JP2001298337A - Variable gain amplifier circuit - Google Patents

Variable gain amplifier circuit

Info

Publication number
JP2001298337A
JP2001298337A JP2000110520A JP2000110520A JP2001298337A JP 2001298337 A JP2001298337 A JP 2001298337A JP 2000110520 A JP2000110520 A JP 2000110520A JP 2000110520 A JP2000110520 A JP 2000110520A JP 2001298337 A JP2001298337 A JP 2001298337A
Authority
JP
Japan
Prior art keywords
resistor
resistance
gain
amplifier circuit
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000110520A
Other languages
Japanese (ja)
Other versions
JP4325072B2 (en
Inventor
Masanori Aoyama
正紀 青山
Hiromi Ariyoshi
博海 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000110520A priority Critical patent/JP4325072B2/en
Publication of JP2001298337A publication Critical patent/JP2001298337A/en
Application granted granted Critical
Publication of JP4325072B2 publication Critical patent/JP4325072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a variable gain amplifier circuit capable of accurately performing signal amplification by excluding the influence on the ON resistance of an analog switch. SOLUTION: The variable gain amplifier circuit is provided with a resistor group for gain switching formed by serially connecting resistors R1-Rn+1, analog switches S1-Sn, an operational amplifier 11 and a decoder 12 or the like and is constituted of elements of an MOS process. Besides, the center points of the respective resistors R1-Rn+1 are respectively connected through the analog switches S1-Sn to the inverting input terminal((-) terminal) of the operational amplifier 11. Since any one analog switch selectively turned on by the decoder 12 is positioned on a connecting line between the node of input resistor and feedback resistor and the inverting input terminal ((-) terminal) of the operational amplifier 11, no current flows through this switch and the influence of the ON resistance of this switch can be ignored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、振幅のばらつきを
持った入力信号(センサ素子出力信号)を増幅し、所定
の信号振幅に調整するゲイン可変増幅回路に関するもの
である。特に、一定物理量を電気信号に変換するセンサ
素子と信号処理回路とを有する半導体式センサなどにお
いて、一定物理量に対して得られる電気信号に感度ばら
つきを持つような微小信号を扱う信号処理回路にこの増
幅回路が好適に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable gain amplifier circuit for amplifying an input signal (sensor signal output signal) having a variation in amplitude and adjusting the signal to a predetermined signal amplitude. In particular, in a semiconductor type sensor having a sensor element and a signal processing circuit for converting a constant physical quantity into an electric signal, a signal processing circuit for handling a small signal having a sensitivity variation in an electric signal obtained for a constant physical quantity. An amplifier circuit can be suitably applied.

【0002】[0002]

【従来の技術】従来技術として、主にMOS工程で製造
され、抵抗とスイッチ(MOSトランジスタを利用した
アナログスイッチ)とを用いて抵抗値を切り換え、ゲイ
ン(利得)を変化させるゲイン可変式の増幅回路があ
る。例えば、特開平9−326654号公報に開示され
た増幅回路では、ゲイン切換用の複数の抵抗を直列に接
続すると共に、各抵抗に並列にアナログスイッチを接続
し、このアナログスイッチを選択的にオンすることによ
り増幅回路のゲインを調整している。
2. Description of the Related Art As a prior art, a variable gain type amplifier mainly manufactured in a MOS process, which switches a resistance value using a resistor and a switch (an analog switch using a MOS transistor) to change a gain. There is a circuit. For example, in the amplifier circuit disclosed in Japanese Patent Application Laid-Open No. 9-326654, a plurality of resistors for gain switching are connected in series, and an analog switch is connected in parallel to each resistor, and this analog switch is selectively turned on. By doing so, the gain of the amplifier circuit is adjusted.

【0003】この方式の場合、アナログスイッチのオン
抵抗が無視できないため、必要とする調整精度以下にな
るようにゲイン切換用抵抗の値とアナログスイッチのオ
ン抵抗値との比を設計する必要がある。その結果、アナ
ログスイッチのサイズを大きくしてオン抵抗を下げる設
計が不可欠となり、チップサイズが大きくなるというデ
メリットが発生する。
In this method, since the on-resistance of the analog switch cannot be ignored, it is necessary to design the ratio between the value of the gain switching resistor and the on-resistance of the analog switch so that the required adjustment accuracy is not more than the required value. . As a result, a design to increase the size of the analog switch to reduce the on-resistance is indispensable, and there is a disadvantage that the chip size increases.

【0004】また別の従来技術として、特開平9−13
5132号公報が知られているが、同公報の増幅回路に
おいても同様に、アナログスイッチのオン抵抗の影響か
らチップサイズが大きくなる等の問題が生ずる。
Another conventional technique is disclosed in Japanese Patent Application Laid-Open No. 9-13 / 1997.
Japanese Patent No. 5132 is known, but also in the amplifier circuit of the same publication, there arises a problem such as an increase in chip size due to the influence of the on-resistance of the analog switch.

【0005】更に、特開昭61−242405号公報の
増幅回路では、アナログスイッチのオン抵抗によるゲイ
ン誤差分や、オン抵抗の温度特性・電圧特性をキャンセ
ルするために、ゲイン切換用の抵抗とアナログスイッチ
とからなる複数のユニット(直列回路)を組み合わせ、
各アナログスイッチのサイズ比をゲイン切換用抵抗の抵
抗値に応じて変更するよう構成している。しかしながら
この場合、アナログスイッチが同時にオン又はオフする
ことなどから抵抗値が変動し、ゲイン誤差を完全にキャ
ンセルすることができない。また、値の異なる抵抗が複
数必要となることから、回路規模が大きくなるという問
題がある。
Furthermore, in the amplifier circuit disclosed in Japanese Patent Application Laid-Open No. 61-242405, a gain switching resistor and an analog switch are used to cancel the gain error due to the ON resistance of the analog switch and the temperature and voltage characteristics of the ON resistance. Combine multiple units (series circuits) consisting of switches and
The size ratio of each analog switch is changed according to the resistance value of the gain switching resistor. However, in this case, the resistance value fluctuates because the analog switches are turned on or off at the same time, and the gain error cannot be completely canceled. Further, since a plurality of resistors having different values are required, there is a problem that the circuit scale becomes large.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題に
着目してなされたものであって、その目的とするところ
は、アナログスイッチのオン抵抗の影響を排除し、精度
良く信号増幅を行うことができるゲイン可変増幅回路を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to eliminate the influence of the on-resistance of an analog switch and to perform signal amplification with high accuracy. And a variable gain amplifier circuit.

【0007】[0007]

【課題を解決するための手段】請求項1に記載のゲイン
可変増幅回路では、選択手段により全てのアナログスイ
ッチのうち何れか一つが選択的にオンされると、ゲイン
切換用抵抗群が入力抵抗側の抵抗と帰還抵抗側の抵抗と
に分かれる。それにより、入力抵抗としての抵抗値と帰
還抵抗としての抵抗値とが決定され、それら決定された
抵抗値に応じて入力信号が増幅される。このとき特に、
オンされたアナログスイッチは、入力抵抗側と帰還抵抗
側との間の接続点と、オペアンプの入力端子との間に設
けられることになるので、このアナログスイッチのオン
抵抗の影響を排除することができる。
In the variable gain amplifier circuit according to the present invention, when any one of all the analog switches is selectively turned on by the selection means, the gain switching resistance group is changed to the input resistance. And the resistor on the feedback resistor side. Thereby, the resistance value as the input resistance and the resistance value as the feedback resistance are determined, and the input signal is amplified according to the determined resistance value. At this time,
Since the turned on analog switch is provided between the connection point between the input resistance side and the feedback resistance side and the input terminal of the operational amplifier, it is possible to eliminate the influence of the on resistance of this analog switch. it can.

【0008】すなわち、反転増幅回路の基本構成を示す
図7において、同回路の電流経路を考えると、MOS工
程で製造されるオペアンプOPの入力バイアス電流は0
に近いので入力抵抗Ra及び帰還抵抗Rbの接続点から
オペアンプOPの反転入力端子(−端子)への接続ライ
ンには電流が流れない。本発明では、この接続ラインに
アナログスイッチを配置し、抵抗値の切り換えを行うの
で、アナログスイッチのオン抵抗の影響が無視できるよ
うになる。その結果、本発明では、アナログスイッチの
オン抵抗の影響を排除し、精度良く信号増幅を行うこと
ができる。
That is, in FIG. 7 showing the basic configuration of the inverting amplifier circuit, considering the current path of the inverting amplifier circuit, the input bias current of the operational amplifier OP manufactured in the MOS process is zero.
Therefore, no current flows through the connection line from the connection point of the input resistance Ra and the feedback resistance Rb to the inverting input terminal (-terminal) of the operational amplifier OP. In the present invention, since an analog switch is arranged on this connection line to switch the resistance value, the influence of the on-resistance of the analog switch can be ignored. As a result, in the present invention, it is possible to eliminate the influence of the on-resistance of the analog switch and perform signal amplification with high accuracy.

【0009】請求項2に記載のゲイン可変増幅回路で
は、ゲイン切換用抵抗群は、固定抵抗からなる入力抵抗
と、同じく固定抵抗からなる帰還抵抗と、それら入力抵
抗及び帰還抵抗の間に設けられる複数のゲイン調整抵抗
とからなる。この場合、ゲインの可変範囲は概ね前記入
力抵抗と帰還抵抗とにより決定され、その可変範囲内に
てゲイン調整抵抗分に応じてゲインが多段階に調整され
る。
In the variable gain amplifier circuit according to the present invention, the gain switching resistor group is provided between an input resistor including a fixed resistor, a feedback resistor also including a fixed resistor, and the input resistor and the feedback resistor. And a plurality of gain adjustment resistors. In this case, the variable range of the gain is substantially determined by the input resistance and the feedback resistance, and the gain is adjusted in multiple stages according to the gain adjustment resistance within the variable range.

【0010】また、請求項3に記載のゲイン可変増幅回
路では、ゲイン調整抵抗は、個々の抵抗値の重み付けが
それぞれ変更されてなるので、抵抗切り換えによるゲイ
ン調整に際し、ゲインの必要精度(線形性)を満たすこ
とができる。それ故、ゲイン誤差を完全にキャンセルす
ることが可能となる。特にこの場合、請求項4に記載し
たように、ゲイン調整抵抗は、入力抵抗寄りの抵抗値が
小さく、帰還抵抗寄りの抵抗値が大きくなるよう個々の
抵抗値が設定されると良い。
In the variable gain amplifier circuit according to the third aspect of the present invention, the weighting of each resistance value of the gain adjustment resistor is changed, so that the gain required precision (linearity ) Can be satisfied. Therefore, it is possible to completely cancel the gain error. In particular, in this case, as described in claim 4, it is preferable that the individual resistance values of the gain adjustment resistors are set such that the resistance value near the input resistance is small and the resistance value near the feedback resistance is large.

【0011】請求項5に記載のゲイン可変増幅回路で
は、ゲイン調整抵抗は、コンタクト抵抗を含めた形で単
位抵抗により各々構成される。この場合、ゲイン調整抵
抗の各値は単位抵抗どうしの比で設定されることとな
り、抵抗値の工程ばらつきが生じても各値の比がばらつ
くことはない。
In the variable gain amplifying circuit according to the present invention, the gain adjusting resistors are each constituted by a unit resistor including a contact resistor. In this case, each value of the gain adjustment resistor is set by a ratio of the unit resistors, and the ratio of each value does not vary even if a process variation of the resistance value occurs.

【0012】[0012]

【発明の実施の形態】以下、この発明を具体化した一実
施の形態を図面に従って説明する。本実施の形態におけ
るゲイン可変増幅回路は、例えば、ギアの回転速度を検
出する回転センサにおいて、同センサの素子部から信号
を入力するセンサ信号処理回路に適用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. The variable gain amplifier circuit according to the present embodiment is applied, for example, to a sensor signal processing circuit that inputs a signal from an element unit of a rotation sensor that detects the rotation speed of a gear.

【0013】図1には、本実施の形態におけるゲイン可
変増幅回路の回路構成図を示す。本回路は、R1,R
2,…,Rn-1 ,Rn,Rn+1 の全n+1個の抵抗が直
列接続されてなるゲイン切換用抵抗群と、S1,S2,
・・・,Sn-1 ,Snの全n個のアナログスイッチと、
オペアンプ11と、アナログスイッチS1〜Snを選択
的にオンするためのデコーダ12と、基準電源13とか
ら構成されており、センサ素子から得られる入力信号を
増幅し出力する。すなわち、基本的には反転増幅器が構
成され、その入力抵抗及び帰還抵抗を切り換えることに
よりゲインが可変に調整される。また、本回路はMOS
工程の素子より構成されている。
FIG. 1 shows a circuit configuration diagram of a variable gain amplifier circuit according to the present embodiment. This circuit has R1, R
2,..., Rn-1, Rn, Rn + 1, a gain switching resistor group in which all n + 1 resistors are connected in series;
.., Sn-1 and Sn, all n analog switches;
It comprises an operational amplifier 11, a decoder 12 for selectively turning on the analog switches S1 to Sn, and a reference power supply 13, and amplifies and outputs an input signal obtained from a sensor element. That is, an inverting amplifier is basically configured, and the gain is variably adjusted by switching its input resistance and feedback resistance. This circuit is MOS
It consists of the elements of the process.

【0014】抵抗R1〜Rn+1 からなるゲイン切換用抵
抗群は、一端(1番目の抵抗R1)が信号入力端子に接
続されると共に、他端(n+1番目の抵抗Rn+1 )がオ
ペアンプ11の出力端子に接続されている。そのうち、
抵抗R1は固定抵抗からなる入力抵抗(入力側固定抵
抗)、抵抗Rn+1 は固定抵抗からなる帰還抵抗(帰還側
固定抵抗)、抵抗R2〜Rnはそれぞれゲイン調整抵抗
である。つまり、抵抗R1とRn+1 は、ゲインの可変範
囲を決定する抵抗であり、抵抗R2〜Rnはゲインの切
換ステップを決める抵抗である。また、各抵抗R1〜R
n+1 の中間点は、各々アナログスイッチS1〜Snを介
してオペアンプ11の反転入力端子(−端子)に接続さ
れている。
A gain switching resistor group composed of resistors R1 to Rn + 1 has one end (first resistor R1) connected to a signal input terminal and the other end (n + 1th resistor Rn + 1) connected to an operational amplifier 11. Output terminal. Of which
The resistor R1 is an input resistor (fixed resistor on the input side) formed of a fixed resistor, the resistor Rn + 1 is a feedback resistor (fixed resistor on the feedback side) formed of a fixed resistor, and the resistors R2 to Rn are gain adjustment resistors. That is, the resistors R1 and Rn + 1 are resistors that determine the variable range of the gain, and the resistors R2 to Rn are resistors that determine the step of switching the gain. Also, each of the resistors R1 to R
The midpoint of n + 1 is connected to the inverting input terminal (-terminal) of the operational amplifier 11 via the analog switches S1 to Sn, respectively.

【0015】デコーダ12にはmビットの調整データが
入力され、デコーダ12は、入力した調整データにより
切換信号のアドレス(0〜2^m−1)を決定し出力す
る。アナログスイッチS1〜Snは、デコーダ12の切
換信号により1箇所だけ選択的にオンされる。このと
き、調整の必要ビット数をmとすると、ゲイン切換用抵
抗群として2^m+1個の抵抗が必要となる。また、アナ
ログスイッチは2^m個必要となる。
The m-bit adjustment data is input to the decoder 12, and the decoder 12 determines and outputs the address (0 to 2 ^ m-1) of the switching signal based on the input adjustment data. The analog switches S1 to Sn are selectively turned on at only one position by a switching signal of the decoder 12. At this time, assuming that the number of bits required for adjustment is m, 2 ^ m + 1 resistors are required as a gain switching resistor group. Also, 2 ^ m analog switches are required.

【0016】上記構成の増幅回路では、例えば、デコー
ダ12から出力される切換信号のアドレスが「0」の場
合、アナログスイッチS1がオンされ、入力抵抗はR
1、帰還抵抗は(R2+R3+…+Rn+1 )となる。そ
れ故、ゲインGの式は、 G=−(R2+R3+…+Rn+1 )/R1 となり、これによりゲインの最大値が設定できる。この
とき、オンされるアナログスイッチS1は、入力抵抗側
及び帰還抵抗側の接続点(R1,R2の接続点)と、オ
ペアンプ11の反転入力端子(−端子)との間の接続ラ
インに位置するので、アナログスイッチS1を通じて電
流が流れることはなく、同スイッチS1のオン抵抗の影
響が無視できる。
In the amplifier circuit having the above configuration, for example, when the address of the switching signal output from the decoder 12 is "0", the analog switch S1 is turned on, and the input resistance becomes R.
1, the feedback resistance becomes (R2 + R3 +... + Rn + 1). Therefore, the equation for the gain G is as follows: G =-(R2 + R3 +... + Rn + 1) / R1, and the maximum value of the gain can be set. At this time, the analog switch S1 to be turned on is located on a connection line between the connection point on the input resistance side and the feedback resistance side (connection point of R1 and R2) and the inverting input terminal (-terminal) of the operational amplifier 11. Therefore, no current flows through the analog switch S1, and the influence of the ON resistance of the switch S1 can be ignored.

【0017】また、デコーダ12のアドレスが「2^m−
1(最大値)」の場合を考えると、アナログスイッチS
nがオンされ、入力抵抗は(R1+R2+R3+…+R
n)、帰還抵抗はRn+1 となる。それ故、ゲインGの式
は、 G=−Rn+1 /(R1+R2+R3+…+Rn) となり、これによりゲインの最小値が設定できる。この
ときやはり、オンされるアナログスイッチSnは、入力
抵抗側及び帰還抵抗側の接続点(Rn,Rn+1 の接続
点)と、オペアンプ11の反転入力端子(−端子)との
間の接続ラインに位置するので、アナログスイッチSn
を通じて電流が流れることはなく、同スイッチSnのオ
ン抵抗の影響が無視できる。
When the address of the decoder 12 is "2 ^ m-
1 (maximum value), the analog switch S
n is turned on, and the input resistance is (R1 + R2 + R3 +... + R
n), the feedback resistance becomes Rn + 1. Therefore, the equation for the gain G is as follows: G = −Rn + 1 / (R1 + R2 + R3 +... + Rn), whereby the minimum value of the gain can be set. At this time, the analog switch Sn to be turned on again has a connection line between a connection point on the input resistance side and a feedback resistance side (a connection point between Rn and Rn + 1) and an inverting input terminal (−terminal) of the operational amplifier 11. , The analog switch Sn
No current flows through the switch Sn, and the effect of the ON resistance of the switch Sn can be ignored.

【0018】ところで、ゲインGの式から分かるよう
に、抵抗R2〜Rnの抵抗値を一定値とすると、ゲイン
の線形性が損なわれる。そこで、抵抗R2〜Rnの抵抗
値を重み付けして設計することで、線形性を保つことを
考える。
As can be seen from the equation of the gain G, when the resistance values of the resistors R2 to Rn are constant, the linearity of the gain is impaired. Therefore, it is considered that the linearity is maintained by designing the resistance values of the resistors R2 to Rn by weighting.

【0019】以下には、線形性補正を行わない場合、す
なわちゲイン調整抵抗(R2〜Rn)の値を一定値とす
る場合と、線形性補正を行う場合、すなわちゲイン調整
抵抗(R2〜Rn)の値を重み付けする場合とについ
て、具体的な数値を示しながら図2〜図4により説明す
る。ここで、図2は、線形性補正を行わない場合におい
てゲインの数値を配列したもの、図3は、線形性補正を
行う場合においてゲインの数値を配列したもの、図4
(a),(b)は、図2,図3のデータをグラフ化した
ものである。なお、図2,図3中、アドレス毎に上下2
段に示す抵抗値は、上段が入力抵抗の値、下段が帰還抵
抗の値である。またここでは一例として、 ・ゲインの可変範囲=約8〜5.5倍 ・必要精度(線形性)<1% ・切換ビット数=4ビット(16階調) ・ゲイン単調性=単調減少 ・ゲイン調整抵抗の単位抵抗値=0.5kΩ ・入力抵抗と帰還抵抗の総抵抗値>50kΩ(オペアン
プの能力による) といった各条件を設定している。
Hereinafter, the case where the linearity correction is not performed, that is, the case where the values of the gain adjustment resistors (R2 to Rn) are fixed, and the case where the linearity correction is performed, that is, the gain adjustment resistors (R2 to Rn) 2 to 4 will be described with reference to specific numerical values. Here, FIG. 2 shows an arrangement of gain values when linearity correction is not performed, FIG. 3 shows an arrangement of gain values when linearity correction is performed, and FIG.
(A) and (b) are graphs of the data of FIGS. 2 and 3. In FIG. 2 and FIG.
In the resistance values shown in the stages, the upper stage shows the value of the input resistance, and the lower stage shows the value of the feedback resistor. Here, as an example, the variable range of the gain = about 8 to 5.5 times, the required accuracy (linearity) <1%, the number of switching bits = 4 bits (16 gradations), the gain monotonicity = monotonically decreasing, and the gain. Each condition is set such that the unit resistance value of the adjustment resistor = 0.5 kΩ. The total resistance value of the input resistance and the feedback resistance> 50 kΩ (depending on the capability of the operational amplifier).

【0020】先ず線形性補正を行わない場合について、
図2及び図4(a)を用いて説明する。ここで、入力側
固定抵抗R1の抵抗値を8kΩ、ゲイン調整抵抗R2〜
R16の抵抗値をそれぞれ0.2kΩ、帰還側固定抵抗
R17の抵抗値を60kΩとして構成した場合、ゲイン
の可変範囲は仕様(約8〜5.5倍)を満足できるが、
必要精度(線形性)の仕様(1%未満)を満足できな
い。
First, in the case where the linearity correction is not performed,
This will be described with reference to FIG. 2 and FIG. Here, the resistance value of the input side fixed resistor R1 is 8 kΩ, and the gain adjustment resistors R2
When the resistance value of R16 is 0.2 kΩ and the resistance value of fixed resistor R17 on the feedback side is 60 kΩ, the variable range of the gain can satisfy the specification (about 8 to 5.5 times).
The required accuracy (linearity) specification (less than 1%) cannot be satisfied.

【0021】つまり、ゲイン調整抵抗R2〜R16の値
を一定とした場合、上記のゲインGの式からも分かるよ
うに、数値の小さいアドレスを選択して入力抵抗及び帰
還抵抗を切り換えた場合と、数値の大きいアドレスを選
択して入力抵抗及び帰還抵抗を切り換えた場合とを比較
すると、1アドレス分(1LSB)のアドレス間誤差
(ゲイン変化量)が大きく異なり、アドレス間誤差はア
ドレスが小さい方が大きくなる。よって、アドレスに対
するゲインの特性は下に凸の弓状(双曲線状)になり、
アドレスの中心付近(アドレス7,8)で誤差率(%)
が大きくなってしまう。図2によれば、最大2.94%
の誤差が発生することが分かる。
That is, when the values of the gain adjustment resistors R2 to R16 are fixed, as can be seen from the above-described equation of the gain G, the case where an address having a small numerical value is selected and the input resistance and the feedback resistance are switched, Comparing the case where an address having a large numerical value is selected and the input resistance and the feedback resistance are switched, the error between addresses (gain change amount) for one address (1 LSB) is greatly different, and the error between addresses is smaller when the address is smaller. growing. Therefore, the characteristic of the gain with respect to the address becomes a downward convex arc shape (hyperbolic shape),
Error rate (%) near the center of the address (addresses 7 and 8)
Becomes large. According to FIG. 2, up to 2.94%
It can be seen that an error occurs.

【0022】これに対して、線形性補正を行う図3及び
図4(b)では、各アドレスに対応するゲイン調整抵抗
に重み付けを持たせることにより、必要精度(線形性)
の仕様を満足することが可能となる。この場合、前述の
通りアドレスが小さい方がアドレス間誤差が大きく、ゲ
イン変化への影響が大きいことから、基本的にアドレス
が小さいゲイン調整抵抗の値を小さくし、アドレスが大
きくなるのに従いゲイン調整抵抗の値を大きく設定す
る。なお図3では、抵抗R2〜R7の値は0.167k
Ω、抵抗R8〜R12の値は0.2kΩ、抵抗R13〜
R16の値は0.25kΩ、としている。
On the other hand, in FIGS. 3 and 4 (b) for performing the linearity correction, the required accuracy (linearity) is obtained by giving a weight to the gain adjustment resistor corresponding to each address.
Can be satisfied. In this case, as described above, the smaller the address, the larger the error between addresses and the greater the effect on the gain change. Therefore, basically, the value of the gain adjustment resistor with the smaller address is reduced, and the gain is adjusted as the address becomes larger. Set a large resistance value. In FIG. 3, the values of the resistors R2 to R7 are 0.167 k.
Ω, the values of the resistors R8 to R12 are 0.2 kΩ,
The value of R16 is 0.25 kΩ.

【0023】またこのとき、ゲイン調整抵抗の値をリニ
アに設定することで設計値として誤差率0%を達成でき
るが、抵抗の構造及び製造上、抵抗値にはばらつきが必
ずあり、それが誤差となって必要精度が満足できなくな
る。具体的にはまず構造上、抵抗は、半導体の拡散抵抗
やポリシリコンなどの抵抗を有すると共に、配線層であ
るALと接続する場合に必ずコンタクト抵抗を有する。
なお、抵抗の設計値は、そのシート抵抗値ρsと幅Wと
長さLで決定され、前述のコンタクト抵抗を考慮しない
場合は、ρsが一定とすると、WとLのみで設計され
る。
At this time, an error rate of 0% can be achieved as a design value by setting the value of the gain adjustment resistor linearly. However, there is always a variation in the resistance value due to the structure and manufacturing of the resistor. As a result, the required accuracy cannot be satisfied. Specifically, first of all, the resistor has a diffusion resistance of a semiconductor or a resistance of polysilicon or the like, and also has a contact resistance when connected to the wiring layer AL.
The design value of the resistor is determined by its sheet resistance value ρs, width W, and length L. If the above-mentioned contact resistance is not taken into consideration, assuming that ρs is constant, the resistor is designed only with W and L.

【0024】つまり、図5(a),(b)に示す通り、
ゲイン調整抵抗をリニアで設計する場合、拡散抵抗(又
はポリシリコン抵抗)21とAL配線22とが接触する
コンタクト部23においてコンタクト抵抗Rcが存在
し、そのRc分がゲイン調整抵抗の値に含まれる。その
ため、コンタクト抵抗Rcの値を考慮してゲイン調整抵
抗を設計しなければならない。また、コンタクト抵抗分
を合わせ込んで設計したとしても、コンタクト抵抗の工
程ばらつき、拡散抵抗(又はポリシリコン抵抗)の工程
ばらつきにより誤差が生じ、ゲイン調整抵抗が設計値か
ら外れてしまう。
That is, as shown in FIGS. 5A and 5B,
When the gain adjustment resistor is designed linearly, there is a contact resistance Rc in the contact portion 23 where the diffusion resistor (or polysilicon resistor) 21 and the AL wiring 22 are in contact, and the Rc is included in the value of the gain adjustment resistor. . Therefore, the gain adjustment resistor must be designed in consideration of the value of the contact resistance Rc. Further, even if the contact resistance is designed, the error occurs due to the process variation of the contact resistance and the process variation of the diffusion resistance (or polysilicon resistance), and the gain adjustment resistor deviates from the designed value.

【0025】そこで、図6(a),(b)に示す通り、
コンタクト抵抗を含めた形で単位抵抗31を構成し、リ
ニアに近い形で設計する。図6において、個々の単位抵
抗31は、コンタクト抵抗Rcを含み、同一工程・同一
サイズで作製されている。そして、この単位抵抗31が
並列接続されることにより、リニアに近い形でゲイン調
整抵抗が設計されている。なお図中、符号21,22,
23は図5と同様、拡散抵抗(又はポリシリコン抵
抗)、AL配線、コンタクト部である。図6の場合、単
位抵抗31どうしの比でゲイン調整抵抗が設計されるこ
とから、抵抗値の工程ばらつきが生じても誤差の発生が
キャンセルされる。
Therefore, as shown in FIGS. 6A and 6B,
The unit resistance 31 is configured to include the contact resistance, and is designed to be nearly linear. In FIG. 6, each unit resistor 31 includes a contact resistor Rc and is manufactured in the same step and the same size. Then, by connecting the unit resistors 31 in parallel, the gain adjustment resistor is designed in a nearly linear manner. In the figure, reference numerals 21, 22,
Reference numeral 23 denotes a diffusion resistor (or polysilicon resistor), an AL wiring, and a contact portion, as in FIG. In the case of FIG. 6, since the gain adjustment resistor is designed by the ratio of the unit resistors 31, even if a process variation of the resistance value occurs, the occurrence of the error is canceled.

【0026】以上詳述した本実施の形態によれば、以下
に示す効果が得られる。デコーダ12によりアナログス
イッチS1〜Snの一つが選択的にオンされて入力信号
が増幅される際、オンされたアナログスイッチは、入力
抵抗側と帰還抵抗側との間の接続点と、オペアンプ11
の入力端子との間に設けられることになるので、このア
ナログスイッチのオン抵抗の影響を排除することができ
る。その結果、本増幅回路では、温度特性や電圧特性に
よらず、精度良く信号増幅を行うことができる。またこ
のとき、アナログスイッチのオン抵抗の影響を受けない
ので、各アナログスイッチS1〜Snのサイズを最小サ
イズに設計することができる。また、アナログスイッチ
S1〜Snが最小サイズになることから、同スイッチS
1〜Snを構成するトランジスタの高温時におけるリー
ク電流の影響も最小となる。
According to the embodiment described above, the following effects can be obtained. When one of the analog switches S1 to Sn is selectively turned on by the decoder 12 to amplify the input signal, the turned on analog switch is connected to the connection point between the input resistance side and the feedback resistance side and the operational amplifier 11
Therefore, the influence of the on-resistance of the analog switch can be eliminated. As a result, the present amplifier circuit can accurately perform signal amplification irrespective of temperature characteristics and voltage characteristics. Also, at this time, the size of each of the analog switches S1 to Sn can be designed to be the minimum size because the ON resistance of the analog switches is not affected. Further, since the size of the analog switches S1 to Sn becomes the minimum size,
The effect of the leakage current of the transistors constituting 1 to Sn at high temperatures is also minimized.

【0027】ゲイン調整抵抗(図1のR2〜Rn)、個
々の抵抗値の重み付けがそれぞれ変更されてなり、特に
入力側固定抵抗(図1のR1)寄りの抵抗値が小さく、
帰還側固定抵抗(図1のRn+1 )寄りの抵抗値が大きく
なるよう個々の抵抗値が設定されるので、ゲイン調整に
際し必要精度(線形性)を満たすことができる。また、
単位抵抗によりゲイン調整抵抗が構成されるので、抵抗
値の工程ばらつきが生じても誤差の発生がキャンセルさ
れ、所望の抵抗比を設定することができる。それ故、ゲ
イン誤差を完全にキャンセルすることが可能となる。
The gain adjustment resistors (R2 to Rn in FIG. 1) and the weights of the individual resistance values are respectively changed. Particularly, the resistance value near the input-side fixed resistor (R1 in FIG. 1) is small.
Since each resistance value is set so that the resistance value near the feedback-side fixed resistance (Rn + 1 in FIG. 1) becomes large, the required accuracy (linearity) can be satisfied in gain adjustment. Also,
Since the gain adjustment resistor is constituted by the unit resistor, even if a process variation of the resistance value occurs, the occurrence of the error is canceled, and a desired resistance ratio can be set. Therefore, it is possible to completely cancel the gain error.

【0028】なお上記実施の形態では、本発明を反転増
幅回路として具体化したが、非反転増幅回路や差動増幅
回路として具体化することも勿論可能である。また、ギ
アの回転速度を検出するためのセンサ信号処理回路以外
の用途にも適宜適用することが可能である。
In the above embodiment, the present invention is embodied as an inverting amplifier circuit. However, it is needless to say that the present invention can be embodied as a non-inverting amplifier circuit or a differential amplifier circuit. Further, the present invention can be appropriately applied to uses other than the sensor signal processing circuit for detecting the rotation speed of the gear.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施の形態におけるゲイン可変増幅回路
の概要を示す電気回路図。
FIG. 1 is an electric circuit diagram showing an outline of a variable gain amplifier circuit according to an embodiment of the present invention.

【図2】線形性補正を行わない場合においてゲインの数
値を配列した図。
FIG. 2 is a diagram in which numerical values of gains are arranged when linearity correction is not performed.

【図3】線形性補正を行う場合においてゲインの数値を
配列した図。
FIG. 3 is a diagram in which numerical values of gains are arranged when performing linearity correction.

【図4】図2及び図3のデータをグラフ化した図。FIG. 4 is a graph of the data of FIGS. 2 and 3;

【図5】抵抗をリニアに可変した場合の構成を説明する
図。
FIG. 5 is a diagram illustrating a configuration in a case where a resistance is linearly varied.

【図6】抵抗を単位抵抗で構成した場合の構成を説明す
る図。
FIG. 6 is a diagram illustrating a configuration in the case where a resistor is configured by a unit resistor.

【図7】一般的な反転増幅回路を示す電気回路図。FIG. 7 is an electric circuit diagram showing a general inverting amplifier circuit.

【符号の説明】[Explanation of symbols]

11…オペアンプ、12…選択手段としてのデコーダ、
31…単位抵抗、R1〜Rn+1 …抵抗、S1〜Sn…ア
ナログスイッチ。
11 ... operational amplifier, 12 ... decoder as selection means,
31: unit resistance, R1 to Rn + 1: resistance, S1 to Sn: analog switch.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】オペアンプと、 複数の抵抗が直列接続されてなるゲイン切換用抵抗群
と、 ゲイン切換用抵抗群の各抵抗の中間点とオペアンプの入
力端子との間に各々接続される複数のアナログスイッチ
と、 全てのアナログスイッチのうち何れか一つを選択的にオ
ンする選択手段と、を備えることを特徴とするゲイン可
変増幅回路。
An operational amplifier, a gain switching resistor group in which a plurality of resistors are connected in series, and a plurality of resistors respectively connected between an intermediate point of each resistor of the gain switching resistor group and an input terminal of the operational amplifier. A variable gain amplifier circuit comprising: an analog switch; and selection means for selectively turning on one of all analog switches.
【請求項2】前記ゲイン切換用抵抗群は、固定抵抗から
なる入力抵抗と、同じく固定抵抗からなる帰還抵抗と、
それら入力抵抗及び帰還抵抗の間に設けられる複数のゲ
イン調整抵抗とからなる請求項1に記載のゲイン可変増
幅回路。
2. The gain switching resistor group includes an input resistor comprising a fixed resistor, a feedback resistor also comprising a fixed resistor,
2. The variable gain amplifier circuit according to claim 1, comprising a plurality of gain adjusting resistors provided between the input resistor and the feedback resistor.
【請求項3】請求項2に記載のゲイン可変増幅回路にお
いて、 前記ゲイン調整抵抗は、個々の抵抗値の重み付けがそれ
ぞれ変更されてなるゲイン可変増幅回路。
3. The variable gain amplifying circuit according to claim 2, wherein the gain adjusting resistor is obtained by changing the weighting of each resistance value.
【請求項4】請求項3に記載のゲイン可変増幅回路にお
いて、 前記ゲイン調整抵抗は、入力抵抗寄りの抵抗値が小さ
く、帰還抵抗寄りの抵抗値が大きくなるよう個々の抵抗
値が設定されるゲイン可変増幅回路。
4. The variable gain amplifier circuit according to claim 3, wherein each of said gain adjustment resistors is set such that a resistance value near an input resistance is small and a resistance value near a feedback resistance is large. Variable gain amplifier circuit.
【請求項5】請求項3又は4に記載のゲイン可変増幅回
路において、 前記ゲイン調整抵抗は、コンタクト抵抗を含めた形で単
位抵抗により各々構成されるゲイン可変増幅回路。
5. The variable gain amplifying circuit according to claim 3, wherein said gain adjusting resistors are each constituted by a unit resistor including a contact resistor.
【請求項6】請求項1〜5の何れかに記載のゲイン可変
増幅回路において、回路は半導体工程、特にMOS工程
で製造されるものであるゲイン可変増幅回路。
6. A variable gain amplifier circuit according to claim 1, wherein said circuit is manufactured in a semiconductor process, particularly in a MOS process.
JP2000110520A 2000-04-12 2000-04-12 Variable gain amplifier circuit Expired - Fee Related JP4325072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110520A JP4325072B2 (en) 2000-04-12 2000-04-12 Variable gain amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110520A JP4325072B2 (en) 2000-04-12 2000-04-12 Variable gain amplifier circuit

Publications (2)

Publication Number Publication Date
JP2001298337A true JP2001298337A (en) 2001-10-26
JP4325072B2 JP4325072B2 (en) 2009-09-02

Family

ID=18623015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110520A Expired - Fee Related JP4325072B2 (en) 2000-04-12 2000-04-12 Variable gain amplifier circuit

Country Status (1)

Country Link
JP (1) JP4325072B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669995B1 (en) 2004-06-30 2007-01-16 강근순 Programmable Gain Amplifier having an exponential gain as a function of digital input
JP2010103508A (en) * 2008-09-25 2010-05-06 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US7777565B2 (en) 2007-10-15 2010-08-17 Denso Corporation Differential amplification circuit and manufacturing method thereof
CN102270972A (en) * 2011-04-18 2011-12-07 上海信朴臻微电子有限公司 Variable-gain amplifier
US9197148B2 (en) 2013-04-17 2015-11-24 Renesas Electronics Corporation Semiconductor device and inverter system
CN105490651A (en) * 2014-10-01 2016-04-13 瑞萨电子株式会社 Semiconductor integrated circuit, variable gain amplifier, and sensing system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669995B1 (en) 2004-06-30 2007-01-16 강근순 Programmable Gain Amplifier having an exponential gain as a function of digital input
US7777565B2 (en) 2007-10-15 2010-08-17 Denso Corporation Differential amplification circuit and manufacturing method thereof
JP2010103508A (en) * 2008-09-25 2010-05-06 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US9960116B2 (en) 2008-09-25 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102270972A (en) * 2011-04-18 2011-12-07 上海信朴臻微电子有限公司 Variable-gain amplifier
US9197148B2 (en) 2013-04-17 2015-11-24 Renesas Electronics Corporation Semiconductor device and inverter system
CN105490651A (en) * 2014-10-01 2016-04-13 瑞萨电子株式会社 Semiconductor integrated circuit, variable gain amplifier, and sensing system
CN105490651B (en) * 2014-10-01 2020-09-25 瑞萨电子株式会社 Semiconductor integrated circuit, variable gain amplifier, and sensing system

Also Published As

Publication number Publication date
JP4325072B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US7088180B2 (en) Programmable gain current amplifier
US6288664B1 (en) Autoranging analog to digital conversion circuitry
JP4671305B2 (en) Physical quantity sensor
KR100946815B1 (en) Programmable low noise amplifier and method
EP2845316B1 (en) Electronic circuit for adjusting an offset of a differential amplifier
US6310518B1 (en) Programmable gain preamplifier
US20120293353A1 (en) Operational amplifier
CN109708672B (en) Sensor using digitally assisted 1/X analog gain compensation
JP2009081545A (en) Programmable gain circuit and amplification circuit
US20050099752A1 (en) Temperature sensing circuit
JP2006174122A (en) Output amplifier circuit, and sensor device using the same
JP2015061320A (en) Programmable-gain instrumentation amplifier
JP4325072B2 (en) Variable gain amplifier circuit
US20160195890A1 (en) Constant-current circuit and sensor device having this
JP2002335158A (en) Structure for adjusting gain of flash analog-to-digital converter
Dal Fabbro et al. An integrated CMOS instrumentation amplifier with improved CMRR
EP0915346A2 (en) Current sensing circuit with high input impedance
US6462615B1 (en) High speed closed loop amplifier with gain adjustment
JP2003042870A (en) Temperature characteristics correcting circuit apparatus for sensor and sensor temperature characteristics correcting method
JP3435501B2 (en) Temperature compensation circuit
US7205799B2 (en) Input buffer having a stabilized operating point and an associated method
JP6791648B2 (en) A / D converter circuit and electronic equipment
JP4250984B2 (en) Current detection circuit
JP2008283284A (en) Ad converter
JP2006325005A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees