JP2001305804A - Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof - Google Patents

Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof

Info

Publication number
JP2001305804A
JP2001305804A JP2000119105A JP2000119105A JP2001305804A JP 2001305804 A JP2001305804 A JP 2001305804A JP 2000119105 A JP2000119105 A JP 2000119105A JP 2000119105 A JP2000119105 A JP 2000119105A JP 2001305804 A JP2001305804 A JP 2001305804A
Authority
JP
Japan
Prior art keywords
carrier
silica fine
fine particles
particles
coating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000119105A
Other languages
Japanese (ja)
Inventor
Muneo Kudo
宗夫 工藤
Masaki Tanaka
正喜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000119105A priority Critical patent/JP2001305804A/en
Publication of JP2001305804A publication Critical patent/JP2001305804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for realizing a improved carrier for electrophotography which resists destruction such as wear, peeling, crack, and rarely suffers from a spent phenomenon, so it excels in long-term durability and electrostatic stability. SOLUTION: The present invention provides a coating agent for the carrier which is characteristically composed of spherical hydrophobic fine silica particles having primary particles having an average particle diameter of from 0.01 to 5. μm and an organic resin. Those fine silica particles fulfill the following conditions (i) and (ii). (i) When an organic compound which is liquid at room temperature and has a dielectric constant of from 1 to 40 F/m and fine silica particles are mixed in a weight ratio of 5:1 and shaken, the fine silica particles disperse uniformly in the organic compound. (ii) The quantity of primary particles remaining as primary particles when methanol is evaporated under heating by means of an evaporator from a dispersion prepared by dispersing the fine silica particles in methanol and thereafter the particles are held at 100 deg.C for 2 hours, represents at least 20% of the quantity of primary particles originally present.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真法、静電
記録法等における静電荷像を現像するために使用する静
電荷像現像キャリア用コーティング剤およびそれを用い
た静電荷像現像用キャリアに関する。特に、複写耐久性
に優れる上、帯電特性の安定性に優れた静電荷像現像キ
ャリア用コーティング剤およびそれを用いた静電荷像現
像用キャリアに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating agent for an electrostatic image developing carrier used for developing an electrostatic image in electrophotography, electrostatic recording and the like, and a carrier for developing an electrostatic image using the same. About. In particular, the present invention relates to a coating agent for an electrostatic image developing carrier having excellent copy durability and excellent stability of charging characteristics, and an electrostatic image developing carrier using the same.

【0002】[0002]

【従来の技術】キャリアとトナーからなる二成分現像剤
は電子写真法を利用する複写機に広く用いられている。
この場合のキャリアとしては、通常酸化された、又は未
酸化の鉄粉が使用されるが、これをそのままトナーと混
合して使用した場合には、トナーに対する摩擦帯電特性
が不十分な上、使用中に、トナーがキャリア表面に固着
してトナー膜を形成するために(スペント化現象)キャリ
アの帯電特性が経時的に変化し、結局現像剤の寿命が短
くなるという欠点があった。更に、乾燥時と湿潤時では
キャリアの帯電特性の差が大きいという欠点もあった。
2. Description of the Related Art Two-component developers comprising a carrier and a toner are widely used in copying machines utilizing electrophotography.
As the carrier in this case, oxidized or unoxidized iron powder is usually used. However, if this is mixed with the toner as it is and used, the triboelectric charging characteristics for the toner are insufficient and the Among them, there is a disadvantage that the toner is fixed to the carrier surface to form a toner film (spent phenomenon), and the charging characteristics of the carrier change with time, and eventually the life of the developer is shortened. Further, there is a disadvantage that the difference in the charging characteristics of the carrier is large between when dry and when wet.

【0003】このような欠点を防止するために、キャリ
ア表面にフッ素樹脂、アクリル樹脂、スチレン−アクリ
ル共重合体、シリコーン樹脂、ポリエステル樹脂、ポリ
オレフィン系樹脂等の樹脂を被覆することが行われた。
[0003] In order to prevent such defects, the carrier surface is coated with a resin such as a fluororesin, an acrylic resin, a styrene-acryl copolymer, a silicone resin, a polyester resin, and a polyolefin resin.

【0004】また、キャリアの表面エネルギーを小さく
してスペント化現象を低下させるため、微粒子を用いる
方法も知られている。無機固体粒子をシリコーン樹脂に
添加した樹脂でキャリアを被覆する方法(特開昭54-2173
0号公報)、シリコーン系樹脂微粒子とスチレン及び/ま
たはアクリル系樹脂微粒子あるいはその共重合体樹脂微
粒子で機械的衝撃力によってキャリアを被覆する方法
(特開平5-45936)、ポリオレフィンで被覆したキャリア
の表面に、樹脂微粒子を固定化する方法(特開平9-30497
4)がある。
Further, a method of using fine particles for reducing the surface energy of the carrier to reduce the spent phenomenon is also known. A method of coating a carrier with a resin obtained by adding inorganic solid particles to a silicone resin (Japanese Patent Application Laid-Open No. 54-2173)
No. 0), a method of coating a carrier with mechanical impact force using silicone resin fine particles and styrene and / or acrylic resin fine particles or copolymer resin fine particles thereof.
(JP-A-5-45936), a method of immobilizing resin fine particles on the surface of a carrier coated with polyolefin (JP-A-9-30497)
There is 4).

【0005】[0005]

【発明が解決しようとする課題】しかし、特に近年画像
の高画質化のために現像剤の小粒径化が急速に進んだ結
果、現像剤へのストレス、現像剤特性の維持が非常に問
題となってきた。即ち、高画質化のために現像剤の小粒
径化が進む一方でコピー機の高速化が進んだため、現像
プロセスにおいて現像剤が受ける負荷が極端に画質に現
れるとともに、トナーがキャリアにスペントし易くなっ
た。このスペントのために帯電不良が発生するため、複
写機内にトナーが飛散し画像まで汚染してしまう上、所
望の画像濃度が得られないなどの不都合が生じるに到っ
た。
However, in recent years, as the particle size of the developer has been rapidly reduced in recent years in order to improve the quality of an image, stress on the developer and maintenance of the developer characteristics are very problematic. It has become. That is, as the particle size of the developer has been reduced in order to improve the image quality, the speed of the copying machine has been increased, and the load on the developer during the development process appears extremely in the image quality, and the toner is spent on the carrier. It became easy to do. Since the spent causes charging failure, the toner scatters in the copying machine and contaminates the image, and in addition, disadvantages such as a failure to obtain a desired image density are caused.

【0006】また、経時的にキャリアに被覆した被膜の
摩耗、はがれ、クラック等のキャリア破壊も同時に発生
し、感光体に破損キャリアが付着し、感光体を傷つけて
しまうなど悪影響を及ぼし、これらを含め現像剤として
の耐久性不足が問題となった。一方、特開2000-44226号
には有機樹脂と疎水性シリカ微粒子からなる有機樹脂組
成物が記載されているが、コーティング剤、特に静電荷
像現像キャリア用コーティング剤については何の記載も
ない。そこで、本発明の課題は、電子写真キャリアを改
良し、摩耗・はがれ・クラック等の破壊が発生し難い
上、スペント化現象も起こり難く、そのため、長時間の
耐久性およびキャリア帯電特性の安定性に優れるキャリ
アを実現する手段を提供することにある。
[0006] In addition, the carrier coating such as abrasion, peeling, and cracking of the carrier coated with the passage of time also occurs, and the carrier is damaged at the same time, and the damaged carrier adheres to the photoconductor and damages the photoconductor. Insufficient durability as a developer has been a problem. On the other hand, Japanese Patent Application Laid-Open No. 2000-44226 describes an organic resin composition comprising an organic resin and hydrophobic silica fine particles, but does not disclose any coating agent, particularly no coating agent for an electrostatic image developing carrier. Therefore, an object of the present invention is to improve an electrophotographic carrier, and it is difficult for destruction such as abrasion, peeling, and cracks to occur, and it is also unlikely that a spent phenomenon occurs. Therefore, long-term durability and stability of carrier charging characteristics are improved. It is to provide a means for realizing an excellent carrier.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、下記の条件(i)および(ii)を満たす、1次粒子
の平均粒径が0.01〜5μmである球状の疎水性シリカ微
粒子および有機樹脂からなることを特徴とする静電荷像
現像キャリア用コーティング剤が上記の課題を解決する
ことを見出した。 (i)室温で液体であり、誘電率が1〜40F/mである有機
化合物とシリカ微粒子とを5対1の重量比で混合し振とう
した際に、該シリカ微粒子が前記有機化合物中に均一に
分散する。 (ii)該シリカ微粒子をメタノールに分散した分散液から
メタノールをエバポレータで加熱下留去した後、100℃
の温度で2時間保持した際に、1次粒子として残存する
1次粒子量の当初存在した1次粒子量に対する比率が20
%以上である。
Means for Solving the Problems As a result of diligent studies, the present inventors have found that spherical hydrophobic particles satisfying the following conditions (i) and (ii) have an average primary particle size of 0.01 to 5 μm. It has been found that a coating agent for a carrier for developing an electrostatic charge image characterized by comprising silica fine particles and an organic resin solves the above problems. (i) When an organic compound which is liquid at room temperature and has a dielectric constant of 1 to 40 F / m and silica fine particles are mixed at a weight ratio of 5: 1 and shaken, the silica fine particles are contained in the organic compound. Disperse evenly. (ii) After the methanol was distilled off from the dispersion in which the silica fine particles were dispersed in methanol by heating with an evaporator, 100 ° C
At a temperature of 2 hours, the ratio of the amount of primary particles remaining as primary particles to the amount of primary particles initially present is 20%.
% Or more.

【0008】このコーティング剤でキャリア基体を被覆
することにより上記の問題を有しないキャリアが得られ
る。そこで、本発明は、さらに上記のコーティング剤で
キャリア基体被覆してなる静電荷像現像用キャリアを提
供するものである。
[0008] By coating a carrier substrate with this coating agent, a carrier free of the above problems can be obtained. Accordingly, the present invention provides a carrier for developing an electrostatic image, which is further coated with a carrier substrate with the above-mentioned coating agent.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施の形態により
詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments.

【0010】[静電荷像現像キャリア用コーティング
剤]本発明の静電荷像現像キャリア用コーティング剤
は、下記の疎水性シリカ微粒子および有機樹脂からなる
ものである。 −疎水性シリカ微粒子− 本発明で使用されるシリカ微粒子は、球状で、表面が高
度に疎水化されシラノール基等の反応性基が残存せず、
高分散性、低凝集性で滑り性が良く、表面エネルギーが
小さいため本発明の目的、効果に良好な結果を与えるも
のである。
[Coating Agent for Electrostatic Image Developing Carrier] The coating agent for an electrostatic image developing carrier of the present invention comprises the following hydrophobic silica fine particles and an organic resin. -Hydrophobic silica fine particles-The silica fine particles used in the present invention are spherical, the surface is highly hydrophobic, and no reactive groups such as silanol groups remain,
It has high dispersibility, low cohesion, good lubricity, and low surface energy, so that good results can be obtained for the objects and effects of the present invention.

【0011】本発明で用いる疎水性シリカ微粒子は、Si
O2単位からなる親水性シリカ微粒子表面にR2SiO3/2単位
(但し、R2は置換または非置換の炭素原子数1〜20の1価
炭化水素基)を導入する工程によって得られた疎水性シ
リカ微粒子表面にR1 3SiO1/2単位(但し、R1は同一または
異種の置換または非置換の炭素原子数1〜6の1価炭化水
素基)を導入することによって得られた平均粒子径が0.0
1〜5μmである球状の疎水性シリカ微粒子である。
The hydrophobic silica fine particles used in the present invention are Si
R 2 SiO 3/2 units on the surface of hydrophilic silica fine particles composed of O 2 units
(Wherein, R 2 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms) in the obtained hydrophobic silica fine particle surface by introducing the R 1 3 SiO 1/2 units (Here, R 1 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms) has an average particle diameter of 0.0
These are spherical hydrophobic silica fine particles of 1 to 5 μm.

【0012】上記疎水性シリカ微粒子の製法の1例は以
下の通りである。 一般式(I): Si(OR34 (但し、 R3は同一または異種の炭素原子数1〜6の1
価炭化水素基)で示されるシラン化合物およびその加水
分解縮合物から選択される1種または2種以上の化合物
をメタノールやエタノールなどの親水性溶媒、水、並び
にアンモニア、有機アミンなどの塩基性化合物の混合溶
液中で加水分解、縮合することによって親水性シリカ微
粒子分散液を得る工程;得られた親水性シリカ微粒子分
散液に水を添加し、親水性溶媒を留去し水性分散液に変
換し、微粒子表面に残存するアルコキシ基を完全に加水
分解する工程;
One example of a method for producing the above-mentioned hydrophobic silica fine particles is as follows. General formula (I): Si (OR 3 ) 4 (where R 3 is the same or different 1 to 6 carbon atoms)
Or a compound selected from the group consisting of a silane compound represented by the formula (I) and a hydrolytic condensate thereof: a hydrophilic solvent such as methanol or ethanol; water; and a basic compound such as ammonia or an organic amine. A step of obtaining a dispersion of hydrophilic silica fine particles by hydrolysis and condensation in a mixed solution of water; adding water to the obtained dispersion of hydrophilic silica fine particles, distilling off the hydrophilic solvent, and converting the dispersion to an aqueous dispersion. Completely hydrolyzing the alkoxy groups remaining on the surface of the fine particles;

【0013】このようにして処理された親水性シリカ微
粒子水性分散液に、 一般式(II): R2Si(OR43 (但し、R2は炭素原子数1〜20の1価炭化水素基、
4は同一または異種の炭素原子数1〜6の1価炭化水
素基)で示されるシラン化合物およびその加水分解縮合
物から選択される1種または2種以上の化合物を添加し
親水性シリカ微粒子表面をコーティングし、疎水性シリ
カ微粒子を得る工程;該疎水性シリカ微粒子水性分散液
にケトン系溶媒を添加し水を留去し疎水性シリカ微粒子
ケトン系溶媒分散液に変換する工程;並びに、該疎水性
シリカ微粒子ケトン系溶媒分散液に、 一般式(III): R1 3SiNHSiR1 3 (但し、 R1は同一または異種の炭素原子数1〜6の1
価炭化水素基)で示されるシラザン化合物、および 一般式(IV): R1 3SiX (但し、 R1は一般式(III)に同じ。XはOH基また
は加水分解性基)で示されるシラン化合物から選ばれる
化合物を添加し、反応させてシリカ微粒子表面に残存す
るシラノール基をトリアルキルシリル化しさらに高度に
疎水化する工程によって得られる。
The aqueous dispersion of hydrophilic silica fine particles treated as described above has the general formula (II): R 2 Si (OR 4 ) 3 (where R 2 is a monovalent hydrocarbon having 1 to 20 carbon atoms) Group,
R 4 is the same or different and is a monovalent hydrocarbon group having 1 to 6 carbon atoms), and one or more compounds selected from hydrolytic condensates thereof, and hydrophilic silica fine particles are added. A step of coating the surface to obtain hydrophobic silica fine particles; a step of adding a ketone-based solvent to the hydrophobic silica fine-particle aqueous dispersion and distilling off water to convert to a hydrophobic silica fine-particle ketone-based solvent dispersion; the hydrophobic silica fine particles ketone solvent dispersion, the general formula (III): R 1 3 SiNHSiR 1 3 ( where, R 1 is 1 of the same carbon atoms or heterologous 1-6
Silazane compound represented by the valence hydrocarbon group), and the general formula (IV): R 1 3 SiX ( where, R 1 is the general formula (III) silane same .X in represented by OH or hydrolysable groups) A compound selected from the compounds is added and reacted to obtain a silanol group remaining on the surface of the silica fine particles by trialkylsilylation and further highly hydrophobicizing.

【0014】一般式(I)で示される4官能性シラン化
合物の具体例としては、テトラメトキシシラン、テトラ
エトキシシラン、テトライソプロポキシシラン、テトラ
ブトキシシラン等のテトラアルコキシシランが挙げられ
る。また、一般式(I)で示される4官能性シラン化合
物の部分加水分解縮合物の具体例としては、メチルシリ
ケート、エチルシリケート等が挙げられる。
Specific examples of the tetrafunctional silane compound represented by the general formula (I) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. Specific examples of the partially hydrolyzed condensate of the tetrafunctional silane compound represented by the general formula (I) include methyl silicate and ethyl silicate.

【0015】親水性有機溶媒は一般式(I)の化合物ま
たはその部分加水分解縮合物および水を溶解するもので
あれば特に制限はなく、アルコール類、メチルセロソル
ブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソ
ルブ等のセロソルブ類、アセトン、メチルエチルケトン
等のケトン類、ジオキサン、テトラヒドロフラン等のエ
ーテル類等が挙げられ、好ましくはアルコール類が良
い。アルコール類としては、一般式(V): R6OH (V) (但し、R6は炭素原子数1〜6の一価炭化水素基)で
示されるアルコール溶媒が挙げられ、具体例としては、
メタノール、エタノール、イソプロパノール、ブタノー
ル等が挙げられる。アルコールの炭素原子数が増すと生
成するシリカ微粒子の粒子径が大きくなるため目的とす
るシリカ微粒子の粒径によりアルコールの種類を選択す
ることが望ましい。
The hydrophilic organic solvent is not particularly limited as long as it dissolves the compound of the formula (I) or its partially hydrolyzed condensate and water. Alcohols, methyl cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate, etc. And ketones such as acetone and methyl ethyl ketone, and ethers such as dioxane and tetrahydrofuran. Alcohols are preferable. Examples of the alcohol include an alcohol solvent represented by the general formula (V): R 6 OH (V) (where R 6 is a monovalent hydrocarbon group having 1 to 6 carbon atoms).
Examples include methanol, ethanol, isopropanol, butanol and the like. As the number of carbon atoms in the alcohol increases, the particle size of the silica fine particles formed increases. Therefore, it is desirable to select the type of alcohol according to the target particle size of the silica fine particles.

【0016】また、上記の塩基性化合物としてはアンモ
ニア、ジメチルアミン、ジエチルアミン等が挙げられ、
好ましくはアンモニアである。これら塩基性化合物は水
に所要量溶解したのち、得られた水溶液(塩基性の水)
を親水性有機溶媒と混合すればよい。
The basic compound includes ammonia, dimethylamine, diethylamine and the like.
Preferably it is ammonia. After dissolving a required amount of these basic compounds in water, the resulting aqueous solution (basic water)
May be mixed with a hydrophilic organic solvent.

【0017】このとき使用される水の量は一般式(I)
のシラン化合物またはその部分加水分解縮合物のアルコ
キシ基1モルに対して0.5〜5モルであることが好まし
く、水と親水性有機溶媒の比率は重量比で0.5〜10であ
ることが好ましく、塩基性化合物の量は一般式(I)の
シラン化合物またはその部分加水分解縮合物のアルコキ
シ基1モルに対して0.01〜1モルであることが好まし
い。
The amount of water used at this time is represented by the general formula (I)
Is preferably 0.5 to 5 mol with respect to 1 mol of the alkoxy group of the silane compound or the partial hydrolysis condensate thereof, and the ratio of water to the hydrophilic organic solvent is preferably 0.5 to 10 by weight, and The amount of the acidic compound is preferably from 0.01 to 1 mol based on 1 mol of the alkoxy group of the silane compound of the general formula (I) or the partial hydrolysis condensate thereof.

【0018】一般式(I)の4官能性シラン化合物等の
加水分解、縮合は塩基性化合物を含む親水性有機溶媒と
水の混合物中へ一般式(I)の4官能性シラン化合物を
滴下する周知の方法よって行われる。シリカ微粒子混合
溶液分散液の分散媒を水に変換するには、例えば、該分
散液に水を添加し親水性有機溶媒を留去する操作(必要
に応じこの操作を繰り返す)により行うことができる。
このときに添加される水量は、使用した親水性有機溶媒
および生成したアルコール量の合計に対して重量比で
0.5〜2倍量、好ましくはほぼ1倍量用いるのが良
い。
For hydrolysis and condensation of the tetrafunctional silane compound of the general formula (I), the tetrafunctional silane compound of the general formula (I) is dropped into a mixture of water and a hydrophilic organic solvent containing a basic compound. This is performed by a known method. In order to convert the dispersion medium of the silica fine particle mixed solution dispersion into water, for example, an operation of adding water to the dispersion and distilling off the hydrophilic organic solvent (if necessary, repeating this operation) can be performed. .
The amount of water added at this time is 0.5 to 2 times, preferably almost 1 time, in terms of the weight ratio of the total amount of the used hydrophilic organic solvent and the generated alcohol.

【0019】一般式(II)で示される3官能性シラン化
合物の具体例としては、メチルトリメトキシシラン、メ
チルトリエトキシシラン、エチルトリメトキシシラン、
エチルトリエトキシシラン、n−プロピルトリメトキシ
シラン、n−プロピルトリエトキシシラン、i−プロピ
ルトリメトキシシラン、i−プロピルトリエトキシシラ
ン、ブチルトリメトキシシラン、ブチルトリエトキシシ
ラン、ヘキシルトリメトキシシラン、トリフルオロプロ
ピルトリメトキシシラン、ヘプタデカフルオロデシルト
リメトキシシラン等のトリアルコキシシランが挙げら
れ、また、これらの部分加水分解縮合物を用いても良
い。
Specific examples of the trifunctional silane compound represented by the general formula (II) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane,
Ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, i-propyltrimethoxysilane, i-propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, hexyltrimethoxysilane, trifluoro Examples include trialkoxysilanes such as propyltrimethoxysilane and heptadecafluorodecyltrimethoxysilane, and a partially hydrolyzed condensate thereof may be used.

【0020】一般式(II)で示される3官能性シラン化
合物の添加量は、使用された親水性シリカ微粒子のSiO2
単位1モル当り1〜0.001モル、好ましくは0.1
〜0.01モル用いるのが良い。
The amount of the trifunctional silane compound represented by the general formula (II) is determined by the amount of SiO 2 of the hydrophilic fine silica particles used.
1 to 0.001 mol, preferably 0.1 to 1 mol per unit mol
It is preferable to use 0.01 to 0.01 mol.

【0021】疎水性シリカ微粒子水性分散液の分散媒を
ケトン系溶媒に変換する工程では、該分散液にケトン系
溶媒を添加し水を留去する操作(必要に応じてこの操作
を繰り返す)が行われる。このとき添加されるケトン系
溶媒量は、使用した親水性シリカ微粒子に対して重量比
で0.5〜5倍量、好ましくは1〜2倍量用いるのが良
い。ここで用いられるケトン系溶媒の具体例としては、
メチルエチルケトン、メチルイソブチルケトン、アセチ
ルアセトン等が挙げられ、好ましくはメチルイソブチル
ケトンが良い。
In the step of converting the dispersion medium of the aqueous dispersion of hydrophobic silica fine particles into a ketone-based solvent, an operation of adding a ketone-based solvent to the dispersion and distilling off water (this operation is repeated as necessary) is performed. Done. The amount of the ketone solvent added at this time is 0.5 to 5 times, preferably 1 to 2 times the weight ratio of the hydrophilic silica fine particles used. Specific examples of the ketone solvent used here include:
Methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and the like are mentioned, and methyl isobutyl ketone is preferable.

【0022】一般式(III)で示されるシラザン化合物
の具体例としては、ヘキサメチルジシラザンが挙げら
れ、一般式(IV)で示される1官能性シラン化合物の具
体例としては、トリメチルシラノール、トリエチルシラ
ノール等のモノシラノール化合物、トリメチルクロロシ
ラン、トリエチルクロロシラン等のモノクロロシラン、
トリメチルメトキシシラン、トリメチルエトキシシラン
等のモノアルコキシシラン、トリメチルシリルジメチル
アミン、トリメチルシリルジエチルアミン等のモノアミ
ノシラン、トリメチルアセトキシシラン等のモノアシロ
キシシランが挙げられる。
Specific examples of the silazane compound represented by the general formula (III) include hexamethyldisilazane. Specific examples of the monofunctional silane compound represented by the general formula (IV) include trimethylsilanol and triethyl. Monosilanol compounds such as silanol, trichlorochlorosilane, monochlorosilane such as triethylchlorosilane,
Monoalkoxysilanes such as trimethylmethoxysilane and trimethylethoxysilane; monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine; and monoacyloxysilanes such as trimethylacetoxysilane are exemplified.

【0023】これらの使用量は、使用した親水性シリカ
微粒子のSiO2単位1モルに対して0.1〜0.5モル、
好ましくは0.2〜0.3モル用いるのがよい。
These are used in an amount of 0.1 to 0.5 mol per mol of SiO 2 unit of the hydrophilic silica fine particles used,
Preferably, 0.2 to 0.3 mol is used.

【0024】このようにして製造された疎水性シリカ系
微粒子は、常法によって粉体として得ることができる。
The hydrophobic silica-based fine particles thus produced can be obtained as a powder by a conventional method.

【0025】本発明に使用される疎水性シリカ微粒子の
粒子径は、トナーのキャリアヘのスペント防止、キャリ
アに被覆した被膜の強度といった観点から、通常0.01〜
5μmであり、好ましくは、0.05〜0.5μmである。粒径
が小さすぎるとキャリアの表面エネルギーを小さくでき
ずトナーがキャリアにスペントしてしまい、大きすぎる
とキャリアに被覆した被膜の摩耗、はがれ、クラックが
生じ、破損キャリアにより感光体を傷つけてしまったり
するといった不利を生ずる。
The particle diameter of the hydrophobic silica fine particles used in the present invention is usually from 0.01 to 0.01 from the viewpoints of preventing the toner from being spent on the carrier and the strength of the coating film coated on the carrier.
It is 5 μm, preferably 0.05 to 0.5 μm. If the particle size is too small, the surface energy of the carrier cannot be reduced and the toner will be spent on the carrier.If the particle size is too large, the film coated on the carrier will be worn, peeled off, cracked, and the damaged carrier will damage the photoconductor. Disadvantage.

【0026】この疎水性シリカ微粒子の配合量は、後述
する有機樹脂100重量部に対して、通常、1〜50重量部の
範囲でよく、好ましくは10〜25重量部である。配合量が
少なすぎるとキャリアの表面エネルギーを小さくできず
トナーがキャリアにスペントしてしまい、多すぎると被
膜強度が弱くなり膜はがれが生じトナーへの帯電付与が
出来ないばかりでなく経済的にも不利である。
The compounding amount of the hydrophobic silica fine particles may be generally in the range of 1 to 50 parts by weight, preferably 10 to 25 parts by weight, based on 100 parts by weight of the organic resin described later. If the compounding amount is too small, the surface energy of the carrier cannot be reduced and the toner will be spent on the carrier.If the compounding amount is too large, the film strength will be weakened and the film will peel off, making it impossible to impart charge to the toner and economically. Disadvantageous.

【0027】−有機樹脂− 本発明のコーティング剤の他方の必須成分である有機樹
脂は、特に限定されず、種々の樹脂を用いることができ
る。具体的には、例えばスチレン系樹脂、アクリル系樹
脂、スチレン−アクリル系樹脂、ビニル系樹脂、エチレ
ン系樹脂、ロジン変成樹脂、ポリアミド樹脂、ポリエス
テル樹脂、シリコーン樹脂、アクリル変性シリコーン樹
脂、ポリエステル変性シリコーン樹脂、弗素系樹脂等の
樹脂を用いることができる。このうち、トナーのキャリ
アへのスペントを防ぐ点において、シリコーン樹脂、ア
クリル変性シリコーン樹脂、ポリエステル変性シリコー
ン樹脂、弗素系樹脂が好ましい。これらの樹脂は一種単
独でも二種以上組合わせて用いてもよい。
-Organic resin- The organic resin which is the other essential component of the coating agent of the present invention is not particularly limited, and various resins can be used. Specifically, for example, styrene-based resin, acrylic-based resin, styrene-acryl-based resin, vinyl-based resin, ethylene-based resin, rosin-modified resin, polyamide resin, polyester resin, silicone resin, acryl-modified silicone resin, polyester-modified silicone resin And a resin such as a fluorine-based resin. Of these, silicone resins, acryl-modified silicone resins, polyester-modified silicone resins, and fluorine-based resins are preferred in terms of preventing toner from being spent on a carrier. These resins may be used alone or in combination of two or more.

【0028】また、これらの樹脂は有機溶剤(例えば、
トルエン、キシレン、溶剤揮発油等の炭化水素溶剤、ア
ルコール、エステル等)に溶解されているのが好まし
い。この有機溶剤の量は有機樹脂の固形分が1〜30重
量%となる量が好ましい。また必要に応じて、架橋剤や
硬化触媒を添加してもよい。
These resins may be used in organic solvents (for example,
It is preferably dissolved in a hydrocarbon solvent such as toluene, xylene, or volatile oil, alcohol, or ester. The amount of the organic solvent is preferably such that the solid content of the organic resin is 1 to 30% by weight. If necessary, a cross-linking agent or a curing catalyst may be added.

【0029】[静電荷像現像用キャリア]本発明の静電
荷像現像キャリアは、キャリア基体を上記の静電荷像現
像キャリア用コーティング剤で被覆してなるものであ
る。
[Electrostatic Image Developing Carrier] The electrostatic image developing carrier of the present invention is obtained by coating a carrier substrate with the above-described electrostatic image developing carrier coating agent.

【0030】使用されるキャリア基体粒子としては、鉄
粉、フェライト粉が代表的なものであるが、その他、ニ
ッケル、コバルト等の磁性金属又はその酸化物、銅、カ
ーボランダム、ガラスビース、二酸化ケイ素等のキャリ
ア基体粒子の素材として公知のものの中から適宜選択し
て用いることができる。キャリア基体粒子の粒径は、10
〜1,000μm、好ましくは20〜200μmである。本発明の
キャリアを製造する方法は特に限定されるものではな
く、公知の被覆方法を適用できる。
Typical carrier base particles to be used are iron powder and ferrite powder, and other magnetic metals such as nickel and cobalt or oxides thereof, copper, carborundum, glass beads and silicon dioxide. The carrier base particles can be appropriately selected from known materials as carrier base particles. The particle size of the carrier base particles is 10
1,0001,000 μm, preferably 20-200 μm. The method for producing the carrier of the present invention is not particularly limited, and a known coating method can be applied.

【0031】具体的には、疎水性シリカ微粒子と有機樹
脂を含有してなる前記コーティング剤を、例えば流動化
ベット法、浸漬法、スプレー法等によってキャリア基体
粒子上に塗布し、次いで乾燥、硬化する方法;有機樹脂
のみを上記のような方法で被覆したキャリアと、疎水性
微粒子とを必要量混合し、被覆キャリア表面に樹脂微粒
子を付着、配置させた後、キャリア表面に機械的または
機械的/熱的応力を加える処理を行ない、疎水性微粒子
をキャリア表面に強固に固定化する方法などを用いるこ
とができる。
Specifically, the above-mentioned coating agent containing hydrophobic silica fine particles and an organic resin is applied to carrier base particles by, for example, a fluidized bed method, an immersion method, a spray method, etc., and then dried and cured. A method in which a carrier in which only an organic resin is coated by the above method and hydrophobic fine particles are mixed in a required amount, and resin fine particles are adhered and arranged on the surface of the coated carrier, and then mechanically or mechanically applied to the carrier surface. A method of performing a process of applying thermal stress and firmly fixing the hydrophobic fine particles on the carrier surface can be used.

【0032】被覆層の膜厚は0.1〜20μmであることが
好ましい。必要により重ね塗りすることも可能であり、
目的によっては各層の成分を変えて重ね塗りすることも
できる。
The thickness of the coating layer is preferably 0.1 to 20 μm. It is also possible to apply multiple layers if necessary,
Depending on the purpose, it is also possible to change the components of each layer and apply them repeatedly.

【0033】本発明のキャリアを用いて現像剤を調製す
る際に用いられるトナーは、特に制約なく公知のものを
使用することができる。具体的には、少なくとも結着樹
脂、着色剤からなるトナーであり、さらに必要に応じて
離型剤、荷電制御剤、流動化剤、磁性体が添加されたト
ナーでもよい。構成される材料には公知のものを用いる
ことができる。トナーの粒径は、使用するキャリアの重
量平均粒径の1/4〜1/20の範囲にあるものが好まし
い。
As the toner used when preparing the developer using the carrier of the present invention, a known toner can be used without any particular limitation. Specifically, it is a toner comprising at least a binder resin and a colorant, and may be a toner to which a release agent, a charge control agent, a fluidizing agent, and a magnetic substance are added as necessary. Known materials can be used for the constituent materials. The particle size of the toner is preferably in the range of 1/4 to 1/20 of the weight average particle size of the carrier used.

【0034】[0034]

【実施例】以下に実施例および比較例を示して本発明を
具体的に説明するが、本発明は下記の実施例に制限され
るものではない。以下において、粘度は25℃での測定値
を示す。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following, the viscosity indicates a value measured at 25 ° C.

【0035】実施例1 [球状疎水性シリカ微粒子の合成] (工程1)撹拌機、滴下ロート、温度計を備えた3リッ
トルのガラス製反応器にメタノール623.7g、水41.4g、2
8%アンモニア水49.8gを添加して混合した。この溶液を
35℃に調整し撹拌しながらテトラメトキシシラン1163.7
gおよび5.4%アンモニア水418.1gを同時に添加開始し、
前者は6時間、そして後者は4時間かけて滴下した。テト
ラメトキシシラン滴下後も0.5時間撹拌を続け加水分解
を行いシリカ微粒子の懸濁液を得た。ガラス製反応器に
エステルアダプターと冷却管を取り付け、60〜70℃に加
熱しメタノール1132gを留去したところで、水1200gを添
加し、次いでさらに70〜90℃に加熱しメタノール273gを
留去し、シリカ微粒子の水性懸濁液を得た。
Example 1 [Synthesis of spherical hydrophobic silica fine particles] (Step 1) In a 3 liter glass reactor equipped with a stirrer, a dropping funnel and a thermometer, 623.7 g of methanol, 41.4 g of water, 2
49.8 g of 8% aqueous ammonia was added and mixed. This solution
Adjust to 35 ° C and stir with tetramethoxysilane 1163.7
g and 5.4% ammonia water 418.1 g were added at the same time,
The former drip over 6 hours and the latter over 4 hours. After the dropwise addition of tetramethoxysilane, stirring was continued for 0.5 hour to carry out hydrolysis to obtain a suspension of silica fine particles. Attach an ester adapter and a cooling tube to the glass reactor, heat to 60 to 70 ° C and distill off 1132 g of methanol.Add 1200 g of water, and then further heat to 70 to 90 ° C to distill off 273 g of methanol. An aqueous suspension of fine silica particles was obtained.

【0036】(工程2)この水性懸濁液に室温でメチル
トリメトキシシラン11.6g(テトラメトキシシランに対し
てモル比で0.01相当量)を0.5時間かけて滴下し、滴下後
も12時間撹拌しシリカ微粒子表面の処理を行った。 (工程3)こうして得られた分散液にメチルイソブチル
ケトン1440gを添加した後、80〜110℃に加熱しメタノー
ル水1163gを7時間かけて留去した。得られた分散液に室
温でヘキサメチルジシラザン357.6gを添加し120℃に加
熱し3時間反応させシリカ微粒子をトリメチルシリル化
した。その後溶媒を減圧下で留去して平均粒子径0.12μ
mの球状疎水性シリカ微粒子477gを得た。得られた疎水
性シリカ微粒子について以下の試験を行った。
(Step 2) To this aqueous suspension, 11.6 g of methyltrimethoxysilane (equivalent to a molar ratio of 0.01 to tetramethoxysilane) was dropped at room temperature over 0.5 hours, and the mixture was stirred for 12 hours after dropping. The surface of the silica fine particles was treated. (Step 3) After adding 1440 g of methyl isobutyl ketone to the dispersion thus obtained, the mixture was heated to 80 to 110 ° C. and 1163 g of aqueous methanol was distilled off over 7 hours. 357.6 g of hexamethyldisilazane was added to the obtained dispersion at room temperature, and the mixture was heated to 120 ° C. and reacted for 3 hours to trimethylsilyl fine particles. After that, the solvent was distilled off under reduced pressure, and the average particle diameter was 0.12μ.
Thus, 477 g of spherical hydrophobic silica fine particles of m were obtained. The following tests were performed on the obtained hydrophobic silica fine particles.

【0037】[分散性試験]室温で液体の有機化合物に微
粒子を重量比で5対1となるよう添加し、振とう機を用い
て30分振とうした後、微粒子の分散状態を目視で観察す
る。微粒子の全量が分散しスラリー状になり均一なもの
を○;微粒子の全量が有機化合物で湿潤するが一部有機
化合物中に分散せず不均一なものを△;微粒子が有機化
合物で湿潤せず、両者が混合しないものを×として結果
を表1に示した。
[Dispersibility test] Fine particles were added to a liquid organic compound at room temperature in a weight ratio of 5: 1, and the mixture was shaken for 30 minutes using a shaker, and the dispersion state of the fine particles was visually observed. I do.を: uniform when the whole amount of the fine particles is dispersed to form a slurry, and ;: when the whole amount of the fine particles is wet with the organic compound but is not partially dispersed in the organic compound, and △; when the fine particles are not wet with the organic compound. The results are shown in Table 1 as x when the two do not mix.

【0038】[凝集促進試験] (1)メタノールに微粒子を重量比で5対1となるよう添加
し、振とう機を用いて30分振とうする。このように処理
した微粒子の粒度分布をレーザー回折散乱式粒度分布測
定装置(堀場製作所LA910)で粒度分布を測定する。 (2)次に(1)で得られた微粒子分散液からメタノールをエ
バポレータで加熱下留去した後、100℃に2時間保持す
る。メタノールにこのように処理した微粒子を添加し振
とう機を用いて30分振とうした後、粒度分布を上記と同
様にして測定する。(1)で得られた粒径分布を基準とし
て1次粒子の残存量の比率を求める。なお、一次粒子径
はあらかじめ電子顕微鏡観察によって確認しておく。結
果を表1に示した。
[Aggregation Acceleration Test] (1) Fine particles are added to methanol at a weight ratio of 5: 1, and shaken using a shaker for 30 minutes. The particle size distribution of the fine particles treated as described above is measured by a laser diffraction scattering type particle size distribution analyzer (LA910, Horiba, Ltd.). (2) Next, methanol is distilled off from the fine particle dispersion obtained in (1) by heating using an evaporator, and then the mixture is kept at 100 ° C. for 2 hours. After adding the fine particles thus treated to methanol and shaking for 30 minutes using a shaker, the particle size distribution is measured in the same manner as described above. The ratio of the residual amount of the primary particles is determined based on the particle size distribution obtained in (1). The primary particle diameter is confirmed in advance by observation with an electron microscope. The results are shown in Table 1.

【0039】[シリコーン樹脂液の作製]撹拌機、冷却
器、滴下ロート、温度計を備えた1リットルのガラス製
反応器に、平均組成式がCH3(CH3O)2SiOSi(OCH3)2CH3
示される化合物96.0g、(CH3)2Si(OCH3)2で示される化合
物12.0g、HO(CH3)2SiO[SiO(CH3)2]8Si(CH3)20Hで示され
る化合物3.7gおよびトルエン135gを仕込み、メタンスル
ホン酸3.8gを撹拌しながら投入した後、更に水21.5gを1
時間かけて滴下し、30℃で12時間熟成させた。得られた
液を中和し、副生したアルコールを留去し、水洗し、脱
水、濾過した後、不揮発分が40重量%となるようにトル
エンを用いて希釈し、粘度が5cStで水酸基の量が1.3重
量%のシリコーン樹脂を得た。得られたシリコーン樹脂
100重量部にメチルトリス(メチルエチルケトオキシム)
シラン12重量部、ジブチル錫ジオクテート50重量%含有
キシレン溶液0.4重量部を混合した後、さらに、不揮発
分が25重量%となるように揮発油を添加混合し、粘度が
1.5cStの硬化性シリコーン樹脂液を得た。更に上記のシ
リコーン樹脂液をトルエンで希釈し4重量%溶液とし
た。
[Preparation of Silicone Resin Liquid] In a 1-liter glass reactor equipped with a stirrer, a cooler, a dropping funnel and a thermometer, an average composition formula is CH 3 (CH 3 O) 2 SiOSi (OCH 3 ). compounds represented by 2 CH 3 96.0g, (CH 3 ) 2 Si (OCH 3) a compound represented by 2 12.0g, HO (CH 3) 2 SiO [SiO (CH 3) 2] 8 Si (CH 3) 2 After charging 3.7 g of the compound represented by 0H and 135 g of toluene and adding 3.8 g of methanesulfonic acid with stirring, 21.5 g of water was further added to the mixture.
The mixture was added dropwise over time, and aged at 30 ° C. for 12 hours. The obtained solution was neutralized, the by-produced alcohol was distilled off, and the residue was washed with water, dehydrated and filtered, and then diluted with toluene so as to have a nonvolatile content of 40% by weight. An amount of 1.3% by weight of silicone resin was obtained. The obtained silicone resin
100 parts by weight methyl tris (methyl ethyl ketoxime)
After mixing 12 parts by weight of silane and 0.4 part by weight of a xylene solution containing 50% by weight of dibutyltin dioctate, a volatile oil is further added and mixed so that the non-volatile content becomes 25% by weight.
A 1.5 cSt curable silicone resin liquid was obtained. Further, the above silicone resin solution was diluted with toluene to obtain a 4% by weight solution.

【0040】[コーティング剤の調製]上記シリコーン樹
脂液100重量部、疎水性シリカ微粒子37.5重量部、およ
びトルエン525重量部を混合し、コーティング剤とし
た。
[Preparation of Coating Agent] A coating agent was prepared by mixing 100 parts by weight of the above silicone resin solution, 37.5 parts by weight of hydrophobic silica fine particles, and 525 parts by weight of toluene.

【0041】[キャリアの作製]キャリア基体粒子として
平均粒径50μmのフェライト1kgに、流動化ベット装置
(スパイラーフローミニ:フロイント産業株式会社製の
商品名)を用いて上記のコーティング剤500gを散布した
後、150℃で10分間加熱してシリコーン成分を硬化させ
た。
[Preparation of Carrier] 1 kg of ferrite having an average particle diameter of 50 μm as carrier base particles was placed in a fluidized bed apparatus.
After spraying 500 g of the above coating agent using (Spilar Flow Mini: trade name, manufactured by Freund Corporation), the silicone component was cured by heating at 150 ° C. for 10 minutes.

【0042】[現像剤の作製]Tg60℃、軟化点110℃のポ
リエステル樹脂96重量部と色剤としてカーミン6BC(住友
カラー(株)製)4重量部を溶融混練、粉砕、分級後、平均
粒径7μmのトナーを得た。処理されたキャリア粉96重
量部に、上記トナー4重量部を混合して現像剤を調製し
た。これを用いて以下の方法で評価した。
[Preparation of Developer] 96 parts by weight of a polyester resin having a Tg of 60 ° C. and a softening point of 110 ° C., and 4 parts by weight of Carmine 6BC (manufactured by Sumitomo Color Co., Ltd.) as a coloring agent were melt-kneaded, pulverized, classified, and averaged. A toner having a diameter of 7 μm was obtained. A developer was prepared by mixing 4 parts by weight of the toner with 96 parts by weight of the treated carrier powder. Using this, the following method evaluated.

【0043】[帯電安定性の評価]上記現像剤を5分また
は30分振とう帯電させた後、ブローオフ粉体帯電量測定
装置(東芝ケミカル(株)製TB-200型)によりそれぞれトナ
ーの帯電量を測定した。この振とう時間による帯電量の
差が3μC/g以内であれば安定とした。結果を表1に示
した。
[Evaluation of Charging Stability] After the above developer was charged with shaking for 5 minutes or 30 minutes, the toner was charged by a blow-off powder charge amount measuring device (TB-200, manufactured by Toshiba Chemical Co., Ltd.). The amount was measured. If the difference in charge amount due to the shaking time was within 3 μC / g, it was considered stable. The results are shown in Table 1.

【0044】[プリント評価]上記現像剤を有機感光体が
備えられた二成分改造現像機に入れ、30000枚のプリン
トテストを実施した。キャリアヘのトナースペントは、
電子顕微鏡により観察評価した。トナー飛散はコピー機
内及び現像器まわりの汚れ度を目視で評価した。キャリ
ア破壊は電子顕微鏡で観察し評価した。結果を表1に示
した。
[Print Evaluation] The above developer was put into a two-component modified developing machine equipped with an organic photoreceptor, and a print test of 30,000 sheets was performed. Toner spent on the carrier
Observation and evaluation were performed using an electron microscope. The toner scattering was visually evaluated for the degree of contamination inside the copying machine and around the developing device. Carrier destruction was observed and evaluated with an electron microscope. The results are shown in Table 1.

【0045】実施例2 球状疎水性シリカ微粒子の合成の際にテトラメトキシシ
ランの加水分解温度を35℃の代わりに20℃とした以外は
実施例1と同様にして平均粒子径0.30μmの球状疎水性
シリカ微粒子467gを得た。これを用いて実施例1と同様
に評価した。結果を表1に示した。
Example 2 In the same manner as in Example 1 except that the hydrolysis temperature of tetramethoxysilane was changed to 20 ° C. instead of 35 ° C. in the synthesis of the spherical hydrophobic silica fine particles, a spherical hydrophobic silica having an average particle diameter of 0.30 μm was used. 467 g of functional silica fine particles were obtained. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

【0046】実施例3 球状疎水性シリカ微粒子の合成の際にテトラメトキシシ
ランの加水分解温度を35℃の代わりに40℃とした以外は
実施例1と同様にして平均粒子径0.09μmの球状疎水性
シリカ微粒子469gを得た。これを用いて実施例1と同様
に評価した。結果を表1に示した。
Example 3 A spherical hydrophobic silica having an average particle diameter of 0.09 μm was prepared in the same manner as in Example 1 except that the hydrolysis temperature of tetramethoxysilane was changed to 40 ° C. instead of 35 ° C. in the synthesis of the spherical hydrophobic silica fine particles. 469 g of functional silica fine particles were obtained. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

【0047】比較例1 実施例1における(工程3)のヘキサメチルジシラザンを
用いたシリカ微粒子のトリメチルシリル化工程を省略す
る以外は実施例1と同様にして平均粒径0.12μmの球状
シリカ微粒子451gを得た。これを用いて実施例1と同様
に評価した。結果を表2に示した。
Comparative Example 1 451 g of spherical silica fine particles having an average particle size of 0.12 μm in the same manner as in Example 1 except that the step of trimethylsilylating silica fine particles using hexamethyldisilazane in (Step 3) in Example 1 was omitted. I got Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

【0048】比較例2 実施例1の(工程1)において溶媒置換に用いた水1200g
の代わりに水1000gとメチルイソブチルケトン1000gの混
合物を用いた以外は実施例1と同様にして平均粒径0.12
μmの球状疎水性シリカ微粒子468gを得た。これを用い
て実施例1と同様に評価した。結果を表2に示した。
Comparative Example 2 1200 g of water used for solvent replacement in (Step 1) of Example 1
In the same manner as in Example 1 except that a mixture of 1000 g of water and 1000 g of methyl isobutyl ketone was used in place of
468 g of spherical hydrophobic silica fine particles of μm were obtained. Using this, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.

【0049】比較例3 実施例1の球状疎水性シリカ微粒子の代わりに沈降法シ
リカ表面を有機ケイ素化合物で処理したニプシルSS50F
(日本シリカ(株)製)について、実施例1と同様にして評
価した。
Comparative Example 3 Nipsil SS50F prepared by treating the surface of a precipitated silica with an organosilicon compound instead of the spherical hydrophobic silica fine particles of Example 1.
(Nippon Silica Co., Ltd.) was evaluated in the same manner as in Example 1.

【0050】比較例4 実施例1の球状疎水性シリカ微粒子の代わりにフューム
ドシリカを疎水化処理したアエロジルR972(日本アエロ
ジル(株)製)について実施例1と同様にして評価した。
Comparative Example 4 Aerosil R972 (manufactured by Nippon Aerosil Co., Ltd.) obtained by hydrophobizing fumed silica in place of the spherical hydrophobic silica fine particles of Example 1 was evaluated in the same manner as in Example 1.

【0051】比較例5 実施例1の球状疎水性シリカ微粒子を添加しなかったこ
と以外は実施例1と同様にしてキャリアを得た。これを
実施例1と同様にし評価した。
Comparative Example 5 A carrier was obtained in the same manner as in Example 1 except that the spherical hydrophobic silica fine particles of Example 1 were not added. This was evaluated in the same manner as in Example 1.

【0052】[0052]

【表1】 [Table 1]

【0053】注: MIBK:メチルイソブチルケトン、 THF:テトラヒドロフラン、 D5:デカメチルシクロペンタシロキサンNote: MIBK: methyl isobutyl ketone, THF: tetrahydrofuran, D 5 : decamethylcyclopentasiloxane

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】以上詳述した如く、本発明の電子写真キ
ャリア用コーティング剤で被覆されたキャリアは摩耗・
はがれ・クラック等が発生し難い上、スペント化現象も
起こり難い。そのため、長時間使用に耐え、キャリア帯
電特性の安定性に優れる。
As described above in detail, the carrier coated with the coating agent for an electrophotographic carrier of the present invention has abrasion and wear.
Peeling, cracking and the like are hardly generated, and spent phenomenon is hardly generated. Therefore, it can withstand use for a long time and is excellent in stability of carrier charging characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記の条件(i)および(ii)を満たす、1次
粒子の平均粒径が0.01〜5μmである球状の疎水性シリ
カ微粒子および有機樹脂からなることを特徴とする静電
荷像現像キャリア用コーティング剤。 (i)室温で液体であり、誘電率が1〜40F/mである有機
化合物とシリカ微粒子とを5対1の重量比で混合し振とう
した際に、該シリカ微粒子が前記有機化合物中に均一に
分散する。 (ii)該シリカ微粒子をメタノールに分散した分散液から
メタノールをエバポレータで加熱下留去した後、100℃
の温度で2時間保持した際に、1次粒子として残存する
1次粒子量の当初存在した1次粒子量に対する比率が20
%以上である。
An electrostatic charge image comprising spherical hydrophobic silica fine particles having an average primary particle size of 0.01 to 5 μm and an organic resin satisfying the following conditions (i) and (ii): Coating agent for development carrier. (i) When an organic compound which is liquid at room temperature and has a dielectric constant of 1 to 40 F / m and silica fine particles are mixed at a weight ratio of 5: 1 and shaken, the silica fine particles are contained in the organic compound. Disperse evenly. (ii) After the methanol was distilled off from the dispersion in which the silica fine particles were dispersed in methanol by heating with an evaporator, 100 ° C
At a temperature of 2 hours, the ratio of the amount of primary particles remaining as primary particles to the amount of primary particles initially present is 20%.
% Or more.
【請求項2】上記疎水性シリカ微粒子がSiO2単位からな
る親水性シリカ微粒子表面にR2SiO3 /2単位(但し、R2
置換または非置換の炭素原子数1〜20の1価炭化水素基)
を導入する工程によって得られた疎水性シリカ微粒子表
面にR1 3SiO1/2単位(但し、R1は同一または異種の置換ま
たは非置換の炭素原子数1〜6の1価炭化水素基)を導入
することによって得られた平均粒子径が0.01〜5μmで
ある球状の疎水性シリカ微粒子であることを特徴とする
請求項1記載の静電荷像現像キャリア用コーティング
剤。
Wherein the hydrophobic silica fine particles are made of SiO 2 units hydrophilic silica fine particle surface in the R 2 SiO 3/2 units (wherein, monovalent R 2 is a substituted or unsubstituted 1 to 20 carbon atoms carbide Hydrogen group)
Hydrophobic silica fine particle surface in R 1 3 SiO 1/2 units obtained by introducing a (however, monovalent hydrocarbon group of R 1 may be the same or a substituted or unsubstituted 1-6 carbon atoms heterologous) 2. The coating agent for an electrostatic image developing carrier according to claim 1, wherein the coating agent is a spherical hydrophobic silica fine particle having an average particle size of 0.01 to 5 [mu] m obtained by introducing the compound.
【請求項3】キャリア基体粒子を請求項1または2に記
載の静電荷像現像キャリア用コーティング剤で被覆して
なる静電荷像現像用キャリア。
3. An electrostatic image developing carrier comprising carrier substrate particles coated with the electrostatic image developing carrier coating agent according to claim 1 or 2.
JP2000119105A 2000-04-20 2000-04-20 Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof Pending JP2001305804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119105A JP2001305804A (en) 2000-04-20 2000-04-20 Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000119105A JP2001305804A (en) 2000-04-20 2000-04-20 Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof

Publications (1)

Publication Number Publication Date
JP2001305804A true JP2001305804A (en) 2001-11-02

Family

ID=18630141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119105A Pending JP2001305804A (en) 2000-04-20 2000-04-20 Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof

Country Status (1)

Country Link
JP (1) JP2001305804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271099A (en) * 2008-04-30 2009-11-19 Brother Ind Ltd Developer cartridge and developing unit
JP2015061819A (en) * 2007-07-06 2015-04-02 キャボット コーポレイションCabot Corporation Hydrophobic-treated metal oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407571B2 (en) 2006-09-15 2019-09-10 Cabot Corporation Hydrophobic-treated metal oxide
JP2015061819A (en) * 2007-07-06 2015-04-02 キャボット コーポレイションCabot Corporation Hydrophobic-treated metal oxide
JP2017014107A (en) * 2007-07-06 2017-01-19 キャボット コーポレイションCabot Corporation Hydrophobic-treated metal oxide
JP2009271099A (en) * 2008-04-30 2009-11-19 Brother Ind Ltd Developer cartridge and developing unit

Similar Documents

Publication Publication Date Title
JP4781769B2 (en) Highly hydrophobic spherical sol-gel silica fine particles, process for producing the same, toner external additive for developing electrostatic images comprising the fine particles, and developer using the toner external additive
JP3927741B2 (en) Toner external additive for electrostatic image development
JP3988936B2 (en) Silane surface-treated spherical silica titania fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
US20080268362A1 (en) Hydrophobic spherical silica microparticles having a high degree of flowability, method of producing same, electrostatic image developing toner external additive using same, and organic resin composition containing same
JP2011032114A (en) Hydrophobic spherical silica fine particle, method for producing the same and toner external additive for electrostatic charge image development using the same
JP4060241B2 (en) Hydrophobic spherical silica-based fine particles, process for producing the same, and toner external additive for developing electrostatic images using the same
JP7026436B2 (en) Hydrophobic silica for electrophotographic toner composition
US8871416B2 (en) Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, developer cartridge, process cartridge, image forming method, and image forming apparatus
WO2007080826A1 (en) Toner for electrostatic charge image development
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP2001305804A (en) Coating agent for carrier for developing electrostatic image and carrier for developing electrostatic image thereof
JP3767788B2 (en) Toner external additive for electrostatic image development
JP3856744B2 (en) Toner external additive for electrostatic image development
JP3930236B2 (en) Toner external additive for electrostatic image development
JP4628760B2 (en) Spherical hydrophobic polydiorganosiloxane-containing silica fine particles, toner additive for developing electrostatic image and toner
JP3612259B2 (en) Toner and method for producing toner externally added with fluidity-imparting agent
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
US20240118641A1 (en) Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2017156393A (en) External additive for toner and production method thereof, and toner
JP2017142319A (en) External additive for toner and toner
CN117742105A (en) Electrostatic latent image developer, process cartridge, image forming apparatus, and image forming method
CN117742103A (en) Silica particles, toner, developer, cartridge, image forming apparatus, and image forming method
JP6727759B2 (en) External additive for toner and toner
WO2024106217A1 (en) External additive for toner, and toner
CN117742104A (en) Silica particles, toner, developer, cartridge, image forming apparatus, and image forming method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070316