JP2001301656A - Body structure for automobile - Google Patents

Body structure for automobile

Info

Publication number
JP2001301656A
JP2001301656A JP2000124175A JP2000124175A JP2001301656A JP 2001301656 A JP2001301656 A JP 2001301656A JP 2000124175 A JP2000124175 A JP 2000124175A JP 2000124175 A JP2000124175 A JP 2000124175A JP 2001301656 A JP2001301656 A JP 2001301656A
Authority
JP
Japan
Prior art keywords
region
width direction
rigid
vehicle width
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000124175A
Other languages
Japanese (ja)
Other versions
JP3446718B2 (en
Inventor
Sanemare Sano
真希 佐野
Manabu Sato
学 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000124175A priority Critical patent/JP3446718B2/en
Priority to US09/819,597 priority patent/US6655728B2/en
Priority to DE60101497T priority patent/DE60101497T2/en
Priority to EP01303498A priority patent/EP1149756B1/en
Publication of JP2001301656A publication Critical patent/JP2001301656A/en
Application granted granted Critical
Publication of JP3446718B2 publication Critical patent/JP3446718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a body structure expanding the collapsible region of a compartment adjacent to the front section or the rear section of a cabin and improving a collision energy absorbing characteristic. SOLUTION: At a head-on collision of a vehicle, the flexible-rigidity region F of a hood ridge member 13 is collapse-deformed in the axial direction from the input end side then bend-deformed to the inside of the vehicle width direction by the setting of the rigidity difference in the vehicle width direction with a hard-rigidity region R functioning as the center. The longitudinal deformation stroke of the hood ridge member 13 is expanded, thereby the collapsible region of a front compartment FC is expanded to increase a collision energy absorption quantity. An ultra-hard-rigidity region M is folded to the inside of the vehicle width direction on this side of the cabin C and avoids to function as a brace, thus reducing cabin deceleration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車の車体構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body structure.

【0002】[0002]

【従来の技術】自動車の中には、例えば特開平9−99
858号公報に示されているように、車両の前面衝突時
の対策としてキャビンの前部に隣接したフロントコンパ
ートメントに複数の前後方向骨格メンバを配設して、前
面衝突時の衝突入力をこれら前後方向骨格メンバからキ
ャビンの上下方向骨格メンバであるフロントピラーに荷
重伝達させるようにしたものが知られている。
2. Description of the Related Art Some automobiles include, for example, Japanese Patent Application Laid-Open No. 9-99.
As disclosed in JP-A-858-858, as a countermeasure against a frontal collision of a vehicle, a plurality of longitudinal frame members are disposed in a front compartment adjacent to the front of the cabin, and the collision input at the time of a frontal collision is detected. There is known a structure in which a load is transmitted from a directional frame member to a front pillar which is a vertical frame member of a cabin.

【0003】[0003]

【発明が解決しようとする課題】車両の前面衝突時にお
ける衝突エネルギー吸収効果を高めるためには、フロン
トコンパートメントの潰れ変形による衝突エネルギー吸
収量を増加させることが望まれる。
In order to enhance the collision energy absorption effect at the time of a frontal collision of the vehicle, it is desired to increase the amount of collision energy absorption due to the crush deformation of the front compartment.

【0004】このフロントコンパートメントの潰れ変形
を良好に行わせるためには、該フロントコンパートメン
トに設けた前後方向骨格メンバの前後方向変形ストロー
クを大きくすることが求められるが、前記従来の構造で
は前後方向骨格メンバに前後方向変形ストロークを大き
くし得るような特別な工夫がなされていないため、該前
後方向骨格メンバの軸圧潰が途中で終って潰れ残りが生
じ、フロントコンパートメントの潰れ可能領域が狭めら
れてしまう可能性がある。
In order to satisfactorily deform the front compartment, it is necessary to increase the longitudinal deformation stroke of the longitudinal frame member provided in the front compartment. Since no special measures are taken to increase the longitudinal deformation stroke of the member, axial crushing of the longitudinal skeletal member ends in the middle and remains uncrushed, and the crushable area of the front compartment is narrowed. there is a possibility.

【0005】また、前述のように前後方向骨格メンバが
潰れ残ってしまうと、この潰れ残りが剛体となってキャ
ビン側へ荷重伝達し、キャビン減速度(車体発生反力)
が大きくなってしまう可能性がある。
[0005] Further, if the longitudinal frame member remains crushed as described above, the remaining crushed member becomes a rigid body and transmits a load to the cabin side, and the cabin decelerates (reaction force generated by the vehicle body).
May become large.

【0006】そこで、本発明はキャビンの前部又は後部
に隣接したコンパートメントに設けられた前後方向骨格
メンバの前後方向変形ストロークを拡大でき、前記コン
パートメントの潰れ変形を良好に行わせて衝突エネルギ
ー吸収量を増大することができると共に、キャビン減速
度を低減することができる自動車の車体構造を提供する
ものである。
Accordingly, the present invention can enlarge the longitudinal deformation stroke of the longitudinal skeleton member provided in the compartment adjacent to the front or rear part of the cabin, and satisfactorily perform the crushing deformation of the compartment, thereby absorbing the collision energy. It is an object of the present invention to provide a vehicle body structure that can increase the vehicle speed and reduce the cabin deceleration.

【0007】[0007]

【課題を解決するための手段】請求項1の発明にあって
は、キャビンの前部又は後部に隣接したコンパートメン
トの左右側部に設けられた前後方向骨格メンバの少くと
も一部に、車幅方向の剛性を車幅方向外側よりも車幅方
向内側を小さくした領域を設けたことを特徴としてい
る。
According to the first aspect of the present invention, at least a part of the longitudinal frame members provided on the left and right sides of the compartment adjacent to the front or rear part of the cabin has a vehicle width. A region is provided in which the rigidity in the direction is smaller on the inner side in the vehicle width direction than on the outer side in the vehicle width direction.

【0008】請求項2の発明にあっては、請求項1に記
載の前後方向骨格メンバに、前後方向の剛性を異ならせ
た前後複数の領域を設けたことを特徴としている。
According to a second aspect of the present invention, a plurality of front and rear regions having different rigidities in the front and rear direction are provided in the front and rear skeleton member according to the first embodiment.

【0009】請求項3の発明にあっては、請求項2に記
載の前後方向骨格メンバの前後方向の剛性が異なる領域
が、該前後方向骨格メンバの車両前後方向衝突時におけ
る入力端側から少くとも柔−超剛−剛の順に剛性を異な
らせた3つの領域からなることを特徴としている。
According to the third aspect of the present invention, the region in which the longitudinal stiffness of the longitudinal skeletal member according to the second aspect is different from the input end side when the longitudinal skeletal member collides with the vehicle in the longitudinal direction. Both are characterized by three regions having different rigidities in the order of soft-super-rigid-rigid.

【0010】請求項4の発明にあっては、請求項3に記
載の前後方向骨格メンバの車幅方向の剛性を車幅方向外
側よりも車幅方向内側を小さくした領域を、剛性剛領域
に設定したことを特徴としている。
According to the fourth aspect of the present invention, a region in which the rigidity in the vehicle width direction of the longitudinal frame member according to the third aspect is smaller on the inner side in the vehicle width direction than on the outer side in the vehicle width direction is defined as a rigid rigid region. It is characterized by having been set.

【0011】請求項5の発明にあっては、請求項1〜4
に記載の前後方向骨格メンバが、フロントコンパートメ
ントの上側部に前下がりに傾斜して設けられたフードリ
ッジメンバであることを特徴としている。
In the invention of claim 5, claims 1 to 4 are provided.
Is a hood ridge member provided on the upper part of the front compartment so as to be inclined forward and downward.

【0012】請求項6の発明にあっては、請求項1〜4
に記載の前後方向骨格メンバが、フロントコンパートメ
ントの下側部に設けられたフロントサイドメンバである
ことを特徴としている。
According to the sixth aspect of the invention, the first to fourth aspects are provided.
Is a front side member provided on the lower side of the front compartment.

【0013】請求項7の発明にあっては、請求項1〜4
に記載の前後方向骨格メンバが、フロントコンパートメ
ントの上側部に前下がりに傾斜して設けられたフードリ
ッジメンバと、該フロントコンパートメントの下側部に
設けられたフロントサイドメンバであって、これらフー
ドリッジメンバとフロントサイドメンバとを、車両前面
衝突時における前後方向変形の同期をとる連結メンバで
上下方向に連結したことを特徴としている。
According to the invention of claim 7, claims 1 to 4 are provided.
A front hood member provided on the upper portion of the front compartment and inclined forward and downward; and a front side member provided on the lower portion of the front compartment, The member and the front side member are vertically connected by a connecting member that synchronizes the deformation in the front-rear direction at the time of a frontal collision of the vehicle.

【0014】請求項8の発明にあっては、請求項1〜7
に記載の前後方向骨格メンバの車幅方向の剛性を車幅方
向外側よりも車幅方向内側を小さくする手段が、板厚変
化,切欠き設定,ビード設定等の剛性低下手段であるこ
とを特徴としている。
In the invention of claim 8, claims 1 to 7
The means for reducing the rigidity in the vehicle width direction of the front-rear direction frame member in the vehicle width direction inside the vehicle width direction inside as compared with the vehicle width direction inside described above is a rigidity reduction means such as a change in plate thickness, a notch setting, a bead setting, or the like. And

【0015】[0015]

【発明の効果】請求項1に記載の発明によれば、車両の
前後方向衝突時に前後方向骨格メンバに軸方向に衝突入
力が作用すると、該前後方向骨格メンバが軸方向に圧壊
変形すると共に、圧壊反力の増大によって車幅方向の剛
性を車幅方向外側よりも車幅方向内側を小さくした領域
を中心として車幅方向内側へ折れ曲がり変形して、前記
軸方向の圧壊変形とこの車幅方向内側への折れ曲がり変
形とによって衝突エネルギーの吸収作用を発揮する。
According to the first aspect of the present invention, when a collision input acts on the longitudinal skeleton member in the longitudinal direction during a longitudinal collision of the vehicle, the longitudinal skeleton member is axially crushed and deformed. The rigidity in the vehicle width direction is bent inward in the vehicle width direction around a region where the rigidity in the vehicle width direction is smaller than the outside in the vehicle width direction due to an increase in the crush reaction force. The inward bending deformation exerts a function of absorbing collision energy.

【0016】そして、このように前後方向骨格メンバの
車幅方向内側への折れ曲がり変形により、該前後方向骨
格メンバの前後方向の変形ストロークが拡大されること
によって、コンパートメントの潰れ可能領域が拡大さ
れ、コンパートメントの潰れ変形を良好に行わせて前記
前後方向骨格メンバの効率的な衝突エネルギー吸収作用
と相俟って衝突エネルギー吸収量を著しく増大すること
ができる。
[0016] The bending deformation of the front and rear skeleton members inward in the vehicle width direction increases the front and rear deformation strokes of the front and rear skeleton members, thereby expanding the crushable area of the compartment. The crush deformation of the compartment is favorably performed, and the amount of collision energy absorption can be significantly increased in combination with the efficient collision energy absorption action of the longitudinal frame member.

【0017】しかも、前後方向骨格メンバの折れ曲がり
変形が不規則となることなく車幅方向内側へ規定される
ことによって、コンパートメントの左右側部で変形モー
ドを安定化して衝突エネルギー吸収特性を向上すること
ができる。
In addition, since the bending deformation of the skeleton member in the front-rear direction is defined inward in the vehicle width direction without irregularity, the deformation mode is stabilized on the left and right sides of the compartment to improve the collision energy absorption characteristics. Can be.

【0018】また、前述のように前後方向骨格メンバが
車幅方向内側へ折れ曲がり変形して、該前後方向骨格メ
ンバの前後方向の変形ストロークが拡大することから、
この前後方向骨格メンバが剛体の突張り材となって潰れ
残ってキャビン側に荷重が伝達されるのを回避できてキ
ャビン減速度を低下することができる。
Further, as described above, the longitudinal frame member is bent and deformed inward in the vehicle width direction, and the longitudinal deformation stroke of the longitudinal frame member is increased.
It is possible to prevent the load from being transmitted to the cabin side due to the front-back direction skeletal member becoming a rigid projecting member and remaining crushed, thereby reducing the cabin deceleration.

【0019】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、前後方向骨格メンバには、前後
方向の剛性を異ならせた前後複数の領域を設定してある
ため、車両の前後方向衝突時に剛性の低い領域で軸方向
の圧壊変形を積極的に行わせることができて、該前後方
向骨格メンバの変形モードを安定化することができる。
According to the second aspect of the present invention, the first aspect is provided.
In addition to the effects of the invention of the present invention, since the front and rear skeleton members are provided with a plurality of front and rear regions having different stiffness in the front and rear direction, axial crush deformation in a region with low stiffness at the time of collision of the vehicle in the front and rear direction. Can be positively performed, and the deformation mode of the longitudinal frame member can be stabilized.

【0020】請求項3に記載の発明によれば、請求項2
の発明の効果に加えて、前後方向骨格メンバの前後方向
剛性の区分領域を、車両の前後方向衝突時における入力
端側から少くとも柔−超剛−剛の順に剛性を異ならせた
3つの領域として設定してあるため、該前後方向骨格メ
ンバの剛性剛領域がキャビン側に結合されて該前後方向
骨格メンバの支持剛性を確保すると共に、剛性柔領域の
圧壊軸力を剛性超剛領域により支持することから、衝突
初期の圧壊反力の立上がりを大きくでき、かつ、剛性柔
領域を入力端から整然と圧壊変形させることができて、
衝突エネルギー吸収量を増大することができる。
According to the invention of claim 3, according to claim 2,
In addition to the effects of the invention, three regions in which the longitudinal stiffness of the longitudinal skeletal members is divided into three regions at least in order of soft-ultra-rigid-rigid from the input end when the vehicle collides in the longitudinal direction. Therefore, the rigid rigid region of the longitudinal skeleton member is connected to the cabin side to secure the supporting rigidity of the longitudinal skeleton member, and the crushing axial force of the rigid flexible region is supported by the rigid super rigid region. Therefore, the rise of the crush reaction force in the initial stage of the collision can be increased, and the rigid flexible region can be crushed and deformed from the input end in an orderly manner.
The collision energy absorption amount can be increased.

【0021】また、前後方向骨格メンバの中央部分の剛
性超剛領域とその前後に隣接する剛性柔領域および剛性
剛領域との各境界の剛性不連続点に応力が集中して、前
後方向骨格メンバを該剛性不連続点を折れ曲がり変形の
節とした多段の折り畳み状として車幅方向内側への折れ
曲がり変形を整然と行わせることができる。
Further, stress is concentrated at rigidity discontinuous points at respective boundaries between the rigid super-rigid region in the central portion of the longitudinal skeleton member and the rigid soft region and the rigid rigid region adjacent to the rigid super rigid region. Can be bent inwardly in the vehicle width direction as a multi-stage folded shape in which the rigidity discontinuous point is a node of the bending deformation.

【0022】請求項4に記載の発明によれば、請求項3
の発明の効果に加えて、前後方向骨格メンバの車幅方向
の剛性を車幅方向外側よりも車幅方向内側を小さくした
領域を、該前後方向骨格メンバの前後方向剛性の区分領
域の剛性剛領域に設定してあるため、前後方向骨格メン
バをこの剛性剛領域を中心にして車幅方向内側へ折れ曲
がり変形させて効率的に衝突エネルギー吸収を行わせる
と共に、剛性超剛領域を車幅方向内側へ畳み込ませて該
剛性超剛領域が剛性剛領域と共にキャビン手前で突張り
材として潰れ残るのを回避できて、キャビン減速度の低
減化に些かも支障を来すことがない。
According to the invention described in claim 4, according to claim 3,
In addition to the effects of the invention, the region where the rigidity in the vehicle width direction of the longitudinal frame member is smaller on the inner side in the vehicle width direction than the outer member in the vehicle width direction is changed to the rigid rigidity of the divided region of longitudinal rigidity of the longitudinal frame member. Since it is set in the region, the front and rear direction frame members are bent inward in the vehicle width direction around this rigid and rigid region to absorb the collision energy efficiently, and the rigid super-rigid region is inward in the vehicle width direction. By folding the rigid super-rigid region together with the rigid rigid region, the rigid super-rigid region can be prevented from being crushed as a strut member in front of the cabin, and there is no small problem in reducing the deceleration of the cabin.

【0023】請求項5に記載の発明によれば、請求項1
〜4の発明の効果に加えて、車両の前面衝突時にはフロ
ントコンパートメント上側部のフードリッジメンバが、
軸方向に圧潰変形すると共に車幅方向内側へ折れ曲がり
変形して効率的に衝突エネルギー吸収を行うと共に、キ
ャビン側へ荷重伝達する剛体部材となって潰れ残るのを
回避できてキャビン減速度を低減することができる。
According to the invention described in claim 5, according to claim 1,
In addition to the effects of the inventions of (1) to (4), at the time of a frontal collision of the vehicle, the hood ridge member at the upper part of the front compartment,
It crushes in the axial direction and bends inward in the vehicle width direction to efficiently absorb collision energy, and also serves as a rigid member that transmits load to the cabin side, avoiding remaining crushing and reducing cabin deceleration. be able to.

【0024】請求項6に記載の発明によれば、請求項1
〜4の発明の効果に加えて、車両の前面衝突時にはフロ
ントコンパートメント下側部のフロントサイドメンバ
が、軸方向に圧潰変形すると共に車幅方向内側へ折れ曲
がり変形して効率的に衝突エネルギー吸収を行うと共
に、キャビン側へ荷重伝達する剛体部材となって潰れ残
るのを回避できてキャビン減速度を低減することができ
る。
According to the invention of claim 6, according to claim 1,
In addition to the effects of the inventions of (1) to (4), at the time of a frontal collision of the vehicle, the front side member at the lower portion of the front compartment is crushed in the axial direction and bent inward in the vehicle width direction to efficiently absorb the collision energy. At the same time, it becomes a rigid member that transmits a load to the cabin side and can be prevented from remaining crushed, so that the deceleration of the cabin can be reduced.

【0025】請求項7に記載の発明によれば、請求項1
〜4の発明の効果に加えて、車両の前面衝突時にはフロ
ントコンパートメントの上側部のフードリッジメンバお
よび下側部のフロントサイドメンバが、それぞれ軸方向
に圧潰変形すると共に車幅方向内側へ折れ曲がり変形し
て効率的に衝突エネルギー吸収を行うと共に、キャビン
側へ荷重伝達する剛体部材となって潰れ残るのを回避で
きてキャビン減速度を低減することができる。
According to the invention of claim 7, according to claim 1,
In addition to the effects of the inventions of (1) to (4), at the time of a frontal collision of the vehicle, the upper hood ridge member and the lower front side member of the front compartment are crushed in the axial direction and bent inward in the vehicle width direction. In addition to efficiently absorbing the collision energy, the rigid member for transmitting the load to the cabin side can be prevented from remaining crushed and the deceleration of the cabin can be reduced.

【0026】しかも、連結メンバによって前記フードリ
ッジメンバとフロントサイドメンバが同期的に車幅方向
内側へ折れ曲がり変形するため、フロントコンパートメ
ントの変形モードを安定させることができて、衝突エネ
ルギー吸収特性を向上することができる。
Furthermore, since the hood ridge member and the front side member are synchronously bent and deformed inward in the vehicle width direction by the connecting member, the deformation mode of the front compartment can be stabilized, and the collision energy absorbing characteristics can be improved. be able to.

【0027】請求項8に記載の発明によれば、請求項1
〜7の発明の効果に加えて、前後方向骨格メンバの所要
領域における車幅方向の剛性差を、板厚変化や切欠き設
定あるいはビード設定等によって容易に調整することが
できる。
According to the invention described in claim 8, claim 1 is provided.
In addition to the effects of the seventh to seventh aspects, the rigidity difference in the vehicle width direction in the required region of the longitudinal frame member can be easily adjusted by changing the plate thickness, setting the notch or setting the bead.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳述する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0029】図12において、キャビンCはフロアメン
バ1,ルーフパネル2,ダッシュクロスメンバ3,リヤ
パーセル4等によってフロントコンパートメントF・C
およびリヤコンパートメントR・Cと隔成されており、
フロントピラー5,センターピラー6,リヤピラー7等
の上下方向骨格メンバ、サイドシル8,リヤサイドメン
バ9等の前後方向骨格メンバ、およびカウルボックス1
1,リヤシートクロスメンバ12等の車幅方向骨格メン
バによって所要のキャビン剛性を確保してある。
In FIG. 12, the cabin C is divided into a front compartment FC by a floor member 1, a roof panel 2, a dash cross member 3, a rear parcel 4, and the like.
And the rear compartments R and C,
Vertical frame members such as front pillar 5, center pillar 6, rear pillar 7 and the like, front and rear frame members such as side sill 8 and rear side member 9, and cowl box 1
The required cabin rigidity is ensured by the vehicle width direction frame members such as the rear seat cross member 12 and the like.

【0030】一方、フロントコンパートメントF・Cに
あっては、その左右側部の上側部に前下がりに傾斜して
設けられたフードリッジメンバ13を、および下側部に
フロントサイドメンバ14をそれぞれ閉断面構造の前後
方向骨格メンバとして配設してある。
On the other hand, in the front compartments F and C, the hood ridge member 13 provided at the upper part on the left and right sides thereof is provided to be inclined downward and the front side member 14 is provided on the lower part. It is arranged as a longitudinal frame member of the cross-sectional structure.

【0031】フードリッジメンバ13はその後端部をフ
ロントピラー5に結合してあり、左右のフードリッジメ
ンバ13,13の前端部は図外のラジエータコアサポー
トにより連結してある。
The hood ridge member 13 has its rear end connected to the front pillar 5, and the front ends of the left and right hood ridge members 13, 13 are connected by a radiator core support (not shown).

【0032】フロントサイドメンバ14はその後端部を
ダッシュクロスメンバ3の下面側に廻り込んで結合して
あり、左右のフロントサイドメンバ14,14の前端部
は前記フードリッジメンバ13の前端とほぼ同位置で図
外のラジエータコアサポートにより連結してあると共
に、該ラジエータコアサポートよりも前方の突出端をバ
ンパーアーマチュア15および図外のファーストクロス
メンバで連結してある。また、フードリッジメンバ13
およびフロントサイドメンバ14はそれらの長さの中間
部分で、フロントコンパートメントF・Cの主要骨格メ
ンバを構成するストラットハウジング16(連結メンバ
ー)により連結してある。
The front side member 14 has its rear end wrapped around the lower surface of the dash cross member 3 and is joined. The front ends of the left and right front side members 14 and 14 are substantially the same as the front end of the hood ridge member 13. In this position, the radiator core support is connected by a radiator core support (not shown), and a protruding end ahead of the radiator core support is connected by a bumper armature 15 and a first cross member (not shown). Also, the food ridge member 13
The front side member 14 is connected at its intermediate portion by a strut housing 16 (connection member) constituting a main skeleton member of the front compartments FC.

【0033】ここで、図1,2に示すように前記フード
リッジメンバ13の所要の領域、例えばストラットハウ
ジング16を結合した領域Mの後方の領域Rは、図2
(D),(E)に示すように内側の側壁に剛性低下手段
21として閉断面内に膨出するビード21aを形成し
て、車幅方向の剛性Sxを車幅方向外側よりも車幅方向
内側を小さくしてある。
Here, as shown in FIGS. 1 and 2, a required area of the hood ridge member 13, for example, an area R behind an area M to which the strut housing 16 is connected is shown in FIG.
As shown in (D) and (E), a bead 21a swelling in a closed cross section is formed on the inner side wall as the rigidity reducing means 21 so as to reduce the rigidity Sx in the vehicle width direction in the vehicle width direction as compared with the vehicle width direction outside. The inside is small.

【0034】また、このフードリッジメンバ13は前後
方向の剛性Syを異ならせた前後複数の領域に区分して
あり、例えば前記領域Mはストラットハウジング16の
結合によって、および必要に応じて閉断面内に前後方向
に複数のブレース22を配設して剛性超剛領域としてあ
ると共に、その後方の領域Rは領域Mよりも剛性の低い
剛性剛領域としてあり、更に領域Mの前方の領域Fは前
記後方の領域Rよりも剛性の低い剛性柔領域として、車
両の前面衝突時における入力端側から柔−超剛−剛の順
に前後方向剛性を異ならせてある。
The hood ridge member 13 is divided into a plurality of front and rear regions having different rigidities Sy in the front and rear direction. For example, the region M is formed by coupling the strut housing 16 and, if necessary, in a closed section. A plurality of braces 22 are arranged in the front-rear direction to form a rigid super-rigid region, a region R behind the region is a rigid rigid region having lower rigidity than the region M, and a region F in front of the region M is As a rigid soft region having a lower rigidity than the rear region R, the longitudinal rigidity is varied in the order of soft-ultra-rigid from the input end at the time of a frontal collision of the vehicle.

【0035】このフードリッジメンバ13としては、例
えばアルミ合金等の軽量金属材料からなる角筒状の押出
し材を用いることができ、前記領域F,M,Rの前後方
向剛性差は、閉断面積および又は板厚の調整によって容
易に設定することができる。本実施形態にあっては、図
1に示すように領域Fを略前半部領域Faと略後半部領
域Fbとに区分して、領域Faを領域Fbの板厚t2 よ
りも小さな板厚t1に設定して該領域Faの剛性Sy1
を最も低くし、領域Fbは領域Mの板厚t2とほぼ同一
に設定して、該領域Fbの剛性Sy2 の剛性を領域Fa
の剛性Sy1よりも高く、かつ、ストラットハウジング
16を結合して前後方向剛性が高められた該領域Mの剛
性Sy3 よりも低くしてある。
As the hood ridge member 13, a rectangular cylindrical extruded material made of a lightweight metal material such as an aluminum alloy can be used. And / or can be easily set by adjusting the plate thickness. In the present embodiment, as shown in FIG. 1, the region F is divided into a substantially front half region Fa and a substantially rear half region Fb, and the region Fa is reduced to a plate thickness t1 smaller than the plate thickness t2 of the region Fb. Set the rigidity Sy1 of the area Fa
And the area Fb is set substantially equal to the plate thickness t2 of the area M, and the rigidity of the rigidity Sy2 of the area Fb is reduced to the area Fa.
, And lower than the rigidity Sy3 of the region M where the rigidity in the front-rear direction is increased by connecting the strut housings 16.

【0036】また、領域Rは領域Mの板厚t2 とほぼ同
一もしくは小さく設定すると共に領域Mよりも閉断面積
を上下方向に大きく設定して剛性超剛領域よりも剛性の
低い剛性剛領域とするが、該領域Rも略前半部Raと略
後半部Rbとに区分して、領域Raの剛性Sy4 を領域
Mの剛性Sy3 よりも低くし、領域Rbの剛性Sy5を
領域Rbの剛性Sy4 とほぼ同一もしくは高くしてあ
る。
The region R is set to be substantially the same or smaller than the plate thickness t2 of the region M, and the closed cross-sectional area is set to be larger in the vertical direction than that of the region M so that the region R is a rigid and rigid region having a lower rigidity than the rigid super-rigid region. However, the region R is also divided into a substantially front half portion Ra and a substantially rear half portion Rb, the rigidity Sy4 of the region Ra is made lower than the rigidity Sy3 of the region M, and the rigidity Sy5 of the region Rb is reduced to the rigidity Sy4 of the region Rb. Almost the same or higher.

【0037】即ち、前述の車幅方向剛性Sxと前後方向
剛性Syの設定により、フードリッジメンバ13には車
両前面衝突に対して、領域Fが前後方向の潰れ変形によ
り衝突エネルギーを吸収し、領域Mが領域Fの圧潰支持
力を高め、そして、領域RがキャビンC側との結合剛性
を高めると共にフードリッジメンバ13の車幅方向内側
への折れ曲がり変形の促進を担うという物理的特性を付
与してある。
That is, by setting the above-described rigidity Sx in the vehicle width direction and the rigidity Sy in the front-rear direction, the area F absorbs the collision energy by crush deformation in the front-rear direction with respect to the frontal collision of the hood ridge member 13. M enhances the crushing support force of the region F, and the region R enhances the coupling rigidity with the cabin C side, and imparts the physical characteristics that the hood ridge member 13 bends inward in the vehicle width direction to promote the deformation. It is.

【0038】このような本実施形態におけるフードリッ
ジメンバ13の各領域F,M,Rの機能と剛性差とを表
1にまとめて示す。
The functions and rigidity differences of the respective regions F, M, R of the hood ridge member 13 in this embodiment are summarized in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】ここで、前記車幅方向剛性Sxに関して、
基本的には領域Mは領域Fと同様に車幅方向の内側と外
側とで剛性差のないノーマルな形態でフードリッジメン
バ13が押出成形されるが、本実施形態ではストラット
ハウジング16を内側の側壁に結合してある関係で、領
域Mにおける車幅方向剛性Sxが車幅方向の外側よりも
内側が大きくなる傾向となるものの、該領域Mの車幅方
向外側の剛性は領域Rのビード21aを設けた車幅方向
内側の剛性よりも大きいため、該領域Rの車幅方向内側
への折れ曲がり作用に影響を与えることはない。
Here, regarding the vehicle width direction rigidity Sx,
Basically, in the region M, the hood ridge member 13 is extruded in a normal form in which there is no rigidity difference between the inside and the outside in the vehicle width direction as in the region F. Due to the connection with the side wall, the rigidity Sx in the vehicle width direction in the region M tends to be larger on the inner side than on the outer side in the vehicle width direction. Is not greater than the rigidity of the region R inward in the vehicle width direction.

【0041】以上の実施形態の構造によれば、車両の前
面衝突によりフードリッジメンバ13に軸方向に衝突入
力が作用すると、該フードリッジメンバ13が軸方向に
圧壊変形すると共に、圧壊反力の増大によって車幅方向
剛性を車幅方向の外側よりも内側を小さくした領域Rを
中心として該フードリッジメンバ13が車幅方向内側へ
折れ曲がり変形して、前記軸方向の圧壊変形とこの車幅
方向内側への折れ曲がり変形とによって衝突エネルギー
の吸収作用を発揮する。
According to the structure of the above embodiment, when a collision input acts on the hood ridge member 13 in the axial direction due to the frontal collision of the vehicle, the hood ridge member 13 is crushed and deformed in the axial direction, and the crush reaction force is reduced. The hood ridge member 13 is bent and deformed inward in the vehicle width direction around a region R in which the rigidity in the vehicle width direction is made smaller on the inner side than on the outer side in the vehicle width direction due to the increase. The inward bending deformation exerts a function of absorbing collision energy.

【0042】具体的には、フードリッジメンバ13は前
後方向剛性を前端の入力端側から柔−超剛−剛の順に剛
性を異ならせた3つの領域F,M,Rに区分してあるた
め、車両前面衝突時には剛性剛領域RがキャビンC側に
結合されてフードリッジメンバ13の支持剛性が確保さ
れると共に、剛性柔領域Fの圧壊軸力が剛性超剛領域M
により支持されることによって、衝突初期の圧壊反力の
立上がりを大きくし、かつ、剛性柔領域Fを入力端側か
ら積極的に整然と圧壊変形させる。
More specifically, the hood ridge member 13 is divided into three regions F, M, and R in which the rigidity in the front-rear direction is different from the front end on the input end side in the order of soft-ultra-rigid-rigid. In the event of a frontal collision of the vehicle, the rigid rigid region R is connected to the cabin C side to secure the support rigidity of the hood ridge member 13 and the crushing axial force of the rigid soft region F is reduced to the rigid super rigid region M
As a result, the rise of the crush reaction force in the initial stage of the collision is increased, and the rigid flexible region F is positively and crushed and deformed positively from the input end side.

【0043】そして、圧壊反力が増大すると、もともと
フードリッジメンバ13はその前端部が図外のラジエー
タコアサポートによって車幅方向外側への広がりが規制
されていることと併せて、領域Rでは車幅方向内側の剛
性を低めてあることによって、該領域Rを中心として車
幅方向内側へ折れ曲がり変形するが、該フードリッジメ
ンバ13の長さ方向中央部分の剛性超剛領域Mとその前
後に隣接する剛性柔領域Fおよび剛性剛領域Rとの各境
界の剛性不連続点に応力が集中して、このフードリッジ
メンバ13を該剛性不連続点を折れ曲がり変形の節とし
て図3に示すように多段の折り畳み状に車幅方向内側へ
の折れ曲がり変形を整然と行わせて衝突エネルギーを効
率的に吸収する。
When the crush reaction force increases, the front end of the hood ridge member 13 is originally restricted from spreading outward in the vehicle width direction by a radiator core support (not shown). Since the rigidity inside the width direction is reduced, the hood ridge member 13 is bent and deformed inward in the vehicle width direction around the region R. The stress concentrates on the rigidity discontinuous point at each boundary between the rigid flexible region F and the rigid rigid region R, and the hood ridge member 13 is used as a node of bending deformation at the rigid discontinuous point as shown in FIG. In this way, the vehicle is bent inward in the vehicle width direction in a fold-like manner so that the collision energy is efficiently absorbed.

【0044】このようにフードリッジメンバ13が車幅
方向内側へ折れ曲がり変形して、該フードリッジメンバ
13の前後方向の変形ストロークが拡大されることによ
って、フロントコンパートメントF・Cの潰れ可能領域
が拡大され、該フロントコンパートメントF・Cの潰れ
変形を良好に行わせて前記フードリッジメンバ13の効
率的な衝突エネルギー吸収作用と相俟って衝突エネルギ
ー吸収量を著しく増大することができる。
As described above, the hood ridge member 13 is bent inward in the vehicle width direction and the deformation stroke of the hood ridge member 13 in the front-rear direction is enlarged, so that the crushable area of the front compartments FC is expanded. Then, the front compartments F and C can be satisfactorily deformed by collapsing, and the collision energy absorption amount of the hood ridge member 13 can be significantly increased in combination with the efficient collision energy absorption action of the hood ridge member 13.

【0045】しかも、このフードリッジメンバ13の折
れ曲がり変形が不規則となることなく車幅方向内側へ規
定されることと、前述のように剛性柔領域Fを入力端側
から整然と、かつ、積極的に圧潰変形させることによっ
て、フロントコンパートメントF・Cの左右側部で変形
モードを安定化して衝突エネルギー吸収特性を向上する
ことができる。
Moreover, the bending deformation of the hood ridge member 13 is defined inward in the vehicle width direction without irregularity, and the rigid soft region F is arranged from the input end side in an orderly and positive manner as described above. By performing the crush deformation, the deformation mode can be stabilized on the left and right sides of the front compartments FC, and the collision energy absorption characteristics can be improved.

【0046】一方、このような衝突エネルギー吸収特性
上の効果と共に、前述のようにフードリッジメンバ13
が車幅方向内側へ折れ曲がり変形して、該フードリッジ
メンバ13の前後方向の変形ストロークが拡大し、とり
わけ、前記剛性剛領域Rを中心にしての折れ曲がり変形
によって剛性超剛領域Mを車幅方向内側へ畳み込ませ
て、該剛性超剛領域Mが剛性剛領域Rと共にキャビンC
の手前で該キャビンC側へ荷重伝達する剛体の突張り材
として潰れ残るのを回避できて、キャビン減速度を低下
することができる。
On the other hand, together with such an effect on the collision energy absorption characteristics, the hood ridge member 13
Is bent inward in the vehicle width direction, and the deformation stroke of the hood ridge member 13 in the front-rear direction is expanded. In particular, the rigid super-rigid region M is bent in the vehicle width direction by bending deformation around the rigid rigid region R. Folded inward, the rigid super-rigid region M and the rigid rigid region R
Can be prevented from remaining crushed as a rigid upholstery that transmits a load to the cabin C side, and the cabin deceleration can be reduced.

【0047】特に、このフードリッジメンバ13は前下
がりに傾斜配設されていることから、車両の前面衝突時
の前後方向の変形には図5に示すように前端側が下がる
曲げ変形が伴い、従って、フードリッジメンバ13の傾
斜度および又はカウルボックス11の配設地上高の設定
によっては、前記図3に示したようにストラットハウジ
ング16の上端がカウルボックス11と干渉せずに、図
4に示すよう該ストラットハウジング16の上端がカウ
ルボックス11の下側へ潜り込むような変形を行わせる
ことができて、キャビン減速度の低減化をより一層有利
に行わせることができる。
In particular, since the hood ridge member 13 is inclined downward and forward, deformation in the front-rear direction at the time of a frontal collision of the vehicle involves bending deformation in which the front end side is lowered as shown in FIG. Depending on the inclination of the hood ridge member 13 and / or the setting of the ground height of the cowl box 11, the upper end of the strut housing 16 does not interfere with the cowl box 11 as shown in FIG. In this way, the upper end of the strut housing 16 can be deformed so as to be sunk below the cowl box 11, so that the reduction of the cabin deceleration can be more advantageously performed.

【0048】図6,7は本発明の第2の実施形態を示す
もので、本実施形態にあってはフードリッジメンバ13
を前記第1実施形態と同様の軽量金属材料をもって押出
成形したフロントメンバ13Fとリヤメンバ13R、お
よびこれら両者を連結したジョイントメンバ25とで構
成している。
FIGS. 6 and 7 show a second embodiment of the present invention. In this embodiment, a hood ridge member 13 is provided.
Are composed of a front member 13F and a rear member 13R which are extruded from the same lightweight metal material as in the first embodiment, and a joint member 25 connecting these members.

【0049】フロントメンバ13Fは円筒状に押出成形
してある一方、リヤメンバ13Rはフロントメンバ13
Fよりも閉断面積の大きな角筒状に押出成形してあり、
また、ジョイントメンバ25は一側に設けた円筒状の第
1ソケット部25aと、他側に該第1ソケット部25a
と隔成して設けた角筒状の第2ソケット部25bとを備
えていて、この第1ソケット部25aにフロントメンバ
13Fを挿入嵌合すると共に第2ソケット部25bにリ
ヤメンバ13Rを挿入嵌合し、それらの継目部分を溶接
して一体的に結合してある。
The front member 13F is formed by extrusion molding into a cylindrical shape, while the rear member 13R is formed by the front member 13F.
Extruded into a square tube with a larger closed cross section than F
The joint member 25 has a cylindrical first socket portion 25a provided on one side and the first socket portion 25a provided on the other side.
A front member 13F is inserted into the first socket portion 25a and a rear member 13R is inserted into the second socket portion 25b. Then, the joints are welded and integrally joined.

【0050】このようにフロントメンバ13Fとリヤメ
ンバ13Rとをジョイントメンバ25により嵌合連結し
て、ジョイント部分を多重壁構造とすることによって、
この多重壁の領域Mを前後方向剛性Syの最も大きな剛
性超剛領域とし、その前方の領域Fを閉断面積が小さく
前後方向剛性Syが最も低い剛性柔領域に、また、領域
Mの後方の領域Rを閉断面積が大きく前記領域Mよりも
前後方向剛性Syが低い剛性剛領域として区分してあ
る。
As described above, the front member 13F and the rear member 13R are fitted and connected by the joint member 25 so that the joint portion has a multi-wall structure.
The region M of the multi-wall is defined as a super-rigid region having the largest rigidity Sy in the front-rear direction, and a region F in front thereof is defined as a rigid flexible region having a small closed cross-sectional area and the lowest rigidity Sy in the front-rear direction. The region R is classified as a rigid rigid region having a large closed cross-sectional area and a lower rigidity Sy in the front-rear direction than the region M.

【0051】前記領域Mを中間にして前後に連なる領域
Fおよび領域Rは何れも略前半部領域Fa,Raと、略
後半部領域Fb,Rbとに区分し、そして、これら一連
の領域Fa,Fb,M,Ra,Rbに前記第1実施形態
と同様の条件で前後方向剛性Syに差を設けてある。
Each of the region F and the region R which are connected in front and back with the region M as the middle is divided into a substantially front half region Fa, Ra and a substantially rear half region Fb, Rb. Fb, M, Ra, and Rb are provided with a difference in the longitudinal rigidity Sy under the same conditions as in the first embodiment.

【0052】また、本実施形態では前記領域Raにおけ
る車幅方向内側の側壁と上,下壁とが連設した上下の稜
線にそれぞれ跨って切欠き21bを設けることによっ
て、該領域Raの車幅方向剛性Sxを車幅方向外側より
も車幅方向内側が小さくなるようにしてある。
In the present embodiment, the notches 21b are provided so as to straddle the upper and lower ridges of the region Ra on the inner side in the vehicle width direction and the upper and lower walls, respectively. The directional rigidity Sx is set to be smaller on the inside in the vehicle width direction than on the outside in the vehicle width direction.

【0053】従って、この第2実施形態の場合も前記第
1実施形態と同様に、車両の前面衝突時にはフードリッ
ジメンバ13の剛性柔領域Fが入力端側から軸方向に整
然と圧壊変形すると共に、剛性剛領域Rの前半部領域R
aを中心にして車幅方向内側へ折れ曲がり変形してフロ
ントコンパートメントF・Cの潰れ可能領域を拡大し、
効率的に衝突エネルギー吸収を行うと共に、剛性超剛領
域MがキャビンC側へ荷重伝達する剛体部材となって潰
れ残るのを回避してキャビン減速度を低減することがで
きる。
Therefore, in the case of the second embodiment, similarly to the first embodiment, at the time of a frontal collision of the vehicle, the rigid soft region F of the hood ridge member 13 is orderly crushed and deformed in the axial direction from the input end side. First half region R of rigid rigid region R
bends inward in the vehicle width direction around a to expand the crushable area of the front compartments F and C,
It is possible to efficiently absorb the collision energy and to prevent the rigid super-rigid region M from becoming a rigid member transmitting the load to the cabin C side and remaining collapsed, thereby reducing the deceleration of the cabin.

【0054】図8,9は本発明の第3実施形態を示すも
ので、本実施形態にあっては前記第1実施形態と同様に
フードリッジメンバ13を軽量金属材料をもって角筒状
に押出成形するが、後部の領域Rから中央部の領域Mお
よび前部の領域Fに至るにしたがって段階的に板厚を薄
くすると共に閉断面積を段階的に小さく形成している。
FIGS. 8 and 9 show a third embodiment of the present invention. In this embodiment, the hood ridge member 13 is formed by extruding a lightweight metal material into a rectangular tube shape as in the first embodiment. However, the plate thickness is gradually reduced from the rear region R to the central region M and the front region F, and the closed sectional area is gradually reduced.

【0055】そして、前記中央部の領域Mの閉断面内に
前後方向に複数のブレース22を配設して該領域Mを前
後方向剛性Syが最も大きな剛性超剛領域とし、その前
方の領域Fを前後方向剛性Syが最も低い剛性柔領域
に、また、領域Mの後方の領域Rを前記領域Mよりも前
後方向剛性Syが低い剛性剛領域として区分してある。
この実施形態の場合も領域Mを中間にして前後に連なる
領域Fおよび領域Rを何れも略前半部領域Fa,Raと
略後半部領域Fb,RBとに区分し、そして、これら一
連の領域Fa,Fb,M,Ra,Rbに前記第1実施形
態と同様の条件で前後方向剛性Syに差を設けてある。
A plurality of braces 22 are disposed in the front-rear direction within the closed cross section of the central region M, and the region M is defined as a rigid super-rigid region having the maximum rigidity Sy in the front-rear direction. Is divided into a rigid soft region having the lowest longitudinal rigidity Sy, and the region R behind the region M is classified as a rigid rigid region having a lower longitudinal rigidity Sy than the region M.
In the case of this embodiment as well, both the region F and the region R that are connected in front and rear with the region M as the middle are divided into approximately front half regions Fa and Ra and approximately rear half regions Fb and RB, and a series of these regions Fa , Fb, M, Ra, and Rb are provided with a difference in the longitudinal rigidity Sy under the same conditions as in the first embodiment.

【0056】また、本実施形態では前記領域Raにおけ
る車幅方向内側の略半部の板厚を車幅方向外側の略半部
の板厚よりも薄くした板厚変化部21cを形成して、該
領域Raの車幅方向剛性Sxを車幅方向外側よりも車幅
方向内側が小さくなるようにしてある。
In this embodiment, a plate thickness changing portion 21c is formed in which the thickness of the substantially half portion on the inner side in the vehicle width direction in the region Ra is smaller than the thickness of the substantially half portion on the outer side in the vehicle width direction. The rigidity Sx in the vehicle width direction of the region Ra is smaller on the inside in the vehicle width direction than on the outside in the vehicle width direction.

【0057】従って、この第3実施形態にあっても前記
第1実施形態と同様に、車両の前面衝突時にはフードリ
ッジメンバ13の剛性柔領域Fが入力端側から軸方向に
整然と圧壊変形すると共に、剛性領域Rの前半部領域R
aを中心にして車幅方向内側へ折れ曲がり変形してフロ
ントコンパートメントF・Cの潰れ可能領域を拡大し、
効率的に衝突エネルギー吸収を行うと共に、剛性超剛領
域MがキャビンC側へ荷重伝達する剛体部材となって潰
れ残るのを回避してキャビン減速度を低減することがで
きる。
Therefore, even in the third embodiment, similarly to the first embodiment, at the time of a frontal collision of the vehicle, the rigid soft region F of the hood ridge member 13 is crushed and deformed in the axial direction from the input end side in an orderly manner. , The first half region R of the rigid region R
bends inward in the vehicle width direction around a to expand the crushable area of the front compartments F and C,
It is possible to efficiently absorb the collision energy and to prevent the rigid super-rigid region M from becoming a rigid member transmitting the load to the cabin C side and remaining collapsed, thereby reducing the deceleration of the cabin.

【0058】図10は本発明をフロントサイドメンバ1
4に適用した第4実施形態を示している。
FIG. 10 shows a front side member 1 according to the present invention.
4 shows a fourth embodiment applied to FIG.

【0059】フロントサイドメンバ14はアルミ合金等
の軽量金属材料をもって押出成形したフロントメンバ1
4Fとリヤメンバ14R、およびこれら両者を連結した
ジョイントメンバ26とで構成している。
The front side member 14 is formed by extrusion molding a lightweight metal material such as an aluminum alloy.
4F, a rear member 14R, and a joint member 26 connecting both of them.

【0060】フロントメンバ14Fは円筒状に押出成形
してある一方、リヤメンバ14Rはフロントメンバ14
Fよりも閉断面積の大きな角筒状に押出成形してあり、
その前端に円筒状のジョイントメンバ26を接合固定し
てあって、このジョイントメンバ26にフロントメンバ
14Fを挿入嵌合し、その継目部分を溶接して一体的に
結合してある。
The front member 14F is extruded into a cylindrical shape, while the rear member 14R is
Extruded into a square tube with a larger closed cross section than F
A cylindrical joint member 26 is joined and fixed to the front end thereof, and a front member 14F is inserted and fitted into the joint member 26, and a joint portion thereof is integrally welded.

【0061】このようにフロントメンバ14Fとジョイ
ントメンバ26とを嵌合連結して、ジョイント部分を多
重壁構造とすることによって、およびジョイントメンバ
26にエンジンマウント27を結合固定することによっ
て、この多重壁のジョイント領域Mを前後方向剛性Sy
の最も大きな剛性超剛領域とし、その前方の領域Fを閉
断面積が小さく前後方向剛性Syが最も低い剛性柔領域
に、また、領域Mの後方の領域Rを閉断面積が大きく前
記領域Mよりも前後方向剛性Syが低い剛性剛領域とし
て区分してある。
As described above, the front member 14F and the joint member 26 are fitted and connected to form a multi-wall structure at the joint portion, and the engine mount 27 is fixed to the joint member 26 to thereby form the multi-wall structure. The joint area M of the front and rear direction rigidity Sy
The region F in front of the region R is the largest rigid super-rigid region, the region F in front thereof is a rigid flexible region having a small closed cross-sectional area and the lowest rigidity Sy in the front-rear direction, and the region R behind the region M is large in the closed region. It is classified as a rigid rigid region having lower rigidity Sy in the front-rear direction.

【0062】前記領域Fは略前半部領域Faと略後半部
領域Fbとに区分してあると共に、領域Rを略前半部領
域Raと後端側の閉断面積を上下方向に漸増させた略後
半部領域Rbとに区分し、そして、領域Mを中間にして
前後に連なるこれら領域Fa,Fb,M,Ra,Rbに
前記第1実施形態と同様の条件で前後方向剛性Syに差
を設けてある。
The region F is divided into a substantially front half region Fa and a substantially rear half region Fb, and the region R is formed by gradually increasing the closed sectional area of the substantially front half region Ra and the rear end side in the vertical direction. The region Fa, Fb, M, Ra, and Rb are divided into the rear half region Rb, and the front and rear regions are arranged with the region M in the middle, and a difference is provided in the longitudinal rigidity Sy under the same conditions as in the first embodiment. It is.

【0063】また、前記領域Rの例えば領域RaとRb
との境界部分に前記第1〜第3実施形態と同様の剛性低
下手段21を用いて、該部分の車幅方向剛性Sxを車幅
方向外側よりも車幅方向内側が小さくなるようにしてあ
る。
Further, for example, the regions Ra and Rb of the region R
The stiffness reducing means 21 similar to the first to third embodiments is used at the boundary between the first and third embodiments so that the rigidity Sx in the vehicle width direction of this portion is smaller on the inner side in the vehicle width direction than on the outer side in the vehicle width direction. .

【0064】従って、この第4実施形態の構造によれ
ば、車両の前面衝突によりフロントサイドメンバ14に
軸方向に衝突入力が作用すると、該フロントサイドメン
バ14は前後方向剛性を前端の入力端側から柔−超剛−
剛の順に剛性を異ならせた3つの領域F,M,Rに区分
してあるため、この剛性剛領域RがキャビンC側に結合
されてフロントサイドメンバ14の支持剛性が確保され
ると共に、剛性柔領域Fの圧壊軸力が剛性超剛領域Mに
より支持されることによって、衝突初期の圧壊反力の立
上がりを大きくし、かつ、剛性柔領域Fを入力端側から
整然と圧壊変形させる。
Therefore, according to the structure of the fourth embodiment, when a collision input acts on the front side member 14 in the axial direction due to a frontal collision of the vehicle, the front side member 14 has a rigidity in the front-rear direction which is closer to the input end of the front end. Kara soft-super rigid-
Since the rigidity is divided into three regions F, M, and R having different rigidities in the order of rigidity, the rigid rigid region R is connected to the cabin C side to secure the support rigidity of the front side member 14 and to secure rigidity. Since the crushing axial force of the soft region F is supported by the rigid super-rigid region M, the rise of the crush reaction force in the initial stage of the collision is increased, and the rigid soft region F is crushed and deformed orderly from the input end side.

【0065】そして、圧壊反力が増大すると、もともと
フロントサイドメンバ14はその前端部がバンパーアー
マチュア15や図外のファーストクロスメンバおよびラ
ジエータコアサポートパネルによって車幅方向外側への
広がりが規制されていることと併せて、領域Rにおける
RaとRbとの境界部分で車幅方向内側の剛性を低めて
あることによって、該境界部分を中心として車幅方向内
側へ折れ曲がり変形するが、該フロントサイドメンバ1
4の長さ方向中央部分の剛性超剛領域Mとその前後に隣
接する剛性柔領域Fおよび剛性剛領域Rとの各境界の剛
性不連続点に応力が集中して、図3,4に示したフード
リッジメンバ13と同様の形態でこのフロントサイドメ
ンバ14を該剛性不連続点を折れ曲がりの節として多段
の折り畳み状に車幅方向内側への折れ曲がり変形を整然
と行わせて衝突エネルギーを効率的に吸収する。
When the crush reaction force increases, the front end of the front side member 14 is originally restricted from spreading outward in the vehicle width direction by the bumper armature 15, the first cross member and the radiator core support panel (not shown). In addition to this, since the rigidity inside the vehicle width direction is reduced at the boundary between Ra and Rb in the region R, the front side member 1 is bent and deformed inward in the vehicle width direction around the boundary.
The stress is concentrated on the rigidity discontinuous points at the respective boundaries between the rigid super-rigid region M in the central portion in the length direction 4 and the rigid-soft region F and the rigid-rigid region R adjacent before and after the region. In the same manner as the hood ridge member 13, the front side member 14 is used as a bending node at the rigidity discontinuity point to bend in a multi-stage fold in an inward direction in the vehicle width direction so that collision energy is efficiently reduced. Absorb.

【0066】このようにフロントサイドメンバ14が車
幅方向内側へ折れ曲がり変形して、該フロントサイドメ
ンバ14の前後方向の変形ストロークが拡大されること
によって、フロントコンパートメントF・Cの潰れ可能
領域が拡大され、該フロントコンパートメントF・Cの
潰れ変形を良好に行わせて前記フロントサイドメンバ1
4の効率的な衝突エネルギー吸収作用と相俟って衝突エ
ネルギー吸収量を著しく増大することができる。
As described above, the front side member 14 is bent and deformed inward in the vehicle width direction, and the deformation stroke of the front side member 14 in the front-rear direction is expanded, so that the crushable area of the front compartments FC is expanded. The front compartments 1 and 2 are satisfactorily deformed by crushing and deforming the front compartments FC.
4, the amount of collision energy absorption can be significantly increased.

【0067】しかも、このフロントサイドメンバ14の
折れ曲がり変形が不規則となることなく車幅方向内側へ
規定されることと、前述のように剛性柔領域Fを入力端
側から整然と、かつ、積極的に圧潰変形させることによ
って、フロントコンパートメントF・Cの左右側部で変
形モードを安定化して衝突エネルギー吸収特性を向上す
ることができる。
Further, the bending deformation of the front side member 14 is defined inward in the vehicle width direction without irregularity, and the rigid flexible region F is arranged from the input end side in an orderly and positive manner as described above. By performing the crush deformation, the deformation mode can be stabilized on the left and right sides of the front compartments FC, and the collision energy absorption characteristics can be improved.

【0068】また、前述のようにフロントサイドメンバ
14が車幅方向内側へ折れ曲がり変形して、該フロント
サイドメンバ14の前後方向の変形ストロークが拡大
し、とりわけ、前記剛性剛領域Rにおける領域RaとR
bの境界部分を中心にしての折れ曲がり変形によって剛
性超剛領域Mを車幅方向内側へ畳み込ませて、該剛性超
剛領域Mが領域Raと共にキャビンCの手前で該キャビ
ンC側へ荷重伝達する剛体の突張り材として潰れ残るの
を回避できて、キャビン減速度を低下することができ
る。
Further, as described above, the front side member 14 is bent and deformed inward in the vehicle width direction, so that the deformation stroke of the front side member 14 in the front-rear direction is enlarged. R
The rigid super-rigid region M is folded inward in the vehicle width direction by bending deformation around the boundary portion of b, and the rigid super-rigid region M is transmitted to the cabin C side together with the region Ra in front of the cabin C. It is possible to avoid remaining as a rigid strut and to reduce cabin deceleration.

【0069】図11は本発明の第5実施形態を示すもの
で、本実施形態にあっては、フードリッジメンバ13と
して前記図1〜5に示した第1実施形態のフードリッジ
メンバ、即ち、前後方向剛性を前端の入力端側から柔−
超剛−剛の順に剛性を異ならせた3つの領域F,M,R
に区分すると共に、領域Rの車幅方向剛性を剛性低下手
段21によって車幅方向外側よりも車幅方向内側を小さ
くしたフードリッジメンバ13を用いると共に、フロン
トサイドメンバ14として前記図10に示した第4実施
形態のフロントサイドメンバ、即ち、前後方向剛性を前
端の入力端側から柔−超剛−剛の順に剛性を異ならせた
3つの領域F,M,Rに区分すると共に、領域Rにおけ
る領域RaとRbの境界部分の車幅方向剛性を剛性低下
手段21によって車幅方向外側よりも車幅方向内側を小
さくしたフロントサイドメンバ14を用いている。
FIG. 11 shows a fifth embodiment of the present invention. In this embodiment, the hood ridge member 13 of the first embodiment shown in FIGS. The rigidity in the front-rear direction is soft from the input end of the front end.
Three regions F, M, and R with different rigidities in the order of super-rigid
The hood ridge member 13 in which the rigidity in the vehicle width direction of the region R is made smaller in the vehicle width direction inside than in the vehicle width direction by the rigidity reducing means 21 and the front side member 14 is shown in FIG. The front side member of the fourth embodiment, that is, the front-rear stiffness is divided into three regions F, M, and R having different stiffness in the order of soft-ultra-rigid from the input end of the front end. A front side member 14 is used in which the rigidity in the vehicle width direction at the boundary between the regions Ra and Rb is made smaller by the rigidity reducing means 21 on the inside in the vehicle width direction than on the outside in the vehicle width direction.

【0070】そして、フードリッジメンバ13の領域M
に結合したストラットハウジング16を連結メンバとし
て有効利用して、該ストラットハウジング16の下端を
フロントサイドメンバ14の領域M又は領域Ra(本実
施形態では領域Ra)に結合して、車両の前面衝突時に
おけるこれらフードリッジメンバ13とフロントサイド
メンバ14の前後方向変形の同期をとるようにしてあ
る。
The area M of the hood ridge member 13
The strut housing 16 connected to the front side member 14 is effectively used as a connecting member, and the lower end of the strut housing 16 is connected to the area M or the area Ra (the area Ra in the present embodiment) of the front side member 14 so as to prevent a frontal collision of the vehicle. , The longitudinal deformation of the hood ridge member 13 and the front side member 14 is synchronized.

【0071】従って、この実施形態の構造によれば、車
両の前面衝突時にはフロントサイドメンバ14がフード
リッジメンバ13よりも前方に突出しているため、該フ
ロントサイドメンバ14の剛性柔領域Mの軸方向への圧
壊変形が若干先行するが、衝突入力はストラットハウジ
ング16を介してフードリッジメンバ13にも分散負担
されて該フロントサイドメンバ14の圧壊反力が高めら
れる。
Therefore, according to the structure of this embodiment, at the time of a frontal collision of the vehicle, the front side member 14 protrudes forward from the hood ridge member 13, so that the rigid soft region M of the front side member 14 extends in the axial direction. Although the crushing deformation slightly precedes, the collision input is also distributed to the hood ridge member 13 via the strut housing 16 and the crushing reaction force of the front side member 14 is increased.

【0072】このフロントサイドメンバ14の剛性柔領
域Mの圧壊変形がフードリッジメンバ13の前端位置ま
で進行して、直接フードリッジメンバ13にも軸方向に
衝突入力が作用することによって該フードリッジメンバ
13の剛性柔領域Mも軸方向に圧壊変形して、両メンバ
13,14の剛性柔領域Mの圧壊変形が同期的に整然と
行われて衝突エネルギーを吸収する。
The crushing deformation of the rigid soft region M of the front side member 14 advances to the front end position of the hood ridge member 13, and a collision input acts directly on the hood ridge member 13 in the axial direction, so that the hood ridge member 13 The rigid flexible region M of 13 also undergoes crush deformation in the axial direction, and the crush deformation of the rigid flexible region M of both members 13 and 14 is performed synchronously and orderly to absorb the collision energy.

【0073】そして、フロントサイドメンバ14もしく
はフードリッジメンバ13の何れか一方が、領域Mの車
幅方向内側の剛性を小さくした部分を中心にして車幅方
向内側への折れ曲がり変形を開始すると、直ちにこの回
転モーメントがストラットハウジング16を介して他方
のメンバに作用して該他方のメンバの車幅方向内側への
折れ曲り変形を誘引し、両メンバ13,14の車幅方向
内側への折れ曲がり変形を同期的に行わせる。
When one of the front side member 14 and the hood ridge member 13 starts to bend inward in the vehicle width direction around the portion of the region M where the rigidity inside the vehicle width direction is reduced, immediately. This rotational moment acts on the other member via the strut housing 16 to induce the other member to bend inward in the vehicle width direction, thereby causing both members 13 and 14 to bend inward in the vehicle width direction. Let it be done synchronously.

【0074】このようにフードリッジメンバ13および
フロントサイドメンバ14のそれぞれの軸方向の圧壊変
形と車幅方向内側への折り曲がり変形を伴った整然とし
た前後方向変形によって、フロントコンパートメントF
・Cの衝突エネルギー吸収量を著しく増大できることは
勿論、これらフードリッジメンバ13およびフロントサ
イドメンバ14が同期的に車幅方向内側へ折れ曲がり変
形することによって、フロントコンパートメントF・C
の変形モードを安定化させることができて、衝突エネル
ギー吸収特性を向上することができる。
As described above, the hood ridge member 13 and the front side member 14 are crushed in the axial direction and bent inward in the vehicle width direction, so that the front compartment F
The hood ridge member 13 and the front side member 14 synchronously bend and deform inward in the vehicle width direction, as a matter of course, so that the collision energy absorption amount of C can be significantly increased.
Can be stabilized, and the collision energy absorption characteristics can be improved.

【0075】なお、前記各実施形態ではフロントコンパ
ートメントF・Cに本発明を適用した例を示したが、リ
ヤコンパートメントR・Cに適用することもできる。
In each of the above embodiments, an example in which the present invention is applied to the front compartments FC is shown. However, the present invention can be applied to the rear compartments RC.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す略示的斜視図。FIG. 1 is a schematic perspective view showing a first embodiment of the present invention.

【図2】(A),(B),(C),(D),(E)はそ
れぞれ図1のA−A線,B−B線,C−C線,D−D
線,E−E線に沿う断面図。
2 (A), (B), (C), (D), and (E) are AA line, BB line, CC line, and DD line in FIG. 1, respectively.
Sectional drawing in alignment with line EE.

【図3】本発明の第1実施形態の変形状態を示す略示的
斜視図。
FIG. 3 is a schematic perspective view showing a deformed state of the first embodiment of the present invention.

【図4】本発明の第1実施形態の変形状態の異なる例を
示す略示的斜視図。
FIG. 4 is a schematic perspective view showing a different example of a deformed state of the first embodiment of the present invention.

【図5】本発明の第1実施形態の変形状態を示す略示的
側面図。
FIG. 5 is a schematic side view showing a deformed state of the first embodiment of the present invention.

【図6】本発明の第2実施形態を示す略示的斜視図。FIG. 6 is a schematic perspective view showing a second embodiment of the present invention.

【図7】(A),(B),(C),(D),(E)はそ
れぞれ図6のA−A線,B−B線,C−C線,D−D
線,E−E線に沿う断面図。
7 (A), (B), (C), (D), and (E) are AA line, BB line, CC line, and DD line of FIG. 6, respectively.
Sectional drawing in alignment with line EE.

【図8】本発明の第3実施形態を示す略示的斜視図。FIG. 8 is a schematic perspective view showing a third embodiment of the present invention.

【図9】(A),(B),(C),(D),(E)はそ
れぞれ図8のA−A線,B−B線,C−C線,D−D
線,E−E線に沿う断面図。
9 (A), (B), (C), (D), and (E) are AA line, BB line, CC line, and DD line of FIG. 8, respectively.
Sectional drawing in alignment with line EE.

【図10】本発明の第4実施形態を示す略示的斜視図。FIG. 10 is a schematic perspective view showing a fourth embodiment of the present invention.

【図11】本発明の第5実施形態を示す略示的斜視図。FIG. 11 is a schematic perspective view showing a fifth embodiment of the present invention.

【図12】本発明の対象とする自動車の外観斜視図。FIG. 12 is an external perspective view of an automobile to which the present invention is applied.

【符号の説明】[Explanation of symbols]

13 フードリッジメンバ(前後方向骨格メンバ) 14 フロントサイドメンバ(前後方向骨格メンバ) 16 ストラットハウジング(連結メンバ) 21 剛性低下手段 21a ビード 21b 切欠き 21c 板厚変化部 C キャビン F・C フロントコンパートメント R・C リヤコンパートメント F 剛性柔領域 M 剛性超剛領域 R 剛性剛領域 13 Hood ridge member (front-back skeleton member) 14 Front side member (front-back skeleton member) 16 Strut housing (connecting member) 21 Stiffness reducing means 21a Bead 21b Notch 21c Plate thickness change portion C Cabin FC Front compartment R C Rear compartment F Rigid flexible region M Rigid super-rigid region R Rigid rigid region

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 キャビンの前部又は後部に隣接したコン
パートメントの左右側部に設けられた前後方向骨格メン
バの少くとも一部に、車幅方向の剛性を車幅方向外側よ
りも車幅方向内側を小さくした領域を設けたことを特徴
とする自動車の車体構造。
At least a part of a longitudinal frame member provided on the left and right sides of a compartment adjacent to a front portion or a rear portion of a cabin has a rigidity in a vehicle width direction inside the vehicle width direction outside the vehicle width direction outside. A body structure of an automobile, characterized in that an area is made smaller.
【請求項2】 前後方向骨格メンバに、前後方向の剛性
を異ならせた前後複数の領域を設けたことを特徴とする
請求項1に記載の自動車の車体構造。
2. The vehicle body structure according to claim 1, wherein a plurality of front and rear regions having different longitudinal rigidities are provided in the longitudinal frame member.
【請求項3】 前後方向骨格メンバの前後方向の剛性が
異なる領域が、該前後方向骨格メンバの車両前後方向衝
突時における入力端側から少くとも柔−超剛−剛の順に
剛性を異ならせた3つの領域からなることを特徴とする
請求項2に記載の自動車の車体構造。
3. The region in which the longitudinal frame members have different rigidities in the longitudinal direction has different rigidities in the order of at least soft-ultra-rigid-rigid from the input end side when the longitudinal frame members collide in the vehicle longitudinal direction. The vehicle body structure according to claim 2, comprising three regions.
【請求項4】 前後方向骨格メンバの車幅方向の剛性を
車幅方向外側よりも車幅方向内側を小さくした領域を、
剛性剛領域に設定したことを特徴とする請求項3に記載
の自動車の車体構造。
4. An area in which the rigidity of the longitudinal frame member in the vehicle width direction is smaller on the inner side in the vehicle width direction than on the outer side in the vehicle width direction.
The vehicle body structure according to claim 3, wherein the vehicle body structure is set in a rigid and rigid region.
【請求項5】 前後方向骨格メンバが、フロントコンパ
ートメントの上側部に前下がりに傾斜して設けられたフ
ードリッジメンバであることを特徴とする請求項1〜4
の何れかに記載の自動車の車体構造。
5. The hood ridge member, wherein the longitudinal frame member is a hood ridge member which is provided on the upper part of the front compartment so as to be inclined forward and downward.
A vehicle body structure according to any one of claims 1 to 4.
【請求項6】 前後方向骨格メンバが、フロントコンパ
ートメントの下側部に設けられたフロントサイドメンバ
であることを特徴とする請求項1〜4の何れかに記載の
自動車の車体構造。
6. The vehicle body structure according to claim 1, wherein the longitudinal frame member is a front side member provided at a lower portion of the front compartment.
【請求項7】 前後方向骨格メンバが、フロントコンパ
ートメントの上側部に前下がりに傾斜して設けられたフ
ードリッジメンバと、該フロントコンパートメントの下
側部に設けられたフロントサイドメンバであって、これ
らフードリッジメンバとフロントサイドメンバとを、車
両前面衝突時における前後方向変形の同期をとる連結メ
ンバで上下方向に連結したことを特徴とする請求項1〜
4の何れかに記載の自動車の車体構造。
7. A front-back skeletal member is a hood ridge member provided on the upper part of the front compartment so as to be inclined forward and downward, and a front side member provided on a lower part of the front compartment. 4. The vehicle according to claim 1, wherein the hood ridge member and the front side member are vertically connected by a connecting member that synchronizes the deformation in the front-rear direction at the time of a frontal collision of the vehicle.
The vehicle body structure according to any one of claims 4 to 7.
【請求項8】 前後方向骨格メンバの車幅方向の剛性を
車幅方向外側よりも車幅方向内側を小さくする手段が、
板厚変化,切欠き設定,ビード設定等の剛性低下手段で
あることを特徴とする請求項1〜7の何れかに記載の自
動車の車体構造。
8. Means for reducing the rigidity of the longitudinal frame member in the vehicle width direction on the vehicle width direction inner side relative to the vehicle width direction outer side,
The vehicle body structure according to any one of claims 1 to 7, which is a means for reducing rigidity such as a change in plate thickness, a notch setting, and a bead setting.
JP2000124175A 2000-04-25 2000-04-25 Car body structure Expired - Fee Related JP3446718B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000124175A JP3446718B2 (en) 2000-04-25 2000-04-25 Car body structure
US09/819,597 US6655728B2 (en) 2000-04-25 2001-03-29 Body structure of vehicle
DE60101497T DE60101497T2 (en) 2000-04-25 2001-04-17 Body structure for a vehicle
EP01303498A EP1149756B1 (en) 2000-04-25 2001-04-17 Body structure of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124175A JP3446718B2 (en) 2000-04-25 2000-04-25 Car body structure

Publications (2)

Publication Number Publication Date
JP2001301656A true JP2001301656A (en) 2001-10-31
JP3446718B2 JP3446718B2 (en) 2003-09-16

Family

ID=18634347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124175A Expired - Fee Related JP3446718B2 (en) 2000-04-25 2000-04-25 Car body structure

Country Status (1)

Country Link
JP (1) JP3446718B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219563A (en) * 2004-02-04 2005-08-18 Fuji Heavy Ind Ltd Joint structure of vehicle body frame
JP2006056394A (en) * 2004-08-20 2006-03-02 Mazda Motor Corp Front part body structure of automobile
JP2009029351A (en) * 2007-07-30 2009-02-12 Nissan Motor Co Ltd Vehicle front body structure
JP2009171032A (en) * 2008-01-11 2009-07-30 Honda Motor Co Ltd Vehicle body front part structure
JP2015000682A (en) * 2013-06-17 2015-01-05 新日鐵住金株式会社 Impact absorption member
JP2015016728A (en) * 2013-07-09 2015-01-29 トヨタ自動車株式会社 Vehicle front structure
JP2015067158A (en) * 2013-09-30 2015-04-13 富士重工業株式会社 Vehicle body front structure
CN105818862A (en) * 2015-01-05 2016-08-03 广州汽车集团股份有限公司 Front cabin longitudinal beam rear segment structure and automobile
CN112218789A (en) * 2018-06-29 2021-01-12 北美日产公司 Vehicle body structure
US10926807B2 (en) 2015-12-09 2021-02-23 Arcelormittal Vehicle front body structure and method for manufacturing thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219563A (en) * 2004-02-04 2005-08-18 Fuji Heavy Ind Ltd Joint structure of vehicle body frame
JP4646524B2 (en) * 2004-02-04 2011-03-09 富士重工業株式会社 Body frame connection structure
JP2006056394A (en) * 2004-08-20 2006-03-02 Mazda Motor Corp Front part body structure of automobile
JP2009029351A (en) * 2007-07-30 2009-02-12 Nissan Motor Co Ltd Vehicle front body structure
JP2009171032A (en) * 2008-01-11 2009-07-30 Honda Motor Co Ltd Vehicle body front part structure
JP2015000682A (en) * 2013-06-17 2015-01-05 新日鐵住金株式会社 Impact absorption member
JP2015016728A (en) * 2013-07-09 2015-01-29 トヨタ自動車株式会社 Vehicle front structure
JP2015067158A (en) * 2013-09-30 2015-04-13 富士重工業株式会社 Vehicle body front structure
CN105818862A (en) * 2015-01-05 2016-08-03 广州汽车集团股份有限公司 Front cabin longitudinal beam rear segment structure and automobile
CN105818862B (en) * 2015-01-05 2018-06-19 广州汽车集团股份有限公司 Front deck longeron rear section structure and automobile
US10926807B2 (en) 2015-12-09 2021-02-23 Arcelormittal Vehicle front body structure and method for manufacturing thereof
CN112218789A (en) * 2018-06-29 2021-01-12 北美日产公司 Vehicle body structure
CN112218789B (en) * 2018-06-29 2023-02-17 北美日产公司 Vehicle frame

Also Published As

Publication number Publication date
JP3446718B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1149756B1 (en) Body structure of vehicle
JP3641428B2 (en) Joint structure of shock transmission member and shock absorbing member, and bumper
US7008007B2 (en) Vehicle body end structure
EP1325859A2 (en) Front body structure for vehicle enhancing the absorbing efficiency of the energy in case of a collision
JP6107850B2 (en) Vehicle frame structure
JP2002155981A (en) Impact absorbing member and bumper
JP2006193118A (en) Front part structure for car body
JP5482987B2 (en) Front body structure of the vehicle
JP2001253370A (en) Rear body structure of automobile
JP4483826B2 (en) Bumper mounting structure
JP2006015859A (en) Front vehicle body structure of vehicle
JP2001301656A (en) Body structure for automobile
JP7318478B2 (en) Vehicle front body structure
KR20040023489A (en) Automobile front end body structure
JP6284056B1 (en) Vehicle frame structure
JP5104272B2 (en) Front body structure of automobile
JP2009096330A (en) Vehicle body front part structure
JP4687138B2 (en) Vehicle front structure
JP3311797B2 (en) Lower body structure of car
JP7354757B2 (en) Vehicle front body structure
JP2003054452A (en) Car body front structure for automobile
JP3632654B2 (en) Body front structure
JP3460311B2 (en) Car front body structure
JP2001301648A (en) Vehicle body front structure
JP3687596B2 (en) Vehicle front structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees