JP2017137199A - Ceramic porous body for lactic acid bacterium pickle, and manufacturing method thereof - Google Patents

Ceramic porous body for lactic acid bacterium pickle, and manufacturing method thereof Download PDF

Info

Publication number
JP2017137199A
JP2017137199A JP2016016850A JP2016016850A JP2017137199A JP 2017137199 A JP2017137199 A JP 2017137199A JP 2016016850 A JP2016016850 A JP 2016016850A JP 2016016850 A JP2016016850 A JP 2016016850A JP 2017137199 A JP2017137199 A JP 2017137199A
Authority
JP
Japan
Prior art keywords
lactic acid
porous body
acid bacteria
ceramic porous
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016016850A
Other languages
Japanese (ja)
Other versions
JP6713597B2 (en
Inventor
洋介 田岡
Yosuke Taoka
洋介 田岡
広幸 木之下
Hiroyuki Kinoshita
広幸 木之下
健太郎 境
Kentaro Sakai
健太郎 境
昭彦 木村
Akihiko Kimura
昭彦 木村
教明 黒木
Noriaki Kuroki
教明 黒木
美千代 黒木
Michiyo Kuroki
美千代 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Tsukemono Miyazaki Kogyo Co Ltd
Kuroki Co Ltd
University of Miyazaki NUC
Original Assignee
Kimura Tsukemono Miyazaki Kogyo Co Ltd
Kuroki Co Ltd
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Tsukemono Miyazaki Kogyo Co Ltd, Kuroki Co Ltd, University of Miyazaki NUC filed Critical Kimura Tsukemono Miyazaki Kogyo Co Ltd
Priority to JP2016016850A priority Critical patent/JP6713597B2/en
Publication of JP2017137199A publication Critical patent/JP2017137199A/en
Application granted granted Critical
Publication of JP6713597B2 publication Critical patent/JP6713597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pickle container suitable for inhabitation of lactic acid bacterium, in more detail, a ceramic porous body for lactic acid bacterium pickle of which characteristics as an absorbent of the lactic acid bacterium is improved, and manufacturing method thereof.SOLUTION: A method of manufacturing a ceramic porous body includes a first step where Miyazaki clay is dried, pulverized by a pulverizer, followed by sieving with a 500 mesh sieve to obtain a powder having a size of 0.5 mm or smaller, a second step where an organic material is cooled by dipping in liquid nitrogen, followed by pulverizing by a pulverizer, followed by sieving with a 0.5 mm mesh sieve to obtain a powder having a particle size of 0.5 mm or smaller, a third step where Miyazaki clay obtained in the first step and the organic material obtained in the second step are mixed such that a content of the organic material is 10 to 30 mass percent relative to a total mass to obtain a mixture, and a fourth step where the mixture is sintered in a furnace atmosphere of from 1,000°C to 1,100°C.SELECTED DRAWING: Figure 1

Description

本発明は、乳酸菌の吸着体としての特性を向上させた乳酸菌漬物用セラミックス多孔体、及びその製造方法に関する。   The present invention relates to a ceramic porous body for pickled lactic acid bacteria having improved characteristics as an adsorbent for lactic acid bacteria, and a method for producing the same.

漬物は、様々な食材と、食塩、酢、酒粕などの漬物床を、ともに容器に封入して漬け込み、保存性を高めるとともに熟成発酵させ、食材の風味を変化させて製造されている。とくに発酵を伴う漬物は、漬物床内に含まれる乳酸菌、及び食材に含まれる糖類によって発酵し、保存性と風味を向上させるため、漬物の美味しさは、微生物(乳酸菌)の発酵に左右され、乳酸菌の生育と密接な関係を有する。   Pickles are manufactured by changing various flavors of ingredients and various ingredients and pickles such as salt, vinegar, and sake lees in a container and immersing them to improve preservation and aging fermentation. In particular, pickles with fermentation are fermented by lactic acid bacteria contained in the pickle bed and sugars contained in the ingredients, and in order to improve the preservation and flavor, the taste of pickles depends on the fermentation of microorganisms (lactic acid bacteria), It has a close relationship with the growth of lactic acid bacteria.

漬物を漬けるには漬物樽などの容器が用いられるが、乳酸菌の発酵は、容器の組織(細孔分布)や、容器の化学成分(結晶構造)によって変化する。そのため、漬物の味を追求する場合には、乳酸菌が発酵を行いやすい最適な状態に保つことが重要であり、従来、漬物と乳酸菌に着目し、発酵を促すよう工夫された種々の発明が開示されている。   To pickle the pickles, a container such as a pickle barrel is used. The fermentation of lactic acid bacteria varies depending on the structure of the container (pore distribution) and the chemical composition (crystal structure) of the container. Therefore, when pursuing the taste of pickles, it is important to keep the lactic acid bacteria in an optimal state that facilitates fermentation. Conventionally, various inventions that have been devised to promote fermentation by focusing on pickles and lactic acid bacteria are disclosed. Has been.

例えば、特許文献1には、おからに乳酸菌(ラクトバチルスファーメンタムLactobacillus fermentum)を天然塩、昆布及び唐辛子と共に混合して培養する混合培養により乳酸醗酵して熟成させ、その熟成混合物を所要温度で所要時間煮沸して滅菌し、滅菌混合物を自然冷却させ、予め粉体乳酸菌を内蔵する小袋を入れた所要外袋内に、滅菌混合物を有する内袋を入れてシールする乳酸菌により熟成させる漬物床の製造法が開示されている。また例えば、特許文献2には、所定の配合比で混和した糠床原料を25〜35℃の温度で10〜20日間発酵させ、得られた糠床を固定された1〜3℃の温度で保存することで、漬物用糠床を変質させることなく貯蔵する方法が開示されている。さらに、特許文献3には、所定の透過度で酸素を透過する材料を一部又は全部として使用した袋あるいは容器中において、所定重量を超えない濃度の食塩存在下で漬物素材を発酵させる方法が開示されている。   For example, in Patent Document 1, lactic acid fermentation is performed by a mixed culture in which okara lactic acid bacteria (Lactobacillus fermentum) are mixed with natural salt, kelp and chili and cultured, and the matured mixture is obtained at a required temperature. Sterilize by boiling for the required time, let the sterilized mixture cool naturally, and put the inner bag with the sterilized mixture into the required outer bag that contains the sachet containing powdered lactic acid bacteria in advance, and then ripen it with the lactic acid bacteria that seals A manufacturing method is disclosed. Further, for example, Patent Document 2 discloses that a fixed bed material mixed at a predetermined mixing ratio is fermented at a temperature of 25 to 35 ° C. for 10 to 20 days, and the obtained fixed bed is fixed at a temperature of 1 to 3 ° C. A method of storing the pickled sardines without altering them is disclosed. Furthermore, Patent Document 3 discloses a method of fermenting a pickled material in the presence of salt having a concentration not exceeding a predetermined weight in a bag or container in which a material that transmits oxygen at a predetermined permeability is used as a part or all of the material. It is disclosed.

特開2003−47398号公報JP 2003-47398 A 特開2005−237205号公報JP-A-2005-237205 特開平11−155478号公報Japanese Patent Laid-Open No. 11-155478

しかしながら、特許文献1〜特許文献3に記載された方法は、材料の配合比や発酵時間などの発酵条件を整えることで、乳酸菌の発酵を促す方法が開示されているものの、乳酸菌と容器の組織(細孔分布)や、容器の化学成分(結晶構造)の関係については開示されておらず、発酵に適した容器については、未だ不明であった。   However, although the methods described in Patent Literature 1 to Patent Literature 3 disclose a method for promoting fermentation of lactic acid bacteria by adjusting fermentation conditions such as mixing ratio of materials and fermentation time, the structure of lactic acid bacteria and containers The relationship between (pore distribution) and the chemical components (crystal structure) of the container is not disclosed, and the container suitable for fermentation has not been known yet.

また、一般的に乳酸菌は、棲家として数マイクロメートル程度の孔を好むマイクロハビタットと呼ばれる習性を備えている。この習性を利用して乳酸菌を多く付着させるために、容器の組織の細孔分布を乳酸菌のサイズに適応させた漬物容器が所望されている。   In general, lactic acid bacteria have a habit called microhabitat that prefers pores of about several micrometers as a family. In order to attach a large amount of lactic acid bacteria using this behavior, a pickle container in which the pore distribution of the tissue of the container is adapted to the size of the lactic acid bacteria is desired.

本発明は、上記の課題に鑑みなされたものであり、乳酸菌の生息に適した漬物容器、さらに詳しくは、乳酸菌の吸着体としての特性を向上させた乳酸菌漬物用セラミックス多孔体、及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a pickle container suitable for the inhabiting of lactic acid bacteria, more specifically, a ceramic porous body for pickled lactic acid bacteria with improved characteristics as an adsorbent of lactic acid bacteria, and a method for producing the same The purpose is to provide.

このため本発明の乳酸菌漬物用セラミックス多孔体は、粘土を焼成してなり、表面又は内部の組織に細孔を有することを第一の特徴とし、表面又は内部の組織に直径が1〜100マイクロメートルの細孔を有することを第二の特徴とする。   For this reason, the ceramic porous body for pickled lactic acid bacteria of the present invention has a first feature that it is obtained by firing clay and has pores on the surface or internal tissue, and the surface or internal tissue has a diameter of 1 to 100 μm. A second feature is that it has pores of meters.

また、結晶組織に、Microcline又はMulliteの少なくとも1種を含むことを第三の特徴とし、結晶組織に、Quarts及びHematiteを含むことを第四の特徴とする。   The third feature is that the crystal structure contains at least one of Microcline and Mullite, and the fourth feature is that the crystal structure contains Quarts and Hematite.

さらに、粘土と有機材料を加えて焼成されたことを第五の特徴とし、前記粘土、及び前記有機材料が、粒径0.5mm以下の粒状に選別されたことを第六の特徴とする。   Furthermore, a fifth feature is that clay and an organic material are added and baked, and a sixth feature is that the clay and the organic material are sorted into particles having a particle size of 0.5 mm or less.

またさらに、前記有機材料の含有率が10〜30mass%であることを第七の特徴とし、前記粘土が宮崎県産粘土であることを第八の特徴とする。   Furthermore, the seventh feature is that the content of the organic material is 10 to 30 mass%, and the eighth feature is that the clay is clay produced in Miyazaki Prefecture.

そして、本発明の乳酸菌漬物用セラミックス多孔体の製造方法は、宮崎県産粘土を乾燥させた後に、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけて粒径が0.5mm以下のサイズとされる第一の工程と、有機材料を液体窒素に浸して冷却した後、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけて粒径が0.5mm以下のサイズとされる第二の工程と、第一の工程で得られた宮崎県産粘土と第二の工程で得られた有機材料を、有機材料の含有率が原料の全質量に対して10〜30mass%となるよう混合し混合物を得る第三の工程と、前記混合物を炉内雰囲気1,000℃〜1,100℃で焼成する第四の工程を備えたことを特徴とする。   The method for producing a ceramic porous body for pickled lactic acid bacteria according to the present invention is a method of drying a clay produced in Miyazaki Prefecture, pulverizing it with a pulverizer, and applying a sieve of 0.5 mm mesh to a particle size of 0.5 mm or less. The first step is taken, and the organic material is immersed in liquid nitrogen and cooled, then pulverized using a pulverizer, and passed through a sieve of 0.5 mm mesh so that the particle size is 0.5 mm or less. And the Miyazaki Prefecture clay obtained in the first step and the organic material obtained in the second step are mixed so that the content of the organic material is 10 to 30 mass% with respect to the total mass of the raw material. And a fourth step of firing the mixture at 1,000 ° C. to 1,100 ° C. in a furnace atmosphere.

本発明のセラミックス多孔体は、表面又は内部に1〜100マイクロメートルの気孔を有するため、乳酸菌が吸着され易く、乳酸菌の生息に適している。また、本発明のセラミックス多孔体を用いて漬物を漬け込むことで、乳酸菌が増加し、美味しい漬物を作ることが可能となる。   Since the porous ceramic body of the present invention has pores of 1 to 100 micrometers on the surface or inside thereof, lactic acid bacteria are easily adsorbed and are suitable for inhabiting lactic acid bacteria. Moreover, by pickling pickles using the ceramic porous body of the present invention, lactic acid bacteria increase and it becomes possible to make delicious pickles.

本発明の実施形態に係るセラミックス多孔体の(a)が細孔直径分布を示すグラフであり、(b)が気孔率を示すグラフである。(A) of the ceramic porous body which concerns on embodiment of this invention is a graph which shows pore diameter distribution, (b) is a graph which shows a porosity. 1,000℃で焼成したセラミックス多孔体のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the ceramic porous body baked at 1,000 degreeC. 1,100℃で焼成したセラミックス多孔体のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the ceramic porous body baked at 1,100 degreeC. 本実施例において寒天培地上で生育した生菌数を示すグラフである。It is a graph which shows the number of viable bacteria which grew on the agar medium in a present Example. 本実施例において使用したGYP−74株を示す顕微鏡写真である。It is a microscope picture which shows GYP-74 stock | strain used in the present Example. 本実施例において使用したGYP−74株の16SrRNA遺伝子塩基配列(500〜600bp)を用いたBlast検索結果を示す図である。It is a figure which shows the Blast search result using the 16S rRNA gene base sequence (500-600 bp) of GYP-74 strain | stump | stock used in the present Example. 本実施例において使用したGYP−74株の16SrRNA遺伝子塩基配列(1449bp)を用いたBlast検索結果を示す図である。It is a figure which shows the Blast search result using the 16SrRNA gene base sequence (1449bp) of GYP-74 strain | stump | stock used in the present Example. 本実施例において使用したGYP−74株の16SrRNA遺伝子塩基配列(1449bp)を示した図である。It is the figure which showed 16SrRNA gene base sequence (1449bp) of GYP-74 strain | stump | stock used in the present Example. 試験片へのGYP−74株の付着菌数結果を示すグラフである。It is a graph which shows the adhesion bacteria count result of GYP-74 stock | strain to a test piece. 本実施例に係るセラミックス多孔体にGYP−74株が付着したことを示す顕微鏡写真である。It is a microscope picture which shows that GYP-74 stock | strain adhered to the ceramic porous body which concerns on a present Example.

以下、図面を参照して、本発明の実施形態に係るセラミックス多孔体の製造方法について説明する。   Hereinafter, with reference to drawings, the manufacturing method of the ceramic porous body concerning the embodiment of the present invention is explained.

本発明の実施形態に係るセラミックス多孔体は、粘土を焼成して製造されたもの、及び粘土と有機材料を混合して焼成して製造されたものである。   The ceramic porous body according to the embodiment of the present invention is manufactured by baking clay and is manufactured by mixing and baking clay and an organic material.

粘土は、とくに限定されるものではないが、好ましくは宮崎県産粘土であり、さらに好ましくはきめ細やかで良質な、かつ整形性に優れ、低温で焼き締まる粘土が用いられる。斯様な粘土の例として、「ひむか古代」(黒木建設株式会社製、登録商標)が挙げられる。ひむか古代(黒木建設株式会社製、登録商標)は、二酸化ケイ素(SiO)、酸化アルミニウム(AlO)、酸化鉄(FeO)、二酸化チタン(TiO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ナトリウム(NaO)、酸化カリウム(KO)を含有しており、宮崎県内で産出される粘土である。ひむか古代(登録商標)を定量分析した結果を表1に示す。強熱減量(LOI)は、4.91%であった。
粘土は、乾燥させた後に、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけ、粒径が0.5mm以下のサイズのものを選別した。これをセラミックス多孔体の原料として用いる。
The clay is not particularly limited, but is preferably a clay produced in Miyazaki Prefecture, more preferably a fine and fine-quality clay that is excellent in formability and baked at low temperature. An example of such clay is “Himuka Ancient” (registered trademark, manufactured by Kuroki Construction Co., Ltd.). Himuka Ancient (registered trademark, manufactured by Kuroki Construction Co., Ltd.) is silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), titanium dioxide (TiO 2 ), calcium oxide (CaO ), Magnesium oxide (MgO), sodium oxide (Na 2 O), potassium oxide (K 2 O), and is a clay produced in Miyazaki Prefecture. The results of quantitative analysis of Himuka Ancient (registered trademark) are shown in Table 1. The loss on ignition (LOI) was 4.91%.
After the clay was dried, the clay was pulverized using a pulverizer, passed through a 0.5 mm mesh sieve, and a particle having a particle size of 0.5 mm or less was selected. This is used as a raw material for the ceramic porous body.

セラミックス多孔体の原料となる有機材料は、例えば粒径を調整できる強度を有しており、焼成により分解される有機材料であれば、何れでも使用することができる。このような有機材料としては、POM樹脂のほか、コーンスターチ、又は合成樹脂などが挙げられる。POM樹脂は、結晶性が高く、耐疲労性に優れ、結晶部と非晶部が混在し、機械的強度に優れるという特性を有する。本発明に用いられるPOM樹脂は、市販のPOM樹脂を液体窒素に浸して冷却した後、粉砕機を用いて粉砕し、篩にかけ、粒径により選別した。選別した粒径は、0.2mm以下、及び0.2〜0.5mmのサイズである。これを原料として用いた。POM樹脂の粒径が、0.5mmより大きい場合、セラミックス多孔体の気孔径が明らかに大きくなり、亀裂等の原因となる。   Any organic material can be used as long as it is an organic material that has a strength capable of adjusting the particle size and is decomposed by firing. Examples of such an organic material include corn starch or synthetic resin in addition to POM resin. The POM resin has characteristics such as high crystallinity, excellent fatigue resistance, a mixture of crystal parts and amorphous parts, and excellent mechanical strength. The POM resin used in the present invention was cooled by immersing a commercially available POM resin in liquid nitrogen, pulverized using a pulverizer, sieved, and sorted by particle size. The selected particle size is 0.2 mm or less and a size of 0.2 to 0.5 mm. This was used as a raw material. When the particle diameter of the POM resin is larger than 0.5 mm, the pore diameter of the ceramic porous body is clearly increased, which causes cracks and the like.

粘土とPOM樹脂の混合率は、POM樹脂の含有率が原料(粘土及びPOM樹脂)の全質量に対し、0〜30mass%となるよう構成した。粉砕粒径が0.2mm以下、及び0.2〜0.5mmの2種類のサイズに選別したPOM樹脂のそれぞれを、0mass%、10mass%、20mass%、30mass%の各混合率で混合し、炉内雰囲気が1,000℃、及び1,100℃で焼成し、計14種類のセラミックス多孔体(以下、試験片)を成型した。   The mixing ratio of the clay and the POM resin was configured such that the content of the POM resin was 0 to 30 mass% with respect to the total mass of the raw materials (clay and POM resin). Each of the POM resins selected into two sizes of pulverized particle size of 0.2 mm or less and 0.2 to 0.5 mm is mixed at a mixing ratio of 0 mass%, 10 mass%, 20 mass%, and 30 mass%, The furnace atmosphere was fired at 1,000 ° C. and 1,100 ° C., and a total of 14 types of ceramic porous bodies (hereinafter referred to as test pieces) were molded.

試験片の見かけの気孔率をJISR2205に準じて測定した。表2に各試験片の見かけの気孔率を示す。
The apparent porosity of the test piece was measured according to JIS R2205. Table 2 shows the apparent porosity of each test piece.

表2に示す試験片のうち、粘土のみから作製した試験片(1,000℃及び1,100℃の2種類)、及びPOM樹脂の混合率が20%の試験片(計4種類)について、ポロシメータにより細孔分布を測定した。図1(a)に各試験片の細孔分布を示す。焼成温度でみると、1,000℃(図1上段各図)では1マイクロメートル以下の細孔分布が多くみられるが、1,100℃(図1下段各図)では1,000℃に比べて1マイクロメートル以下の細孔分布が少なく、1マイクロメートル以上の細孔分布に偏っている。1,100℃では高温の焼成によって焼きしまり、1マイクロメートル以下の小さい気孔は消失し、1マイクロメートル以上の細孔分布に偏っているものである。また、図1(b)に示すように、気孔率は1,000℃より1,100℃の方が小さい。   Among the test pieces shown in Table 2, for test pieces made only from clay (two kinds of 1,000 ° C. and 1,100 ° C.), and test pieces having a mixing ratio of POM resin of 20% (four kinds in total), The pore distribution was measured with a porosimeter. FIG. 1A shows the pore distribution of each test piece. In terms of the firing temperature, a pore distribution of 1 micrometer or less is often observed at 1,000 ° C. (upper figure in FIG. 1), but compared to 1,000 ° C. at 1,100 ° C. (lower figure in FIG. 1). The pore distribution of 1 micrometer or less is small, and it is biased toward the pore distribution of 1 micrometer or more. At 1,100 ° C., it is baked by high-temperature firing, and small pores of 1 μm or less disappear and are biased toward a pore distribution of 1 μm or more. Further, as shown in FIG. 1B, the porosity is smaller at 1,100 ° C. than 1,000 ° C.

図1及び表2に示した結果から、次のことが明らかとなった。
(1)粘土のみから作製した試験片は、0.1〜10マイクロメートルの気孔を多く有する。一方、POM樹脂の混合率が20%の試験片(計4種類)は、10〜100マイクロメートルの気孔を多く有する。
(2)POM樹脂の粒径が大きくなるにつれて、試験片はより大きな気孔率となる。
(3)POM樹脂の混合率が増加するにつれて、試験片はより大きな気孔を持つ分布となる。
From the results shown in FIG. 1 and Table 2, the following became clear.
(1) A test piece made only from clay has many pores of 0.1 to 10 micrometers. On the other hand, test pieces (total 4 types) having a POM resin mixing ratio of 20% have many pores of 10 to 100 micrometers.
(2) As the particle size of the POM resin increases, the test piece has a higher porosity.
(3) As the mixing ratio of the POM resin increases, the test piece has a distribution with larger pores.

図1の結果から、POM樹脂の粒径、POM樹脂の粘土との混合率、及び焼成温度を変更することによって、試験片組織内の細孔分布を制御できることが判明した。すなわち、微生物の生息に適した細孔分布を持つセラミックス多孔体を作製できるものと考えられる。   From the results of FIG. 1, it was found that the pore distribution in the specimen structure can be controlled by changing the particle size of the POM resin, the mixing ratio of the POM resin with clay, and the firing temperature. That is, it is considered that a ceramic porous body having a pore distribution suitable for microorganisms can be produced.

また、焼成した粘土についてX線回折測定を行った。その結果を図2、及び図3に示し、結晶組織(構造)について考察した。図2は、粘土を1,000℃で焼成したセラミックス多孔体、図3は、1,100℃で焼成したセラミックス多孔体のX線回折パターンを示し、得られたピークに対してICDDデーターベース検索を行い、鉱物同定を行った結果を示している。   Further, X-ray diffraction measurement was performed on the fired clay. The results are shown in FIGS. 2 and 3, and the crystal structure (structure) was considered. Fig. 2 shows the X-ray diffraction pattern of the porous ceramic body obtained by firing clay at 1,000 ° C, and Fig. 3 shows the X-ray diffraction pattern of the porous ceramic body fired at 1,100 ° C. The results of mineral identification are shown.

ICDDデーターベース検索(http://www.icdd.com/index.htm)にて材料解析を行ったところ、両セラミックス多孔体ともQuarts(SiO2、図中の●印)及びHematite(Fe2O3、図中の■印)を含有することが判明した。さらに図2に示すように、1,000℃で焼成したセラミックス多孔体は、Microcline(K0.94Na0.06Al1.01Si2.99O8、図中の▼印)を多く有し、図3に示すように、1,100℃で焼成した場合はMullite(Al4.68Si1.32O9.66、図中の▲印)をそれぞれ多く有する組織となる事が判明した。これはすなわち、微生物の生息に適した結晶組織を持つセラミックが存在することを示唆している。 When material analysis was performed by ICDD database search (http://www.icdd.com/index.htm), both ceramic porous bodies were made of Quarts (SiO 2 , mark ● in the figure) and Hematite (Fe 2 O 3 ) was found to be contained. Further, as shown in FIG. 2, the ceramic porous body fired at 1,000 ° C. has many Microclines (K 0.94 Na 0.06 Al 1.01 Si 2.99 O 8 , ▼ in the figure), and as shown in FIG. When fired at 1,100 ° C., it was found that the structure had a lot of Mullite (Al 4.68 Si 1.32 O 9.66 , ▲ in the figure). This suggests that there exists a ceramic with a crystalline structure suitable for microbial habitat.

本発明に係るセラミックス多孔体による微生物の生息能を確認すべく、上述した試験片に菌を付着させて実験を行った。微生物は、キムラ漬物宮崎工業株式会社の糠床から分離した乳酸菌を用いた。キムラ漬物宮崎工業株式会社の糠床を生理食塩水で適宜希釈し、図4に示す5種類の寒天平板培地(MRS培地、GYP培地、XYP培地、FYP培地及びMYP培地)に塗抹した。寒天平板培地を30℃で5日間培養し、生じたコロニー数を計数から糠床単位重量あたりの生菌数(colony forming unit, CFU)を算出した。分離株は光学顕微鏡下で観察し、細胞の形態並びにサイズを計測した。   In order to confirm the inhabitability of microorganisms by the ceramic porous body according to the present invention, an experiment was conducted by attaching bacteria to the above-described test piece. As the microorganism, lactic acid bacteria isolated from the bed of Kimura pickles Miyazaki Kogyo Co., Ltd. were used. Kimura pickles Miyazaki Kogyo Co., Ltd. bed was appropriately diluted with physiological saline and smeared on five types of agar plates (MRS medium, GYP medium, XYP medium, FYP medium and MYP medium) shown in FIG. The agar plate medium was cultured at 30 ° C. for 5 days, and the number of colonies formed was counted to calculate the number of viable bacteria per bed unit weight (colony forming unit, CFU). The isolate was observed under an optical microscope, and cell morphology and size were measured.

コロニー計数の結果、図4に示すように、糠床にはg重量当たり10CFU以上の乳酸菌が存在していることが判明した。 As a result of the colony counting, as shown in FIG. 4, it was found that 10 6 CFU or more of lactic acid bacteria per g weight existed on the bed.

上述したGYP培地から分離された40株をランダムに選抜し、MRS液体培地(Difco)で培養し、菌体を回収した。回収された菌体の一つを顕微鏡観察したところ、本株はカタラーゼ陰性の桿菌であり、図5に示すように、細胞直径は平均1〜2マイクロメートルであった。また、本株は、細胞によっては4〜5マイクロメートルまで伸長する。本発明では、この株をGYP−74株と定める。
さて、上記の培養菌体からフェノール・クロロホルム抽出法を用いて、ゲノムDNAを抽出した。この抽出したDNAを鋳型とし、2つのプライマー(27f[AGAGTTTGATCCTGGCTCAG],1525r[AAAGGAGGTGATCCAGCC])を用いてPCR法により16sRDNA遺伝子を増幅した。PCR産物をPEG沈殿法により精製し、塩基配列の解析はApplied Biosystems 3730xl DNA analyzer(株式会社マクロジェン・ジャパン製)を用いて実施した。シーケンス解析には上記プライマー27fを用い、GYP−74株については、プライマー1525rも用いた。得られたシーケンス情報を基に、Blast検索を行い、近縁種の推定を行った。図6にGYP−74株の16SrRNA遺伝子塩基配列(500〜600bp)を用いたBlast検索結果、図7にGYP−74株の16SrRNA遺伝子塩基配列(1449bp)を用いたBlast検索結果、図8にGYP−74株の16SrRNA遺伝子塩基配列(1449bp)を示す。
Forty strains isolated from the above-mentioned GYP medium were randomly selected and cultured in MRS liquid medium (Difco) to recover the cells. When one of the collected microbial cells was observed with a microscope, this strain was a catalase-negative gonococcus, and as shown in FIG. 5, the average cell diameter was 1 to 2 micrometers. In addition, this strain extends to 4 to 5 micrometers depending on cells. In the present invention, this strain is defined as GYP-74 strain.
Now, genomic DNA was extracted from the cultured cells using the phenol / chloroform extraction method. Using this extracted DNA as a template, 16sRDNA gene was amplified by PCR using two primers (27f [AGAGTTTGATCCTGGCTCAG], 1525r [AAAGGAGGTGATCCAGCC]). The PCR product was purified by PEG precipitation, and the base sequence was analyzed using Applied Biosystems 3730xl DNA analyzer (manufactured by Macrogen Japan Co., Ltd.). The primer 27f was used for the sequence analysis, and the primer 1525r was also used for the GYP-74 strain. Based on the obtained sequence information, a Blast search was performed and related species were estimated. FIG. 6 shows a BLAST search result using the 16S rRNA gene base sequence (500 to 600 bp) of the GYP-74 strain, FIG. 7 shows a BLAST search result using the 16S rRNA gene base sequence (1449 bp) of the GYP-74 strain, and FIG. This shows the 16S rRNA gene base sequence (1449 bp) of -74 strain.

図6乃至図8に示すように、分離乳酸菌は全てLactobacillus属であり、16srRNA遺伝子のほぼ全長でBlast検索をかけたGYP−74株についてはLactobacillus namurensisもしくはLactobacillus acidifarinaeに近縁であることが推測された。   As shown in FIGS. 6 to 8, all the isolated lactic acid bacteria belong to the genus Lactobacillus, and the GYP-74 strain subjected to the Blast search with almost the full length of the 16s rRNA gene is presumed to be closely related to Lactobacillus namurensis or Lactobacillus acidifarinae. It was.

図6に示すBlast検索から、糠床で優占していると推定されたLactobacillus属からなる乳酸菌群としてGYP−74株を選択し、これを以後の供試株とした。前述した14種類の試験片を乳酸菌付着試験に用いた。1/100濃度MRA培地5mlをねじ口試験管で調製し、各試験片(≒5mm*5mm)を収容し、オートクレーブにより滅菌処理した。これにMRS液体培地で培養、生理食塩水で洗浄したGYP−74株を10/mlになるように、溶液に添加した。試験管を27℃、45時間インキュベイトし、試験片の付着菌数を測定した。測定には、まず試験片を滅菌した乳鉢で細かく破砕し、生理食塩水にて段階希釈し、MRS寒天平板培地を用いて、定法に従い生菌数を算出した。結果を図9に示す。ただし、表2に示す試験片の内、焼成温度が1,000℃、粉砕粒径が0.2mm、かつPOM樹脂含有率が30%の試験片は除き、試験を行った。図9に示すように、試験片には乳酸菌が付着することが確認された。また、試験片との対照区としてシリコン片にも同様の手順で生菌数を算出したものの、シリコン片には乳酸菌の付着は認められなかった。さらに、焼成温度が1,000℃よりも1,100℃で作製した試験片に対して、付着菌数が有意に増加することが確認された。 From the Blast search shown in FIG. 6, the GYP-74 strain was selected as a group of lactic acid bacteria composed of the genus Lactobacillus presumed to be dominant in the bed, and this was used as a subsequent test strain. The 14 types of test pieces described above were used for the lactic acid bacteria adhesion test. 5 ml of 1/100 concentration MRA medium was prepared in a screw-cap test tube, each test piece (≈5 mm * 5 mm) was accommodated, and sterilized by an autoclave. To this, GYP-74 strain cultured in MRS liquid medium and washed with physiological saline was added to the solution so as to be 10 5 / ml. The test tube was incubated at 27 ° C. for 45 hours, and the number of adherent bacteria on the test piece was measured. For the measurement, first, the test piece was finely crushed with a sterilized mortar, serially diluted with physiological saline, and the number of viable bacteria was calculated according to a conventional method using MRS agar plate medium. The results are shown in FIG. However, among the test pieces shown in Table 2, the test was performed except for the test piece having a firing temperature of 1,000 ° C., a pulverized particle size of 0.2 mm, and a POM resin content of 30%. As shown in FIG. 9, it was confirmed that lactic acid bacteria adhered to the test piece. Moreover, although the viable count was calculated in the same procedure for the silicon piece as a control group with the test piece, no adhesion of lactic acid bacteria was observed on the silicon piece. Furthermore, it was confirmed that the number of adherent bacteria increased significantly with respect to the test piece produced at a firing temperature of 1,100 ° C. rather than 1,000 ° C.

以上、実施例の結果から、乳酸菌漬物用セラミックス多孔体の製造方法として、焼成時の炉内雰囲気は、1,100℃が良好であることが判明した。1,000℃よりも1,100℃で焼成したセラミックス多孔体は、図9に示すように、乳酸菌付着数が高く、その理由として、1,100℃で焼成されたセラミックス多孔体は、図1に示すように、1マイクロメートル以上の気孔分布が多いことで、乳酸菌の大きさとの関係から最適な細孔分布であると考えられる。また、図3に示すように、1,100℃のセラミックス多孔体のX線回折パターンから、微生物の生育に適した結晶組織を持つことが示唆された。   As described above, from the results of Examples, it was found that the furnace atmosphere during firing was favorable at 1,100 ° C. as a method for producing a ceramic porous body for pickled lactic acid bacteria. As shown in FIG. 9, the ceramic porous body fired at 1,100 ° C. rather than 1,000 ° C. has a high adhesion number of lactic acid bacteria. The reason is that the ceramic porous body fired at 1,100 ° C. As shown in FIG. 2, it is considered that the pore distribution is 1 μm or more, and that the pore distribution is optimal from the relationship with the size of lactic acid bacteria. Further, as shown in FIG. 3, the X-ray diffraction pattern of the ceramic porous body at 1,100 ° C. suggested that it had a crystal structure suitable for the growth of microorganisms.

本発明に係る乳酸菌漬物用セラミックス多孔体に乳酸菌が付着していることを確認するため、上記試験片の内、焼成温度が1,100℃、粉砕粒径が〜0.2mm、かつPOM樹脂含有率が30%のものを、凍結乾燥装置により乾燥後、走査型電子顕微鏡(SEM)を用いて視認した。図10は、その際の写真で、試験片のくぼみや間隙に乳酸菌が存在していることが確認できる。とくに、図10中、中心より左側の10マイクロメートル程の気孔、右上から下方に向けての気孔、左下の気孔には多くの乳酸菌が確認でき、それ以外の表面部には、あまり付着していなかった。また、図10中、右下の溝は、写真撮影時に人工的に形成したものであるため、乳酸菌が撮影されなかった。   In order to confirm that the lactic acid bacteria are attached to the ceramic porous body for pickled lactic acid bacteria according to the present invention, among the above test pieces, the firing temperature is 1,100 ° C., the pulverized particle size is 0.2 mm, and the POM resin is contained Those having a rate of 30% were visually confirmed using a scanning electron microscope (SEM) after drying with a freeze-drying apparatus. FIG. 10 is a photograph at that time, and it can be confirmed that lactic acid bacteria are present in the indentations and gaps of the test piece. In particular, in FIG. 10, many lactic acid bacteria can be confirmed in the pores of about 10 micrometers on the left side from the center, the pores from the upper right to the lower side, and the pores on the lower left, and the other surface portions are not much attached. There wasn't. In addition, in FIG. 10, the lower right groove was artificially formed at the time of taking a picture, so no lactic acid bacteria were taken.

[総論]
図1〜図9から言えることとして、乳酸菌の大きさは、平均1〜2マイクロメートルであり、株によっては4〜5マイクロメートルまで伸長するものもある。前述のように、気孔率は1,000℃より1,100℃の方が小さいが、1,000℃より1,100℃の方が1マイクロメートル以下の分布が少なく、1マイクロメートル以上の細孔分布が多い。すなわち、乳酸菌は乳酸菌の大きさより小さい1マイクロメートル以下の気孔に付着することが困難であるが、乳酸菌の大きさと同じかより大きい1マイクロメートル以上の気孔が多い、1,100℃をより好んで付着している。
[General]
As can be said from FIG. 1 to FIG. 9, the size of lactic acid bacteria is an average of 1 to 2 micrometers, and some strains extend to 4 to 5 micrometers. As described above, the porosity is smaller at 1,100 ° C. than 1,000 ° C., but the distribution at 1,100 ° C. is less than 1 μm less than 1,000 ° C., and the porosity is smaller than 1 μm. There are many pore distributions. That is, it is difficult for lactic acid bacteria to adhere to pores of 1 micrometer or less, which is smaller than the size of lactic acid bacteria, but there are many pores of 1 micrometer or more that are the same as or larger than the size of lactic acid bacteria, and prefers 1,100 ° C. It is attached.

また、焼成温度1,000℃でみると、図9(A:粘土のみ、H:粉砕粒径0.2〜0.5mmでPOM樹脂含有率が10%、I:粉砕粒径0.2〜0.5mmでPOM樹脂含有率が20%、J:粉砕粒径0.2〜0.5mmでPOM樹脂含有率が30%)から、有機材料の混合率が多くなるにつれて、すなわち気孔率が大きくなるにつれて、乳酸菌付着数が多いことがわかる。図1より、焼成温度1,000℃、粘土のみ、では1マイクロメートル以下の細孔分布に偏るが、焼成温度1,000℃、有機材料20%、粉砕粒径0.2〜0.5mmでは1マイクロメートル以上の細孔分布が多いことから、1マイクロメートル以上の細孔分布に乳酸菌は付着しやすい。粘土と混合する有機材料の粒径や混合率、焼成温度を調整することによって、セラミックス多孔体の組織内の細孔分布の制御が可能となり、乳酸菌の付着に最適な細孔分布を持つセラミックス多孔体を作製できる。   Further, when viewed at a firing temperature of 1,000 ° C., FIG. 9 (A: clay only, H: pulverized particle size 0.2 to 0.5 mm, POM resin content 10%, I: pulverized particle size 0.2 to From 0.5 mm, the POM resin content is 20%, J: the pulverized particle size is 0.2 to 0.5 mm, and the POM resin content is 30%. As the mixing ratio of organic materials increases, that is, the porosity increases. It turns out that there are many lactic acid bacteria adhesion numbers. From FIG. 1, when the firing temperature is 1,000 ° C. and clay alone, the pore distribution is less than 1 micrometer, but when the firing temperature is 1,000 ° C., the organic material is 20%, and the pulverized particle size is 0.2 to 0.5 mm. Since there are many pore distributions of 1 micrometer or more, lactic acid bacteria are easy to adhere to the pore distribution of 1 micrometer or more. By adjusting the particle size, mixing rate, and firing temperature of the organic material mixed with clay, it is possible to control the pore distribution in the structure of the ceramic porous body, and the ceramic pore has an optimal pore distribution for adhesion of lactic acid bacteria. The body can be made.

図9においては、1,000℃より1,100℃の方が乳酸菌がより多く付着しているが、1,100℃では、結晶組織にムライトが多く含まれている。焼成温度を1,100℃に調整することでムライトを含む乳酸菌の生育に最適な結晶組織を有するセラミックス多孔体が作製できる。   In FIG. 9, lactic acid bacteria are more adhered at 1,100 ° C. than at 1,000 ° C., but at 1,100 ° C., the crystal structure contains more mullite. By adjusting the firing temperature to 1,100 ° C., a ceramic porous body having a crystal structure optimum for the growth of lactic acid bacteria containing mullite can be produced.

最後に、本発明におけるセラミックス多孔体の製造工程をまとめると、次の工程となる。
(1)宮崎県産粘土を乾燥させた後に、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけ、粒径を0.5mm以下のサイズとする工程。
(2)POM樹脂などの有機材料を液体窒素に浸して冷却した後、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけ、粒径を0.5mm以下のサイズとする工程。
(3)上記(1)で得られた粘土と、上記(2)で得られた有機材料を、有機材料の含有率が原料の全質量に対して10〜30mass%となるよう混合する工程。
(4)上記(3)で得られた混合物を炉内雰囲気1,000℃〜1,100℃で焼成する工程。
これらの工程を経て得られたセラミックス多孔体は、その形状が、上述した実施例に示すような容器状に限定されるものではない。例えば上記(4)の工程において、容器内に投入できるサイズの小片に成形して焼成し、漬物容器内に投入して利用しても良い。また、本発明におけるセラミックス多孔体も、容器状に限定されるものではないことを付言する。
Finally, the manufacturing process of the ceramic porous body in the present invention is summarized as the following process.
(1) A process of drying Miyazaki prefecture-made clay, followed by pulverization using a pulverizer and passing through a 0.5 mm mesh sieve to make the particle size 0.5 mm or less.
(2) A step in which an organic material such as POM resin is immersed in liquid nitrogen and cooled, and then pulverized using a pulverizer and passed through a 0.5 mm mesh sieve to make the particle size 0.5 mm or less.
(3) A step of mixing the clay obtained in (1) and the organic material obtained in (2) so that the content of the organic material is 10 to 30 mass% with respect to the total mass of the raw material.
(4) A step of firing the mixture obtained in the above (3) in a furnace atmosphere at 1,000 ° C. to 1,100 ° C.
The ceramic porous body obtained through these steps is not limited to a container shape as shown in the above-described embodiments. For example, in the step (4), a small piece of a size that can be put into a container is molded and fired, and then put into a pickled container for use. Moreover, it adds that the ceramic porous body in this invention is not limited to a container shape.

Claims (9)

粘土を焼成してなり、表面又は内部の組織に細孔を有することを特徴とする乳酸菌漬物用セラミックス多孔体。   A ceramic porous body for pickled lactic acid bacteria characterized by firing clay and having pores on the surface or in the internal structure. 表面又は内部の組織に直径が1〜100マイクロメートルの細孔を有することを特徴とする請求項1記載の乳酸菌漬物用セラミックス多孔体。   2. The ceramic porous body for pickled lactic acid bacteria according to claim 1, wherein the surface or internal tissue has pores having a diameter of 1 to 100 micrometers. 結晶組織に、Microcline又はMulliteの少なくとも1種を含むことを特徴とする請求項1又は請求項2に記載の乳酸菌漬物用セラミックス多孔体。   The ceramic porous body for pickled lactic acid bacteria according to claim 1 or 2, wherein the crystal structure contains at least one of Microcline and Mullite. 結晶組織に、Quarts及びHematiteを含むことを特徴とする請求項3記載の乳酸菌漬物用セラミックス多孔体。   The ceramic porous body for pickled lactic acid bacteria according to claim 3, wherein the crystal structure contains Quarts and Hematite. 粘土と有機材料を加えて焼成されたことを特徴とする請求項1〜4のいずれか一項に記載の乳酸菌漬物用セラミックス多孔体。   The ceramic porous body for pickled lactic acid bacteria according to any one of claims 1 to 4, which is fired by adding clay and an organic material. 前記粘土、及び前記有機材料が、粒径0.5mm以下の粒状に選別されたことを特徴とする請求項5に記載の乳酸菌漬物用セラミックス多孔体。   6. The ceramic porous body for pickled lactic acid bacteria according to claim 5, wherein the clay and the organic material are sorted into particles having a particle size of 0.5 mm or less. 前記有機材料の含有率が10〜30mass%であることを特徴とする請求項5又は請求項6に記載の乳酸菌漬物用セラミックス多孔体。   The ceramic porous body for pickled lactic acid bacteria according to claim 5 or 6, wherein the content of the organic material is 10 to 30 mass%. 前記粘土が宮崎県産粘土であることを特徴とする請求項1〜7のいずれか一項に記載の乳酸菌漬物用セラミックス多孔体。   The ceramic porous body for pickled lactic acid bacteria according to any one of claims 1 to 7, wherein the clay is clay produced in Miyazaki Prefecture. 宮崎県産粘土を乾燥させた後に、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけて粒径が0.5mm以下のサイズとされる第一の工程と、有機材料を液体窒素に浸して冷却した後、粉砕機を用いて粉砕し、0.5mmメッシュの篩にかけて粒径が0.5mm以下のサイズとされる第二の工程と、第一の工程で得られた宮崎県産粘土と第二の工程で得られた有機材料を、有機材料の含有率が原料の全質量に対して10〜30mass%となるよう混合し混合物を得る第三の工程と、前記混合物を炉内雰囲気1,000℃〜1,100℃で焼成する第四の工程を備えたことを特徴とする乳酸菌漬物用セラミックス多孔体の製造方法。   After drying the clay produced in Miyazaki Prefecture, it is pulverized using a pulverizer, passed through a 0.5 mm mesh sieve to make the particle size 0.5 mm or less, and the organic material is immersed in liquid nitrogen. After cooling, and then crushing using a pulverizer, passing through a sieve of 0.5 mm mesh, the particle size is 0.5 mm or less, and the Miyazaki Prefecture clay obtained in the first step And a third step of mixing the organic material obtained in the second step so that the content of the organic material is 10 to 30 mass% with respect to the total mass of the raw material, and the mixture in the furnace atmosphere A method for producing a ceramic porous body for pickled lactic acid bacteria, comprising a fourth step of firing at 1,000 to 1,100 ° C.
JP2016016850A 2016-02-01 2016-02-01 Ceramics porous body for pickled lactic acid bacteria and method for producing the same Active JP6713597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016850A JP6713597B2 (en) 2016-02-01 2016-02-01 Ceramics porous body for pickled lactic acid bacteria and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016850A JP6713597B2 (en) 2016-02-01 2016-02-01 Ceramics porous body for pickled lactic acid bacteria and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017137199A true JP2017137199A (en) 2017-08-10
JP6713597B2 JP6713597B2 (en) 2020-06-24

Family

ID=59566527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016850A Active JP6713597B2 (en) 2016-02-01 2016-02-01 Ceramics porous body for pickled lactic acid bacteria and method for producing the same

Country Status (1)

Country Link
JP (1) JP6713597B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440875A (en) * 1990-06-06 1992-02-12 Yamasa Shoyu Co Ltd Method for preparing seasoning solution
JPH0492874A (en) * 1990-08-02 1992-03-25 Lion Corp Production of porous ceramics
JPH04330274A (en) * 1991-04-30 1992-11-18 Kanebo Ltd Lactobacillus cell immobilized to inorganic porous material
JPH08310882A (en) * 1995-05-17 1996-11-26 Hiroaki Uda Production of open-cell soft ceramic
JP2001302366A (en) * 2000-04-18 2001-10-31 Dreams:Kk Lightweight porous body and method of producing the same
JP2010100497A (en) * 2008-10-25 2010-05-06 Univ Of Miyazaki Method of manufacturing porous ceramic using waste glass-reinforced plastic
JP2011000045A (en) * 2009-06-18 2011-01-06 Nissui Pharm Co Ltd Medium for detecting lactic acid bacterium and detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440875A (en) * 1990-06-06 1992-02-12 Yamasa Shoyu Co Ltd Method for preparing seasoning solution
JPH0492874A (en) * 1990-08-02 1992-03-25 Lion Corp Production of porous ceramics
JPH04330274A (en) * 1991-04-30 1992-11-18 Kanebo Ltd Lactobacillus cell immobilized to inorganic porous material
JPH08310882A (en) * 1995-05-17 1996-11-26 Hiroaki Uda Production of open-cell soft ceramic
JP2001302366A (en) * 2000-04-18 2001-10-31 Dreams:Kk Lightweight porous body and method of producing the same
JP2010100497A (en) * 2008-10-25 2010-05-06 Univ Of Miyazaki Method of manufacturing porous ceramic using waste glass-reinforced plastic
JP2011000045A (en) * 2009-06-18 2011-01-06 Nissui Pharm Co Ltd Medium for detecting lactic acid bacterium and detection method

Also Published As

Publication number Publication date
JP6713597B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP5019123B2 (en) Antifungal / antibacterial agent consisting of two-stage fired shell powder
EP3116994B1 (en) Phage-insensitive streptococcus thermophilus
Lucena-Padrós et al. Microbial diversity and dynamics of Spanish-style green table-olive fermentations in large manufacturing companies through culture-dependent techniques
CN108486022B (en) Anti-caries lactobacillus plantarum and application thereof
Davis et al. Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines
KR101972140B1 (en) Probiotics in fruit beverages
CN112458013B (en) Streptococcus thermophilus JMCC0028, and separation and purification method and application thereof
CN113068782B (en) Brown active lactobacillus beverage and preparation method thereof
CN109619184A (en) Application of the lactobacillus plantarum CQPC02 in the food or drug of preparation prevention liver oxidative damage
Mohsin Antagonistic activity of bacteriocin-producing lactobacillus against candida spp
CN114752529A (en) Lactobacillus plantarum HOM3201 strain, viable bacteria preparation thereof, preparation method and application
JPWO2012029835A1 (en) Method for producing fermented food containing Bifidobacterium
CN107022509B (en) Separation method and application of lactobacillus composition
JP6713597B2 (en) Ceramics porous body for pickled lactic acid bacteria and method for producing the same
CN109362882B (en) Lactobacillus fermentum CQPC07 and application thereof in preparing food or medicine for improving ulcerative colitis
CN116286497A (en) Anti-phage probiotics and application thereof in preparation of fermented dairy products
EP2040723A1 (en) Method and use of lactic acid bacteria with increased acid tolerance
CN110079469B (en) Lactobacillus plantarum and application thereof
TWI600758B (en) Immunnomodulatory Lactobacillus plantarum and use thereof
Senthong et al. Screening and identification of probiotic lactic acid bacteria isolated from Poo-Khem, A traditional salted crab
CN109207405A (en) A kind of resistance to cadmium lactic acid bacteria and its application
Tae-Shick Effect of titanium ion and resistance encoding plasmid of Pseudomonas aeruginosa ATCC 10145
CN109619183A (en) Lactobacillus plantarum CQPC03 and its application in the food or drug of preparation prevention liver oxidative damage
JP5351113B2 (en) Method for producing fermented food containing Bifidobacterium
CN117645957B (en) Pseudomonas stutzeri strain for degrading sulfonamide antibiotics and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6713597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250