JP2001308270A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001308270A
JP2001308270A JP2000124148A JP2000124148A JP2001308270A JP 2001308270 A JP2001308270 A JP 2001308270A JP 2000124148 A JP2000124148 A JP 2000124148A JP 2000124148 A JP2000124148 A JP 2000124148A JP 2001308270 A JP2001308270 A JP 2001308270A
Authority
JP
Japan
Prior art keywords
resistance
polycrystalline silicon
temperature coefficient
resistor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000124148A
Other languages
Japanese (ja)
Other versions
JP3476414B2 (en
Inventor
Hajime Hidaka
一 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2000124148A priority Critical patent/JP3476414B2/en
Publication of JP2001308270A publication Critical patent/JP2001308270A/en
Application granted granted Critical
Publication of JP3476414B2 publication Critical patent/JP3476414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resistor which does not have a temperature coefficient. SOLUTION: In this semiconductor device, a first resistance portion 2 that has a first ohmic value and whose temperature coefficient is plus and a second resistance portion that is connected to in series with the first resistance portion and has a second ohmic value and whose temperature coefficient is negative are involved. The ratio of the second ohmic value with respect to the first ohmic value and the ratio of the absolute value of the temperature coefficient that the first resistance portion has with respect to the absolute value of the temperature coefficient that the second resistance portion has become equal substantially.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抵抗素子を含む半
導体装置に関する。
The present invention relates to a semiconductor device including a resistance element.

【0002】[0002]

【従来の技術】高速信号処理行う集積回路においては、
入出力部のインピーダンス整合を取ることは伝播効率を
よくするために重要なことであり、伝送ラインの特性イ
ンピーダンスに相当する抵抗値の抵抗器を挿入すること
が一般に行われる。
2. Description of the Related Art In an integrated circuit that performs high-speed signal processing,
Matching the impedance of the input / output unit is important for improving the propagation efficiency, and a resistor having a resistance value corresponding to the characteristic impedance of the transmission line is generally inserted.

【0003】この抵抗器の抵抗誤差は反射による損失を
抑制するために、高い精度が要求される。この用途で用
いられる抵抗器としては、多結晶シリコンの抵抗器が用
いられている。多結晶シリコンは、不純物のドープ量に
よって温度係数が異なることが知られており、温度係数
が0ppm/℃となるような1020cm-3程度のドープ量と
して、抵抗器として用いる方法が考えられている。
[0003] The resistance error of this resistor requires high precision in order to suppress the loss due to reflection. As a resistor used in this application, a resistor made of polycrystalline silicon is used. It is known that the temperature coefficient of polycrystalline silicon varies depending on the doping amount of impurities, and a method of using it as a resistor with a doping amount of about 10 20 cm −3 at which the temperature coefficient becomes 0 ppm / ° C. is considered. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、通常多
結晶シリコン抵抗器は、例えば、バイポーラトランジス
タにおいては、npnトランジスタのベース引き出し部と
同時形成され、その不純物ドープ量はおよそ1022cm
-3であるため、別途フォトリソグラフィ技術を用いて別
工程で行わなければならず、工程の追加が必要となる。
However, in general, for example, in a bipolar transistor, a polycrystalline silicon resistor is formed at the same time as a base lead portion of an npn transistor, and its impurity doping amount is about 10 22 cm.
Since it is -3 , it must be performed in a separate process using a separate photolithography technique, and an additional process is required.

【0005】本発明では、工程の追加をすることなく、
温度係数を実質的に持たない抵抗器を有する半導体装置
を提供することを目的とする。
[0005] In the present invention, without adding a step,
An object of the present invention is to provide a semiconductor device having a resistor having substantially no temperature coefficient.

【0006】[0006]

【課題を解決するための手段】本発明では、上記目的を
達成するために、半導体装置の構成として、第1の抵抗
値を有し、温度係数が正である第1の抵抗部分と、第1
の抵抗部分と直列に接続される、第2の抵抗値を有し、
温度係数が負である第2の抵抗部分と、を含み、第1の
抵抗値に対する第2の抵抗値の比と、第2の抵抗部分が
有する温度係数の絶対値に対する第1の抵抗部分が有す
る温度係数の絶対値の比とが実質的に等しくなるように
している。
In order to achieve the above object, the present invention provides a semiconductor device having a first resistance portion having a first resistance value and a positive temperature coefficient; 1
Having a second resistance value connected in series with the resistance portion of
A second resistance portion having a negative temperature coefficient, wherein the ratio of the second resistance value to the first resistance value and the first resistance portion to the absolute value of the temperature coefficient of the second resistance portion are different. The ratio of the absolute values of the temperature coefficients is made substantially equal.

【0007】[0007]

【発明の実施の形態】以下、図1を参照して本発明の第
1の実施形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIG.

【0008】図1(a)は本発明の第1の実施形態を示
す平面図、図1(b)は図1(a)におけるA−A’断
面図である。
FIG. 1A is a plan view showing a first embodiment of the present invention, and FIG. 1B is a sectional view taken along the line AA ′ in FIG. 1A.

【0009】図1において、半導体基板1上には、第1
の抵抗体としての多結晶シリコン膜2が形成されてい
る。この多結晶シリコン膜2は、例えば、ボロンが6×
1015ions/cm2注入され、熱処理が施され、シート抵抗
が100Ω/□となっている。多結晶シリコン膜2の形
状は、幅Wを5μm、コンタクト間の長さLを2.5μ
m、厚さ300nmの寸法にパターニングされ、その抵抗
値が50Ωの抵抗体として用いられる。
In FIG. 1, a first substrate is provided on a semiconductor substrate 1.
A polycrystalline silicon film 2 is formed as a resistor. This polycrystalline silicon film 2 is made of, for example, boron
10 15 ions / cm 2 are implanted, and a heat treatment is performed, so that the sheet resistance is 100 Ω / □. The shape of the polycrystalline silicon film 2 is such that the width W is 5 μm and the length L between contacts is 2.5 μm.
m, is patterned to have a thickness of 300 nm, and is used as a resistor having a resistance value of 50Ω.

【0010】この多結晶シリコン膜2は、例えば、バイ
ポーラトランジスタを形成する製造工程において、図示
しないnpnトランジスタのベース引き出し部と同時に形
成することが可能である。
The polycrystalline silicon film 2 can be formed at the same time as, for example, a base lead portion of an npn transistor (not shown) in a manufacturing process for forming a bipolar transistor.

【0011】多結晶シリコン2は、例えばCVD法によ
り形成されるシリコン酸化膜3に覆われている。シリコ
ン酸化膜3における、第1の抵抗体2の端部に対応する
領域には、コンタクト孔4が形成されている。
The polycrystalline silicon 2 is covered with a silicon oxide film 3 formed by, for example, a CVD method. A contact hole 4 is formed in a region of the silicon oxide film 3 corresponding to an end of the first resistor 2.

【0012】コンタクト孔4内には、密着層としてのチ
タン膜5、バリアメタルとしての窒化チタン膜6が形成
されており、残りがタングステン膜7で埋め込まれてい
る。なお、チタン膜5と多結晶シリコン膜2とは、互い
に反応し、チタンシリサイドが形成される。
In the contact hole 4, a titanium film 5 as an adhesion layer and a titanium nitride film 6 as a barrier metal are formed, and the rest is buried with a tungsten film 7. The titanium film 5 and the polycrystalline silicon film 2 react with each other to form titanium silicide.

【0013】コンタクト孔4は、例えば、0.5μm×4.0
μmの大きさに形成されており、そのコンタクト孔4に
露出している多結晶シリコン膜2上およびコンタクト孔
4の側面に80nmの厚さにチタン膜5を被着させ、そ
の後の熱処理を経て、チタン膜5を多結晶シリコン膜2
と共晶させることによりチタンシリサイド膜9が形成さ
れる。
The contact hole 4 is, for example, 0.5 μm × 4.0
A titanium film 5 having a thickness of 80 nm is formed on the polycrystalline silicon film 2 exposed to the contact hole 4 and on the side surface of the contact hole 4 with a thickness of 80 μm. , Titanium film 5 and polycrystalline silicon film 2
Then, a titanium silicide film 9 is formed.

【0014】窒化チタン膜6は、チタン膜5の表面に5
0nmの厚さに被着されている。
The titanium nitride film 6 has a thickness of 5
It is deposited to a thickness of 0 nm.

【0015】コンタクト孔4をチタン膜5、窒化チタン
膜6、タングステン膜7で埋め込むための方法として
は、例えば、公知のスパッタリング法により、チタン膜
5、窒化チタン膜6、をシリコン酸化膜3の表面および
コンタクト孔4内に順次堆積させRTN(Rapid Thermal Ni
triding)法の熱処理を経て、再度タングステン膜をシリ
コン酸化膜3の表面およびコンタクト孔4内にスパッタ
リング法により堆積させ、CMP(Chemical Mechanical
Polishing)法によりシリコン酸化膜3の表面が露出す
るまで研磨し、平坦化することにより形成することがで
きる。
As a method for filling the contact hole 4 with the titanium film 5, the titanium nitride film 6, and the tungsten film 7, for example, the titanium film 5, the titanium nitride film 6, and the silicon oxide film 3 are formed by a known sputtering method. RTN (Rapid Thermal Ni) is sequentially deposited on the surface and in the contact hole 4.
After the heat treatment of the triding method, a tungsten film is again deposited on the surface of the silicon oxide film 3 and in the contact hole 4 by a sputtering method, and then a CMP (Chemical Mechanical) method.
Polishing) until the surface of the silicon oxide film 3 is exposed, and then planarized.

【0016】平坦化されたシリコン酸化膜3上には、コ
ンタクト孔4に埋め込まれたチタン膜5、窒化チタン膜
6、タングステン膜7と接続する例えばアルミなどの金
属配線8が形成される。
On the flattened silicon oxide film 3, a metal wiring 8 made of, for example, aluminum or the like connected to the titanium film 5, the titanium nitride film 6, and the tungsten film 7 embedded in the contact hole 4 is formed.

【0017】ここで、多結晶シリコン膜2は、ボロンが
6×1015ions/cm2イオン注入されており、およそ60
0ppm/℃の温度係数を持っている。
The polycrystalline silicon film 2 is implanted with boron at 6 × 10 15 ions / cm 2 ,
It has a temperature coefficient of 0 ppm / ° C.

【0018】また、チタン膜5、窒化チタン膜6、タン
グステン膜7、チタンシリサイド膜9からなる配線プラ
グと多結晶シリコン膜2との接触抵抗は、−1000pp
m/℃の温度係数を持っており、接触抵抗の抵抗値はそれ
ぞれ15オームであり、両端の接触抵抗の合計が30Ω
となる。
The contact resistance between the wiring plug composed of the titanium film 5, the titanium nitride film 6, the tungsten film 7, and the titanium silicide film 9 and the polycrystalline silicon film 2 is -1000 pp.
m / ° C, the contact resistance is 15 ohms each, and the total contact resistance at both ends is 30Ω
Becomes

【0019】本実施形態では、多結晶シリコン2による
抵抗値に対する接触抵抗による抵抗値の比が50:30
であり、接触抵抗の温度係数の絶対値に対する多結晶シ
リコン2における温度係数の絶対値の比が1000:6
00となるようにそれぞれの抵抗成分が直列に接続され
ている。そして、この多結晶シリコン2は半導体装置に
おける他の素子を形成する工程で、同時に形成すること
ができる。
In this embodiment, the ratio of the resistance value of the contact resistance to the resistance value of the polycrystalline silicon 2 is 50:30.
And the ratio of the absolute value of the temperature coefficient of the polycrystalline silicon 2 to the absolute value of the temperature coefficient of the contact resistance is 1000: 6.
The respective resistance components are connected in series so as to be 00. Then, this polycrystalline silicon 2 can be formed simultaneously in the step of forming another element in the semiconductor device.

【0020】このため、新たな工程を追加することな
く、それぞれの抵抗性分の温度係数が互いに相殺されて
全体として温度係数を持たない抵抗器を得ることができ
る。
Therefore, without adding a new process, the temperature coefficients of the respective resistances cancel each other out, and a resistor having no temperature coefficient as a whole can be obtained.

【0021】また、本実施形態では、抵抗値が50Ωの
多結晶シリコン2による抵抗成分と、抵抗値がそれぞれ
15Ωで合計で30Ωとなる接触抵抗による抵抗成分と
を直列に接続して、80Ωの抵抗器を形成する場合につ
いて説明したが、より高抵抗の抵抗器が必要とされる場
合は、本実施形態で説明した、多結晶シリコンによる抵
抗と接触抵抗とから構成される組を複数組直列に接続す
ることによりより高抵抗の抵抗器を形成することが可能
である。
In this embodiment, the resistance component of the polycrystalline silicon 2 having a resistance value of 50Ω and the resistance component of a contact resistance having a resistance value of 15Ω each and a total of 30Ω are connected in series to form an 80Ω resistance component. Although the case where a resistor is formed has been described, when a resistor having a higher resistance is required, a plurality of sets each including a resistor made of polycrystalline silicon and a contact resistance described in the present embodiment are connected in series. , It is possible to form a resistor having a higher resistance.

【0022】また、本実施形態では、多結晶シリコン2
の幅を5μmとしたが、この多結晶シリコンの幅に比例
した配線プラグの接触面積にすると、多結晶シリコン自
体の抵抗長が2.5μmであれば、温度係数は実質的に
0ppm/℃である。従って、より低い抵抗値が必要とされ
る場合は、多結晶シリコンの幅を適宜広げることで対応
することが可能である。
In this embodiment, the polycrystalline silicon 2
Is 5 μm, but if the contact area of the wiring plug is proportional to the width of the polycrystalline silicon, if the resistance length of the polycrystalline silicon itself is 2.5 μm, the temperature coefficient is substantially 0 ppm / ° C. is there. Therefore, when a lower resistance value is required, it can be dealt with by appropriately increasing the width of the polycrystalline silicon.

【0023】従って、高抵抗の抵抗器が要求され、複数
組直列に接続した場合でも、多結晶シリコンの幅を適宜
広くした抵抗を組むことで様々な抵抗値にも設計するこ
とが可能である。
Therefore, even if a high-resistance resistor is required and a plurality of sets are connected in series, it is possible to design various resistance values by assembling a resistor in which the width of the polycrystalline silicon is appropriately widened. .

【0024】[0024]

【発明の効果】本発明に係る半導体装置では、多結晶シ
リコンによる抵抗成分と、接触抵抗における抵抗成分を
直列に接続し、多結晶シリコン2による抵抗値に対する
接触抵抗による抵抗値の比と、接触抵抗の温度係数の絶
対値に対する多結晶シリコンにおける温度係数の絶対値
の比とが実質的に等しくなるようにしている。
In the semiconductor device according to the present invention, the resistance component of the polycrystalline silicon and the resistance component of the contact resistance are connected in series, and the ratio of the resistance value of the contact resistance to the resistance value of the polycrystalline silicon 2 and the contact The ratio of the absolute value of the temperature coefficient of the polycrystalline silicon to the absolute value of the temperature coefficient of the resistor is made substantially equal.

【0025】このため、新たな工程を追加することなく
温度係数を持たない抵抗器を形成することができる。
Therefore, a resistor having no temperature coefficient can be formed without adding a new process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す平面図および断
面図である。
FIG. 1 is a plan view and a cross-sectional view showing a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 多結晶シリコン 3 シリコン酸化膜 4 コンタクト孔 5 チタン膜 6 窒化チタン膜 7 タングステン膜 8 アルミ配線 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Polycrystalline silicon 3 Silicon oxide film 4 Contact hole 5 Titanium film 6 Titanium nitride film 7 Tungsten film 8 Aluminum wiring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の抵抗値を有し、温度係数が正であ
る第1の抵抗部分と、 前記第1の抵抗部分と直列に接続される、第2の抵抗値
を有し、温度係数が負である第2の抵抗部分と、を含
み、 前記第1の抵抗値に対する前記第2の抵抗値の比と、前
記第2の抵抗部分が有する温度係数の絶対値に対する前
記第1の抵抗部分が有する温度係数の絶対値の比とが実
質的に同等であることを特徴とする半導体装置。
A first resistance portion having a first resistance value and a positive temperature coefficient; and a second resistance value connected in series with the first resistance portion and having a second resistance value. A second resistance portion having a negative coefficient; a ratio of the second resistance value to the first resistance value; and a first resistance value relative to an absolute value of a temperature coefficient of the second resistance portion. A semiconductor device, wherein the ratio of the absolute value of the temperature coefficient of the resistance portion is substantially the same.
【請求項2】 請求項1記載の半導体装置において、前
記第1の抵抗体は不純物がドープされた多結晶シリコン
であり、前記第2の抵抗体は、前記第1の抵抗と接続さ
れる金属と前記第1の抵抗体との接触抵抗であることを
特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein said first resistor is polycrystalline silicon doped with impurities, and said second resistor is a metal connected to said first resistor. A contact resistance between the first resistor and the first resistor.
【請求項3】 請求項2記載の半導体装置において、前
記金属は、前記多結晶シリコン上の絶縁層に形成された
コンタクトホール内に埋め込まれた、前記多結晶シリコ
ンの上層に形成される配線と前記多結晶シリコンとを接
続する配線プラグであることを特徴とする半導体装置。
3. The semiconductor device according to claim 2, wherein the metal is buried in a contact hole formed in an insulating layer on the polycrystalline silicon and a wiring formed on the polycrystalline silicon. A semiconductor device, which is a wiring plug for connecting to the polycrystalline silicon.
【請求項4】 1対の導電層と、 前記1対の導電層に両端が接続された温度係数が正であ
る多結晶シリコン抵抗と、を含み、 前記導電層と前記多結晶シリコン抵抗との間には、負の
温度係数をもつ1対の接触抵抗が形成され、 前記多結晶シリコン抵抗の抵抗値に対する前記1対の接
触抵抗の抵抗値の和の比と、前記接触抵抗が有する温度
係数の絶対値に対する多結晶シリコン抵抗が有する温度
係数の絶対値の比とが実質的に同等であることを特徴と
する半導体装置。
4. A pair of conductive layers, and a polycrystalline silicon resistor having both ends connected to the pair of conductive layers and having a positive temperature coefficient, wherein: A pair of contact resistances having a negative temperature coefficient is formed between them, a ratio of the sum of the resistance of the pair of contact resistances to the resistance of the polycrystalline silicon resistance, and a temperature coefficient of the contact resistance. A ratio of the absolute value of the temperature coefficient of the polycrystalline silicon resistance to the absolute value of the semiconductor device is substantially equal.
JP2000124148A 2000-04-25 2000-04-25 Semiconductor device Expired - Fee Related JP3476414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124148A JP3476414B2 (en) 2000-04-25 2000-04-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124148A JP3476414B2 (en) 2000-04-25 2000-04-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001308270A true JP2001308270A (en) 2001-11-02
JP3476414B2 JP3476414B2 (en) 2003-12-10

Family

ID=18634323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124148A Expired - Fee Related JP3476414B2 (en) 2000-04-25 2000-04-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3476414B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130938A (en) * 2006-11-22 2008-06-05 Idemitsu Kosan Co Ltd Conductive molding, electronic component, electric device, electrical characteristics recognition device and method
JP2009049167A (en) * 2007-08-20 2009-03-05 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130938A (en) * 2006-11-22 2008-06-05 Idemitsu Kosan Co Ltd Conductive molding, electronic component, electric device, electrical characteristics recognition device and method
JP2009049167A (en) * 2007-08-20 2009-03-05 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3476414B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
US7012499B2 (en) Method of fabrication of thin film resistor with 0 TCR
US20080237800A1 (en) Integrated circuit having resistor between beol interconnect and feol structure and related method
US5654575A (en) TiSi2 /TiN clad interconnect technology
US20060238292A1 (en) Thin film resistor and dummy fill structure and method to improve stability and reduce self-heating
US20100151651A1 (en) Back end thin film capacitor having plates at thin film resistor and first metallization layer levels
JPS6128232B2 (en)
US20070046421A1 (en) Structure and method for forming thin film resistor with topography controlled resistance density
TW200840018A (en) Semiconductor device and method of manufacturing the same
KR102510939B1 (en) Method and design of low sheet resistance MEOL resistors
JPH0434966A (en) Manufacture of semiconductor device
US20040004535A1 (en) Low temperature coefficient resistor
US4528582A (en) Interconnection structure for polycrystalline silicon resistor and methods of making same
US6646539B2 (en) Temperature-compensated semiconductor resistor and semiconductor integrated circuit having the semiconductor resistor
JP3476414B2 (en) Semiconductor device
EP0638930B1 (en) Novel TiSi2/TiN clad interconnect technology
JP3401994B2 (en) Semiconductor resistance element and method of manufacturing the same
JP2003045983A (en) Semiconductor device and its manufacturing method
JP3003652B2 (en) Method for manufacturing semiconductor device
JPH05175428A (en) Integrated circuit device
JPH0290668A (en) Semiconductor device
JPS63169058A (en) Thin film integrated circuit
JPS6031263A (en) Semiconductor integrated circuit device
JP2825046B2 (en) Characteristics measuring element
JPH0258227A (en) Semiconductor device
CN111009512A (en) Method for manufacturing thin film resistor and thin film resistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees