JP2001296077A - Compression type heat pump - Google Patents

Compression type heat pump

Info

Publication number
JP2001296077A
JP2001296077A JP2000111634A JP2000111634A JP2001296077A JP 2001296077 A JP2001296077 A JP 2001296077A JP 2000111634 A JP2000111634 A JP 2000111634A JP 2000111634 A JP2000111634 A JP 2000111634A JP 2001296077 A JP2001296077 A JP 2001296077A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
defrosting
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000111634A
Other languages
Japanese (ja)
Inventor
Yukihiro Yano
幸博 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000111634A priority Critical patent/JP2001296077A/en
Publication of JP2001296077A publication Critical patent/JP2001296077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent compressor suction pressure from being abnormally lowered while effectively performing defrosting operation or deicing operation. SOLUTION: In a defrosting or deicing operation in which a heat exchanger 2 on which frosting or ice deposition happen in an operation as an evaporator E acts as a condenser C by switching of refrigerant circulation passage, there is provided a bypass passage 9 for short-circuitting a high pressure side liquid refrigerant passage a to a extending from an outlet of the beat exchanger up to expansion means vaporized refrigerant suction passage b to a compressor 4. A valve S3 is interposed on the bypass passage 9, and further control means 8 for controlling the valve 3 on the basis of detection information of suction pressure Pi such that the suction pressure Pi of the compressor 4 is kept at a proper value in defrosting or deicing operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮式ヒートポン
プに関し、詳しくは、空気や水などの熱源から吸熱する
蒸発器としての熱交換器に着霜又は着氷を生じたとき、
その熱交換器を冷媒循環経路の切り換えにより凝縮器と
して機能させる除霜又は除氷運転を実施する圧縮式ヒー
トポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression heat pump, and more particularly, to the case where frost or icing occurs on a heat exchanger as an evaporator that absorbs heat from a heat source such as air or water.
The present invention relates to a compression heat pump for performing a defrosting or deicing operation in which the heat exchanger functions as a condenser by switching a refrigerant circulation path.

【0002】[0002]

【従来の技術】この種の圧縮式ヒートポンプでは、上記
の除霜又は除氷運転の際、蒸発器から凝縮器に切り換え
られた除霜又は除氷対象の熱交換器に霜や氷の冷却作用
で冷媒が滞留する傾向となるが、この滞留量が大きい
と、それが原因で圧縮機の吸込圧力が異常低下すること
に対し安全装置が作動してヒートポンプの運転が強制的
に自動停止(いわゆる低圧カット)される。
2. Description of the Related Art In a compression heat pump of this type, during the above-mentioned defrosting or deicing operation, a cooling operation of frost or ice is performed on a heat exchanger to be defrosted or deiced which is switched from an evaporator to a condenser. However, if the amount of the refrigerant is large, the safety device is activated against the abnormal decrease of the suction pressure of the compressor due to the large amount of the refrigerant, and the operation of the heat pump is forcibly automatically stopped (so-called Low pressure cut).

【0003】そして従来、このような自動停止が頻繁に
生じるのを防止して除霜又は除氷運転の安定化を図るに
は、除霜又は除氷運転の際は他の通常運転に比べて圧縮
機の出力を低下させる、また、冷媒回路への冷媒充填量
を予め多めにしておく等のことが行なわれていた。
Conventionally, in order to prevent such automatic stop from occurring frequently and to stabilize the defrosting or deicing operation, the defrosting or deicing operation is performed in comparison with other normal operations. The output of the compressor has been reduced, and the amount of refrigerant charged into the refrigerant circuit has been increased in advance.

【0004】[0004]

【発明が解決しようとする課題】しかし、除霜又は除氷
運転時に圧縮機の出力を低下させるのでは、除霜又は除
氷対象の熱交換器での単位時間当たりの発熱量(凝縮器
としての発熱量)が小さくなって除霜や除氷に要する時
間が長くなり、その為に、その熱交換器を蒸発器として
機能させる通常運転の実施が制限されてヒートポンプの
有効稼動率が低下する問題があった。
However, if the output of the compressor is reduced during the defrosting or deicing operation, the amount of heat generated per unit time in the heat exchanger to be defrosted or deiced (as a condenser). Of the heat pump), the time required for defrosting and deicing becomes longer, which limits the operation of the normal operation in which the heat exchanger functions as an evaporator, and lowers the effective operation rate of the heat pump. There was a problem.

【0005】また、冷媒回路への冷媒充填量を予め多め
にしておく場合では、逆に通常運転時に圧縮機吐出圧力
の異常上昇に原因する自動停止(いわゆる高圧カット)
が生じ易くなったり、除霜又は除氷対象の熱交換器への
冷媒の溜まり込み量も大きくなってその熱交換器を蒸発
器に切り換えた際に液相冷媒が圧縮機に吸入されるトラ
ブル(いわゆる液バック)が生じ易くなる問題があっ
た。
On the other hand, when the amount of refrigerant charged into the refrigerant circuit is increased in advance, the automatic stop (so-called high-pressure cut) due to an abnormal rise in the compressor discharge pressure during normal operation is performed.
Liquid refrigerant is sucked into the compressor when the heat exchanger is switched to the evaporator because the amount of refrigerant accumulated in the heat exchanger to be defrosted or deiced becomes large. (So-called liquid back) is liable to occur.

【0006】この実情に鑑み、本発明の主たる課題は、
合理的な改良により、従来形式における上記の如き派生
的な問題を回避しながら、除霜又は除氷運転時における
圧縮機吸込圧力の異常低下を効果的に防止する点にあ
る。
In view of this situation, the main problems of the present invention are:
A reasonable improvement is to effectively prevent an abnormal decrease in compressor suction pressure during defrosting or deicing operation, while avoiding the above-mentioned secondary problems in the conventional type.

【0007】[0007]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、蒸発器としての運転で着霜又は着氷を生じた熱
交換器を冷媒循環経路の切り換えにより凝縮器として機
能させる除霜又は除氷運転において、前記熱交換器の出
口から膨張手段までの間の高圧側の液冷媒路を圧縮機へ
の蒸発冷媒吸込路に短絡するバイパス路を設けるととも
に、このバイパス路に弁を介装し、前記除霜又は除氷運
転において前記圧縮機の吸込圧力を適正値に保つよう
に、その吸込圧力の検出情報に基づき前記弁を制御する
制御手段を設ける。
Means for Solving the Problems [1] In the invention according to the first aspect, a heat exchanger in which frost or icing has occurred during operation as an evaporator is made to function as a condenser by switching a refrigerant circulation path. In the frost or deicing operation, a bypass path is provided to short-circuit the high-pressure side liquid refrigerant path from the outlet of the heat exchanger to the expansion means to the evaporative refrigerant suction path to the compressor, and a valve is provided in this bypass path. A control means is provided for controlling the valve based on the suction pressure detection information so as to maintain the suction pressure of the compressor at an appropriate value in the defrosting or deicing operation.

【0008】つまり、この構成によれば、除霜又は除氷
運転の際、蒸発器から凝縮器に切り換えられた除霜又は
除氷対象の熱交換器に霜や氷の冷却作用で冷媒が滞留す
る状態となって、それが原因で圧縮機の吸込圧力が低下
傾向になることに対し、上記バイパス路を通じて上記高
圧側液冷媒路の圧力を圧縮機への蒸発冷媒吸込路(すな
わち、そのときの蒸発器の出口から圧縮機の吸込口まで
の間の冷媒路)へ短絡的に導くことで、圧縮機吸込圧力
の異常低下を防止できる。
That is, according to this configuration, during the defrosting or deicing operation, the refrigerant stays in the heat exchanger to be defrosted or deiced switched from the evaporator to the condenser due to the frost or ice cooling action. And the suction pressure of the compressor tends to decrease due to this. On the other hand, the pressure of the high-pressure side liquid refrigerant path is increased through the bypass path, and the evaporative refrigerant suction path to the compressor (that is, By short-circuiting to the refrigerant path between the outlet of the evaporator and the suction port of the compressor, it is possible to prevent an abnormal decrease in the compressor suction pressure.

【0009】そして、このバイパス路に介装の弁を圧縮
機吸込圧力の検出情報に基づき上記制御手段により制御
して、バイパス路を通じての上記の短絡的な導圧を制御
することにより、過剰な導圧による圧縮機吸込圧力の過
上昇や、導圧不足による圧縮機吸込圧力の上昇不足を防
止し、これにより、除霜又は除氷運転において圧縮機の
吸込圧力を適正値に的確かつ安定的に維持できる。
[0009] By controlling the valve interposed in the bypass passage by the control means based on the detection information of the suction pressure of the compressor, and controlling the short-circuit pressure induction through the bypass passage, excessive Prevents excessive increase in compressor suction pressure due to pressure induction, and prevents insufficient increase in compressor suction pressure due to insufficient pressure.This ensures accurate and stable compressor suction pressure during defrosting or deicing operation. Can be maintained.

【0010】また、バイパス路を通じての上記導圧を除
霜又は除氷対象の熱交換器の出口から膨張手段までの間
の高圧側の液冷媒路から行なうことで、除霜又は除氷対
象の熱交換器の出口にバイパス路を通じて短絡的に付与
される圧縮機吸込圧力をもってその熱交換器での冷媒流
通も効果的に促進でき、これにより、除霜又は除氷対象
の熱交換器での発熱量(凝縮器としての発熱量)を大き
く確保できるとともに、その熱交換器での冷媒の溜まり
込みも軽減することができる。
[0010] Further, the above-described pressure guiding through the bypass passage is performed from the liquid refrigerant passage on the high pressure side between the outlet of the heat exchanger to be defrosted or deiced and the expansion means, so that the defrosting or deicing target is removed. The refrigerant flow in the heat exchanger can be effectively promoted by the compressor suction pressure applied in a short-circuit manner to the outlet of the heat exchanger through the bypass path, whereby the heat exchange in the heat exchanger to be defrosted or deiced is performed. A large heat value (heat value as a condenser) can be secured, and accumulation of refrigerant in the heat exchanger can be reduced.

【0011】これらのことから、上記構成によれば、先
述の従来方式での問題、すなわち、除霜又は除氷対象の
熱交換器での発熱量が小さくなって除霜や除氷に要する
時間が長くなる、逆に圧縮機吐出圧力の異常上昇に原因
する自動停止が生じ易くなる、除霜又は除氷対象の熱交
換器への冷媒の溜まり込み量も大きくなってその熱交換
器を蒸発器に切り換えた際の液バックトラブルが生じ易
くなるといった問題を回避しながら、除霜又は除霜運転
時における圧縮機吸込圧力の異常低下を効果的に防止し
て、除霜又は除霜運転を安定的に実施することができ
る。
From these facts, according to the above configuration, the problem in the above-mentioned conventional method, that is, the time required for defrosting and deicing due to a decrease in the amount of heat generated in the heat exchanger to be defrosted or deiced is reduced. Becomes longer, conversely, automatic stop due to abnormal rise in compressor discharge pressure is more likely to occur, the amount of refrigerant accumulated in the heat exchanger to be defrosted or deiced becomes larger, and the heat exchanger evaporates. While preventing the problem that the liquid back trouble easily occurs when switching to the compressor, it is possible to effectively prevent the abnormal reduction of the compressor suction pressure during the defrosting or the defrosting operation, and perform the defrosting or the defrosting operation. It can be implemented stably.

【0012】〔2〕請求項2に係る発明では、請求項1
に係る発明の実施において、前記制御手段を、前記除霜
又は除氷運転において、圧縮機吸込圧力の検出値が設定
下限値未満になったとき前記弁を開き、かつ、圧縮機吸
込圧力の検出値が設定下限値以上になったとき前記弁を
閉じる構成にする。
[2] In the invention according to the second aspect, the first aspect
In the implementation of the invention according to the above, in the defrosting or deicing operation, the valve is opened when the detected value of the compressor suction pressure is less than a set lower limit, and the detection of the compressor suction pressure When the value is equal to or greater than the set lower limit, the valve is closed.

【0013】つまり、前述の如きバイパス路を通じての
短絡的な導圧を制御するのに、一法としては、圧縮機吸
込圧力の検出値に応じて前記弁の開度を比例的に調整制
御する形式も考えられるが、これに比べ、上記構成であ
れば、弁の単なる開閉ですむことから、バイパス路に介
装する弁、及び、その弁に対する制御手段を簡略なもの
ですませることができ、これにより、請求項1に係る発
明の前述の如き効果を得ながらも、そのための改良によ
る装置コストの増大を小さなものにすることができる。
In other words, in order to control the short-circuit pressure induced through the bypass as described above, one method is to proportionally adjust and control the opening of the valve in accordance with the detected value of the compressor suction pressure. Although the type can be considered, compared to this, with the above configuration, the valve can be simply opened and closed, so the valve interposed in the bypass path and the control means for that valve can be simplified, Thus, while obtaining the above-described effects of the first aspect of the present invention, the increase in apparatus cost due to the improvement can be reduced.

【0014】〔3〕請求項3に係る発明では、請求項1
又は2に係る発明の実施において、前記熱交換器が冷媒
循環経路から外された別モード運転において前記熱交換
器が前記バイパス路を通じて前記圧縮機への蒸発冷媒吸
込路に連絡される状態に前記バイパス路を配置し、前記
制御手段を、前記別モード運転において圧縮機吸込冷媒
の過熱度を適正値に保つように、その過熱度の検出情報
に基づき前記弁を制御する構成にする。
[3] According to the third aspect of the present invention, the first aspect
Or in the embodiment of the invention according to 2, in a different mode operation in which the heat exchanger is removed from the refrigerant circulation path, the heat exchanger is connected to the evaporative refrigerant suction path to the compressor through the bypass path. A bypass path is provided, and the control means controls the valve based on detection information of the degree of superheat so that the degree of superheat of the refrigerant sucked in the compressor is maintained at an appropriate value in the another mode operation.

【0015】つまり、前記熱交換器が冷媒循環経路から
外された別モード運転(すなわち、前記熱交換器に対す
る循環冷媒の流通を遮断した運転)では、その前の運転
モードによってその熱交換器に冷媒が大量に封入された
状態になり、それが原因で冷媒の有効循環量が大きく減
少する事態を招くことがある。
That is, in another mode operation in which the heat exchanger is disconnected from the refrigerant circulation path (that is, an operation in which circulation of the circulating refrigerant to the heat exchanger is interrupted), the heat exchanger is operated by the previous operation mode. A state in which a large amount of the refrigerant is sealed may cause a situation in which the effective circulation amount of the refrigerant is greatly reduced.

【0016】これに対し、上記構成であれば、別モード
運転において前記熱交換器に封入された冷媒を上記バイ
パス路を通じて圧縮機の吸込圧力により冷媒循環経路に
戻すことができ、これにより、冷媒の有効循環量を回復
することができる。
On the other hand, with the above configuration, in another mode operation, the refrigerant sealed in the heat exchanger can be returned to the refrigerant circulation path by the suction pressure of the compressor through the bypass path. Effective circulation amount can be recovered.

【0017】また、その別モード運転において、熱交換
器に封入された冷媒をバイパス路を通じて圧縮機への蒸
発冷媒吸込路へ戻すのに、圧縮機吸込冷媒の過熱度を適
正値に保つように、バイパス路に介装の前記弁を過熱度
の検出情報に基づき制御手段により制御するから、例え
ば、安全を見た大きな抵抗の固定絞りを上記バイパス路
に相当する冷媒回収路に介装する形式に比べ封入冷媒を
能率良く回収するようにしながらも、封入冷媒が一気に
蒸発冷媒吸込路に戻されることで生じる圧縮機の液相冷
媒吸入トラブル(液バック)を確実に防止することがで
きる。
In the other mode of operation, when the refrigerant sealed in the heat exchanger is returned to the evaporative refrigerant suction path to the compressor through the bypass path, the superheat degree of the compressor suction refrigerant is maintained at an appropriate value. Since the control means controls the valve interposed in the bypass passage based on the detection information of the degree of superheat, for example, a fixed throttle having a large resistance for safety is interposed in the refrigerant recovery passage corresponding to the bypass passage. As a result, the refrigerant in the compressor can be reliably prevented from being sucked in the liquid-phase refrigerant (liquid back) caused by the enclosed refrigerant being returned to the evaporative refrigerant suction passage at a stretch, while efficiently collecting the enclosed refrigerant.

【0018】そして、除霜又は除氷運転において前述の
短絡的導圧に用いるバイパス路及びそれに介装の弁を、
上記の別モード運転において封入冷媒回収用の冷媒路及
び弁として利用することにより、除霜又は除氷運転での
短絡的導圧に用いるバイパス路及び弁とは別の封入冷媒
回収用の専用冷媒路や専用弁を装備するに比べ、装置を
簡略なものにして装置コストを安価にすることができ
る。
In the defrosting or deicing operation, the bypass used for the short-circuit pressure introduction and the valve interposed in the bypass are provided as follows:
In the above-mentioned other mode operation, by using as a refrigerant path and a valve for collecting the enclosed refrigerant, a dedicated refrigerant for collecting the enclosed refrigerant which is different from the bypass path and the valve used for short-circuit pressure induction in the defrosting or deicing operation. The apparatus can be simplified and the apparatus cost can be reduced as compared with the case where a path or a dedicated valve is provided.

【0019】〔4〕請求項4に係る発明では、請求項3
に係る発明の実施において、前記制御手段を、前記除霜
又は除氷運転の後に前記熱交換器を蒸発器として機能さ
せる運転を実施する際、その運転に先立ち前記別モード
運転を実施して、その別モード運転から前記熱交換器を
蒸発器として機能させる運転へ移行するように運転モー
ドを自動的に切り換える構成にする。
[4] In the invention according to claim 4, claim 3
In the implementation of the invention according to the, the control means, when performing an operation to function the heat exchanger as an evaporator after the defrosting or deicing operation, performing the separate mode operation prior to the operation, The operation mode is automatically switched so as to shift from the other mode operation to an operation in which the heat exchanger functions as an evaporator.

【0020】つまり、除霜又は除氷運転において前述の
如くバイパス路を通じて除霜又は除氷対象の熱交換器の
出口に圧縮機吸込圧力を短絡的に付与することでその熱
交換器での冷媒の溜まり込みを軽減するにしても、除霜
又は除氷対象の熱交換器において霜や氷の冷却作用のた
めに冷媒が溜まり込む傾向となること自体は回避できな
いことから、除霜又は除氷運転の後(特に前述の低圧カ
ット等で除霜又は除氷運転が途中停止した後)、除霜又
は除氷対象であった熱交換器を蒸発器として機能させる
運転にそのまま移行すると、その熱交換器における溜ま
り込み冷媒が一気に圧縮機に吸入される状態となって、
液相冷媒が圧縮機に吸入されるトラブルが生じるおそれ
がある。
That is, in the defrosting or deicing operation, the suction pressure of the compressor is short-circuited to the outlet of the heat exchanger to be defrosted or deiced through the bypass path as described above, so that the refrigerant in the heat exchanger is removed. Even if the accumulation of water is reduced, the fact that the refrigerant tends to accumulate due to the cooling action of frost or ice in the heat exchanger to be defrosted or deiced cannot be avoided. After the operation (especially after the defrosting or deicing operation is stopped in the middle due to the low pressure cut or the like described above), if the operation is directly shifted to the operation in which the heat exchanger to be defrosted or deiced functions as an evaporator, the heat The accumulated refrigerant in the exchanger becomes a state where it is sucked into the compressor at a stretch,
There is a possibility that a trouble that the liquid-phase refrigerant is sucked into the compressor may occur.

【0021】これに対し、上記の如く除霜又は除氷運転
の後に除霜又は除氷対象であった熱交換器を蒸発器とし
て機能させる運転を実施する際、その運転に先立ち前記
の別モード運転を実施して、その別モード運転から熱交
換器を蒸発器として機能させる運転へ移行するようにす
れば、バイパス路を冷媒回収路に利用した別モード運転
での前述の如き封入冷媒の回収(すなわち、除氷又は除
氷運転で熱交換器に溜まり込んだ冷媒の回収)により、
続いての熱交換器を蒸発器として機能させる運転におい
て、溜まり込み冷媒の吸入に原因する圧縮機の液相冷媒
吸入トラブルを確実に回避することができる。
On the other hand, when performing the operation for functioning the heat exchanger, which has been the object of defrosting or deicing, as an evaporator after the defrosting or deicing operation as described above, prior to the operation, the above-mentioned separate mode is used. If the operation is performed and the operation is shifted from the other mode operation to an operation in which the heat exchanger functions as an evaporator, the recovery of the enclosed refrigerant as described above in the other mode operation using the bypass path as the refrigerant recovery path. (That is, recovery of the refrigerant accumulated in the heat exchanger in the deicing or deicing operation)
In the subsequent operation in which the heat exchanger functions as an evaporator, it is possible to reliably avoid the liquid-phase refrigerant suction trouble of the compressor caused by the suction of the accumulated refrigerant.

【0022】なお、請求項4に係る発明の実施において
は、除霜又は除氷運転が正常に終了した場合と除霜又は
除氷運転が途中で自動停止(すなわち異常停止)した場
合とのいずれの場合も、別モード運転を経た上で除霜又
は除氷対象であった熱交換器を蒸発器として機能させる
運転に移行させる形態、あるいは、除霜又は除氷運転が
正常に終了した場合には、圧縮機の液相冷媒吸入トラブ
ルの危険性が低いことから、別モード運転を経ずに除霜
又は除氷対象であった熱交換器を蒸発器として機能させ
る運転に移行し、除霜又は除氷運転が途中で自動停止
(異常停止)した場合のみ、別モード運転を経た上で除
霜又は除氷対象であった熱交換器を蒸発器として機能さ
せる運転に移行させる形態のいずれを採るようにしても
よい。
In the embodiment of the invention according to the fourth aspect, either the case where the defrosting or deicing operation is normally completed or the case where the defrosting or deicing operation is automatically stopped (ie, abnormally stopped) during the operation. In the case of, also in the form of shifting to the operation in which the heat exchanger that was the object of defrosting or deicing functions as an evaporator after passing through another mode operation, or when the defrosting or deicing operation ends normally Moves to an operation in which the heat exchanger that was the object of defrosting or deicing functions as an evaporator without going through another mode operation because the risk of suction of liquid refrigerant from the compressor is low. Alternatively, only when the deicing operation is automatically stopped (abnormal stop) in the middle, the mode in which the heat exchanger that has been the object of defrosting or deicing is switched to the operation of functioning as an evaporator after another mode operation is performed. You may take it.

【0023】[0023]

【発明の実施の形態】図1は水Wと空気Aを熱源熱媒と
して温熱を発生する2熱源ヒートポンプ装置を示し、1
は熱源熱媒である水W(例えば、地中熱交換器に循環さ
せて対地熱交換させた水)と冷媒Rとを熱交換させる対
水熱交換器、2は他方の熱源熱媒である空気A(一般に
は大気空気)と冷媒Rとを熱交換させる対空気熱交換
器、3は冷媒Rと負荷側熱媒L(例えば、融雪用熱交換
器に循環させる水やブライン)とを熱交換させる負荷側
熱交換器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a two heat source heat pump device which generates heat using water W and air A as heat source heat medium.
Is a water heat exchanger for exchanging heat between water W as a heat source heat medium (for example, water circulated to an underground heat exchanger and subjected to ground heat exchange) and a refrigerant R, and 2 is the other heat source heat medium. An air heat exchanger for exchanging heat between the air A (generally atmospheric air) and the refrigerant R, and the heat exchanger 3 for heat exchange between the refrigerant R and the load-side heat medium L (for example, water or brine circulated through the heat exchanger for snow melting). This is the load side heat exchanger to be replaced.

【0024】4は圧縮機、5は膨張弁、6は4つの逆止
弁6a〜6dをブリッジ回路状に組み合わせた冷媒案内
回路、7はレシーバであり、これらと上記3つの熱交換
器1,2,3を主要構成装置としてヒートポンプ回路を
形成してある。
Reference numeral 4 denotes a compressor, 5 denotes an expansion valve, 6 denotes a refrigerant guide circuit in which four check valves 6a to 6d are combined in a bridge circuit, 7 denotes a receiver, and these and the above three heat exchangers 1, A heat pump circuit is formed by using the components 2 and 3 as main components.

【0025】また、8は冷媒循環経路の切り換えや圧縮
機4の調整を行う制御装置であり、このヒートポンプ装
置では、3つの四方弁V1〜V3と2つの開閉弁S1,
S2とによる冷媒循環経路の切り換えをもって次の
(イ)〜(チ)の如き第1〜第8モードの選択実施を可
能にしてある。
Reference numeral 8 denotes a control device for switching the refrigerant circulation path and adjusting the compressor 4. In this heat pump device, three four-way valves V1 to V3 and two on-off valves S1,
By switching the refrigerant circulation path with S2, the following first to eighth modes (A) to (H) can be selected and executed.

【0026】(イ)第1モード:水熱源モード このモードでは図2に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−負荷側熱交換器3−冷媒案内回路6−レ
シーバ7−膨張弁5−冷媒案内回路6−第2四方弁V2
−対水熱交換器1−第3四方弁V3−圧縮機4の順に循
環させる。
(A) First mode: water heat source mode In this mode, as shown in FIG. 2, a refrigerant R is supplied to a compressor 4-first four-way valve V1-load-side heat exchanger 3-refrigerant guide circuit 6-receiver 7- Expansion valve 5-refrigerant guide circuit 6-second four-way valve V2
-Circulating in the order of the water heat exchanger 1-the third four-way valve V3-the compressor 4;

【0027】つまり、この冷媒循環により、対水熱交換
器1を蒸発器Eとして機能させるとともに負荷側熱交換
器3を凝縮器Cとして機能させ、これにより、負荷対応
運転として水Wから採熱(吸熱)する形態で負荷側熱媒
Lを加熱する。
That is, by this refrigerant circulation, the water heat exchanger 1 functions as the evaporator E and the load-side heat exchanger 3 functions as the condenser C, whereby heat is taken from the water W in a load corresponding operation. The heat medium L on the load side is heated in the form of (endothermic).

【0028】(ロ)第2モード:2熱源モード(空気→
水) このモードでは図3に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−負荷側熱交換器3−冷媒案内回路6−レ
シーバ7−膨張弁5−冷媒案内回路6−第2四方弁V2
−対空気熱交換器2−第1開閉弁S1−対水熱交換器1
−第3四方弁V3−圧縮機4の順に循環させる。
(B) Second mode: two heat source modes (air →
In this mode, as shown in FIG. 3, in this mode, the refrigerant R is supplied to the compressor 4-first four-way valve V1-load-side heat exchanger 3-refrigerant guide circuit 6-receiver 7-expansion valve 5-refrigerant guide circuit 6-second. Four-way valve V2
-Air heat exchanger 2-first on-off valve S1-water heat exchanger 1
-Circulate in the order of the third four-way valve V3-compressor 4.

【0029】つまり、この冷媒循環により、対空気熱交
換器2及び対水熱交換器1をその順の直列配置で共に蒸
発器Eとして機能させるとともに負荷側熱交換器3を凝
縮器Cとして機能させ、これにより、負荷対応運転とし
て空気A及び水Wから採熱(吸熱)する形態で負荷側熱
媒Lを加熱する。
In other words, the circulation of the refrigerant allows the air heat exchanger 2 and the water heat exchanger 1 to function as an evaporator E in a serial arrangement in that order, and the load side heat exchanger 3 functions as a condenser C. As a result, the load-side heat medium L is heated in the form of taking heat (absorbing heat) from the air A and the water W as a load-responsive operation.

【0030】(ハ)第3モード:空気熱源モード このモードでは図4に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−負荷側熱交換器3−冷媒案内回路6−レ
シーバ7−膨張弁5−冷媒案内回路6−第2四方弁V2
−対空気熱交換器2−第1四方弁V1−第3四方弁V3
−圧縮機4の順に循環させる。
(C) Third mode: air heat source mode In this mode, as shown in FIG. 4, the refrigerant R is supplied to the compressor 4-first four-way valve V1-load-side heat exchanger 3-refrigerant guide circuit 6-receiver 7- Expansion valve 5-refrigerant guide circuit 6-second four-way valve V2
-Air heat exchanger 2-first four-way valve V1-third four-way valve V3
Circulating in the order of the compressor 4;

【0031】つまり、この冷媒循環により、対空気熱交
換器2を蒸発器Eとして機能させるとともに負荷側熱交
換器3を凝縮器Cとして機能させ、これにより、負荷対
応運転として空気Aから採熱(吸熱)する形態で負荷側
熱媒Lを加熱する。
In other words, the circulation of the refrigerant allows the air heat exchanger 2 to function as the evaporator E and the load side heat exchanger 3 to function as the condenser C. The heat medium L on the load side is heated in the form of (endothermic).

【0032】(ニ)第4モード:2熱源モード(水→空
気) このモードでは図5に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−負荷側熱交換器3−冷媒案内回路6−レ
シーバ7−膨張弁5−冷媒案内回路6−第2四方弁V2
−対水熱交換器1−第3四方弁V3−第2四方弁V2−
対空気熱交換器2−第1四方弁V1−第3四方弁V3−
圧縮機4の順に循環させる。
(D) Fourth mode: two heat source modes (water → air) In this mode, as shown in FIG. 5, refrigerant R is supplied to compressor 4-first four-way valve V1-load-side heat exchanger 3-refrigerant guide circuit. 6-Receiver 7-Expansion valve 5-Refrigerant guide circuit 6-Second four-way valve V2
-Water heat exchanger 1-Third four-way valve V3- Second four-way valve V2-
Heat exchanger against air 2-first four-way valve V1-third four-way valve V3-
Circulation is performed in the order of the compressor 4.

【0033】つまり、この冷媒循環により、対水熱交換
器1及び対空気熱交換器2をその順の直列配置で共に蒸
発器Eとして機能させるとともに負荷側熱交換器3を凝
縮器Cとして機能させ、これにより、負荷対応運転とし
て水W及び空気Aから採熱(吸熱)する形態で負荷側熱
媒Lを加熱する。
That is, this refrigerant circulation allows the heat exchanger for water 1 and the heat exchanger for air 2 to function as an evaporator E together in a serial arrangement in that order, while the load side heat exchanger 3 functions as a condenser C. As a result, the load-side heat medium L is heated in the form of taking heat (absorbing heat) from the water W and the air A as a load-responsive operation.

【0034】(ホ)第5モード:除霜・負荷対応モード このモードでは図6に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−対空気熱交換器2−第2四方弁V2−第
3四方弁V3−第1四方弁V1−負荷側熱交換器3−冷
媒案内回路6−レシーバ7−膨張弁5−冷媒案内回路6
−第2四方弁V2−対水熱交換器1−第3四方弁V3−
圧縮機4の順に循環させる。
(E) Fifth mode: Defrosting / load handling mode In this mode, as shown in FIG. 6, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second four-way valve V2. -The third four-way valve V3-the first four-way valve V1-the load side heat exchanger 3-the refrigerant guide circuit 6-the receiver 7-the expansion valve 5-the refrigerant guide circuit 6
-Second four-way valve V2- to water heat exchanger 1-third four-way valve V3-
Circulation is performed in the order of the compressor 4.

【0035】つまり、この冷媒循環により、対水熱交換
器1を蒸発器Eとして機能させるとともに対空気熱交換
器2及び負荷側熱交換器3をその順の直列配置で共に凝
縮器Cとして機能させ、これにより、負荷対応と除霜と
を兼ねる運転として水Wから採熱(吸熱)する形態で負
荷側熱媒Lを加熱しながら対空気熱交換器2の除霜を実
施する。
That is, by this refrigerant circulation, the water heat exchanger 1 functions as the evaporator E, and the air heat exchanger 2 and the load side heat exchanger 3 function as the condenser C in a serial arrangement in this order. As a result, the defrosting of the air heat exchanger 2 is performed while heating the load-side heat medium L in a mode of collecting heat (absorbing heat) from the water W as an operation that combines load handling and defrosting.

【0036】(ヘ)第6モード:水熱源除霜モード このモードでは図7に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−対空気熱交換器2−第2開閉弁S2−レ
シーバ7−膨張弁5−冷媒案内回路6−第2四方弁V2
−対水熱交換器1−第3四方弁V3−圧縮機4の順に循
環させる。
(F) Sixth mode: water heat source defrosting mode In this mode, as shown in FIG. 7, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second on-off valve S2- Receiver 7-expansion valve 5-refrigerant guide circuit 6-second four-way valve V2
-Circulating in the order of the water heat exchanger 1-the third four-way valve V3-the compressor 4;

【0037】つまり、この冷媒循環により、対水熱交換
器1を蒸発器Eとして機能させるとともに対空気熱交換
器2を凝縮器Cとして機能させ、これにより、除霜運転
として水Wから採熱(吸熱)する形態で対空気熱交換器
2の除霜を実施する。
That is, by the circulation of the refrigerant, the water heat exchanger 1 functions as the evaporator E and the air heat exchanger 2 functions as the condenser C, thereby collecting heat from the water W as a defrosting operation. The defrosting of the air heat exchanger 2 is performed in a (heat absorbing) mode.

【0038】(ト)第7モード:2熱源除霜モード このモードでは図8に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−対空気熱交換器2−第2四方弁V2−冷
媒案内回路6−レシーバ7−膨張弁5−冷媒案内回路6
−負荷側熱交換器3−第1四方弁V1−第3四方弁V3
−第2四方弁V2−対水熱交換器1−第3四方弁V3−
圧縮機4の順に循環させる。
(G) Seventh mode: Two heat source defrosting mode In this mode, as shown in FIG. 8, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second four-way valve V2- Refrigerant guide circuit 6-Receiver 7-Expansion valve 5-Refrigerant guide circuit 6
-Load side heat exchanger 3-First four-way valve V1-Third four-way valve V3
-Second four-way valve V2- to water heat exchanger 1-third four-way valve V3-
Circulation is performed in the order of the compressor 4.

【0039】つまり、この冷媒循環により、負荷側熱交
換器3及び対水熱交換器1をその順の直列配置で共に蒸
発器Eとして機能させるとともに対空気熱交換器2を凝
縮器Cとして機能させ、これにより、除霜運転として負
荷側熱媒L及び水Wから採熱(吸熱)する形態で対空気
熱交換器2の除霜を実施する。
That is, the refrigerant circulation allows the load side heat exchanger 3 and the water heat exchanger 1 to function as an evaporator E in a serial arrangement in that order, and the air heat exchanger 2 functions as a condenser C. Thereby, the defrosting of the air heat exchanger 2 is performed as a defrosting operation by collecting heat (absorbing heat) from the load-side heat medium L and the water W.

【0040】(チ)第8モード:負荷側熱源除霜モード このモードでは図9に示す如く、冷媒Rを圧縮機4−第
1四方弁V1−対空気熱交換器2−第2四方弁V2−冷
媒案内回路6−レシーバ7−膨張弁5−冷媒案内回路6
−負荷側熱交換器3−第1四方弁V1−第3四方弁V3
−圧縮機4の順に循環させる。
(H) Eighth mode: load side heat source defrosting mode In this mode, as shown in FIG. 9, the refrigerant R is supplied to the compressor 4-first four-way valve V1-air heat exchanger 2-second four-way valve V2. -Refrigerant guide circuit 6-receiver 7-expansion valve 5-refrigerant guide circuit 6
-Load side heat exchanger 3-First four-way valve V1-Third four-way valve V3
Circulating in the order of the compressor 4;

【0041】つまり、この冷媒循環により、負荷側熱交
換器3を蒸発器Eとして機能させるとともに対空気熱交
換器2を凝縮器Cとして機能させ、これにより、除霜運
転として負荷側熱媒Lから採熱(吸熱)する形態で対空
気熱交換器2の除霜を実施する。
That is, by the circulation of the refrigerant, the load side heat exchanger 3 functions as the evaporator E and the air heat exchanger 2 functions as the condenser C. As a result, the load side heat medium L is used as a defrosting operation. The defrosting of the air heat exchanger 2 is performed in a mode of collecting heat (absorbing heat).

【0042】上記冷媒回路を形成するのに、第5モード
(図6参照)で高圧側の液冷媒路となる回路部分(すな
わち、対空気熱交換器2の出口から膨張弁5までの部
分)のうち第2四方弁V2から第3四方弁V3にわたる
箇所aと、同じく第5モードで圧縮機4への蒸発冷媒吸
込路となる回路部分(すなわち、対水熱交換器1の出口
から圧縮機4の吸込口までの部分)のうち第3四方弁V
3から圧縮機4の吸込口にわたる箇所bとの間には、両
箇所a,bを短絡するバイパス路9をわたらせてあり、
また、このバイパス路9には第3開閉弁S3を介装して
ある。
In order to form the refrigerant circuit, a circuit portion serving as a high-pressure side liquid refrigerant path in the fifth mode (see FIG. 6) (that is, a portion from the outlet of the air heat exchanger 2 to the expansion valve 5). Out of the second four-way valve V2 to the third four-way valve V3, and a circuit portion which also serves as a vapor refrigerant suction path to the compressor 4 in the fifth mode (that is, the compressor is connected to the outlet of the water heat exchanger 1 through the outlet). Of the fourth four-way valve V
A bypass path 9 for short-circuiting the two points a and b is provided between the point 3 and the point b extending from the suction port of the compressor 4 to the compressor b.
Further, a third on-off valve S3 is interposed in the bypass passage 9.

【0043】そして、このバイパス路9の装備に対し、
制御装置8は、第5モードでの運転の場合、図10に示
す如く、圧力センサ10により検出される圧縮機4の吸
込圧力Piが設定下限値Px未満になると第3開閉弁S
3を開き、かつ、その検出吸込圧力Piが設定下限値P
x以上になると第3開閉弁S3を閉じる弁制御を実行す
るものにしてある。
Then, with respect to the equipment of the bypass path 9,
In the case of the operation in the fifth mode, as shown in FIG. 10, when the suction pressure Pi of the compressor 4 detected by the pressure sensor 10 becomes less than the set lower limit value Px, the control device 8 operates the third on-off valve S.
3 and the detected suction pressure Pi is equal to the set lower limit P
When x or more, the valve control for closing the third on-off valve S3 is executed.

【0044】つまり、除霜運転と負荷対応運転とを併行
する第5モード(図6参照)では、除霜対象の対空気熱
交換器2に霜の冷却作用で冷媒Rが滞留することが原因
となって、また、負荷側熱交換器3をともに凝縮器機能
させることが助長要因となって、圧縮機4の吸込圧力P
iが大きく低下し易いことに対し、上記の如き圧縮機吸
込圧力Piの検出に基づく第3開閉弁S3の開閉制御を
行なうことにより、高圧側液冷媒路の圧力をバイパス路
9を通じて圧縮機4への蒸発冷媒吸込路へ短絡的に導与
する形態で、圧縮機吸込圧力Piを適正値に保ってその
吸込圧力Piの異常低下トラブルを防止する。
That is, in the fifth mode (see FIG. 6) in which the defrosting operation and the load corresponding operation are performed in parallel, the refrigerant R stays in the air heat exchanger 2 to be defrosted due to the frost cooling action. Further, making the load-side heat exchanger 3 function as a condenser is a contributing factor, and the suction pressure P of the compressor 4 is increased.
In response to the fact that i is greatly reduced, by controlling the opening and closing of the third on-off valve S3 based on the detection of the compressor suction pressure Pi as described above, the pressure of the high-pressure side liquid refrigerant passage is reduced by the compressor 4 through the bypass passage 9. In this manner, the compressor suction pressure Pi is kept at an appropriate value by short-circuiting to the evaporative refrigerant suction passage to the suction passage, thereby preventing a trouble of abnormal reduction of the suction pressure Pi.

【0045】また、上記バイパス路9は、対空気熱交換
器2が冷媒循環経路から外される第1モード(図2参
照)では循環冷媒遮断状態の対空気熱交換器2を圧縮機
4への蒸発冷媒吸込路に連絡する冷媒路となるように配
置してあり、これに対し、制御装置8は、第1モードで
の運転の場合、図11に示す如く、過熱度センサ11に
より検出される圧縮機吸込冷媒Rの過熱度SHが設定高
閾値SHa以上に上昇すると第3開閉弁S3を開き、か
つ、その検出過熱度SHが設定低閾値SHb以下に低下
すると第3開閉弁S3を閉じるヒステリシス式の弁制御
を実行するものにしてある。
Further, in the first mode (see FIG. 2) in which the air heat exchanger 2 is disconnected from the refrigerant circulation path, the bypass path 9 transfers the air heat exchanger 2 in the cutoff state of the circulating refrigerant to the compressor 4. In contrast, in the case of operation in the first mode, the control device 8 detects the superheat degree sensor 11 as shown in FIG. 11 when operating in the first mode. When the superheat degree SH of the compressor suction refrigerant R rises above the set high threshold value SHA, the third on-off valve S3 is opened, and when the detected superheat degree SH falls below the set low threshold value SHb, the third on-off valve S3 is closed. It performs a hysteresis type valve control.

【0046】つまり、対空気熱交換器2が冷媒循環経路
から外される第1モード(図2参照)では、その前の運
転モードによって対空気熱交換器2に冷媒Rが大量に封
入されて冷媒Rの有効循環量が大きく減少することがあ
るが、このような冷媒封入に対し、上記の如き過熱度S
Hの検出に基づく第3開閉弁S3の開閉制御を行なうこ
とにより、圧縮機4の液相冷媒吸入トラブルを確実に回
避しながら対空気熱交換器2における封入冷媒R′を冷
媒循環経路に戻して、冷媒Rの有効循環量を適正量に回
復する。
In other words, in the first mode (see FIG. 2) in which the air heat exchanger 2 is disconnected from the refrigerant circulation path, a large amount of the refrigerant R is sealed in the air heat exchanger 2 by the previous operation mode. In some cases, the effective circulation amount of the refrigerant R is greatly reduced.
By performing the opening / closing control of the third opening / closing valve S3 based on the detection of H, the refrigerant refrigerant R ′ in the air heat exchanger 2 is returned to the refrigerant circulation path while reliably avoiding the liquid refrigerant suction trouble of the compressor 4. Thus, the effective circulation amount of the refrigerant R is restored to an appropriate amount.

【0047】そしてまた、制御装置8は、対空気熱交換
器2を凝縮器Cとして機能させて除霜を行なう第5〜第
8モードでの運転で、その運転途中に圧縮機吸込圧力P
xの異常低下などに原因する運転自動停止(安全装置に
よる異常停止)があった場合、その後に第2〜第4モー
ドでの負荷対応運転(すなわち、対空気熱交換器2を蒸
発器Eとして機能させる運転)を再開するにあたって
は、先ず第1モードの運転を所定時間にわたり実施し
て、その後に、その第1モードから目的の第2〜第4モ
ードの運転に移行するように運転モードを自動的に切り
換えるものにしてある。
The control device 8 operates in the fifth to eighth modes in which the air heat exchanger 2 functions as the condenser C to perform defrosting, and the compressor suction pressure P during the operation.
If there is an automatic operation stop (abnormal stop by the safety device) due to an abnormal decrease in x, etc., then, the load corresponding operation in the second to fourth modes (that is, the air heat exchanger 2 is set as the evaporator E) When resuming the operation to function, the operation in the first mode is first performed for a predetermined time, and then the operation mode is changed from the first mode to the desired operation in the second to fourth modes. It switches automatically.

【0048】つまり、このように第2〜第4モードの負
荷対応運転を再開するにあたり、それに先立ち第1モー
ドの運転を実施して前記の封入冷媒回収を行なうことに
より、先の第5〜第8モードの除霜運転での異常停止の
後に、いきなり第2〜第4モードでの負荷対応運転を実
施する場合に起こり得るトラブル、すなわち、先の除霜
運転での異常停止時点で対空気熱交換器2に滞留してい
た冷媒R′が、対空気熱交換器2を蒸発器Eとして機能
させる第2〜第4モードへの切り換えで一気に圧縮機4
に吸入される状態となって生じる圧縮機1の液相冷媒吸
入トラブルを確実に防止する。
In other words, when the load corresponding operation in the second to fourth modes is restarted, the first mode operation is performed and the above-described refrigerant recovery is performed by performing the first mode operation. A trouble that may occur when the load corresponding operation is suddenly performed in the second to fourth modes after the abnormal stop in the eight-mode defrost operation, that is, the air heat is stopped at the time of the abnormal stop in the previous defrost operation. The refrigerant R 'that has accumulated in the exchanger 2 is switched to the second to fourth modes in which the air heat exchanger 2 functions as the evaporator E, and the compressor 4
Thus, it is possible to reliably prevent the liquid refrigerant from being sucked into the compressor 1 due to the state of being sucked into the compressor.

【0049】なお、第5〜第8モードでの除霜運転が正
常に終了した場合には、第1モードそのものが目的モー
ドである場合を除き、第1モードの運転を経ずに第2〜
第4モードでの負荷対応運転に移行するようにしてあ
る。
When the defrosting operation in the fifth to eighth modes is completed normally, the second to second modes are not executed without passing through the first mode except when the first mode itself is the target mode.
The operation shifts to the load corresponding operation in the fourth mode.

【0050】また、第5〜第8モードの除霜運転で異常
停止があった場合の上記自動モード切り換えを除く通常
のモード切り換えは、熱源熱媒W,Aの検出温度やヒー
トポンプ回路各部の検出温度・圧力等に基づいて自動的
に(ないしは人為指令に従って)行なうようにしてあ
る。
The normal mode switching except for the automatic mode switching when the abnormal stop is performed in the defrosting operation of the fifth to eighth modes is performed by detecting the temperature of the heat source heat medium W, A or detecting the temperature of each part of the heat pump circuit. It is performed automatically (or according to an artificial command) based on temperature, pressure, etc.

【0051】以上、本実施形態のヒートポンプ装置で
は、蒸発器Eとしての運転で着霜を生じた熱交換器2
(対空気熱交換器)を冷媒循環経路の切り換えにより凝
縮器Cとして機能させる除霜運転(第5モードでの運
転)において、その熱交換器2の出口から膨張手段5
(膨張弁)までの間の高圧側の液冷媒路を圧縮機4への
蒸発冷媒吸込路に短絡するバイパス路9を設け、このバ
イパス路9に弁V3(第3開閉弁)を介装してある。
As described above, in the heat pump apparatus according to the present embodiment, the heat exchanger
In the defrosting operation (operation in the fifth mode) in which the (air-to-air heat exchanger) functions as the condenser C by switching the refrigerant circulation path, the expansion means 5 is provided from the outlet of the heat exchanger 2.
A bypass passage 9 for short-circuiting the liquid refrigerant passage on the high pressure side to the (expansion valve) to the evaporative refrigerant suction passage to the compressor 4 is provided, and a valve V3 (third on-off valve) is interposed in the bypass passage 9. It is.

【0052】また、このバイパス路9は、前記熱交換器
2が冷媒循環経路から外された別モード運転(第1モー
ドでの運転)において前記熱交換器2がバイパス路9を
通じて圧縮機4への蒸発冷媒吸込路に連絡される状態に
配置してある。
The bypass passage 9 allows the heat exchanger 2 to pass through the bypass passage 9 to the compressor 4 in another mode operation (operation in the first mode) in which the heat exchanger 2 is disconnected from the refrigerant circulation path. Are connected to the evaporative refrigerant suction passage of the first embodiment.

【0053】そして、上記除霜運転(第5モードでの運
転)において圧縮機4の吸込圧力Piを適正値に保つよ
うに、その吸込圧力Piの検出情報に基づき前記弁V3
を制御し、また、上記別モード運転(第1モードでの運
転)において圧縮機吸込冷媒Rの過熱度SHを適正値に
保つように、その過熱度SHの検出情報に基づき前記弁
V3を制御する制御手段8(制御装置)を設けてある。
Then, in the defrosting operation (operation in the fifth mode), the valve V3 based on the detection information of the suction pressure Pi so as to maintain the suction pressure Pi of the compressor 4 at an appropriate value.
And controls the valve V3 based on the detection information of the superheat degree SH so as to keep the superheat degree SH of the compressor suction refrigerant R at an appropriate value in the other mode operation (operation in the first mode). Control means 8 (control device) for performing the control.

【0054】〔別実施形態〕次に本発明の別の実施形態
を列記する。図12は2つの熱交換器N1,N2を備え
る圧縮式ヒートポンプに請求項1に係る発明を適用した
例を示し、このヒートポンプでは、第1熱交換器N1を
凝縮器Cとして機能させ、かつ、第2熱交換器N2を蒸
発器Eとして機能させる運転と、逆に第1熱交換器N1
を蒸発器Eとして機能させ、かつ、第2熱交換器N2を
凝縮器Cとして機能させる除霜又は除氷運転とを、四方
弁Vの切り換えにより択一的に行なう。
[Another Embodiment] Next, another embodiment of the present invention will be described. FIG. 12 shows an example in which the invention according to claim 1 is applied to a compression heat pump including two heat exchangers N1 and N2. In this heat pump, the first heat exchanger N1 functions as a condenser C, and An operation in which the second heat exchanger N2 functions as the evaporator E, and conversely, an operation in which the first heat exchanger N1
Is operated as an evaporator E, and the second heat exchanger N2 is operated as a condenser C. Defrosting or deicing operation is selectively performed by switching the four-way valve V.

【0055】そして、上記除霜又は除氷運転において第
2熱交換器N2の出口から膨張弁やキャピラリーチュー
ブなどの膨張手段5までの間の高圧側の液冷媒路を圧縮
機4への蒸発冷媒吸込路に短絡するバイパス路9を設
け、このバイパス路9に介装した弁Sを、除霜又は除氷
運転において圧縮機4の吸込圧力Piを適正値に保つよ
うに、その吸込圧力Piの検出情報に基づき制御手段8
により制御するようにしてある。
In the above defrosting or deicing operation, the high-pressure side liquid refrigerant path from the outlet of the second heat exchanger N2 to the expansion means 5 such as an expansion valve or a capillary tube passes through the evaporative refrigerant to the compressor 4. A bypass path 9 that short-circuits the suction path is provided, and a valve S interposed in the bypass path 9 is controlled to a suction pressure Pi of the compressor 4 so that the suction pressure Pi of the compressor 4 is maintained at an appropriate value during defrosting or deicing operation. Control means 8 based on the detection information
Is controlled by

【0056】その他、本発明は種々の回路構造の圧縮式
ヒートポンプに適用することができる。
In addition, the present invention can be applied to compression heat pumps having various circuit structures.

【0057】前述の実施形態で示したヒートポンプ装置
において、図13に示すように、バイパス路9をa′―
b間にわたらせて設け、これにより、第5〜第8モード
での除霜運転の夫々について、圧縮機4の吸込圧力Pi
を適正値に保つように、その吸込圧力Piの検出情報に
基づき第3開閉弁S3を制御手段8により制御するよう
にしてもよい。
In the heat pump device shown in the above-described embodiment, as shown in FIG.
b, thereby providing the suction pressure Pi of the compressor 4 for each of the defrosting operations in the fifth to eighth modes.
The third opening / closing valve S3 may be controlled by the control means 8 based on the detection information of the suction pressure Pi so as to keep the pressure at a proper value.

【0058】凝縮器としての運転で出口側に請求項1に
係る発明のバイパス路を位置させる対象熱交換器は、空
気を熱交換対象とするもの(すなわち、蒸発器としての
運転で除霜を行うもの)に限らず、水や水溶液を熱交換
対象とするもの(すなわち、蒸発器としての運転で除氷
を行なうもの)であってもよい。
The target heat exchanger in which the bypass according to the first aspect of the present invention is located on the outlet side in the operation as a condenser is a device in which air is subjected to heat exchange (that is, defrosting is performed in the operation as an evaporator). However, the present invention is not limited to this, and may be one in which water or an aqueous solution is subjected to heat exchange (that is, deicing by operation as an evaporator).

【0059】除霜又は除氷運転において、バイパス路に
介装の弁を圧縮機吸込圧力Piの検出情報に基づき制御
するのに、前述の実施形態で示した制御方式に代え、検
出吸込圧力Piが設定低閾値以下に低下すると弁を開
き、かつ、検出吸込圧力Piが設定高閾値以上に上昇す
ると弁を閉じるといったヒステリシス式の制御を行なう
ようにしてもよく、また、検出吸込圧力Piに応じて弁
の開度を比例的に調整する制御を行なうようにしてもよ
い。
In the defrosting operation or the deicing operation, the control of the valve interposed in the bypass passage based on the detection information of the compressor suction pressure Pi is performed in place of the control method shown in the above-described embodiment. When the pressure falls below the set low threshold, the valve is opened, and when the detected suction pressure Pi rises above the set high threshold, the valve is closed, so that a hysteresis control may be performed. Alternatively, the control for proportionally adjusting the opening of the valve may be performed.

【0060】冷媒循環経路から外された熱交換器をバイ
パス路を通じて圧縮機への蒸発冷媒吸込路に連絡するよ
うにした別モード運転において、バイパス路に介装の弁
を圧縮機吸込冷媒の過熱度SHの検出情報に基づき制御
するのに、前述の実施形態で示した制御方式に代え、検
出過熱度SHに応じて弁の開度を比例的に調整する制御
を行なうようにしてもよく、また、検出過熱度SHが設
定値以上になると弁を開き、かつ、検出過熱度SHが設
定値未満になると弁を閉じるといった制御を行なうよう
にしてもよい。
In another mode operation in which the heat exchanger removed from the refrigerant circulation path is connected to the evaporative refrigerant suction path to the compressor through the bypass path, the valve interposed in the bypass path is used to overheat the refrigerant sucked in the compressor. In order to control based on the detection information of the degree SH, instead of the control method described in the above-described embodiment, control may be performed to proportionally adjust the opening degree of the valve according to the detected superheat degree SH. Further, control may be performed such that the valve is opened when the detected superheat degree SH is equal to or more than the set value, and the valve is closed when the detected superheat degree SH is less than the set value.

【0061】さらにまた、上記バイパス路への介装で別
モード運転において検出過熱度SHに応じ開閉制御する
弁には、制御手段とユニット化した形式の感温式や電子
式の膨張弁を採用してもよく、また場合によっては、除
霜又は除氷運転において圧縮機吸込圧力Piの検出情報
に基づき開閉制御する弁と、別モード運転において過熱
度SHの検出情報に基づき開閉制御する弁とを各別のも
のにして、それら弁を上記バイパス路に介装する構成を
採用してもよい。
Further, a temperature-sensitive or electronic expansion valve unitized with control means is used as a valve for opening and closing control in accordance with the detected superheat degree SH in another mode operation by interposing the bypass passage. In some cases, a valve that controls opening and closing based on detection information of the compressor suction pressure Pi in defrosting or deicing operation, and a valve that controls opening and closing based on detection information of the degree of superheat SH in another mode operation. May be separately provided, and the valves may be interposed in the bypass passage.

【0062】本発明を適用する圧縮式ヒートポンプの用
途は、融雪や空調、あるいは、物品を温度調整など、ど
のようなものであってもよい。
The application of the compression heat pump to which the present invention is applied may be any application such as snow melting, air conditioning, or temperature control of articles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ヒートポンプの回路構造を示す図FIG. 1 is a diagram showing a circuit structure of a heat pump.

【図2】第1モードの冷媒経路を示す図FIG. 2 is a diagram showing a refrigerant path in a first mode.

【図3】第2モードの冷媒経路を示す図FIG. 3 is a diagram showing a refrigerant path in a second mode.

【図4】第3モードの冷媒経路を示す図FIG. 4 is a diagram showing a refrigerant path in a third mode.

【図5】第4モードの冷媒経路を示す図FIG. 5 is a diagram showing a refrigerant path in a fourth mode.

【図6】第5モードの冷媒経路を示す図FIG. 6 is a diagram showing a refrigerant path in a fifth mode.

【図7】第6モードの冷媒経路を示す図FIG. 7 is a diagram showing a refrigerant path in a sixth mode.

【図8】第7モードの冷媒経路を示す図FIG. 8 is a diagram showing a refrigerant path in a seventh mode.

【図9】第8モードの冷媒経路を示す図FIG. 9 is a diagram showing a refrigerant path in an eighth mode.

【図10】第5モードでのバイパス路介装弁の制御形態
を示すグラフ
FIG. 10 is a graph showing a control mode of a bypass passage interposed valve in a fifth mode.

【図11】第1モードでのバイパス路介装弁の制御形態
を示すグラフ
FIG. 11 is a graph showing a control mode of the bypass passage interposed valve in the first mode.

【図12】別実施形態を示す回路図FIG. 12 is a circuit diagram showing another embodiment.

【図13】他の別実施形態を示す回路図FIG. 13 is a circuit diagram showing another embodiment.

【符号の説明】[Explanation of symbols]

2 熱交換器 4 圧縮機 5 膨張手段 8 制御手段 9 バイパス路 C 凝縮器 E 蒸発器 Pi 圧縮機吸込圧力 S3 弁 SH 圧縮機吸込冷媒の過熱度 a 高圧側液冷媒路 b 蒸発冷媒吸込路 2 Heat exchanger 4 Compressor 5 Expansion means 8 Control means 9 Bypass path C Condenser E Evaporator Pi Compressor suction pressure S3 Valve SH Compressor suction superheat degree a High pressure side liquid refrigerant path b Evaporation refrigerant suction path

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器としての運転で着霜又は着氷を生
じた熱交換器を冷媒循環経路の切り換えにより凝縮器と
して機能させる除霜又は除氷運転において、前記熱交換
器の出口から膨張手段までの間の高圧側の液冷媒路を圧
縮機への蒸発冷媒吸込路に短絡するバイパス路を設ける
とともに、このバイパス路に弁を介装し、 前記除霜又は除氷運転において前記圧縮機の吸込圧力を
適正値に保つように、その吸込圧力の検出情報に基づき
前記弁を制御する制御手段を設けてある圧縮式ヒートポ
ンプ。
1. A defrosting or deicing operation in which a heat exchanger that has formed frost or icing during operation as an evaporator functions as a condenser by switching a refrigerant circulation path, and expands from an outlet of the heat exchanger. A bypass path for short-circuiting the high-pressure side liquid refrigerant path to the compressor to the evaporative refrigerant suction path to the compressor, a valve is interposed in the bypass path, and the compressor is used in the defrosting or deicing operation. A compression heat pump provided with control means for controlling the valve based on detection information of the suction pressure so as to maintain the suction pressure at an appropriate value.
【請求項2】 前記制御手段を、前記除霜又は除氷運転
において、圧縮機吸込圧力の検出値が設定下限値未満に
なったとき前記弁を開き、かつ、圧縮機吸込圧力の検出
値が設定下限値以上になったとき前記弁を閉じる構成に
してある請求項1記載の圧縮式ヒートポンプ。
2. The control device according to claim 1, wherein the valve is opened when the detected value of the compressor suction pressure is less than a set lower limit in the defrosting or deicing operation, and the detected value of the compressor suction pressure is reduced. 2. The compression heat pump according to claim 1, wherein the valve is closed when the value becomes equal to or more than a set lower limit.
【請求項3】 前記熱交換器が冷媒循環経路から外され
た別モード運転において前記熱交換器が前記バイパス路
を通じて前記圧縮機への蒸発冷媒吸込路に連絡される状
態に前記バイパス路を配置し、 前記制御手段を、前記別モード運転において圧縮機吸込
冷媒の過熱度を適正値に保つように、その過熱度の検出
情報に基づき前記弁を制御する構成にしてある請求項1
又は2に記載の圧縮式ヒートポンプ。
3. In another mode operation in which the heat exchanger is disconnected from the refrigerant circulation path, the bypass path is arranged so that the heat exchanger is connected to the evaporative refrigerant suction path to the compressor through the bypass path. The control means is configured to control the valve based on detection information of the degree of superheat so that the degree of superheat of the refrigerant sucked in the compressor is maintained at an appropriate value in the another mode operation.
Or the compression heat pump according to 2.
【請求項4】 前記制御手段を、前記除霜又は除氷運転
の後に前記熱交換器を蒸発器として機能させる運転を実
施する際、その運転に先立ち前記別モード運転を実施し
て、その別モード運転から前記熱交換器を蒸発器として
機能させる運転へ移行するように運転モードを自動的に
切り換える構成にしてある請求項3記載の圧縮式ヒート
ポンプ。
4. When performing an operation of causing the heat exchanger to function as an evaporator after the defrosting or deicing operation, the control means performs the another mode operation prior to the operation, The compression heat pump according to claim 3, wherein an operation mode is automatically switched so as to shift from a mode operation to an operation in which the heat exchanger functions as an evaporator.
JP2000111634A 2000-04-13 2000-04-13 Compression type heat pump Pending JP2001296077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111634A JP2001296077A (en) 2000-04-13 2000-04-13 Compression type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111634A JP2001296077A (en) 2000-04-13 2000-04-13 Compression type heat pump

Publications (1)

Publication Number Publication Date
JP2001296077A true JP2001296077A (en) 2001-10-26

Family

ID=18623934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111634A Pending JP2001296077A (en) 2000-04-13 2000-04-13 Compression type heat pump

Country Status (1)

Country Link
JP (1) JP2001296077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185529A (en) * 2010-03-09 2011-09-22 Corona Corp Geothermal heat pump device
CN113418317A (en) * 2021-06-08 2021-09-21 瀚润联合高科技发展(北京)有限公司 Ejection evaporation cooling type air-cooled heat pump unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185529A (en) * 2010-03-09 2011-09-22 Corona Corp Geothermal heat pump device
CN113418317A (en) * 2021-06-08 2021-09-21 瀚润联合高科技发展(北京)有限公司 Ejection evaporation cooling type air-cooled heat pump unit

Similar Documents

Publication Publication Date Title
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
US9316423B2 (en) Container refrigeration apparatus
US7028494B2 (en) Defrosting methodology for heat pump water heating system
JP2008096033A (en) Refrigerating device
JP5310101B2 (en) Air conditioner
WO2021014640A1 (en) Refrigeration cycle device
JP4269397B2 (en) Refrigeration equipment
WO2011064927A1 (en) Refrigeration device for container
JP5690834B2 (en) Hot water system
JP3993540B2 (en) Refrigeration equipment
JP2001296077A (en) Compression type heat pump
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2745828B2 (en) Operation control device for refrigeration equipment
JP2002106998A (en) Heat storage type heat pump air conditioner
JP2003106687A (en) Refrigerator
JPH07243728A (en) Air conditioner
JP2555779B2 (en) Operation control device for air conditioner
JP3214145B2 (en) Operation control device for refrigeration equipment
JPH06272971A (en) Air conditioner
JP2004198085A (en) Air conditioner
JP2634267B2 (en) Anti-freezing device for air conditioners
JP2007046860A (en) Ejector type refrigeration cycle
JP2001280768A (en) Refrigerator
JPH08100944A (en) Operation controller for air conditioner
JP2001330332A (en) Refrigerant circuit of air conditioner