JP2001300506A - Method for cleaning contaminated ground components - Google Patents
Method for cleaning contaminated ground componentsInfo
- Publication number
- JP2001300506A JP2001300506A JP2000118330A JP2000118330A JP2001300506A JP 2001300506 A JP2001300506 A JP 2001300506A JP 2000118330 A JP2000118330 A JP 2000118330A JP 2000118330 A JP2000118330 A JP 2000118330A JP 2001300506 A JP2001300506 A JP 2001300506A
- Authority
- JP
- Japan
- Prior art keywords
- contaminated
- organic
- ground
- soil
- oxidizing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000004140 cleaning Methods 0.000 title abstract 2
- 239000002689 soil Substances 0.000 claims abstract description 46
- 238000010828 elution Methods 0.000 claims abstract description 39
- 239000007800 oxidant agent Substances 0.000 claims abstract description 31
- 239000002957 persistent organic pollutant Substances 0.000 claims abstract description 27
- 239000003673 groundwater Substances 0.000 claims abstract description 17
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 16
- 239000000356 contaminant Substances 0.000 claims description 31
- 239000000470 constituent Substances 0.000 claims description 20
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 18
- 239000004094 surface-active agent Substances 0.000 claims description 13
- 238000000746 purification Methods 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 6
- 150000004045 organic chlorine compounds Chemical class 0.000 abstract description 6
- 101100305924 Caenorhabditis elegans hoe-1 gene Proteins 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 238000003756 stirring Methods 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 9
- 239000005416 organic matter Substances 0.000 description 9
- 238000006864 oxidative decomposition reaction Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- -1 trichloroethylene, tetrachloroethylene, trichloroethane Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000002736 nonionic surfactant Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002734 clay mineral Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000012644 addition polymerization Methods 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000012028 Fenton's reagent Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- MGZTXXNFBIUONY-UHFFFAOYSA-N hydrogen peroxide;iron(2+);sulfuric acid Chemical compound [Fe+2].OO.OS(O)(=O)=O MGZTXXNFBIUONY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000001089 mineralizing effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Fire-Extinguishing Compositions (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機化合物特に有
機塩素化合物により汚染された土壌や地下水等の地盤構
成物類の浄化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying soil and other soil constituents such as groundwater contaminated with organic compounds, especially organic chlorine compounds.
【0002】[0002]
【従来の技術】周知のように、トリクロロエチレン、テ
トラクロロエチレン、トリクロロエタン、四塩化炭素等
に代表される有機塩素化合物は、溶剤、洗浄剤、消炎剤
等として広範な用途を有しており、特に近年では、これ
らの化合物がその製造、使用、貯蔵、輸送等の過程で、
漏洩、飛散、事故等により、環境に放出されて地盤中に
浸透し、環境を汚染していることが問題となっている。2. Description of the Related Art As is well known, organic chlorine compounds represented by trichloroethylene, tetrachloroethylene, trichloroethane, carbon tetrachloride and the like have a wide range of uses as solvents, cleaning agents, anti-inflammatory agents, and the like. , These compounds are produced, used, stored, transported, etc.
Due to leakage, scattering, accidents, etc., it is released to the environment and penetrates into the ground, thus polluting the environment.
【0003】地盤中に浸透したこれらの化合物は、高密
度であり、高い揮発性を有しており、又水に僅かに溶解
するため、複雑な挙動を示す。一部は地盤中の有機物や
粘土鉱物に吸着されたり、又は地盤中の間隙にガス状で
蓄積されたりするが、大部分は帯水層に到達して地下水
により広範囲に移動、拡散することになる。これらの化
合物がこのような水圏に存在することは、水圏の生態系
に悪影響をもたらすだけでなく、地下水が飲料、灌溝又
は工業用に利用されるとき、上記化合物の毒性により大
きな障害が引き起こされる。従ってこのような化合物で
汚染された地盤、地下水等は早急に浄化されねばならな
い。[0003] These compounds, which have penetrated into the ground, have a high density, a high volatility, and exhibit a complicated behavior because they are slightly soluble in water. Some are absorbed by organic matter and clay minerals in the ground, or are accumulated in gaseous form in the ground, but most of them reach the aquifer and migrate and diffuse over a wide area due to groundwater. Become. The presence of these compounds in such aquatic areas not only adversely affects the aquatic ecosystem, but also poses a major obstacle to the toxicity of the compounds when groundwater is used for drinking, irrigation or industrial purposes. It is. Therefore, ground, groundwater and the like contaminated with such compounds must be purified immediately.
【0004】このような地盤中の有機汚染物は、一般に
化学構造的に安定なものが多く、処理が極めて困難であ
る。したがって、汚染された土壌を排除して新しい土壌
と入れ替える方法が採用されることもある。しかし、汚
染域が水平方向、垂直方向に広がっているために、通常
は、有機物が溶け込んでいる地下水を揚水して、活性炭
のような吸着剤に吸着させたり、曝気することにより除
去したりする方法が取られる。更に汚染有機物の揮発性
を利用して汚染域を加熱したり、減圧にすることにより
除去したりする方法が採られることもある。また地下水
を粒状又は粉末状の鉄を主成分とする層を通過させるこ
とにより、有機化合物を還元して無害な化合物に変換す
る方法や、微生物、酵素等を汚染域に供給するいわゆる
バイオレメディエーションにより、汚染物を無機化する
方法も検討されている。[0004] Such organic contaminants in the ground are generally chemically stable in many cases, and are extremely difficult to treat. Therefore, a method of removing contaminated soil and replacing it with new soil may be adopted. However, because the contaminated area extends in the horizontal and vertical directions, groundwater containing organic matter is usually pumped up and absorbed by an adsorbent such as activated carbon or removed by aeration. The method is taken. Further, a method may be adopted in which the contaminated area is heated by utilizing the volatility of the contaminated organic matter or removed by reducing the pressure. In addition, by passing groundwater through a layer mainly composed of granular or powdered iron, a method of reducing organic compounds and converting them to harmless compounds, or by so-called bioremediation of supplying microorganisms, enzymes, etc. to the contaminated area. Also, a method of mineralizing contaminants is being studied.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述の
従来方法は、汚染された地盤の浄化修復完了までに時間
が掛かり過ぎる(修復方法によっては、数年から十数年
を要する場合がある)と云う問題点があった。その理由
について本発明者等が鋭意研究したところ、従来方法は
原理的に処理効率が高いものでないこと、および汚染有
機化合物が水への溶解性が低いことが確認された。However, the above-mentioned conventional method takes too long to complete the purification and repair of the contaminated ground (it may take several years to several tens of years depending on the repair method). There was a problem. The inventors of the present invention have conducted intensive studies on the reason, and as a result, it has been confirmed that the conventional method is not high in processing efficiency in principle and that the solubility of the contaminating organic compound in water is low.
【0006】さらに、処理効率の低下の原因はそれだけ
ではなかった。すなわち、汚染有機化合物は所定の平衡
濃度までしか地下水中に存在せず、残りは地下水に含ま
れるまたは地盤構成物(具体的には粘土鉱物や有機物の
粒子)に吸着又は吸収されており、地下水中の有機物が
上記の何れかの従来方法で除去されたときには、水中の
化合物の溶解量が低下すればその分だけ上記の地盤構成
物から補給され、その結果として浄化処理が長期化して
いたことが確認された。[0006] Further, the cause of the decrease in the processing efficiency is not limited to this. That is, the contaminating organic compounds are present only in the groundwater up to a predetermined equilibrium concentration, and the rest is contained in the groundwater or adsorbed or absorbed by soil constituents (specifically, particles of clay minerals and organic substances). When the organic matter in the water was removed by any of the conventional methods described above, if the amount of the dissolved compound in the water was reduced, the amount of the compound was replenished from the above-mentioned ground components, and as a result, the purification process was prolonged. Was confirmed.
【0007】従って従来方法による浄化を行っても、や
がて汚染物質が水中に供給されることになり、所定の期
間が経過すれば、水と上記の固体物質間の汚染物が所定
の濃度になるまで、水中の濃度が上昇することになる。
例えばトリクロロエチレンの場合、この一定の濃度に到
達するまでに5日から15日位を要することになる。この
ようなリバウンド現象は、固相に有機物が吸収又は吸着
されている限り、無限に繰り返される可能性がある。従
って地下水だけでなく、土壌についても有効な浄化処理
を提案することが望まれた。なお、このリバウンド現象
は有機塩素化合物で顕著に観察されるが、微量でも水に
溶解する有機化合物について、同様に観察されるもので
ある。Therefore, even if the purification is performed by the conventional method, the contaminants will be supplied to the water soon, and after a predetermined period of time, the contaminants between the water and the solid substance will have a predetermined concentration. Until then, the concentration in the water will rise.
For example, in the case of trichlorethylene, it takes about 5 to 15 days to reach the certain concentration. Such a rebound phenomenon may be repeated indefinitely as long as the organic substance is absorbed or adsorbed on the solid phase. Therefore, it was desired to propose an effective purification treatment for not only groundwater but also soil. Note that this rebound phenomenon is remarkably observed in the case of an organic chlorine compound, but is also observed in the case of an organic compound that is soluble in water even in a small amount.
【0008】したがって本発明の主たる課題は、短期間
で浄化修復処理を完了することができる浄化方法を提供
することにある。[0008] Therefore, a main object of the present invention is to provide a purification method capable of completing a purification restoration process in a short period of time.
【0009】[0009]
【課題を解決するための手段】上記課題を解決した本発
明のうち請求項1記載の発明は、有機化合物で汚染され
た汚染地盤構成物類を有機汚染物質溶出促進剤と接触さ
せて有機汚染物質を溶出させるとともに、溶出した有機
汚染物質を酸化剤と接触させて分解することを特徴とす
る汚染土壌類の浄化方法である。Means for Solving the Problems According to the first aspect of the present invention which has solved the above-mentioned problems, the present invention relates to an organic pollutant by contacting contaminated ground constituents contaminated with an organic compound with an organic pollutant elution accelerator. A method for purifying contaminated soils, comprising eluting substances and decomposing the eluted organic pollutants by contacting them with an oxidizing agent.
【0010】請求項2記載の発明は、有機化合物で汚染
された地盤から少なくとも汚染土壌を含む汚染地盤構成
物類を取り出して処理容器内に入れ、この処理容器内に
おいて;有機汚染物質溶出促進剤と接触させて有機汚染
物質を溶出させるとともに、溶出した有機汚染物質を酸
化剤と接触させて分解することを特徴とする汚染地盤構
成物類の浄化方法である。[0010] According to the second aspect of the present invention, a contaminated ground component including at least contaminated soil is taken out of a ground contaminated with an organic compound and put into a processing vessel. A method for purifying contaminated ground constituents, comprising: contacting an organic contaminant to elute organic contaminants; and contacting the eluted organic contaminants with an oxidizing agent to decompose them.
【0011】請求項3記載の発明は、有機化合物で汚染
された地盤内に有機汚染物質溶出促進剤を供給して、少
なくとも汚染土壌を含む汚染地盤構成物類を有機汚染物
質溶出促進剤と接触させて有機汚染物質を溶出させると
ともに、当該地盤内に酸化剤を供給して、前記溶出した
有機汚染物質を酸化剤と接触させて分解することを特徴
とする汚染地盤構成物類の浄化方法である。According to a third aspect of the present invention, an organic pollutant elution accelerator is supplied to a ground contaminated with an organic compound, and at least contaminated ground constituents including contaminated soil are contacted with the organic pollutant elution accelerator. And elute organic contaminants by supplying an oxidizing agent into the ground, and contacting the eluted organic contaminants with the oxidizing agent to decompose the contaminated soil constituents. is there.
【0012】請求項4記載の発明は、有機化合物で汚染
された地盤の浄化処理対象部位に含まれる汚染土壌及び
汚染地下水の両方について、前記溶出処理及び分解処理
を行う請求項2または3記載の汚染地盤構成物類の浄化
方法である。According to a fourth aspect of the present invention, the elution treatment and the decomposition treatment are performed on both the contaminated soil and the contaminated groundwater contained in the site to be subjected to the purification treatment of the ground contaminated with the organic compound. This is a method for purifying contaminated ground components.
【0013】請求項5記載の発明は、前記有機汚染物質
溶出促進剤として界面活性剤を用いる、請求項1〜4の
いずれか1項に記載の汚染地盤構成物類の浄化方法であ
る。The invention according to claim 5 is the method for purifying contaminated ground constituents according to any one of claims 1 to 4, wherein a surfactant is used as the organic pollutant elution accelerator.
【0014】請求項6記載の発明は、前記有機汚染物質
溶出促進剤として有機溶剤を用いる、請求項1〜5のい
ずれか1項に記載の汚染地盤構成物類の浄化方法であ
る。The invention according to claim 6 is the method for purifying contaminated ground components according to any one of claims 1 to 5, wherein an organic solvent is used as the organic pollutant elution accelerator.
【0015】請求項7記載の発明は、前記酸化剤として
過酸化水素を主材とする酸化剤を用いる、請求項1〜6
のいずれか1項に記載の汚染地盤構成物類の浄化方法で
ある。According to a seventh aspect of the present invention, an oxidizing agent containing hydrogen peroxide as a main material is used as the oxidizing agent.
The method for purifying contaminated ground constituents according to any one of the above.
【0016】<作用>有機物で汚染された地盤構成物
類、特に土壌は、粘土鉱物や有機物の含有量等にも関係
するが、同じ容積で比較すれば、土壌の間隙中に存在す
る水より高い濃度の有機物を吸収していることが多く、
このような水を例えば揚水除去しても、土壌中の汚染物
はそのままの状態で残される。この後でその地盤に地下
水が流れ込んでも、有機汚染物質は通常水への溶解度が
小さいため、土から水への汚染物の移動は極めて低く、
本発明者等の調査では、平衡状態に到達するまでに1週
間以上の日数が必要になる。<Effect> The soil constituents, especially soil, which are contaminated with organic matter are related to the content of clay minerals and organic matter, etc. They often absorb high concentrations of organic matter,
Even if such water is removed, for example, by pumping, the contaminants in the soil are left as they are. After this, even if groundwater flows into the ground, organic pollutants usually have low solubility in water, so the transfer of contaminants from soil to water is extremely low,
In our investigations, more than one week is required to reach equilibrium.
【0017】よって、地盤が汚染されている状態におい
て地下水だけを浄化しても、やがて地下水が高濃度の汚
染物を含有する土壌からの戻りで、ほぼ元の濃度にまで
汚染されてしまう。Therefore, even if only the groundwater is purified while the ground is contaminated, the groundwater eventually returns to the soil containing a high concentration of contaminants, and is contaminated to almost the original concentration.
【0018】そして、土壌中に吸収、吸着されている有
機汚染物は、化学反応を利用して分解しようと試みても
上記の粘土鉱物、有機物等に結合していたり、粒子の間
隙に入っているとこれらの要因により保護されている場
合もあり、分解が非常に困難である。即ち単に強い酸化
剤を用いて、土壌と汚染水を一緒に分解して、水中の有
機物で100%、全体として98%以上の分解率を達成
しても、土壌中に残存する2%以下の有機物のリバウン
ドにより、やがて水層部分の有機物濃度が高くなってし
まう。The organic contaminants absorbed and adsorbed in the soil are bound to the above-mentioned clay minerals, organic substances, etc. even if they attempt to decompose using a chemical reaction, or enter the gaps between the particles. May be protected by these factors and are very difficult to decompose. That is, even if the soil and the contaminated water are decomposed together by simply using a strong oxidizing agent, even if a decomposition rate of 100% of organic matter in water and 98% or more as a whole is achieved, the remaining 2% or less of soil remains in the soil. Due to the rebound of the organic substance, the concentration of the organic substance in the water layer portion eventually increases.
【0019】しかるに本発明に従って、汚染地盤構成物
類を有機汚染物質溶出促進剤と接触させて有機汚染物質
を溶出させるとともに、溶出した有機汚染物質を酸化剤
と接触させて分解すると、土壌粒子等に吸着等されてい
た汚染物質までも溶出できるだけでなく、溶出した汚染
物質が分解されやすい形態になっているために、簡単に
分解無害化できるのである。またその結果、その後のリ
バウンドも低く抑えることができるのである。この効果
は後述の実施例によって明らかであり、例えば水層部分
が10mg/lと非常に高い有機塩素化合物の濃度で平
衡に到達しているものでも、本発明の方法で処理した場
合、リバウンドが生じて平衡に到達した7日以後でも、
水層部の濃度は0.01mg/l程度に維持でき、環境
基準値0.03mg/lすることが可能であった。However, according to the present invention, the contaminated ground constituents are brought into contact with an organic pollutant elution accelerator to elute the organic pollutants, and the eluted organic pollutants are brought into contact with an oxidizing agent to decompose them, thereby obtaining soil particles and the like. Not only can the contaminants adsorbed on the surface be eluted, but the eluted contaminants are easily decomposed, so that they can be easily decomposed and made harmless. As a result, the subsequent rebound can be kept low. This effect is evident from the examples described below. For example, even when the aqueous layer portion reaches equilibrium at a very high concentration of an organochlorine compound of 10 mg / l, the rebound does not increase when treated by the method of the present invention. Even after 7 days when it has occurred and reached equilibrium,
The concentration of the aqueous layer could be maintained at about 0.01 mg / l, and the environmental standard value could be 0.03 mg / l.
【0020】このように本発明の最大の利点は、汚染地
盤構成物類が地下水のみならず土壌までも短時間に永久
的に浄化修復されることである。即ち従来の修復方法で
1年以上を要する場合でも、数日以内の短期間で修復が
可能である。修復の終了した汚染地盤構成物類は、その
まま本来の目的に利用することが可能である。As described above, the greatest advantage of the present invention is that the contaminated ground constituents can be purified and repaired not only in the groundwater but also in the soil in a short time. That is, with the conventional restoration method
Even if it takes more than a year, it can be repaired within a few days. The contaminated ground components whose restoration has been completed can be used as they are for the original purpose.
【0021】さらに本発明では、有機汚染物質溶出促進
剤の存在している土壌懸濁水、土壌をそのままの状態で
酸化分解することができ、操作も至って簡単である。更
に本発明で副生するものは少なく、副生したものの処理
も簡単である。Further, in the present invention, the soil suspension water and the soil in which the organic pollutant elution accelerator is present can be oxidatively decomposed as they are, and the operation is very simple. Furthermore, there are few by-products in the present invention, and the processing of by-products is simple.
【0022】具体的な処理に際しては、汚染土壌等の地
盤構成物類を、地上に設置した処理容器内で浄化処理す
る(請求項2)、あるいは原位置に溶出促進剤および酸
化剤をそれぞれ供給して原位置浄化処理を行う(請求項
3)ことを推奨する。前者の場合、処理済みの地盤構成
物類は原地盤に戻すことが可能である。In concrete treatment, ground components such as contaminated soil are purified in a treatment vessel installed on the ground (claim 2), or an elution accelerator and an oxidizing agent are supplied in situ. Then, it is recommended that the in-situ purification process be performed (claim 3). In the former case, the processed ground components can be returned to the original ground.
【0023】他方、本発明で用いられる有機汚染物質溶
出促進剤は、繊維、製紙、顔料、塗料、合成樹脂産業の
油剤、分散剤、湿潤剤等と汎用性のあるものであり、食
品、医薬品、化粧品等の広範囲の分野に用いられている
もので、安全性の点でも問題がなく、低価格で利用しや
すいものである。On the other hand, the organic pollutant elution accelerator used in the present invention is versatile as fibers, papermaking, pigments, paints, oils, dispersants, wetting agents and the like in the synthetic resin industry, It is used in a wide range of fields such as cosmetics and the like, has no problem in terms of safety, and is easy to use at a low price.
【0024】[0024]
【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照しつつ詳説する。 <第1の形態>図1に浄化処理フローを示す。本第1の
形態は、汚染された土壌が掘削な比較的浅い位置にある
場合に適したものである。先ず、該当する汚染土壌をバ
ックホウ1等で掘削し、必要に応じてベルトコンベア2
を介して運搬して、地上に設置された攪拌装置3Aを有
する容器3内に移し、必要に応じて水等の溶出媒体を添
加して、更に有機汚染物質溶出促進剤を添加して所定時
間攪拌を行い、有機汚染物質を溶出媒体相中に溶出させ
る。容器内の土壌と界面活性剤より構成された懸濁液が
ほぼ均質に混合しているならば、10〜60分の攪拌で
十分である。なお、これら水等の溶出媒体および溶出促
進剤は、掘削物の投入に先立って容器3内に満たしてお
くこともできる。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. <First Embodiment> FIG. 1 shows a flow of a purification process. The first embodiment is suitable when the contaminated soil is located at a relatively shallow position such as excavation. First, the corresponding contaminated soil is excavated with a backhoe 1 or the like, and if necessary, a belt conveyor 2 is used.
And transferred into a container 3 having a stirrer 3A installed on the ground, adding an elution medium such as water as needed, and further adding an organic pollutant elution accelerator for a predetermined time. Stir to elute the organic contaminants into the elution medium phase. If the suspension composed of the surfactant and the soil in the container is almost homogeneously mixed, stirring for 10 to 60 minutes is sufficient. Note that the dissolution medium such as water and the dissolution promoter can be filled in the container 3 before the excavation is charged.
【0025】しかる後、容器内容物(汚染物質の溶出に
より濃縮された、水或いは水と土壌のスラリー)に対し
て、有機汚染物質溶出促進剤を残存させたままで酸化剤
を添加し、溶出した汚染物質を酸化分解する。このと
き、有機汚染物質溶出促進剤も併せて酸化分解される。Thereafter, an oxidizing agent was added to the contents of the container (water or a slurry of water and soil concentrated by elution of contaminants) while an organic contaminant elution accelerator was left, and eluted. Oxidatively decomposes pollutants. At this time, the organic pollutant elution accelerator is also oxidatively decomposed.
【0026】図示しないが、溶出促進剤添加攪拌後、一
旦静置して土壌中の固形分を沈降させて、上澄み液を別
の容器に移してこれに酸化剤を添加し、溶出した汚染物
質を酸化分解することもできる。また、酸化処理に際し
て、後述の酸化促進助剤を加えたり、紫外線を照射した
り、オゾンをバブリングして、酸化分解を促進させるこ
ともできる。Although not shown, after the addition of the elution accelerator, the mixture is allowed to stand once to settle the solid content in the soil, and the supernatant is transferred to another container, to which an oxidizing agent is added, and the eluted contaminants are added. Can be oxidatively decomposed. Further, at the time of the oxidation treatment, an oxidative decomposition can be promoted by adding an oxidation promoting aid described below, irradiating ultraviolet rays, or bubbling ozone.
【0027】かくして、浄化処理した後の土壌及び水
は、原位置に埋め戻される。Thus, the soil and water after the purification treatment are buried back in the original position.
【0028】<第2の形態>第2の形態は、汚染物の存
在する地盤が深い位置に存在するような場合に適したも
のであり、攪拌翼および吐出口を有する攪拌ロッドを回
転させつつ、地盤内に貫入して、吐出口から地盤内に所
要の薬剤を注入又は噴射しつつ攪拌を行い、原位置で溶
出処理および酸化分解処理を順次行うものである。<Second Embodiment> The second embodiment is suitable for the case where the ground where the contaminant exists is located at a deep position, while rotating a stirring rod having a stirring blade and a discharge port. And agitating while injecting or spraying a required chemical into the ground from the discharge port into the ground, and sequentially performs elution treatment and oxidative decomposition treatment in situ.
【0029】図2は、先端吐出口11を有し、且つこれ
よりも基端側に間隔をおいて複数の攪拌翼12,12…
を有する公知の貫入時吐出型攪拌混合ロッド10を用い
た場合の例を示しており、攪拌ロッド10を回転させつ
つ地盤内に貫入し、汚染地盤部分Xに到達した時点で、
先端吐出口11から溶出促進剤を地盤内に供給し始め、
原位置の地盤構成物類(地盤土、地下水)と攪拌し、汚
染物質を溶出させるものである。なお、溶出にはある程
度の待ち時間があるので、順次隣接地盤に対して同様に
地盤内の土壌と溶出促進材との攪拌混合を行う。その
後、図示しないが、先に溶出促進剤の攪拌混合を行って
おいた地盤に、溶出促進処理のときと同様に、攪拌ロッ
ドを回転させつつ貫入するRとともに該当地盤に到達し
たならば酸化剤を吐出口から吐出させ、原位置の溶出促
進剤と地盤構成物類との混合物に酸化剤を攪拌混合す
る。かくして、溶出汚染物質に酸化剤を接触させ、酸化
分解を行わしめる。このようにして汚染地盤を構成する
土壌又は水は界面活性剤と接触させられるが、この過程
で土壌粒子を構成する成分より汚染有機物が水相に抽出
される。FIG. 2 has a tip discharge port 11 and a plurality of agitating blades 12, 12,.
It shows an example in the case of using a known intrusion discharge type stirring and mixing rod 10 having the following, when rotating into the ground while rotating the stirring rod 10, reaches the contaminated ground portion X,
Starting to supply the dissolution accelerator into the ground from the tip discharge port 11,
Agitates with in-situ ground components (ground soil, groundwater) to elute pollutants. In addition, since there is a certain waiting time for the elution, the soil in the ground and the elution promoting material are sequentially stirred and mixed in the adjacent ground in the same manner. Thereafter, although not shown, the oxidizing agent is applied to the ground where stirring and mixing of the elution accelerator have been performed, as well as the R that penetrates while rotating the stirring rod and reaches the corresponding ground, as in the case of the elution acceleration processing. Is discharged from the discharge port, and the oxidizing agent is stirred and mixed with the mixture of the in-situ elution accelerator and the ground constituents. Thus, the oxidizing agent is brought into contact with the eluted contaminants to cause oxidative decomposition. In this way, the soil or water constituting the contaminated ground is brought into contact with the surfactant, and in this process, the contaminated organic matter is extracted from the components constituting the soil particles into the aqueous phase.
【0030】なお、上記図示例では、貫入時吐出タイプ
の処理例を示したが、この他にも公知の攪拌混合処理工
法(いわゆる深層混合処理工法など)の処理装置および
手順を応用することができ、例えば先端側に攪拌翼を有
し、これよりも基端側に薬剤吐出口を有する攪拌ロッド
を用いて、ロッドを回転させながら引き上げる時に薬剤
を吐出させ、原位置物質と吐出薬剤とを攪拌混合する手
法も採用できる。In the illustrated example, the processing example of the discharge type at the time of penetration is shown. However, a processing apparatus and procedure of a known stirring and mixing processing method (a so-called deep mixing processing method and the like) may be applied. For example, using a stirring rod having a stirring blade on the distal end side and a drug discharge port on the base end side, discharge the medicine when pulling up while rotating the rod, and the in-situ substance and the discharged medicine A method of stirring and mixing can also be adopted.
【0031】また、本第2の形態における酸化処理に際
しても、溶出促進剤や酸化剤と同様の地盤内への供給方
法で、酸化促進助剤を供給したり、オゾンをバブリング
して、酸化分解を促進させることもできる。Also, in the oxidation treatment in the second embodiment, an oxidation promoting aid is supplied or ozone is bubbled by oxidative decomposition by the same supply method to the ground as the elution accelerator and the oxidizing agent. Can be promoted.
【0032】<第3の形態>公知の薬液注入工法を応用
して、地盤改良材(硬化剤)に代えて、本発明の溶出促
進剤および酸化剤等を地盤内に順次注入し、溶出処理お
より酸化分解処理を行うことができる。この場合、溶出
促進剤および酸化剤の供給時に攪拌を行わないが、必要
に応じて別途の攪拌装置を用いて薬剤供給時以外のとき
に攪拌を行うこともできる。<Third Embodiment> A known chemical liquid injection method is applied, and instead of a ground improvement material (hardening agent), an elution accelerator and an oxidizing agent of the present invention are sequentially injected into the ground to perform elution treatment. More oxidative decomposition treatment can be performed. In this case, stirring is not performed at the time of supplying the elution accelerator and the oxidizing agent, but if necessary, stirring can be performed at a time other than the time of supplying the drug by using a separate stirring device.
【0033】<有機汚染物質溶出促進剤の具体例>本発
明における有機汚染物質溶出促進剤としては、水溶性又
は水に分散する性質を有するものであれば特に限定され
ないが、対象となる有機汚染物、例えば有機ハロゲン化
合物を対象とする場合には、界面活性剤が好ましい。界
面活性剤としては、非イオン界面活性剤、陰イオン界面
活性剤、陽イオン界面活性剤、両性界面活性剤がある
が、なかでも非イオン界面活性剤が特に好ましい。非イ
オン界面活性剤としては、例えば高級アルコール、フェ
ノール類、脂肪酸、アルキルアミン、脂肪酸アミド等に
エチレンオキシドを付加重合したもの、エチレンオキシ
ドとプロピレンオキシドの共重合体、ソルビタンと各種
脂肪酸のエステル等を用いることができる。また陰イオ
ン界面活性剤としては、高級脂肪酸のアルカリ塩、アシ
ルサルコン、アルキル硫酸ナトリウム、アルキルベンゼ
ンスルホン酸塩等を用いることができ、陽イオン界面活
性剤としては、アミン塩、第4級アンモニウム塩、第3
級化合物スルホニウム塩、第4級ホスホニウム塩等を用
いることができ、両性界面活性剤としてはアミノ酸、リ
ン脂質等を用いることができる。<Specific Examples of Organic Pollutant Elution Accelerator> The organic pollutant elution accelerator in the present invention is not particularly limited as long as it has water-soluble or water-dispersible properties. When the target is an object, for example, an organic halogen compound, a surfactant is preferable. Examples of the surfactant include a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant. Among them, a nonionic surfactant is particularly preferable. As the nonionic surfactant, for example, higher alcohols, phenols, fatty acids, alkylamines, fatty acid amides, and the like, obtained by addition polymerization of ethylene oxide, copolymers of ethylene oxide and propylene oxide, esters of sorbitan and various fatty acids, and the like are used. Can be. Examples of the anionic surfactant include alkali salts of higher fatty acids, acyl sarcon, sodium alkyl sulfate, and alkylbenzene sulfonate. Examples of the cationic surfactant include amine salts, quaternary ammonium salts, and quaternary ammonium salts. 3
Grade compound sulfonium salts, quaternary phosphonium salts, and the like can be used, and as the amphoteric surfactant, amino acids, phospholipids, and the like can be used.
【0034】これらの界面活性剤は、0.01〜1%の
水溶液で使用して、対象となる土壌中の有機化合物を水
に溶出する能力を有するものを用いるのが好ましい。こ
の濃度が低い場合には、土壌より汚染物を溶出させる能
力が低下することになり、本発明の目的を達成するのが
困難となる。一方高濃度の界面活性剤を用いることは、
次の工程で汚染物を分解するために用いられる酸化剤の
使用量が多くなったり、界面活性剤がこの酸化分解を阻
害したりするために望ましくない。特に好ましい界面活
性剤の水溶液濃度は、0.05〜0.5%である。These surfactants are preferably used in the form of a 0.01 to 1% aqueous solution and have the ability to elute organic compounds in the target soil into water. If this concentration is low, the ability to elute contaminants from soil will be reduced, making it difficult to achieve the object of the present invention. On the other hand, using a high concentration of surfactant
In the next step, the amount of the oxidizing agent used for decomposing the contaminants is increased, and the surfactant is not desirable because it inhibits the oxidative decomposition. A particularly preferred aqueous solution concentration of the surfactant is 0.05 to 0.5%.
【0035】界面活性剤は処理すべき、汚染水溶液又は
スラリーに直接添加しても良いが、一旦水に溶解させた
ものを使用するのが、処理を迅速に行うために好まし
い。The surfactant may be added directly to the contaminated aqueous solution or slurry to be treated, but it is preferable to use a solution once dissolved in water in order to perform the treatment quickly.
【0036】他方、本発明の有機汚染物質溶出促進剤と
して、有機溶剤、例えばアセトン、エタノール、ヘキサ
ン等を用いることもできる。On the other hand, as the organic pollutant elution accelerator of the present invention, an organic solvent such as acetone, ethanol, hexane and the like can be used.
【0037】<酸化剤の具体例>抽出汚染物質を酸化分
解するのに使用する酸化剤としては、特に限定されない
が、主剤として過酸化水素を用いるのが好ましい。過酸
化水素の濃度については、処理すべき汚染物の種類と
量、用いられた界面活性剤の量と種類などにより変動す
る。通常は処理されるべき界面活性剤水溶液中で0.0
5〜10%になるように調整される。但しこの濃度が低
いときには、汚染物を完全に分解するのが困難となり、
また有機汚染物質溶出促進剤も併せて酸化分解する場合
には、その残存量が大きくなることが問題である。<Specific Examples of Oxidizing Agent> The oxidizing agent used for oxidatively decomposing the extracted contaminants is not particularly limited, but it is preferable to use hydrogen peroxide as the main agent. The concentration of hydrogen peroxide varies depending on the type and amount of contaminants to be treated, the amount and type of surfactant used, and the like. Typically 0.0% in aqueous surfactant solution to be treated
Adjusted to be 5-10%. However, when this concentration is low, it becomes difficult to completely decompose the contaminants,
Further, when the organic contaminant elution accelerator is also oxidatively decomposed, there is a problem that the residual amount thereof becomes large.
【0038】本発明では、酸化剤として過酸化水素を用
いる場合、過酸化水素の分解で生じるヒドロキシル・ラ
ジカルを積極的に発生させるために、過酸化水素と地盤
構成物類との混合物を紫外線で照射したり、その酸化を
行う系にオゾンを吹き込んだりすることができる。ま
た、遷移金属化合物触媒を過酸化水素と混合した酸化
剤、たとえば鉄塩を触媒としたフェントン試薬を用いる
のがより好ましい。鉄塩を用いるとき、これらのヒドロ
キシル・ラジカルを発生させるための処理度合い、助剤
の添加量については特に限定されないが、ヒドロキシル
・ラジカルが、5分以上望ましくは10分以上発生が続
くように配合することが望ましく、有機塩素化合物が対
象の場合、懸濁液のpHも酸性ないしは中性に維持され
る。In the present invention, when hydrogen peroxide is used as an oxidizing agent, a mixture of hydrogen peroxide and ground constituents is irradiated with ultraviolet rays in order to positively generate hydroxyl radicals generated by decomposition of hydrogen peroxide. Irradiation or ozone can be blown into a system for performing the oxidation. Further, it is more preferable to use an oxidizing agent obtained by mixing a transition metal compound catalyst with hydrogen peroxide, for example, a Fenton's reagent using an iron salt as a catalyst. When an iron salt is used, the degree of treatment for generating these hydroxyl radicals and the amount of the auxiliary agent are not particularly limited, but the hydroxyl radicals are blended so that the generation continues for 5 minutes or more, preferably 10 minutes or more. Preferably, when the target is an organochlorine compound, the pH of the suspension is also kept acidic or neutral.
【0039】なお地盤を構成する土壌によっては、酸化
分解に好適な鉄化合物がある程度の量存在していること
があるので、その場合には、上記のような助剤の添加が
必要ないか、又は低減することができる。また上記の助
剤を用いる場合、有機化合物溶出促進剤や酸化剤と一緒
に容器内または地盤内に供給する方法を採ることも好ま
しい態様になる。Depending on the soil constituting the ground, a certain amount of an iron compound suitable for oxidative decomposition may be present. In such a case, it is not necessary to add the above-mentioned auxiliary agent. Or it can be reduced. When the above-mentioned auxiliary is used, it is also a preferable embodiment to adopt a method of supplying the compound into the container or the ground together with the organic compound elution accelerator or the oxidizing agent.
【0040】以下に実施例を示して本発明の効果を明ら
かにする。The effects of the present invention will be clarified with reference to the following examples.
【0041】[0041]
【実施例】<本発明例>テフロン(登録商標)製の容器
に、鹿島珪砂6号、トリクロロエチレン(TCE)で汚染
された水を添加して、振動装置に載せて6時間振り混
ぜ、TCEで汚染された珪砂を調整した。最終的に得ら
れた汚染砂は、100部に対して、水28部、水層のT
CEの濃度は15.5mg/lであった。<Example of the present invention> To a container made of Teflon (registered trademark), water contaminated with Kashima silica sand No. 6, trichloroethylene (TCE) was added, and the mixture was shaken for 6 hours on a vibrating device. The contaminated quartz sand was adjusted. The finally obtained contaminated sand is 100 parts, 28 parts of water, T
The concentration of CE was 15.5 mg / l.
【0042】上記の汚染砂10部に、三好油脂社(株)製
のエチレンオキシドの付加重合されたアルキルエーテル
型のノニオンイオン界面活性剤のペレソフト207の
0.2重量%の水溶液1部をそれぞれ密封したガラス瓶
に移して、30分間振動装置に載せて振り混ぜた。Into 10 parts of the above contaminated sand, 1 part of a 0.2% by weight aqueous solution of Pelesoft 207, an alkyl ether type nonionic surfactant obtained by addition polymerization of ethylene oxide, manufactured by Miyoshi Yushi Co., Ltd. was sealed. The sample was transferred to a glass bottle and placed on a vibrator for 30 minutes and shaken.
【0043】次にこの瓶に100g/lの硫酸第1鉄水
溶液0.55部、10重量%の過酸化水素0.9部をそ
れぞれ迅速に添加して、振動装置に載せて10分間振り
混ぜ、その後は静置して適宜水層部分をサンプリングし
て、その部分のTCE濃度を分析した。Next, 0.55 parts of a 100 g / l aqueous solution of ferrous sulfate and 0.9 part of 10% by weight of hydrogen peroxide were rapidly added to the bottle, and the mixture was placed on a vibrator and shaken for 10 minutes. After that, the sample was allowed to stand still, and the water layer portion was appropriately sampled, and the TCE concentration in the portion was analyzed.
【0044】<比較例>上記本発明例で調整したTCE
汚染砂を用いて、ノニオン界面活性剤を添加することな
く、後は上記本発明例と同じ方法で、汚染された砂に酸
化剤を添加して同様の試験を行った。<Comparative Example> TCE adjusted in the above-mentioned present invention example
A similar test was conducted using contaminated sand without adding a nonionic surfactant and then adding an oxidizing agent to the contaminated sand in the same manner as in the above-mentioned present invention.
【0045】<試験結果>本発明例の試験結果を表1
に、および比較例の試験結果を表2に示す。TCEに対
する水層の環境基準値(濃度)は0.03mg/lであ
り、表からも判るように本発明例では平衡到達時(10
日以降)においてもこの基準値をクリアしているのに対
して、比較例では酸化分解の効果は認められるものの、
酸化分解終了直後のTCE濃度が高いばかりでなく、平
衡到達時(4日以降)の水層の濃度は環境基準値を上回
り、本発明例の約6倍となった。<Test Results> Table 1 shows the test results of the examples of the present invention.
Table 2 shows the test results of Comparative Examples and Comparative Examples. The environmental standard value (concentration) of the aqueous layer with respect to TCE is 0.03 mg / l.
Day)), while the comparative example shows the effect of oxidative decomposition,
Not only was the TCE concentration immediately after the end of the oxidative decomposition high, but also the concentration of the aqueous layer when the equilibrium was reached (after 4 days) exceeded the environmental standard value, and was about six times that of the present invention.
【0046】[0046]
【表1】 [Table 1]
【0047】[0047]
【発明の効果】以上のとおり本発明によれば、非常に短
期間で浄化処理を完了することができ、またその処理も
簡易となるなどの利点がもたらされる。As described above, according to the present invention, there are provided advantages such that the purification process can be completed in a very short period of time and the process can be simplified.
【図面の簡単な説明】[Brief description of the drawings]
【図1】第1の処理形態を示す概要図である。FIG. 1 is a schematic diagram showing a first processing mode.
【図2】第2の処理形態を示す概要図である。FIG. 2 is a schematic diagram showing a second processing mode.
1…バックホウ、2…ベルトコンベア、3…容器、10
…攪拌ロッド、11…吐出口、12…攪拌翼。DESCRIPTION OF SYMBOLS 1 ... Backhoe, 2 ... Belt conveyor, 3 ... Container, 10
... Stirring rod, 11 ... Discharge port, 12 ... Stirring blade.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/72 (72)発明者 棟近 嘉一 東京都千代田区九段北4丁目2番35号 ラ イト工業株式会社内 Fターム(参考) 2E191 BA12 BB01 BC01 BC05 BD11 4D004 AA41 AB06 AC05 AC07 CA15 CA36 CA40 CC03 CC04 CC05 CC11 4D038 AA02 AA10 AB14 BB05 BB16 4D050 AA02 AA20 AB19 BB09 CA05──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) C02F 1/72 (72) Inventor Kaichi Michichika 4-35, Kudankita, Chiyoda-ku, Tokyo Light Industry F term (for reference) 2E191 BA12 BB01 BC01 BC05 BD11 4D004 AA41 AB06 AC05 AC07 CA15 CA36 CA40 CC03 CC04 CC05 CC11 4D038 AA02 AA10 AB14 BB05 BB16 4D050 AA02 AA20 AB19 BB09 CA05
Claims (7)
を有機汚染物質溶出促進剤と接触させて有機汚染物質を
溶出させるとともに、溶出した有機汚染物質を酸化剤と
接触させて分解することを特徴とする汚染地盤構成物類
の浄化方法。1. A method for dissolving organic contaminants by contacting contaminated ground constituents contaminated with organic compounds with an organic contaminant elution accelerator, and decomposing the eluted organic contaminants by contact with an oxidizing agent. A method for purifying contaminated ground components.
も汚染土壌を含む汚染地盤構成物類を取り出して処理容
器内に入れ、 この処理容器内において;有機汚染物質溶出促進剤と接
触させて有機汚染物質を溶出させるとともに、溶出した
有機汚染物質を酸化剤と接触させて分解することを特徴
とする汚染地盤構成物類の浄化方法。2. Contaminated soil components including at least contaminated soil are taken out of the soil contaminated with an organic compound and placed in a treatment vessel. In the treatment vessel; A method for purifying contaminated ground constituents, comprising eluting substances and decomposing the eluted organic pollutants by contacting them with an oxidizing agent.
物質溶出促進剤を供給して、少なくとも汚染土壌を含む
汚染地盤構成物類を有機汚染物質溶出促進剤と接触させ
て有機汚染物質を溶出させるとともに、当該地盤内に酸
化剤を供給して、前記溶出した有機汚染物質を酸化剤と
接触させて分解することを特徴とする汚染地盤構成物類
の浄化方法。3. An organic pollutant elution accelerator is supplied to the ground contaminated with an organic compound, and at least contaminated ground constituents including contaminated soil are brought into contact with the organic pollutant elution accelerator to remove organic pollutants. A method for purifying contaminated ground constituents, comprising eluting, supplying an oxidizing agent into the ground, and bringing the eluted organic pollutant into contact with the oxidizing agent to decompose.
象部位に含まれる汚染土壌及び汚染地下水の両方につい
て、前記溶出処理及び分解処理を行う請求項2または3
記載の汚染地盤構成物類の浄化方法。4. The elution treatment and the decomposition treatment for both contaminated soil and contaminated groundwater contained in a site to be treated for purification of ground contaminated with an organic compound.
The method for purifying contaminated ground constituents described in the above.
性剤を用いる、請求項1〜4のいずれか1項に記載の汚
染地盤構成物類の浄化方法。5. The method according to claim 1, wherein a surfactant is used as the organic pollutant elution accelerator.
剤を用いる、請求項1〜5のいずれか1項に記載の汚染
地盤構成物類の浄化方法。6. The method for purifying contaminated ground constituents according to claim 1, wherein an organic solvent is used as the organic contaminant elution accelerator.
酸化剤を用いる、請求項1〜6のいずれか1項に記載の
汚染地盤構成物類の浄化方法。7. The method for purifying contaminated ground constituents according to claim 1, wherein an oxidizing agent containing hydrogen peroxide as a main material is used as the oxidizing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000118330A JP2001300506A (en) | 2000-04-19 | 2000-04-19 | Method for cleaning contaminated ground components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000118330A JP2001300506A (en) | 2000-04-19 | 2000-04-19 | Method for cleaning contaminated ground components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001300506A true JP2001300506A (en) | 2001-10-30 |
JP2001300506A5 JP2001300506A5 (en) | 2007-03-29 |
Family
ID=18629486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000118330A Pending JP2001300506A (en) | 2000-04-19 | 2000-04-19 | Method for cleaning contaminated ground components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001300506A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002192142A (en) * | 2000-12-27 | 2002-07-10 | Fudo Constr Co Ltd | Method for cleaning polluted ground |
JP2009148702A (en) * | 2007-12-20 | 2009-07-09 | Nippon Oil Corp | Soil cleaning method |
JP2012026115A (en) * | 2010-07-21 | 2012-02-09 | Ohbayashi Corp | Method for treating surfactant in excavated soil |
JP2015077571A (en) * | 2013-10-18 | 2015-04-23 | エコサイクル株式会社 | Method for purifying pollutant-containing medium |
JP2019084493A (en) * | 2017-11-07 | 2019-06-06 | 前田建設工業株式会社 | Decomposition purification method of hardly decomposable organic compound |
CN114904906A (en) * | 2022-04-13 | 2022-08-16 | 华南师范大学 | Non-aqueous phase liquid pollutant repairing agent and preparation method and application thereof |
-
2000
- 2000-04-19 JP JP2000118330A patent/JP2001300506A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002192142A (en) * | 2000-12-27 | 2002-07-10 | Fudo Constr Co Ltd | Method for cleaning polluted ground |
JP2009148702A (en) * | 2007-12-20 | 2009-07-09 | Nippon Oil Corp | Soil cleaning method |
JP2012026115A (en) * | 2010-07-21 | 2012-02-09 | Ohbayashi Corp | Method for treating surfactant in excavated soil |
JP2015077571A (en) * | 2013-10-18 | 2015-04-23 | エコサイクル株式会社 | Method for purifying pollutant-containing medium |
JP2019084493A (en) * | 2017-11-07 | 2019-06-06 | 前田建設工業株式会社 | Decomposition purification method of hardly decomposable organic compound |
CN114904906A (en) * | 2022-04-13 | 2022-08-16 | 华南师范大学 | Non-aqueous phase liquid pollutant repairing agent and preparation method and application thereof |
CN114904906B (en) * | 2022-04-13 | 2023-12-26 | 华南师范大学 | Non-aqueous phase liquid pollutant repairing agent and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Besha et al. | Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers | |
EP2556859B1 (en) | Method for extracting a petroleum hydrocarbon and/or a nonaqueous phase liquid (NAPL) from a subsurface | |
US5368411A (en) | Method and apparatus for on the site cleaning of contaminated soil | |
CA2533772C (en) | Treatment of environmental contaminants | |
AU2005216224B2 (en) | Oxidation of organic compounds at high pH | |
US7045339B2 (en) | Electron donors for chlorinated solvent source area bioremediation | |
US11123779B2 (en) | Method and a chemical composition for accelerated in situ biochemical remediation | |
US6783678B2 (en) | Halogenated solvent remediation | |
WO2021091840A1 (en) | A method and apparatus for in-situ removal of per- and poly-fluoroalkyl substances | |
US5634983A (en) | Method for soil remediation | |
JP4167052B2 (en) | Purification method for organic compound contamination | |
JP2001300506A (en) | Method for cleaning contaminated ground components | |
JP2001300506A5 (en) | ||
JP2016221479A (en) | Soil cleaning method, soil cleaning system, and sparging rod assembly | |
Mulligan | Biosurfactants for the remediation of metal contamination | |
JP2921491B2 (en) | How to clean contaminated soil | |
JP3236219B2 (en) | Soil purification method and equipment | |
JP2011025105A (en) | Method of decontaminating soil and underground water contaminated with organic chlorine compound | |
JP2002119977A (en) | Method and apparatus for cleaning polluted ground water | |
JP2003260456A (en) | Soil purifying agent and method for purifying soil | |
Elektorowicz | Electrokinetic remediation of mixed metals and organic contaminants | |
JP2012232248A (en) | Cleaning method of contaminated soil | |
JP2002282834A (en) | Soil purification agent and soil purification method | |
Besha et al. | Accessed from: http://hdl. handle. net/1959.13/1394774 | |
JP4003938B2 (en) | Soil purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070208 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090515 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090918 |