JP2001302366A - Lightweight porous body and method of producing the same - Google Patents

Lightweight porous body and method of producing the same

Info

Publication number
JP2001302366A
JP2001302366A JP2000153805A JP2000153805A JP2001302366A JP 2001302366 A JP2001302366 A JP 2001302366A JP 2000153805 A JP2000153805 A JP 2000153805A JP 2000153805 A JP2000153805 A JP 2000153805A JP 2001302366 A JP2001302366 A JP 2001302366A
Authority
JP
Japan
Prior art keywords
porous body
fine powder
binder
microorganisms
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000153805A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iwasaki
和之 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DREAMS KK
Original Assignee
DREAMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DREAMS KK filed Critical DREAMS KK
Priority to JP2000153805A priority Critical patent/JP2001302366A/en
Publication of JP2001302366A publication Critical patent/JP2001302366A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous ceramic which is lightweight, porous and excellent in water absorbing property or transpiratory property, has various pore structures and resistance to decomposition/volume reduction by the action of microorganisms, can be recycled and is harmless even when it is finally abandoned and which is preferably used as a fungus bed material for immobilizing various microorganisms and to provide a method of producing the same. SOLUTION: The porous ceramic is obtained by granulating a mixture containing a binder comprising a foamed fine powder of a natural glass material and a clay mineral as a main material and an organic powder comprising a cereal or a husk as an auxiliary material and firing. The porous ceramic has a bulk density of 0.4 to 1.5 g/cm3 and pores having pore diameters of several micrometers to 100 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は軽量多孔質体および
その製造方法に関する。
The present invention relates to a lightweight porous body and a method for producing the same.

【0002】[0002]

【従来の技術】微生物の多様な能力に注目し、その利用
・研究が活発になり多様化している。地球環境保全は国
際的な重要かつ緊急課題であり、有機質の産業・生活廃
棄物および下水汚泥の分解・減容処理、汚染地下水や汚
染土壌への微生物の作用による浄化処理等への利用、お
よび、有用土壌菌による用土の活性化や農産物の増産等
への利用が期待されている。微生物固定化担体を菌床材
と呼ぶ。有機物を分解・減容処理する菌床材には、植物
系菌床材、無機質系菌床材および高分子系菌床材があ
る。さらにこれらを併用した菌床材がある。
2. Description of the Related Art Attention has been paid to the diverse abilities of microorganisms, and their use and research have become active and diversified. Conservation of the global environment is an internationally important and urgent issue, including the use of organic industrial and domestic waste and sewage sludge for decomposition and volume reduction, and for the purification of contaminated groundwater and contaminated soil by the action of microorganisms. It is expected to be useful for activating the soil by useful soil bacteria and increasing production of agricultural products. The microorganism-immobilized carrier is called a bacterial bed material. Bacterial beds for decomposing and reducing the volume of organic matter include plant-based beds, inorganic bacterial beds, and polymer-based beds. Further, there is a bacterial bed material using these in combination.

【0003】植物系菌床材は杉チップ材が一般的に優れ
た特性をもつ。導管などをもつ植物の細胞壁にリグニン
が存在し、成熟した植物細胞は二重の細胞壁を作り、微
生物からの細胞外酵素を妨害している。リグニンは微生
物にとって難分解物質であり、きのこの仲間の白色木材
腐朽菌等が作用するといわれている。杉チップ材の菌床
はこのリグニンの特性を利用している。これら植物系の
菌床材は嵩比重が0.7前後で軽量で吸水性に優れるの
で取扱いやすいという特徴がある。しかし、杉チップ材
の菌床はポーラスが潰れたり、微生物の作用により菌床
材の有機質が分解・減容するために、一定期間毎に菌床
材を補充したり、交換する必要があり不便である。
[0003] As a plant-based fungal bed material, cedar chip material generally has excellent characteristics. Lignin is present in the cell walls of plants with conduits, etc., and mature plant cells form a double cell wall, blocking extracellular enzymes from microorganisms. Lignin is a hardly decomposable substance for microorganisms, and it is said that white wood decay fungi and other mushrooms act on it. The bed of cedar chips uses this property of lignin. These plant-based bacterial bed materials have a characteristic that they have a bulk specific gravity of about 0.7, are lightweight and have excellent water absorbability, and are easy to handle. However, the cedar chip material bed is inconvenient because it needs to be replenished or replaced at regular intervals because the porosity of the bed is destroyed and the organic matter in the bed material is decomposed and reduced in volume by the action of microorganisms. It is.

【0004】無機質系菌床材は、水処理用のゼオライト
や活性炭等を主材料にしたポーラスセラミックスが用い
られてきた。しかしこれらの無機質系菌床材は植物系菌
床材の3〜4倍の嵩比重がある。このために生ゴミと菌
体を混ぜるための攪拌装置に強力な動力源を必要とする
課題がある。また生ゴミの構成物質の70〜80%は水
分であるが、無機質系菌床材は吸水・保水能力が不十分
で水分調整の機能に劣る。これに起因し、悪臭や衛生害
虫を誘発しやすいという課題がある。その対策として脱
水・脱臭装置が必要となり、また微生物を生存させるた
めの制御が複雑となる。さらには、無機質菌床材は植物
系菌床材に比べ極めて微細な多孔質体のものであるた
め、固定化する微生物の種類や数量が少なく、微生物に
よる有機物の分解能力が低く不便であった。
[0004] Porous ceramics mainly composed of zeolite for water treatment, activated carbon or the like have been used as the inorganic bacterial bed material. However, these inorganic bacterial bed materials have a bulk specific gravity 3 to 4 times that of the plant bacterial bed material. For this reason, there is a problem that a strong power source is required for the stirring device for mixing the garbage and the cells. Also, 70-80% of the constituents of the garbage is water, but the inorganic bacterial floor material has insufficient water absorption / water retention ability and is inferior in the function of water control. Due to this, there is a problem that it is easy to induce bad smells and sanitary pests. As a countermeasure, a dehydration / deodorization device is required, and control for allowing microorganisms to survive becomes complicated. Furthermore, since the inorganic bacterial bed material is an extremely fine porous material compared to the plant bacterial bed material, the type and quantity of microorganisms to be immobilized are small, and the ability to decompose organic substances by microorganisms is low, which is inconvenient. .

【0005】高分子系菌床材は微生物を固定化して流動
床として、液体処理に用いられる。PVA(ポリビニー
ルアルコール)の様な生分解性プラスチックを微生物の
栄養源として固定化し、地下水汚染を浄化する技術も開
発されている。しかし、固定化する微生物が担体を栄養
源とするため、材料により微生物の種類が限定される。
またPP(ポリプロピレン)に微生物を固定化して流動
床として利用している事例もあるが、これを最終的に処
分する場合は、焼却しなければならない。プラスチック
スの焼却は環境汚染を生じる可能性があり、出来る限り
避けなければならない。
[0005] A high molecular weight bacterial bed material is used for liquid treatment as a fluidized bed by immobilizing microorganisms. Techniques for purifying groundwater contamination by immobilizing biodegradable plastics such as PVA (polyvinyl alcohol) as nutrient sources for microorganisms have also been developed. However, since the microorganism to be immobilized uses a carrier as a nutrient source, the type of microorganism is limited depending on the material.
In some cases, microorganisms are immobilized on PP (polypropylene) and used as a fluidized bed. However, when this is finally disposed of, it must be incinerated. Incineration of plastics can cause environmental pollution and should be avoided as much as possible.

【0006】[0006]

【発明が解決しようとする課題】微生物による有機物の
減容・消滅という化学的な物質変換は、多種類の微生物
が代謝によって多種多様な細胞外酵素を分泌し、高分子
有機物を適当な低分子有機物に分解して水に溶かして吸
収するという作用によるものである。微生物が活性化す
るためには、適当な温度・浸透圧・エサ・水分・共生等
の物理的・化学的・生物学的な生存環境因子が重要とな
る。
The chemical substance conversion of reducing or eliminating the volume of organic matter by microorganisms involves the secretion of various types of extracellular enzymes by metabolism by various types of microorganisms, and the conversion of high-molecular-weight organic substances into appropriate low-molecular-weight substances. It is due to the action of decomposing into organic matter, dissolving in water and absorbing. In order for microorganisms to be activated, appropriate physical, chemical, and biological survival environmental factors such as temperature, osmotic pressure, food, water, and symbiosis are important.

【0007】本発明は、軽量、多孔質で、気孔体の構造
が多様であり、多種類の微生物が定着しやすく、微生物
の作用で分解されず、耐久性に優れ、吸水性や蒸散性に
優れ、リサイクル使用が可能であり、廃却処分しても無
害である。また、生ゴミ処理や汚泥処理に使用でき、水
処理の流動床としても利用できる。微生物を固定化する
菌床材として好適な軽量多孔質体およびその製造方法を
提供する。
The present invention is light-weight, porous, has a variety of pore structures, is easy for many kinds of microorganisms to settle, is not decomposed by the action of microorganisms, has excellent durability, and has excellent water absorption and transpiration. Excellent, recyclable and harmless when disposed of. Further, it can be used for garbage treatment and sludge treatment, and can also be used as a fluidized bed for water treatment. Provided is a lightweight porous body suitable as a microbial bed material for immobilizing microorganisms and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明の軽量多孔質体は
多様な用途を持つ担体として次の構成を備える。本発明
に係る軽量多孔質体は、天然ガラス材の発泡微粉と粘土
鉱物からなる結合材とを主材とし、穀物や穀物殻からな
る有機物微粉末を補助材とし、pH調整の添加材を加
え、加水し混錬した湿潤品を原材料とする。該材料を押
出成形し、乾燥して得られた多孔質結合体。および、押
出成形後に球形整粒し、焼成して得られたポーラスセラ
ミックスで、嵩比重が0.4〜1.5g/cm、細孔
径が数μ〜100μm、吸水率が20%以上、軸径また
は直径が1.0〜30mm、主材配合は天然ガラス微粉
が40重量%以上、焼成温度は1000℃以下、気孔は
連気孔および独立気泡を含む特徴をもつ軽量多孔質体で
ある。
The lightweight porous body of the present invention has the following structure as a carrier having various uses. The lightweight porous body according to the present invention is mainly composed of a foamed fine powder of a natural glass material and a binder made of a clay mineral, and an organic fine powder made of a grain or a cereal hull is used as an auxiliary material, and an additive for pH adjustment is added. The wet product obtained by kneading with water is used as a raw material. A porous binder obtained by extruding and drying the material. And porous ceramics obtained by sizing and firing after extrusion molding, having a bulk specific gravity of 0.4 to 1.5 g / cm 3 , a pore diameter of several μm to 100 μm, a water absorption of 20% or more, and a shaft. It is a lightweight porous body having a diameter or diameter of 1.0 to 30 mm, a main material blend of 40% by weight or more of natural glass fine powder, a firing temperature of 1000 ° C. or less, and pores including open pores and closed cells.

【0009】天然ガラス材は黒曜石・真珠岩・松脂岩等
からなるパーライト微粉またはシラス・火山灰からなる
シラスバルーンの火山ガラス微粉を用いる。流紋岩系の
天然ガラスの軽石微粉を用いてもよい。共通点は含有さ
れる結晶水が急加熱発泡した天然に産するガラス材のも
のである。嵩比重が0.7g/cm以下で、大きさが
1mm以下の気泡が潰れていない微粉を用いるとよい。
As the natural glass material, use is made of pearlite fine powder composed of obsidian, perlite or pine stone or volcanic glass fine powder of shirasu balloon composed of shirasu / volcanic ash. Rhyolite natural glass pumice fine powder may be used. The common feature is that of the naturally occurring glass material in which the crystal water contained is rapidly heated and foamed. It is preferable to use fine powder having a bulk specific gravity of 0.7 g / cm 3 or less and a size of 1 mm or less in which air bubbles are not crushed.

【0010】結合材の粘土鉱物はベントナイトや蛙目粘
土等を用いるとよい。補助材の有機物微粉末は、コーン
スターチ・米ぬか・フスマ・ソバ等の穀物やソバ殻・も
み殻等の穀物殻を用いるとよい。添加材は用いる微生物
の種類によって、pH調整材として用いる。一般的に細
菌類は弱アルカリ性を好み、菌糸類は弱酸性を好む。
As the clay mineral of the binder, bentonite, frog-eye clay or the like is preferably used. As the organic fine powder of the auxiliary material, cereals such as corn starch, rice bran, bran, buckwheat and the like, and cereal husks such as buckwheat husk and rice husk may be used. The additive is used as a pH adjuster depending on the type of microorganism used. In general, bacteria prefer weak alkalinity and mycelia prefer weak acidity.

【0011】本発明の軽量多孔質体の製造方法は、天然
ガラス材の発泡微粉と粘土鉱物からなる結合材とを主材
とし、穀物や穀物殻からなる有機物微粉末を補助材と
し、pH調整材を添加して、加水し混錬した湿潤品を原
材料とする。該材料を押出成形して乾燥して得られた多
孔質結合体。および、押出成形後に所定の球形整粒機で
転動法により球形整粒し、焼成して得られたポーラスセ
ラミックスで、嵩比重が0.4〜1.5g/cm、細
孔径が数μ〜100μm、吸水率が20%以上、軸径ま
たは直径が1.0〜30mm、主材配合は天然ガラス微
粉が40重量%以上、焼成温度は1000℃以下、気孔
は連気孔および独立気泡を含む軽量多孔質体を得ること
を特徴としている。
The method for producing a lightweight porous body according to the present invention is characterized in that a foamed fine powder of a natural glass material and a binder made of a clay mineral are used as main materials, and an organic fine powder made of grains or cereal hulls is used as an auxiliary material to adjust pH. Add the material, add water, knead and use the wet product as the raw material. A porous composite obtained by extruding and drying the material. Further, after extrusion molding, a porous ceramic obtained by spheroidizing the particles by a rolling method using a predetermined sizing machine and sintering, having a bulk specific gravity of 0.4 to 1.5 g / cm 3 and a pore diameter of several μm 100100 μm, water absorption of 20% or more, shaft diameter or diameter of 1.0 to 30 mm, main material blend of natural glass fine powder of 40% by weight or more, firing temperature of 1000 ° C. or less, pores including open pores and closed cells It is characterized by obtaining a lightweight porous body.

【0012】上記軽量多孔質体は、有機質の産業・生活
廃棄物および下水汚泥の分解処理の微生物固定化担体と
して提供する。汚染地下水・土壌の中和剤を含侵させて
環境浄化材として提供してもよい。また、有用土壌菌を
固定化し肥料や種子と混合して土壌改良材や緑化資材と
して提供してもよい。更に汚染サイトの汚染地下水・土
壌のバイオレメデイエーションのバイオ資材として用い
て、使い捨てても無害である。本発明のポーラスセラミ
ックスは再利用できるので、人口土壌の主要構成部材と
して提供することもできる。また、微生物を固定化後、
乾燥し、内胞子状態で保存することもできる。天然ガラ
ス材であるため無害で化学的に安定しており、微生物を
利用する食品工業や環境産業の菌床材としても提供でき
る。
The lightweight porous body is provided as a carrier for immobilizing microorganisms for the decomposition treatment of organic industrial and domestic waste and sewage sludge. It may be impregnated with a neutralizing agent for contaminated groundwater / soil and provided as an environmental purification material. Alternatively, useful soil bacteria may be immobilized and mixed with fertilizers or seeds to provide soil improving materials or greening materials. Furthermore, it can be used as a biomaterial for bioremediation of contaminated groundwater and soil at contaminated sites, and is harmless even if disposable. Since the porous ceramic of the present invention can be reused, it can be provided as a main component of artificial soil. Also, after immobilizing microorganisms,
It can be dried and stored in an endospore state. Since it is a natural glass material, it is harmless and chemically stable, and can be provided as a bed material for bacteria in the food industry and the environment industry that uses microorganisms.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基き詳細に説明する。本発明の軽量多孔質
体は、天然ガラス材の発泡微粉と粘土鉱物からなる結合
材とを主材とし、穀物や穀物殻からなる有機物微粉末を
補助材とし、pH調整の添加材を加え、加水し混錬した
湿潤品を原材料とする。該材料を押出成形して乾燥して
得られた多孔質結合体。および、押出成形後に球形整粒
し、焼成して得られるポーラスセラミックスで、嵩比重
が0.4〜1.5g/cm、細孔径が数μ〜100μ
m、吸水率が20%以上、軸径または直径が1.0〜3
0mm、主材配合は天然ガラス微粉が40重量%以上、
焼成温度は1000℃以下、気孔は連気孔および独立気
泡を含む軽量多孔質体を得ることを特徴としている。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The lightweight porous body of the present invention is mainly composed of a foamed fine powder of a natural glass material and a binder made of a clay mineral, an organic fine powder made of grains or cereal hulls is used as an auxiliary material, and an additive for pH adjustment is added. Wet and kneaded wet products are used as raw materials. A porous composite obtained by extruding and drying the material. And a porous ceramic obtained by sizing and firing after extrusion molding, having a bulk specific gravity of 0.4 to 1.5 g / cm 3 and a pore diameter of several μ to 100 μ.
m, water absorption rate is 20% or more, shaft diameter or diameter is 1.0 to 3
0mm, the main material is more than 40% by weight of natural glass powder,
The sintering temperature is 1000 ° C. or less, and the pores are characterized by obtaining a lightweight porous body containing interconnected pores and closed cells.

【0014】図1(a)は天然ガラス材の微粉である。
天然ガラス材は黒曜石・真珠岩・松脂岩からなるパーラ
イトや流紋岩系の軽石およびシラス、火山灰からなるシ
ラスバルーンの火山ガラスを用いても良い。成因・組成
はほぼ同じで、含有する結晶水が起爆材となって加熱発
泡し天然ガラス材になる。これらの天然ガラス材には微
生物が着床する。材料組成に酸化チタンの含有されない
発泡した天然ガラス材が好適である。酸化チタンを含有
すると、その抗菌作用で好適な菌床材が得られない。原
石によりパーライトの製造方法・焼成温度・発泡率は異
なる。黒曜石は独立気泡体が多く、真珠岩・松脂岩は連
気孔体が多い。いずれも、軽量多孔質体を得る重要な特
徴を有し、用途・目的に応じ使い分ける事が重要であ
る。微生物を固定化する担体としては、表面構造を重視
するので連気孔体の特徴を持つ真珠岩や松脂岩のパーラ
イト微粉が好都合で、発泡率の小さい松脂岩のパーライ
ト微粉の方が造粒時に壊れにくく好適である。
FIG. 1A shows a fine powder of a natural glass material.
As the natural glass material, pearlite composed of obsidian, perlite and pine stone, rhyolite pumice and shirasu, or volcanic glass of shirasu balloon composed of volcanic ash may be used. The origin and composition are almost the same, and the contained water of crystallization serves as an initiating material and is heated and foamed to form a natural glass material. Microorganisms land on these natural glass materials. A foamed natural glass material containing no titanium oxide in the material composition is suitable. When titanium oxide is contained, a suitable bacterial bed material cannot be obtained due to its antibacterial action. The production method, firing temperature, and foaming rate of pearlite vary depending on the ore. Obsidian has many closed cells, and perlite and pinestone have many open pores. Each of them has an important feature of obtaining a lightweight porous body, and it is important to properly use them according to the application and purpose. As a carrier for immobilizing microorganisms, perlite fine powder of perlite and pine stone, which has the characteristics of interconnected pores, is preferred because its surface structure is important, and pearlite fine powder of pine stone, which has a low foaming rate, breaks during granulation. It is difficult and suitable.

【0015】パーライトの主成分は、おおよそシリカ
(Sio)70〜75%、アルミナ(Al)1
2〜15%であり、含有する水分量により黒曜石(水分
<2%)、真珠岩(水分2〜5%)、松脂岩(水分>5
%)に分けられている。パーライト製造工程で発生する
微粉や集塵装置で回収した粉塵を用いる。余剰品は産業
廃棄物として扱われる廃品利用である。パーライト粉製
品は、解砕工程(1)で解砕整流機を使用して粒度を調
整を行う。解砕整粒機の内部にはスクリーンが配置さ
れ、スクリーンを通過しない粒子のものだけを粉砕する
構造となっている。スクリーンを1mmに設定(1mm
以下の微粉)すると、焼成後の細孔径が数μ〜100μ
mの気孔のものが得られる。気流分級機を用いてもよ
い。単純にハンマーミルやボールミルで粉砕すると気孔
が壊れ、パーライト微粉の嵩比重が大きくなり、好適な
軽量多孔質体は得られない。また、集塵機だけで回収し
た0.6mm以下のパーライト粉塵だけでは、湿潤品の
保水性が悪く押出成形・球形整粒性が悪化する。解砕整
粒機が最適である。
The main components of pearlite are approximately 70 to 75% of silica (Sio 2 ) and alumina (Al 2 O 3 ) 1
Obsidian (moisture <2%), perlite (moisture 2-5%), pine stone (moisture> 5)
%). Fine powder generated in the pearlite manufacturing process and dust collected by a dust collector are used. Surplus products are waste products that are treated as industrial waste. In the crushing step (1), the particle size of the perlite powder product is adjusted using a crushing rectifier. A screen is disposed inside the crushing and sizing machine, and only the particles that do not pass through the screen are crushed. Set the screen to 1mm (1mm
The following fine powder), the pore size after firing is several μ to 100 μ
m pores are obtained. An airflow classifier may be used. Simply grinding with a hammer mill or a ball mill breaks the pores, increases the bulk specific gravity of the pearlite fine powder, and cannot obtain a suitable lightweight porous body. Further, if only pearlite dust of 0.6 mm or less collected by the dust collector alone, the water retention of the wet product is poor, and the extruding and spherical sizing properties are deteriorated. A crushing and sizing machine is optimal.

【0016】(b)は結合材である。結合材には、ベン
トナイト、蛙目粘土等を用いる。造粒性、成形性、焼結
強度等からベントナイトが扱い易い。豊富なベントナイ
トの中から、微生物の固定化環境として制菌・抗菌作用
や有害物質を含まず、粒度の細かいものを選ぶ。粘土鉱
物の配合割合を増量すると増強できるが、嵩は重くな
る。(2)は混合工程で乾燥混合機を使う。パーライト
微粉と結合材の総量を100%としたとき、結合材の配
合割合が15重量%が造粒可能範囲の下限である。20
重量%で焼結強度や造粒性が両立する。25重量%程度
で好適となる。30重量%で増強できる。
(B) is a binder. Bentonite, Frogme clay, or the like is used as the binder. Bentonite is easy to handle due to granulation properties, moldability, sintering strength and the like. From abundant bentonite, select a fine-grained one that does not contain bacteriostatic / antibacterial action or harmful substances as an environment for immobilizing microorganisms. Increasing the mixing ratio of the clay mineral can increase the content, but increases the bulk. (2) uses a dry mixer in the mixing step. When the total amount of the pearlite fine powder and the binder is 100%, the blending ratio of the binder is 15% by weight, which is the lower limit of the granulatable range. 20
The sintering strength and the granulation property are compatible with each other by weight%. About 25% by weight is suitable. It can be increased by 30% by weight.

【0017】(d)は有機物微粉末の補助材である。コ
ーンスターチ・小麦粉、蕎麦殻・籾殻等を用いるとよ
い。湿潤品の造粒性・成形性に寄与し、焼成時に焼損し
て軽量化や多孔体形成にも寄与する。嵩比重の小さいも
のを選ぶとよい。有機物は湿潤品の保水性を高め、水分
調整巾を広げる効果もある。PVAやメトローズ(水溶
性セルロースエーテル)のようなバインダーよりも好適
である。(e)は添加剤である。ゼオライトや炭酸カル
シウム・珪砂や酸性白土等を用いる。微生物の定着環境
を調整する。有用微生物の機能解明は10%程度といわ
れている。有機質の分解・減容には、枯草菌等の仲間の
微生物が用いられる事例が多い。一般的に細菌類は弱ア
ルカリ性を好み、細孔径は数μ〜20μm程度が着床生
菌数が多い。一方で菌糸類は弱酸性を好み、数10μm
以上の細孔径が良い。有機物が消滅・減容する過程で多
様な微生物が連鎖的に作用する。微生物担体は、細孔構
造が多様で、定着環境の調整も重要である。
(D) is an auxiliary material of the organic fine powder. It is good to use corn starch, flour, buckwheat husk, rice husk, and the like. It contributes to the granulation and moldability of wet products, burns out during firing, and contributes to weight reduction and porous body formation. It is advisable to select one with a low bulk specific gravity. Organic substances also have the effect of increasing the water retention of wet products and expanding the range of moisture control. It is more preferable than a binder such as PVA or Metrose (a water-soluble cellulose ether). (E) is an additive. Use zeolite, calcium carbonate, silica sand, acid clay, etc. Adjust the microbial colonization environment. It is said that the elucidation of the function of useful microorganisms is about 10%. In many cases, fellow microorganisms such as Bacillus subtilis are used to decompose and reduce the volume of organic matter. In general, bacteria prefer weak alkalinity, and the number of living microorganisms is large when the pore diameter is about several μm to 20 μm. On the other hand, mycelia prefer weak acidity,
The above pore size is good. Various microorganisms act in a chain in the process of disappearing and reducing the volume of organic matter. Microbial carriers have various pore structures, and adjustment of the fixing environment is also important.

【0018】(3)は捏和工程で捏和機(ニーダー)を
使う。菌床材の摩耗性を高めるためには、廃ガラス微
粉、ケイソウ土等が効果的である。充填材を混入すると
焼成後の菌床材の吸水性が低下し、嵩比重も増す。有機
物微粉の補助材と添加剤が混ざったら(c)の水を加え
捏和し、湿潤品を作る。湿潤品の水加減は、経験則に依
存する。(4)は押出工程で押出成形機(ペレッター)
を使う。投入口より湿潤品を投入するとスクリューでダ
イスから押出される構造である。湿潤品の水量が少ない
と押出圧力が得られない。水量が多いとうどん状に長く
なる。適当な水量で一定の長さで折れる。(5)は乾燥
工程である。通風乾燥または自然乾燥して、多孔質結合
体(f)のペレットを得る。さらに焼成(8)してポー
ラスセラミックス(g)を得る。
In (3), a kneading machine (kneader) is used in the kneading step. In order to enhance the abrasion property of the bacterial bed material, waste glass fine powder, diatomaceous earth and the like are effective. When the filler is mixed, the water absorption of the bacterium floor material after firing decreases, and the bulk specific gravity also increases. When the auxiliary material of the organic fine powder and the additive are mixed, water (c) is added and kneaded to produce a wet product. The water content of a wet product depends on empirical rules. (4) is an extrusion molding machine (pelleter) in the extrusion process
use. It is a structure in which when a wet product is put in from an inlet, it is extruded from a die with a screw. Extrusion pressure cannot be obtained if the water content of the wet product is small. If the amount of water is large, it becomes long like a udon. It breaks at a certain length with an appropriate amount of water. (5) is a drying step. After drying with air or by air, pellets of the porous binder (f) are obtained. Further, firing (8) is performed to obtain a porous ceramic (g).

【0019】(6)は球形整粒工程で球形整流機(マル
メライザー)である。押出造粒したペレットを高速転動
方式により球形整粒する。可塑性、滞留時間、回転数、
回転盤の溝などにより、ペレットの長さが整えらて、球
形粒に整粒される。湿潤品の水分が不足すると粒が固ま
らない。水分が多すぎると凝集する。水分が適量で粒揃
いの球形となる。補助材の有機物微粉末は湿潤品の水分
調整巾を広くする効果がある。転動中に粒中の水分が表
面化してきたら、パーライト微粉をパウダーとして使う
とよい。表面構造が重要であり、転動滞留時間は3〜5
分間程度が良い。
(6) A spherical rectifier (malmerizer) in the spherical sizing process. The pellets extruded and granulated are spherically sized by a high-speed rolling method. Plasticity, residence time, rotation speed,
The length of the pellets is adjusted by the grooves of the turntable, and the pellets are adjusted to spherical particles. If the moisture of the wet product is insufficient, the grains do not harden. If the water content is too high, it will aggregate. An appropriate amount of water forms a uniform spherical shape. The organic fine powder of the auxiliary material has the effect of widening the moisture control width of the wet product. If moisture in the grains comes to a surface during rolling, fine pearlite powder should be used as the powder. Surface structure is important and rolling residence time is 3-5
About a minute is good.

【0020】(7)は乾燥工程で通風乾燥炉を使う。1
00℃程度で乾燥するとよい。(8)は焼成工程であ
る。正確には材料毎にTG−DTAの様な熱分析を行
い、転移温度・融点・結晶化温度を把握して焼成すると
良い。昇温時間が3時間、保持が2時間、炉冷で降温す
る。焼成温度は1000℃以下で行う。パーライトを用
いて、結合材がベントナイトの場合は、500〜950
℃の範囲が良い。強度と軽量が両立する好適な範囲は7
50〜850℃である。シラスバルーンの場合は、70
0〜800℃が好適な温度範囲である。補助材に有機物
を使用する場合は、酸素を供給して焼成雰囲気の酸欠に
注意する。こうして得られたポーラスセラミックスは
(9)の篩分工程で電動篩機等で必要により粒径を整え
る。(g)が軽量多孔質セラミックスである。未焼成で
用いる軽量結合体は、造粒後よく乾燥する。微生物、薬
剤を含侵させて、汚染現地サイトのバイオ資材として使
い捨てても無害である。肥料と混合して農業資材として
も提供できる。種子等を混合して緑化資材としても提供
できる。焼成したポーラスセラミックスはリサイクルが
効くため、微生物を固定化する担体として好適であり、
ゴミ処理や汚水処理の流動床としても提供できる。
(7) In the drying step, a ventilation drying oven is used. 1
It may be dried at about 00 ° C. (8) is a firing step. Precisely, thermal analysis such as TG-DTA is performed for each material, and the transition temperature, the melting point, and the crystallization temperature are grasped and fired. The temperature rise time is 3 hours, the holding time is 2 hours, and the temperature is lowered by furnace cooling. The firing temperature is 1000 ° C. or less. When pearlite is used and the binder is bentonite, 500 to 950
Good range of ° C. The preferred range of both strength and light weight is 7
50-850 ° C. 70 for Shirasu balloon
0-800 ° C is a suitable temperature range. When using an organic substance as the auxiliary material, supply oxygen and pay attention to lack of oxygen in the firing atmosphere. The particle size of the porous ceramic thus obtained is adjusted as necessary by an electric sieve or the like in the sieving step (9). (G) is a lightweight porous ceramic. The lightweight binder used before firing is well dried after granulation. It is harmless even if it is impregnated with microorganisms and drugs and disposable as biomaterials at the contaminated site. Can be provided as agricultural material by mixing with fertilizer. It can also be provided as a greening material by mixing seeds and the like. Since the fired porous ceramics are effective for recycling, they are suitable as a carrier for immobilizing microorganisms,
It can also be provided as a fluidized bed for waste treatment and sewage treatment.

【0021】[0021]

【実施例】以下、実施例を表1に基いて詳細に説明する
が、本発明はこれらの例によって何等限定されるもので
はない。
EXAMPLES Examples will be described below in detail with reference to Table 1, but the present invention is not limited to these examples.

【表1】 [Table 1]

【0022】[0022]

【実施例1】パーライト微粉(千曲パーライト・粉−1
号)80重量%に、ベントナイト(関東ベントナイト・
利根)20重量%を加え総量とする。その総量に対しメ
トローズ(信越化学・SM4000)を1重量%を加
え、加水捏和した。嵩比重が0.47g/cmの湿潤
品を得た。それをマルメライザーで1分15秒間球形整
粒し、乾燥後に750℃で焼成した。その結果、嵩密度
が0.85g/cmの軽量多孔質セラミックスを得
た。2時間水中に放置した自然吸水率が35.2%、
0.5kg/cmの減圧下で3時間水中に放置した減
圧吸水率が53%、FE−SEM(走査型電子顕微鏡)
写真から読み取った細孔径が10〜40μm、環境浄化
バイオ製剤(明治製菓・ビーエヌクリーン顆粒状)でB
N菌懸濁液を作り、30分間浸漬させ、培養して、生菌
数測定で440000個/gの結果を得た。吸水率の浸
漬時間は、吸水する経時変化を計測し安定する時間を採
用した。生菌数計測は、食品検査等で実施する方法であ
る。BN菌懸濁液はバイオ製剤の顆粒1gを試験管にと
り、オートクレープで滅菌処理し、懸濁液を作る。その
中に軽量多孔質体を投入し、時々攪拌しながら30分間
浸漬し、取出して減菌水で2回洗浄する。ろ紙で水切り
後、10mlの滅菌水にセラミックスを投入し、ボルテ
ックスにて30秒間攪拌する。これを2回繰返す。希釈
後シャレーで培養する。培養方法は一般生菌数検査と同
様に37℃で24時間後に計測した。
Example 1 Pearlite fine powder (Chikuma pearlite powder-1)
No.) 80% by weight of bentonite (Kanto bentonite
Tone) Add 20% by weight to make the total amount. 1% by weight of Metrolze (Shin-Etsu Chemical, SM4000) was added to the total amount, and the mixture was kneaded with water. A wet product having a bulk specific gravity of 0.47 g / cm 3 was obtained. It was subjected to spherical sizing for 1 minute and 15 seconds with a marmellaizer, and then fired at 750 ° C. after drying. As a result, a lightweight porous ceramic having a bulk density of 0.85 g / cm 3 was obtained. The natural water absorption rate of 35.2% when left in water for 2 hours,
A vacuum absorption rate of 53% when left in water for 3 hours under a reduced pressure of 0.5 kg / cm 2 , FE-SEM (scanning electron microscope)
The pore size read from the photograph is 10 to 40 μm, and B is a biopharmaceutical for environmental purification (Meiji Seika and BN Clean Granule)
An N-cell suspension was prepared, immersed for 30 minutes, and cultured to obtain 440000 cells / g in viable cell count. As the immersion time of the water absorption, a time required to stabilize by measuring a change with time of water absorption was adopted. The viable cell count is a method performed in food inspection or the like. For the BN bacteria suspension, 1 g of the granules of the biopharmaceutical are placed in a test tube and sterilized with an autoclave to prepare a suspension. The lightweight porous body is put therein, immersed for 30 minutes with occasional stirring, taken out and washed twice with sterile water. After draining with filter paper, the ceramic is put into 10 ml of sterilized water, and the mixture is vortexed for 30 seconds. This is repeated twice. After dilution, culture in a chalet. The culture method was measured after 24 hours at 37 ° C. as in the general viable cell count test.

【0023】[0023]

【実施例2】シラスバルーン(三機化工・サンキライト
Y02)80重量%に、ベントナイト20重量%を加え
総量とする。その総量に対しメトローズを1重量%を加
え、加水捏和した。嵩比重が0.31g/cmの湿潤
品を得た。それをマルメライザーで3分20秒間球形整
粒し、乾燥後に750℃で焼成した。その結果、嵩密度
が0.73g/cm、自然吸水率が43.1%、減圧
吸水率が55.8%、細孔径が10〜50μm、BN菌
生菌数340000個/gの結果を得た。
Example 2 20% by weight of bentonite was added to 80% by weight of Shirasu balloon (Sanki Kako Sankilite Y02) to make the total amount. 1% by weight of Metrolze was added to the total amount, and the mixture was kneaded with water. A wet product having a bulk specific gravity of 0.31 g / cm 3 was obtained. It was subjected to spherical sizing for 3 minutes and 20 seconds using a marmellaizer, and then fired at 750 ° C after drying. As a result, the bulk density was 0.73 g / cm 3 , the natural water absorption was 43.1%, the water absorption under reduced pressure was 55.8%, the pore diameter was 10 to 50 μm, and the number of viable BN bacteria was 340000 / g. Obtained.

【0024】[0024]

【実施例3】パーライト微粉65重量%に、ベントナイ
ト25重量%を加え、増強材として青ガラス微粉末を粉
砕して10重量%加え、加水捏和した。嵩比重が0.3
3g/cmの湿潤品を得た。それをマルメライザーで
5分15秒間球形整粒し、乾燥後に800℃で焼成し
た。その結果、嵩密度が1.11g/cm、自然吸水
率が24.4%、減圧吸水率が33.1%、細孔径が1
0〜100μm、BN菌の生菌数が160000個/g
の結果を得た。なお、BN菌を固定化し、25℃の恒温
庫に放置し、10日後の検査で70000個/g、1ヶ
月後の検査では46000個/gの生菌数が確認され
た。なお、BN菌の増殖は環境が整えば、約30分で培
化するので、微生物を固定化し、保存できる機能が確認
された。
Example 3 25% by weight of bentonite was added to 65% by weight of pearlite fine powder, and 10% by weight of pulverized blue glass fine powder was added as an enhancer, and the mixture was kneaded. Bulk specific gravity is 0.3
A wet product of 3 g / cm 3 was obtained. It was subjected to spherical sizing for 5 minutes and 15 seconds with a marmellaizer, dried and baked at 800 ° C. As a result, the bulk density was 1.11 g / cm 3 , the natural water absorption was 24.4%, the reduced water absorption was 33.1%, and the pore diameter was 1
0-100 μm, the number of viable BN bacteria is 160,000 / g
Was obtained. The BN bacteria were immobilized, left in a thermostat at 25 ° C., and the number of viable bacteria was 70,000 cells / g after 10 days and 46,000 cells / g after one month. In addition, the growth of BN bacteria is cultivated in about 30 minutes if the environment is in place. Therefore, the function of immobilizing and storing the microorganism was confirmed.

【0025】[0025]

【実施例4】パーライト微粉(アサノパーライト・p−
1)65重量%に、ベントナイト25重量%を加え、コ
ーンスターチ(日本コンスターチ・未変性)を10重量
%を加え、加水捏和した。その結果、嵩比重が0.36
g/cmの湿潤品を得た。それをマルメライザーで1
分30秒間球形整粒し、乾燥して800℃で焼成した。
その結果、嵩密度が0.75g/cm、自然吸水率が
49%、減圧吸水率が66.1%、細孔径が20〜80
μm、BN菌の生菌数が59000個/gの結果を得
た。10日後は32000個/g、1ヶ月後は2500
0個/gのBN菌を固定化した。生菌数が他と比較して
少ない理由は、細孔径が大型化し、BN菌に好適な細孔
径密度が減少し、BN菌の着床数が減少したためと推定
される。
Embodiment 4 Pearlite fine powder (Asano perlite / p-
1) 25% by weight of bentonite was added to 65% by weight, and 10% by weight of corn starch (Nippon Constarch, unmodified) was added, followed by kneading. As a result, the bulk specific gravity was 0.36
g / cm 3 was obtained. Use it with a marmalizer 1
The particles were spherically sized for 30 minutes, dried, and fired at 800 ° C.
As a result, the bulk density was 0.75 g / cm 3 , the natural water absorption was 49%, the reduced water absorption was 66.1%, and the pore diameter was 20 to 80.
μm, the number of viable BN bacteria was 59000 / g. 32,000 pieces / g after 10 days, 2500 after 1 month
0 / g BN bacteria were immobilized. It is presumed that the reason why the number of viable bacteria is smaller than that of others is that the pore diameter has increased, the pore diameter density suitable for BN bacteria has decreased, and the number of implantations of BN bacteria has decreased.

【0026】材料の配合割合が一定の場合、焼成温度が
ポーラスセラミックスの基本特性を決定する。本発明の
ポーラスセラミックスの特徴は、水に浮くほど軽いこと
である。その表面構造を図2に示す。また、多様な微生
物が着床することも特徴である。FE−SEMによる観
察写真を図3に示す。焼成温度と嵩密度および吸水率の
関係を表2に基いて具体的に説明する。なお、本発明は
これらの例によって何等限定されるものではない。前述
したとおり、材料毎の熱分析等を行い、材料の転移温度
・融点・結晶温度を把握し、焼結体は表面構造の顕微鏡
観察等を行い、所望のポーラスセラミックスを得ること
が重要である。実施例では、結合材のベントナイトを2
5重量%と固定している。
When the mixing ratio of the materials is constant, the firing temperature determines the basic characteristics of the porous ceramic. The feature of the porous ceramic of the present invention is that it is lighter as it floats on water. FIG. 2 shows the surface structure. Another characteristic is that various microorganisms are implanted. FIG. 3 shows a photograph observed by FE-SEM. The relationship between the firing temperature, the bulk density, and the water absorption will be specifically described based on Table 2. Note that the present invention is not limited by these examples. As mentioned above, it is important to obtain the desired porous ceramics by conducting thermal analysis etc. for each material, grasping the transition temperature, melting point, and crystal temperature of the material, conducting microscopic observation of the surface structure of the sintered body, etc. . In the embodiment, the binding material bentonite is 2
It is fixed at 5% by weight.

【表2】 [Table 2]

【0027】[0027]

【実施例5】天然ガラス材はパーライト微粉とシラスバ
ルーンを等量配合しいる。焼成温度の好適な範囲は80
0〜900℃の間である。内部構造はバルーンの独立気
孔とパーライトの連気孔が混在する。自然吸水と減圧吸
水率の差異が少ない。従来の生ゴミ処理に使用している
セラミックスの吸水率は10%以下である。また、嵩比
重が2.5g/cm程度以上である。
Embodiment 5 The natural glass material contains pearlite fine powder and shirasu balloon in equal amounts. The preferred range of firing temperature is 80
0-900 ° C. The internal structure has a mixture of independent pores of the balloon and interconnected pores of perlite. The difference between natural water absorption and reduced water absorption is small. The water absorption of ceramics used for conventional garbage disposal is 10% or less. Further, the bulk specific gravity is about 2.5 g / cm 3 or more.

【0028】[0028]

【実施例6】パーライト微粉75重量%の配合は、焼成
温度の好適な範囲は900℃前後になる。実施例5に対
し約50℃程高温で焼成が出来る。嵩比重は大差ない。
実施例5と比較して、自然吸水と減圧吸水率の差異が広
がる。連気孔体が多いことによる。微生物または中和剤
を含侵させるバイオレメデイエーションの資材として好
適である。また、微生物を固定した流動床としても提供
できる。
Embodiment 6 In the case of blending 75% by weight of pearlite fine powder, a preferable range of the firing temperature is around 900 ° C. Baking can be performed at a temperature as high as about 50 ° C. compared to the fifth embodiment. The bulk specific gravity is not much different.
Compared with Example 5, the difference between the natural water absorption and the reduced water absorption is widened. Due to the large number of interconnected pores. It is suitable as a material for bioremediation in which a microorganism or a neutralizing agent is impregnated. It can also be provided as a fluidized bed in which microorganisms are fixed.

【0029】[0029]

【実施例7】ガラス微粉10重量%を配合した。焼成温
度は800〜900℃の間である。ガラス微粉を充填
し、生ゴミ処理や汚泥処理の攪拌摩擦による摩滅を改善
した。杉チップ材の嵩比重は初期状態で0.7g/cm
程度である。しかし、摩滅し粉化すると嵩密度が1.
5〜2.0g/cm程度になる。本事例のポーラスセ
ラミックスの吸水比重が1.5g/cmで、摩滅した
杉チップ菌床材よりは軽量となる。本事例は有機物処理
の菌床材として好適である。
Example 7 10% by weight of glass fine powder was blended. The firing temperature is between 800 and 900C. Filled with glass fine powder to improve abrasion due to agitated friction in garbage treatment and sludge treatment. Bulk specific gravity of cedar chip material is 0.7g / cm in the initial state
It is about 3 . However, when worn and powdered, the bulk density becomes 1.
It is about 5 to 2.0 g / cm 3 . The water absorption specific gravity of the porous ceramics in this case is 1.5 g / cm 3, which is lighter than the worn cedar chip fungus flooring material. This case is suitable as a bacterial bed material for organic matter treatment.

【0030】[0030]

【実施例8】コーンスターチ10重量%を配合した。焼
成温度の好適な範囲は、実施例6と同等である。有機物
微粉末を加えると前述したように、造粒性・成形性等の
製造品質が向上する。同時に、軽量化、吸水率、細孔径
の制御、強度向上等の機能向上が可能である。小麦粉や
蕎麦殻等で実施しても、好適な結果が得られた。BN菌
生菌数が他と比較して少ない理由は、細孔径分布および
細孔径大きさが有機物微粉末で制御できることを示唆す
る。今後の研究による。
Example 8 10% by weight of corn starch was blended. The preferred range of the firing temperature is the same as that of Example 6. Addition of the organic fine powder improves the production quality such as granulation and moldability as described above. At the same time, it is possible to improve functions such as weight reduction, control of water absorption and pore diameter, and improvement of strength. Suitable results were obtained with flour or buckwheat husks. The reason why the number of viable BN bacteria is smaller than others suggests that the pore size distribution and the pore size can be controlled by the organic fine powder. Based on future research.

【0031】[0031]

【発明の効果】本発明に係るポーラスセラミックスによ
れば、微生物を固定化して菌床材として用いた場合に、
植物系菌床材のように微生物の作用で菌床自体の有機物
の分解・消滅することがないので、菌床の摩耗や破損が
発生しないかぎり、菌床材の補充や交換をする必要がな
い。また、微生物が環境条件の変化等で死滅しても、セ
ラミックスを熱湯等で殺菌洗浄し、市販の有用菌を再馴
養すれば、安価な費用で再利用できる。
According to the porous ceramics of the present invention, when microorganisms are immobilized and used as a fungal bed material,
As there is no decomposition or disappearance of the organic matter in the bacterial bed itself due to the action of microorganisms like a plant-based bacterial bed material, there is no need to replace or replace the bacterial bed material unless the bacterial bed is worn or damaged. . Further, even if the microorganisms are killed due to a change in environmental conditions or the like, if the ceramics are sterilized and washed with hot water or the like and the commercially available useful bacteria are readjusted, they can be reused at low cost.

【0032】本発明に係るポーラスセラミックスは、従
来の無機質系菌床材と異なり軽量であり、攪拌装置の動
力も軽減でき、省エネルギーに寄与する。また、吸水性
に優れ、生ゴミ等の水分調整が可能となり悪臭や衛生害
虫の発生を抑制できる。多孔体の構造が多様で、多様な
微生物が定着する。さらに、新たな有用微生物の出現に
対しても容易に菌床材の機能調整をして、その能力を活
用することができる。その上、多種類のセラミックスを
混合して用いることで、多様な微生物の能力を活用した
バイオリアクターにも寄与する。
The porous ceramics according to the present invention is light in weight, unlike conventional inorganic bacterial bed materials, can reduce the power of the stirring device, and contributes to energy saving. In addition, it is excellent in water absorption, and can adjust the water content of garbage and the like, and can suppress the generation of offensive odor and sanitary pests. The structure of the porous body is diverse, and various microorganisms are established. Furthermore, the function of the fungal bed material can be easily adjusted even when a new useful microorganism appears, and its ability can be utilized. In addition, the use of a mixture of various types of ceramics contributes to bioreactors that utilize the capabilities of various microorganisms.

【0033】本発明に使用するパーライト材は、その製
造過程で発生するダストや微粉で、用途が限定され、需
要がなければ産業廃棄物として処理される素材を活用し
ていることにある。また、混合する材料も天然資材だけ
を使用しているので、最終処分で廃棄しても無害であ
る。高分子系菌床材と異なり、焼却しても環境汚染を生
ずる可能性は低い。
The pearlite material used in the present invention is dust or fine powder generated during the manufacturing process, and its use is limited. If there is no demand, the material is treated as industrial waste. Also, since only natural materials are used for mixing, they are harmless even if disposed of in final disposal. Unlike polymer-based bacterial flooring, there is a low possibility that environmental pollution will occur even if incinerated.

【0034】本発明の軽量多孔質体は、高吸水率を実現
し、水に浮く程度の軽さを実現した。既に汚染してしま
った土壌・地下水汚染のバイオレメデイエーションのバ
イオ資材としても提供できるし、薬剤を含侵させ、有害
物質を中和・解毒する担体としても提供できる。また、
育苗用土や園芸用土、更には種子などを混入させた緑化
資材としても提供できる。さらに、異常気象や環境汚染
に影響されない農作物の人造土壌の要素材としても提供
できる。
The light-weight porous body of the present invention has a high water absorption and is light enough to float on water. It can be provided as a biomaterial for bioremediation of already contaminated soil and groundwater pollution, and also as a carrier for impregnating drugs and neutralizing and detoxifying harmful substances. Also,
It can also be provided as a greening material mixed with seedling raising soil, horticultural soil, and seeds. Further, it can be provided as an element material for artificial soil of agricultural products which is not affected by abnormal weather or environmental pollution.

【0035】[0035]

【図面の簡単な説明】[Brief description of the drawings]

【図1】製造工程を示す説明図である。FIG. 1 is an explanatory diagram showing a manufacturing process.

【図2】ポーラスセラミックスの表面構造の100倍率
の写真である。
FIG. 2 is a photograph of the surface structure of a porous ceramic at a magnification of 100.

【図3】ポーラスセラミックスに定着する多様な微生物
の500倍率の写真である。
FIG. 3 is a photograph at 500 × magnification of various microorganisms that settle on porous ceramics.

【符号の説明】[Explanation of symbols]

a 天然ガラス b 結合材 c 水 d 補助材 e 添加剤 f 多孔質結合体 g ポーラスセラミックス 1 解砕整粒機 2 乾燥混合機(ミキサー) 3 捏和機(ニーダー) 4 押出造粒機(ペレッター) 5、7 乾燥器 6 球形整粒機(マルメライザー) 8 焼成炉 9 篩機 a Natural glass b Binder c Water d Auxiliary material e Additive f Porous binder g Porous ceramics 1 Crusher and sizing machine 2 Dry mixer (mixer) 3 Kneader (kneader) 4 Extrusion granulator (pelleter) 5, 7 Dryer 6 Spherical sizing machine (malmerizer) 8 Firing furnace 9 Sieving machine

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 パーライトやシラスバルーンの発泡した
天然ガラス材微粉と粘土鉱物からなる結合材を主材と
し、穀物や穀物殻等の有機物の粉末を補助材とし、pH
調整の添加剤を加え、加水し混錬した湿潤品を原材料と
する。該材料を押出し成形して乾燥して得られ、嵩比重
が0.4〜1.5g/cm、細孔径が数μ〜100μ
mの気孔をもつ多孔質結合体であることを特徴とする。
1. A binder comprising a natural glass material fine powder foamed from a pearlite or shirasu balloon and a clay mineral as a main material, and an organic material powder such as a grain or a grain hull as an auxiliary material,
The adjusted additive is added, and the wet product kneaded with water is used as a raw material. The material is obtained by extrusion molding and drying, and has a bulk specific gravity of 0.4 to 1.5 g / cm 3 and a pore diameter of several μ to 100 μ.
It is a porous binder having m pores.
【請求項2】 請求項1を成形後に球形整粒し、焼成し
て得られるポーラスセラミックスであることを特徴とす
る。
2. A porous ceramic obtained by subjecting claim 1 to spherical sizing after molding and firing.
【請求項3】 軸径または直径が1.0〜30mmをな
すことを特徴とする請求項1または2記載の軽量多孔質
体。
3. The lightweight porous body according to claim 1, wherein the shaft diameter or the diameter is 1.0 to 30 mm.
【請求項4】 独立気泡と連続気孔とが混在し、吸水率
が15wt%以上であることを特徴とする請求項1、2
または3記載の軽量多孔質体。
4. The method according to claim 1, wherein closed cells and continuous pores are mixed, and the water absorption is 15 wt% or more.
Or the lightweight porous body according to 3.
【請求項5】 発泡した天然ガラス材と粘土鉱物の結合
材の総量に対して、天然ガラス材微粉が40重量%以上
であることを特徴とする請求項1、2、3または4記載
の軽量多孔質体。
5. The light weight according to claim 1, wherein the natural glass material fine powder is at least 40% by weight based on the total amount of the binder of the foamed natural glass material and the clay mineral. Porous body.
【請求項6】 結合材がベントナイト、蛙目粘土から選
ばれる1種以上の粘土鉱物であることを特徴とする請求
項1、2、3、4または5記載の軽量多孔質体。
6. The lightweight porous body according to claim 1, wherein the binder is at least one clay mineral selected from bentonite and frog-eye clay.
【請求項7】 pH調整材を添加剤として含むことを特
徴とする請求項1、2、3、4、5、または6記載の軽
量多孔質体。
7. The lightweight porous body according to claim 1, further comprising a pH adjuster as an additive.
【請求項8】 穀物や穀物殻の有機物微粉を補助材と
し、造粒性、成形性を補助し焼結時に細孔径分布や密度
を調整することを特徴とする請求項1、2、3、4、
5、6または7記載の軽量多孔質体。
8. The method according to claim 1, wherein an organic fine powder of a grain or a grain hull is used as an auxiliary material to assist granulation and formability, and adjust pore size distribution and density during sintering. 4,
The lightweight porous body according to 5, 6 or 7.
【請求項9】 材料には酸化チタンを含まない鉱物粉末
で構成することを特徴とする請求項1、2、3、4、
5、6、7、または8記載の軽量多孔質体を用いた微生
物を固定化する担体(菌床材)。
9. The method according to claim 1, wherein the material comprises a mineral powder containing no titanium oxide.
A carrier (bacterial bed material) for immobilizing microorganisms using the lightweight porous body according to 5, 6, 7, or 8.
【請求項10】 パーライトやシラスバルーンの発泡し
た天然ガラス材微粉と粘土鉱物からなる結合材を主材と
し、穀物や穀物殻等の有機物の粉末を補助材とし、pH
調整の添加剤を加え、加水し混錬した湿潤品を原材料と
する。該材料を押出成形して乾燥して得られる嵩比重が
0.4〜1.5g/cm、細孔径が数μ〜100μm
の特徴を得る多孔質結合体。および押出成形後に転動法
により球形整粒して、500〜1000℃で焼成して得
られるポーラスセラミックスの製造方法。
10. A binder comprising a natural glass material fine powder foamed from a pearlite or shirasu balloon and a clay mineral as a main material, and an organic powder such as a grain or a grain hull as an auxiliary material.
The adjusted additive is added, and the wet product kneaded with water is used as a raw material. The material is extruded and dried to obtain a bulk specific gravity of 0.4 to 1.5 g / cm 3 and a pore diameter of several μm to 100 μm.
The porous conjugate that obtains the characteristics of And a method for producing a porous ceramic obtained by spheroidizing the particles by a rolling method after extrusion molding and firing at 500 to 1000 ° C.
JP2000153805A 2000-04-18 2000-04-18 Lightweight porous body and method of producing the same Pending JP2001302366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153805A JP2001302366A (en) 2000-04-18 2000-04-18 Lightweight porous body and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153805A JP2001302366A (en) 2000-04-18 2000-04-18 Lightweight porous body and method of producing the same

Publications (1)

Publication Number Publication Date
JP2001302366A true JP2001302366A (en) 2001-10-31

Family

ID=18658993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153805A Pending JP2001302366A (en) 2000-04-18 2000-04-18 Lightweight porous body and method of producing the same

Country Status (1)

Country Link
JP (1) JP2001302366A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335391A (en) * 2000-05-19 2001-12-04 Torimu:Kk Foamed-material from glass powder as raw material and its manufacturing method
JP2006136261A (en) * 2004-11-12 2006-06-01 Em Research Organization Mulching material and method for constructing the same
JP2008195595A (en) * 2006-04-04 2008-08-28 Covalent Materials Corp Porous body and producing method thereof
JP2008199924A (en) * 2007-02-19 2008-09-04 Nippon Sheet Glass Co Ltd Bioreactor by porous carrier coated with photocatalyst
EP2383239A2 (en) 2010-04-30 2011-11-02 Nippon Sheet Glass Company, Limited Porous body and method of producing the same
JP5632107B1 (en) * 2014-02-28 2014-11-26 合資会社水谷商店 Method for producing ceramic block for treating contaminated water and ceramic block for treating contaminated water
JP5706573B1 (en) * 2014-10-08 2015-04-22 合資会社水谷商店 Method for producing ceramic block for treating radioactive contaminated water, ceramic block for treating radioactive contaminated water, and method for treating radioactive contaminated water
JP2016166313A (en) * 2015-03-10 2016-09-15 磯崎 富夫 Deodorant antimicrobial paint, deodorant antimicrobial material, water-quality improvement material and method for producing water-quality improvement material
JP2017137199A (en) * 2016-02-01 2017-08-10 国立大学法人 宮崎大学 Ceramic porous body for lactic acid bacterium pickle, and manufacturing method thereof
JP2020198822A (en) * 2019-06-11 2020-12-17 水ing株式会社 Microbiologic agent containing powder cell and mineral, and wastewater treatment method using microbiologic agent

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335391A (en) * 2000-05-19 2001-12-04 Torimu:Kk Foamed-material from glass powder as raw material and its manufacturing method
JP2006136261A (en) * 2004-11-12 2006-06-01 Em Research Organization Mulching material and method for constructing the same
JP4685416B2 (en) * 2004-11-12 2011-05-18 株式会社Em研究機構 Porous mineral material mulching material and its construction method
JP2008195595A (en) * 2006-04-04 2008-08-28 Covalent Materials Corp Porous body and producing method thereof
JP2008199924A (en) * 2007-02-19 2008-09-04 Nippon Sheet Glass Co Ltd Bioreactor by porous carrier coated with photocatalyst
EP2383239A2 (en) 2010-04-30 2011-11-02 Nippon Sheet Glass Company, Limited Porous body and method of producing the same
JP5632107B1 (en) * 2014-02-28 2014-11-26 合資会社水谷商店 Method for producing ceramic block for treating contaminated water and ceramic block for treating contaminated water
JP2015163859A (en) * 2014-02-28 2015-09-10 合資会社水谷商店 Method for manufacturing pottery and porcelain block for contaminated water treatment, and the pottery and porcelain block for contaminated water treatment
JP5706573B1 (en) * 2014-10-08 2015-04-22 合資会社水谷商店 Method for producing ceramic block for treating radioactive contaminated water, ceramic block for treating radioactive contaminated water, and method for treating radioactive contaminated water
JP2016166313A (en) * 2015-03-10 2016-09-15 磯崎 富夫 Deodorant antimicrobial paint, deodorant antimicrobial material, water-quality improvement material and method for producing water-quality improvement material
JP2017137199A (en) * 2016-02-01 2017-08-10 国立大学法人 宮崎大学 Ceramic porous body for lactic acid bacterium pickle, and manufacturing method thereof
JP2020198822A (en) * 2019-06-11 2020-12-17 水ing株式会社 Microbiologic agent containing powder cell and mineral, and wastewater treatment method using microbiologic agent

Similar Documents

Publication Publication Date Title
CN101696137B (en) Deodorant nitrogen-conserving conditioner of livestock manure compost and using method
JP2001314882A (en) Biological cleaning material
KR102032335B1 (en) Soil conditioner with function of growth assistance using bottom ash and fly ash of thermal power plant, and production method thereof
CN104262043B (en) The production method of household garbage-compressing Nutrition Soil
CN104119162B (en) The production method of flyash compression Nutrition Soil
KR20130123276A (en) Method for treating wastewater and composting of organic wastes
JP2001302366A (en) Lightweight porous body and method of producing the same
JP3919030B2 (en) Garbage disposal method
CN102701433B (en) Biological filter deodorization filler and preparation method
CN110465184A (en) Deodorant filler and preparation method thereof, deodorization device and deodorizing methods and application
CN105906397B (en) Method and device for producing granular organic fertilizer by granulating organic solid waste and performing pressure swing composting
JP5525533B2 (en) Deodorizing material and deodorizing device
CN104109035A (en) Production method of compressed nutrient earth of diatomaceous earth tailings
NZ567803A (en) Method for manufacture of sanitised organic sludge
CN1931800A (en) Organic solid waste composting and biological deodorizing system and its operation method
KR101448799B1 (en) Organic fertilizers using the ashes are burned from excrement and manufacturing
JP2007308311A (en) Manufacturing method of activated carbon and activated carbon
JP2002233729A (en) Method and apparatus for deodorizing malodorous gas
JP2003094095A (en) Fowl waste fermentation method, fowl waste fermented material, and matter using the same
KR101019034B1 (en) A manufacturing method for soil enzyme
JP2000335984A (en) Lightweight pearlite and its production
KR960000640B1 (en) A fertilizer from alc waste
JPH1057924A (en) Culture base material for crude refuse treating machine
KR100351133B1 (en) the manufacturing method of reactivated excreta using earthworm
KR0182403B1 (en) Method for preparing calcium silicate porous material capable of being self-degraded for disposing a livestock raising waste