of 4,4'-DDS were blended and melt-kneaded to obtain a resin composition.

【0079】次に、実施例1と同様にして、成形体を得
た後、吸水前後の試験片の曲げ強度を測定した。 <比較例3>炭素繊維織物として、単繊維の断面形状が
空豆状の炭素繊維織物(東レ(株)製、炭素繊維”トレ
カ(登録商標)”T300B使用)を用いた以外は、実
施例1と同様にして、成形体を得た後、吸水前後の試験
片の曲げ強度を測定した。
Next, after obtaining a molded body in the same manner as in Example 1, the bending strength of the test piece before and after water absorption was measured. <Comparative Example 3> Example 1 was repeated except that a carbon fiber woven fabric having a hollow bean-like cross section of monofilament (manufactured by Toray Industries, Inc., using carbon fiber "Treca (registered trademark)" T300B) was used as the carbon fiber woven fabric. After obtaining the molded body in the same manner as described above, the bending strength of the test piece before and after water absorption was measured.

【0080】表1より、単繊維の断面形状が実質的に真
円状の炭素繊維とベンゾオキサジン化合物を含む樹脂組
成物から得られた成形体(実施例1〜5)が、同炭素繊
維とベンゾオキサジン化合物を含まない樹脂組成物から
得られた成形体(比較例1、2)と比較して、曲げ強度
保持率を指標とする耐水性が向上しており、曲げ強度
は、吸水前後のいずれにおいても優れていることがわか
る。
From Table 1, it can be seen that a molded article (Examples 1 to 5) obtained from a resin composition containing a carbon fiber having a substantially circular cross section and a benzoxazine compound has a monofilament shape. Compared with the molded article obtained from the resin composition containing no benzoxazine compound (Comparative Examples 1 and 2), the water resistance using the bending strength retention as an index is improved, and the bending strength before and after water absorption is improved. It can be seen that all of them are excellent.

【0081】また、表2より、単繊維の断面形状が実質
的に真円状の炭素繊維とベンゾオキサジン化合物を含む
樹脂組成物から得られた成形体(実施例1)は、単繊維
の断面形状が空豆状の炭素繊維とベンゾオキサジン化合
物を含む樹脂組成物から得られた成形体(比較例3)と
比較して、曲げ強度保持率を指標とする耐水性が同程度
であり、曲げ強度は、吸水前後のいずれにおいても優れ
ていることがわかる。
From Table 2, it can be seen that the molded product (Example 1) obtained from a resin composition containing a carbon fiber and a benzoxazine compound in which the cross-section of a single fiber is substantially a perfect circle is obtained. Compared with a molded article obtained from a resin composition containing a hollow bean-like carbon fiber and a benzoxazine compound (Comparative Example 3), the water resistance using the flexural strength retention as an index is almost the same, and the flexural strength It can be seen that is excellent before and after water absorption.

【0082】[0082]

【表1】 [Table 1]

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【発明の効果】本発明によれば、樹脂と炭素繊維との接
着性が高レベルで維持され、それにより、湿熱環境下に
あっても、高度の機械強度を発現する繊維強化複合材料
を与える複合材料成形用中間体が得られる。
According to the present invention, a fiber-reinforced composite material which maintains a high level of adhesion between a resin and a carbon fiber and exhibits a high mechanical strength even in a wet heat environment is provided. An intermediate for molding a composite material is obtained.

【0085】本発明による繊維強化複合材料は、高度の
耐湿熱性、比強度、比弾性率が要求される航空機用構造
材料に特に好適に使用できる。
The fiber-reinforced composite material according to the present invention can be particularly suitably used as a structural material for aircraft which requires a high level of heat and moisture resistance, specific strength and specific elastic modulus.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 65/00 B29C 67/14 X (72)発明者 寺下 武 愛媛県伊予郡松前町大字筒井1515番地 東 レ株式会社愛媛工場内 Fターム(参考) 4F072 AB10 AB28 AB29 AB30 AD11 AD23 AD27 AD28 AD30 AD32 AE01 AH04 AJ04 AK05 AL09 4F205 AA36 AA49 AD16 AH02 AH31 AH59 HA02 HA19 HA22 HA33 HA35 HB01 HC17 4J002 CD052 CD062 CD112 CD132 CE001 DA016 FA046 FD016 GC00 GF00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C08L 65/00 B29C 67/14 X (72) Inventor Takeshi Terashita 1515 Tsutsui, Oaza, Matsumae-cho, Iyo-gun, Ehime Prefecture East F-term in the Ehime Plant Co., Ltd.F-term (reference) GC00 GF00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維と、次構造式(I)で表される構
造単位Iを分子内に有するベンゾオキサジン化合物を含
む樹脂組成物とを構成要素とする複合材料成形用中間体
であって、前記炭素繊維の単繊維の断面形状が実質的に
真円状である複合材料成形用中間体。 【化1】 (式中、R1は、炭素数1〜12の鎖状アルキル基、炭
素数3〜8の環状アルキル基、フェニル基、又は置換フ
ェニル基であり、芳香環には、酸素原子が結合している
炭素原子のオルソ位とパラ位の少なくとも一方の炭素原
子に水素が結合している。)
An intermediate for molding a composite material, comprising carbon fiber and a resin composition containing a benzoxazine compound having a structural unit I represented by the following structural formula (I) in a molecule: An intermediate for molding a composite material, wherein the cross-sectional shape of a single fiber of the carbon fiber is substantially circular. Embedded image (Wherein, R 1 is a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a substituted phenyl group, and an oxygen atom is bonded to the aromatic ring. Hydrogen is bonded to at least one of the ortho and para positions of the carbon atom.
【請求項2】前記ベンゾオキサジン化合物が、分子内に
次構造式(II) 【化2】 で表される構造単位IIを含まないものであるか、又は次
式(1)を満足する範囲で構造単位IIを含むものの少な
くとも一方である請求項1記載の複合材料成形用中間
体。 X1≧X2 (1) X1:分子内に存在する、次構造式(III)で表される構
造単位IIの個数 X2:分子内に存在する、次構造式(III)で表されない
構造単位IIの個数 【化3】 (式中、R1は、炭素数1〜12の鎖状アルキル基、炭
素数3〜8の環状アルキル基、フェニル基、又は置換フ
ェニル基である。)
2. The benzoxazine compound has the following structural formula (II) in the molecule: The composite material molding intermediate according to claim 1, wherein the intermediate does not contain the structural unit II represented by the formula or at least one of the units containing the structural unit II within a range satisfying the following formula (1). X 1 ≧ X 2 (1) X 1 : number of structural units II present in the molecule represented by the following structural formula (III) X 2 : present in the molecule, not represented by the following structural formula (III) Number of structural units II (In the formula, R 1 is a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a substituted phenyl group.)
【請求項3】前記ベンゾオキサジン化合物の含有量が、
全樹脂組成物100重量部に対して、10〜100重量
部である請求項1又は2記載の複合材料成形用中間体。
3. The content of the benzoxazine compound is:
The composite material molding intermediate according to claim 1 or 2, which is 10 to 100 parts by weight based on 100 parts by weight of the whole resin composition.
【請求項4】前記樹脂組成物にエポキシ樹脂が含まれて
なる請求項1〜3のいずれかに記載の複合材料成形用中
間体。
4. The composite material molding intermediate according to claim 1, wherein said resin composition contains an epoxy resin.
【請求項5】前記樹脂組成物に、ベンゾオキサジン化合
物用及び/又はエポキシ樹脂用の硬化剤が含まれてなる
請求項4記載の複合材料成形用中間体。
5. The intermediate for molding a composite material according to claim 4, wherein the resin composition contains a curing agent for a benzoxazine compound and / or an epoxy resin.
【請求項6】前記炭素繊維の引張強度が3800MPa
以上である請求項1〜5のいずれかに記載の複合材料成
形用中間体。
6. The carbon fiber has a tensile strength of 3800 MPa.
The composite material molding intermediate according to any one of claims 1 to 5, which is as described above.
【請求項7】繊維体積分率が10〜75%である請求項
1〜6のいずれかに記載の複合材料成形用中間体。
7. The composite material molding intermediate according to claim 1, wherein the fiber volume fraction is 10 to 75%.
【請求項8】請求項1〜7のいずれかに記載の複合材料
成形用中間体が加熱され、硬化されてなる繊維強化複合
材料。
8. A fiber-reinforced composite material obtained by heating and curing the intermediate for molding a composite material according to claim 1.
JP2001043433A 2000-02-23 2001-02-20 Intermediate for molding composite material and fiber reinforced composite material Expired - Fee Related JP4734729B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001043433A JP4734729B2 (en) 2000-02-23 2001-02-20 Intermediate for molding composite material and fiber reinforced composite material
PCT/JP2001/007184 WO2003018674A1 (en) 2000-02-23 2001-08-22 Intermediate for composite material molding and fiber-reinforced composite material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-45549 2000-02-23
JP2000045549 2000-02-23
JP2000045549 2000-02-23
JP2001043433A JP4734729B2 (en) 2000-02-23 2001-02-20 Intermediate for molding composite material and fiber reinforced composite material
PCT/JP2001/007184 WO2003018674A1 (en) 2000-02-23 2001-08-22 Intermediate for composite material molding and fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JP2001310957A true JP2001310957A (en) 2001-11-06
JP4734729B2 JP4734729B2 (en) 2011-07-27

Family

ID=27278785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043433A Expired - Fee Related JP4734729B2 (en) 2000-02-23 2001-02-20 Intermediate for molding composite material and fiber reinforced composite material

Country Status (2)

Country Link
JP (1) JP4734729B2 (en)
WO (1) WO2003018674A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018674A1 (en) * 2000-02-23 2003-03-06 Toray Industries, Inc. Intermediate for composite material molding and fiber-reinforced composite material
JP2006001964A (en) * 2004-06-15 2006-01-05 Mitsubishi Rayon Co Ltd Thermoplastic resin molded product and thermoplastic resin composition
JP2006083229A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Thermosetting resin composition and thermosetting resin film
JP2007016121A (en) * 2005-07-07 2007-01-25 Toray Ind Inc Prepreg for composite material and composite material
WO2008156443A1 (en) * 2007-06-18 2008-12-24 Henkel Corporation Benzoxazine containing compositions of matter and curable compositions made therewith
WO2010092723A1 (en) 2009-02-12 2010-08-19 新日本石油株式会社 Benzoxazine resin composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029889B1 (en) 2004-12-03 2011-10-04 Henkel Corporation Prepregs, towpregs and preforms
ES2851010T3 (en) * 2010-04-13 2021-09-02 Henkel IP & Holding GmbH Procedures for preparing composites that have superior surface finish and high fiber consolidation
JP6187586B2 (en) * 2012-06-27 2017-08-30 東レ株式会社 Benzoxazine resin composition, prepreg, and fiber reinforced composite material
JP5912921B2 (en) * 2012-06-29 2016-04-27 Jxエネルギー株式会社 Fiber reinforced composite material
JP5912920B2 (en) * 2012-06-29 2016-04-27 Jxエネルギー株式会社 Fiber reinforced composite material
JP5912922B2 (en) * 2012-06-29 2016-04-27 Jxエネルギー株式会社 Fiber reinforced composite material
JP2022551215A (en) * 2019-10-02 2022-12-08 東レ株式会社 Benzoxazine resin composition, prepreg, and fiber-reinforced composite material
CN115613166B (en) * 2022-12-16 2023-03-14 新创碳谷集团有限公司 Benzoxazine modified carbon fiber oil agent and preparation method thereof
CN117247654B (en) * 2023-11-17 2024-02-09 西南石油大学 Water-soluble benzoxazine and inorganic fiber composite aerogel and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505693A (en) * 1991-03-12 1994-06-30 エデイソン・ポリマー・イノベイシヨン・コーポレイシヨン Densification of composites with benzoxazine
JPH0881572A (en) * 1994-09-13 1996-03-26 Mitsubishi Rayon Co Ltd Prepreg and tubular molding made by using it
JPH09272786A (en) * 1996-02-09 1997-10-21 Hitachi Chem Co Ltd Thermosetting resin composition and its cured item
JPH11158352A (en) * 1997-11-27 1999-06-15 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg and epoxy resin laminate
JP2000007901A (en) * 1998-06-25 2000-01-11 Hitachi Chem Co Ltd Thermocurable resin composition, prepreg and laminated board for printed circuit board
JP2000017146A (en) * 1998-06-29 2000-01-18 Hitachi Chem Co Ltd Thermosetting resin composition and its cured product
JP2000082476A (en) * 1998-06-25 2000-03-21 Hitachi Chem Co Ltd Fuel cell, fuel cell separator and its manufacture
WO2003018674A1 (en) * 2000-02-23 2003-03-06 Toray Industries, Inc. Intermediate for composite material molding and fiber-reinforced composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544656B2 (en) * 1998-06-30 2010-09-15 東レ株式会社 Prepreg and fiber reinforced composites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505693A (en) * 1991-03-12 1994-06-30 エデイソン・ポリマー・イノベイシヨン・コーポレイシヨン Densification of composites with benzoxazine
JPH0881572A (en) * 1994-09-13 1996-03-26 Mitsubishi Rayon Co Ltd Prepreg and tubular molding made by using it
JPH09272786A (en) * 1996-02-09 1997-10-21 Hitachi Chem Co Ltd Thermosetting resin composition and its cured item
JPH11158352A (en) * 1997-11-27 1999-06-15 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg and epoxy resin laminate
JP2000007901A (en) * 1998-06-25 2000-01-11 Hitachi Chem Co Ltd Thermocurable resin composition, prepreg and laminated board for printed circuit board
JP2000082476A (en) * 1998-06-25 2000-03-21 Hitachi Chem Co Ltd Fuel cell, fuel cell separator and its manufacture
JP2000017146A (en) * 1998-06-29 2000-01-18 Hitachi Chem Co Ltd Thermosetting resin composition and its cured product
WO2003018674A1 (en) * 2000-02-23 2003-03-06 Toray Industries, Inc. Intermediate for composite material molding and fiber-reinforced composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHYAN BOB SHEN, HATSUO ISHIDA: "Development and Characterization of High-Performance Polybenzoxazine Composites", POLYMER COMPOSITES, vol. 17, no. 5, JPN6010034403, 1996, pages 710 - 719, ISSN: 0001649761 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018674A1 (en) * 2000-02-23 2003-03-06 Toray Industries, Inc. Intermediate for composite material molding and fiber-reinforced composite material
JP2006001964A (en) * 2004-06-15 2006-01-05 Mitsubishi Rayon Co Ltd Thermoplastic resin molded product and thermoplastic resin composition
JP4587445B2 (en) * 2004-06-15 2010-11-24 三菱レイヨン株式会社 Thermoplastic resin molded article and thermoplastic resin composition
JP2006083229A (en) * 2004-09-14 2006-03-30 Fujitsu Ltd Thermosetting resin composition and thermosetting resin film
JP2007016121A (en) * 2005-07-07 2007-01-25 Toray Ind Inc Prepreg for composite material and composite material
WO2008156443A1 (en) * 2007-06-18 2008-12-24 Henkel Corporation Benzoxazine containing compositions of matter and curable compositions made therewith
WO2010092723A1 (en) 2009-02-12 2010-08-19 新日本石油株式会社 Benzoxazine resin composition

Also Published As

Publication number Publication date
JP4734729B2 (en) 2011-07-27
WO2003018674A1 (en) 2003-03-06

Similar Documents

Publication Publication Date Title
CN104736614B (en) Fiber reinforcement high modulus polymer complex with enhancing interface phase
EP0127198B2 (en) Preimpregnated reinforcements and high strength composites therefrom
JP4719976B2 (en) Epoxy resin composition, epoxy resin composition for fiber reinforced composite material, and fiber reinforced composite material having the same
RU2605424C2 (en) Composition based on epoxy resins and film, prepreg and fibre-reinforced plastic obtained using said composition
KR100623457B1 (en) Resin Compositions, Prepregs and Fiber Reinforced Composites for Fiber Reinforced Composites
CN104884512B (en) Conductive fibers enhance polymer composite body and multi-functional complex
CN104884511B (en) Fiber-reinforced polymer complex with hard interface phase
JP2001310957A (en) Intermediate material for composite and fiber reinforced composite
JPWO2007060833A1 (en) Carbon fiber bundles, prepregs and carbon fiber reinforced composite materials
KR20160036566A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
KR20110120314A (en) Benzoxazine resin composition
KR20150070104A (en) High modulus fiber reinforced polymer composite
KR20140127868A (en) Fiber-reinforced composite material
KR20140081817A (en) Benzoxazine resin composition, and fiber-reinforced composite material
KR20140127869A (en) Fiber-reinforced composite material
CN108276578A (en) High temperature resistant high tenacity bimaleimide resin and its preparation method and application
JP2006265458A (en) Resin composition for prepregs, and prepreg
JP2008189794A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2004277481A (en) Epoxy resin composition
JP3508346B2 (en) Prepreg and fiber reinforced composite materials
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JPH11171972A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
KR102108053B1 (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JPH08225666A (en) Prepreg and composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees