JP2001295007A - Method for producing high strength and high formability aluminum alloy sheet and aluminum alloy sheet obtained by the same producing method - Google Patents

Method for producing high strength and high formability aluminum alloy sheet and aluminum alloy sheet obtained by the same producing method

Info

Publication number
JP2001295007A
JP2001295007A JP2000112090A JP2000112090A JP2001295007A JP 2001295007 A JP2001295007 A JP 2001295007A JP 2000112090 A JP2000112090 A JP 2000112090A JP 2000112090 A JP2000112090 A JP 2000112090A JP 2001295007 A JP2001295007 A JP 2001295007A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy sheet
strength
formability
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000112090A
Other languages
Japanese (ja)
Other versions
JP3983454B2 (en
Inventor
Kazunori Kobayashi
一徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Sky Aluminium Co Ltd
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Sumitomo Light Metal Industries Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Furukawa Electric Co Ltd
Sky Aluminium Co Ltd
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Furukawa Electric Co Ltd, Sky Aluminium Co Ltd, Kobe Steel Ltd, Nippon Light Metal Co Ltd, Sumitomo Light Metal Industries Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2000112090A priority Critical patent/JP3983454B2/en
Publication of JP2001295007A publication Critical patent/JP2001295007A/en
Application granted granted Critical
Publication of JP3983454B2 publication Critical patent/JP3983454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an aluminum alloy sheet by which, as for an Al-Mg alloy containing a relatively small amount of Mg of 3.0 to 5.0%, a sheet material having a fine recrystallized grain structure and excellent in strength and formability can be produced without undergoing recrystallization annealing and to provide an aluminum alloy sheet obtainable by the same method. SOLUTION: An aluminum alloy sheet containing 3.0 to 5.0% Mg, and the balance Al with impurities is cold-rolled at a draft of >=70% to form the structure of the matrix of the same aluminum alloy sheet into the unrecrystalled one, and, after that, the aluminum alloy sheet is stretched at 200 to 300 deg.C at a strain rate of >=1×10-4/sec and a tensile amount of >=10%. By this producing method, the above unrecrystallized structure is dynamically recrystallized, by which the aluminum alloy sheet having the average crystal grain size of <=3 μm can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度高成形性ア
ルミニウム合金板、詳しくは、微細な再結晶粒組織を有
し、構造用として好適な高強度高成形性Al−Mg系合
金板の製造方法および該製造方法により得られるアルミ
ニウム合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-formability aluminum alloy sheet, and more particularly, to a high-strength, high-formability aluminum-Mg alloy sheet having a fine recrystallized grain structure and suitable for structural use. The present invention relates to a production method and an aluminum alloy plate obtained by the production method.

【0002】[0002]

【従来の技術】JIS(またはAA)5052、505
6、5082、5083、5086など、比較的多量の
Mgを含有するAl−Mg系合金は、強度、成形性、溶
接性に優れているため、鉄道車両、航空機、船舶、自動
車、自転車などの輸送機器、あるいは化学プラントの圧
力容器やタンク、建築物や構造物などの部材として使用
されている。
2. Description of the Related Art JIS (or AA) 5052, 505
Al-Mg based alloys containing a relatively large amount of Mg, such as 6, 5082, 5083, and 5086, are excellent in strength, formability, and weldability, and are therefore used for transportation of railway vehicles, aircraft, ships, automobiles, bicycles, and the like. It is used as equipment, pressure vessels and tanks of chemical plants, and members of buildings and structures.

【0003】これらのAl−Mg系合金板は、通常、D
C鋳造により造塊し、得られた鋳塊を、常法に従って、
均質化処理後、熱間圧延および冷間圧延して所定の厚さ
の板材とし、ついで再結晶焼鈍を行うことにより製造さ
れ、20〜30μmの平均再結晶粒径を有するアルミニ
ウム合金板が得られる。
[0003] These Al-Mg based alloy plates are usually made of D
The ingot was formed by C casting, and the obtained ingot was cast according to a conventional method.
After homogenization, hot rolling and cold rolling are performed to obtain a sheet having a predetermined thickness, and then recrystallization annealing is performed to obtain an aluminum alloy sheet having an average recrystallized grain size of 20 to 30 μm. .

【0004】近年、とくに輸送機器部品の小型化、軽量
化、高性能化の要求に対応して、部材を薄肉化するため
に、優れた強度と成形性を兼ね備えたAl−Mg系合金
板の開発が要請されており、この要請を実現するための
一手段として、Al−Mg系合金の再結晶組織をより微
細化する手法が注目されている。微細結晶粒組織とする
ことによって、強度、成形性のみでなく、破壊靱性や、
耐食性、耐応力腐食割れ性なども向上するなど、優れた
特性を現出させることもできる。
In recent years, particularly in response to demands for miniaturization, weight reduction, and high performance of transportation equipment parts, in order to reduce the thickness of members, an Al—Mg based alloy plate having both excellent strength and formability has been developed. Development has been demanded, and as a means for achieving this demand, a technique for further refining the recrystallized structure of an Al-Mg-based alloy has attracted attention. By having a fine grain structure, not only strength and formability, but also fracture toughness and
Excellent properties such as improved corrosion resistance and stress corrosion cracking resistance can also be exhibited.

【0005】従来、微細な結晶粒組織を有するAl−M
g系合金板を製造する方法として、例えば、6.0%以
上,最大7.0%までのMgを含有させるとともに、F
e:0.1〜2.0%、Cr:0.05〜0.5%、Z
r:0.05〜0.2%のうちの1種または2種以上を
含むAl−Mg系合金について、圧下率90%以上の冷
間圧延を加えることによって、再結晶焼鈍後の再結晶粒
径を5μm以下の微細粒とすることが提案されている
(特願平11−268599号)。
Conventionally, Al-M having a fine grain structure
As a method of manufacturing a g-based alloy sheet, for example, while containing not less than 6.0% and up to 7.0% of Mg,
e: 0.1 to 2.0%, Cr: 0.05 to 0.5%, Z
r: Recrystallized grains after recrystallization annealing by adding cold rolling at a rolling reduction of 90% or more to an Al-Mg alloy containing one or more of 0.05 to 0.2%. It has been proposed to make fine particles having a diameter of 5 μm or less (Japanese Patent Application No. 11-268599).

【0006】この方法は、Mg含有量を極端に多くする
とともに、冷間圧延において大圧下を加えて、再結晶の
核生成サイトとなる転位やFeを含む化合物粒子を増加
させ、さらに、Mn、Cr、Zrなどの析出粒子分散に
より、粒界の移動による再結晶粒の粗大成長を抑制しよ
うとするものであり、実際に、再結晶焼鈍後、5μm以
下の微細再結晶組織を有するAl−Mg合金板の製造が
可能となるが、多量のMgを含有させる必要があるた
め、Mg量が通常の5000系(JISまたはAA)合
金におけるMgの成分規格の上限を外れ、また、鋳造や
熱間圧延の際にエッジクラックが生じ、大圧下による冷
間圧延時のエッジクラックが増大して、板材の製造が困
難となり、製造し得たとしても歩留りが極端に低いもの
となるから、実用化が難しいという問題がある。
According to this method, the Mg content is extremely increased, and a large reduction is applied in cold rolling to increase the number of dislocations and Fe-containing compound particles serving as nucleation sites for recrystallization. It is intended to suppress the coarse growth of recrystallized grains due to the movement of grain boundaries by dispersing precipitated particles such as Cr and Zr. Actually, after recrystallization annealing, Al-Mg having a fine recrystallized structure of 5 μm or less is obtained. Although it is possible to manufacture an alloy plate, it is necessary to contain a large amount of Mg. Therefore, the amount of Mg is out of the upper limit of the standard of the component of Mg in the ordinary 5000 series (JIS or AA) alloy. Edge cracks occur during rolling, and edge cracks during cold rolling due to large reduction increase, making it difficult to manufacture sheet materials, and even if it can be manufactured, the yield will be extremely low, so practical use There is a problem that it is difficult.

【0007】さらに、この方法においては、高Mg含有
アルミニウム合金に高圧下の冷間圧延を加えているた
め、得られたアルミニウム合金板の加工硬化量が極端に
大きくなり、従って、再結晶焼鈍が低温で行われた場合
には焼きなましが不十分となって、各種の用途で要求さ
れる伸びや成形性が得られない場合が多い。
Further, in this method, since the high Mg content aluminum alloy is subjected to cold rolling under high pressure, the amount of work hardening of the obtained aluminum alloy sheet becomes extremely large, and therefore, recrystallization annealing is not performed. When performed at a low temperature, the annealing becomes insufficient, and the elongation and formability required for various uses are often not obtained.

【0008】このような問題を解決するため、前記の方
法において、Mg含有量を下げ、例えば通常の5000
系の成分規格の5.0%以下にすると、最終焼鈍後の再
結晶粒径を5μ以下に微細化することが困難となり、成
形性を改良するために再結晶焼鈍の温度を高くした場合
にも再結晶粒が粗大化し、最終焼鈍後の再結晶粒径を5
μ以下に微細化することが困難となる。
In order to solve such a problem, in the above method, the Mg content is reduced,
When the content is less than 5.0% of the system standard, it is difficult to reduce the recrystallized grain size after final annealing to 5 μm or less, and when the recrystallization annealing temperature is increased to improve the formability, Also, the recrystallized grains became coarse and the recrystallized grain size after final annealing was 5
It is difficult to reduce the size to μ or less.

【0009】一方、JIS7075合金など、高強度A
l−Zn−Mg−Cu系合金板を、25〜67%の圧下
量で冷間圧延して未再結晶組織のアルミニウム合金板を
作製し、ついで、350℃程度の温間域で4×10-3
秒程度の歪み速度で引張り、40%程度の歪を与えて未
再結晶組織を動的に再結晶させ、微細な再結晶粒組織を
得ることが報告されており(軽金属、第49巻第8号、
1999年、383〜388頁)、この方法により高強
度が達成できることが知られている。
On the other hand, high strength A such as JIS7075 alloy
The l-Zn-Mg-Cu-based alloy plate is cold-rolled at a rolling reduction of 25 to 67% to produce an aluminum alloy plate having an unrecrystallized structure, and then 4x10 in a warm region of about 350 ° C. -3 /
It has been reported that a non-recrystallized structure is dynamically recrystallized by applying a strain at a strain rate of about second and giving a strain of about 40% to obtain a fine recrystallized grain structure (Light Metal, Vol. 49, No. 8). issue,
1999, pp. 383-388), it is known that high strength can be achieved by this method.

【0010】発明者は、冷間圧延による未再結晶組織を
温間で引張り、動的に再結晶させる上記の方法について
さらに検討を加え、Mgを通常の5000系合金のMg
含有量の成分規格内で比較的多量に含有させた特定組成
のAl−Mg系合金への適用可能性について多角的な試
験、検討を行った結果、特定の温間引張り温度、歪み速
度および引張量の組合わせにおいて、強度および冷間成
形性の両特性が同時に向上することを知見した。
The inventor further studied the above-mentioned method of dynamically recrystallizing an unrecrystallized structure obtained by cold rolling by stretching it warmly.
As a result of conducting multilateral tests and studies on the applicability to Al-Mg based alloys of a specific composition contained in a relatively large amount within the component specification of the content, specific warm tensile temperature, strain rate and tensile It has been found that in the combination of the amounts, both properties of strength and cold formability are simultaneously improved.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記の知見
に基づいてなされたものであり、その目的は、3.0〜
5.0%のMgを含有するAl−Mg合金について、3
μm以下の再結晶粒組織を有し、強度、成形性に優れた
板材を再結晶焼鈍を施すことなく且つ複雑な工程を経る
ことなく製造できる高強度高成形性アルミニウム合金の
製造方法および該製造方法により得られるアルミニウム
合金板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made based on the above-mentioned findings, and its object is to provide a liquid crystal display having a size of 3.0 to 3.0.
For an Al-Mg alloy containing 5.0% Mg, 3
A method for producing a high-strength high-formability aluminum alloy capable of producing a sheet material having a recrystallized grain structure of not more than μm and excellent in strength and formability without performing recrystallization annealing and without going through complicated steps. An object of the present invention is to provide an aluminum alloy plate obtained by the method.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による高強度高成形性アルミニウ
ム合金板の製造方法は、Mg:3.0〜5.0%を含有
し、残部Alおよび不純物からなるアルミニウム合金板
を、70%以上の圧下率で冷間圧延して該アルミニウム
合金板のマトリックスを未再結晶組織とし、その後、2
00〜300℃の温度において1×10-4/秒以上の歪
速度および10%以上の引張量で引張り、前記未再結晶
組織を動的に再結晶させて3μm以下の平均結晶粒径を
有するアルミニウム合金板を得ることを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a high-strength, high-formability aluminum alloy sheet, comprising 3.0 to 5.0% of Mg. An aluminum alloy plate comprising the balance of Al and impurities is cold-rolled at a rolling reduction of 70% or more to make the matrix of the aluminum alloy plate an unrecrystallized structure.
It is pulled at a strain rate of 1 × 10 −4 / sec or more and a tensile amount of 10% or more at a temperature of 00 to 300 ° C., and the unrecrystallized structure is dynamically recrystallized to have an average crystal grain size of 3 μm or less. It is characterized by obtaining an aluminum alloy plate.

【0013】また、請求項2による高強度高成形性アル
ミニウム合金板の製造方法は、請求項1において、前記
アルミニウム合金板が、さらに、Mn:0.05〜0.
5%、Cr:0.05〜0.2%、Zr:0.05〜
0.2%のうちの1種または2種以上を含有することを
特徴とし、請求項3による高強度高成形性アルミニウム
合金板の製造方法、請求項1〜2において、前記アルミ
ニウム合金板が、さらに、Ti:0.001〜0.1
%、B:1〜300ppmのうちの1種または2種を含
有することを特徴とする。
According to a second aspect of the present invention, in the method for manufacturing a high-strength and high-formability aluminum alloy plate, the aluminum alloy plate according to the first aspect further comprises Mn: 0.05 to 0.1.
5%, Cr: 0.05-0.2%, Zr: 0.05-
The method for producing a high-strength and high-formability aluminum alloy sheet according to claim 3, wherein the aluminum alloy sheet comprises 0.2% or more of 0.2% or more. Further, Ti: 0.001 to 0.1
%, B: 1 to 300 ppm.

【0014】本発明の請求項4による高強度高成形性ア
ルミニウム合金板は、請求項1〜3のいずれかに記載の
方法により製造されたアルミニウム合金板であって、平
均結晶粒径が3μm以下であり、耐力が250MPa以
上、伸びが11%以上であることを特徴とする。
A high-strength, high-formability aluminum alloy sheet according to claim 4 of the present invention is an aluminum alloy sheet produced by the method according to any one of claims 1 to 3, wherein the average crystal grain size is 3 μm or less. Wherein the proof stress is 250 MPa or more and the elongation is 11% or more.

【0015】本発明の請求項5による高強度高成形性ア
ルミニウム合金板は、請求項1〜3のいずれかに記載の
方法により製造されたアルミニウム合金板であって、平
均結晶粒径が3μm以下であり、耐力が260MPa以
上、伸びが13%以上であることを特徴とする。
A high-strength, high-formability aluminum alloy sheet according to claim 5 of the present invention is an aluminum alloy sheet produced by the method according to any one of claims 1 to 3, wherein the average crystal grain size is 3 μm or less. And a proof stress of 260 MPa or more and an elongation of 13% or more.

【0016】本発明は、前記のように、Mgを5000
系アルミニウム合金のMg含有量の成分規格内で比較的
多量に含有させたAl−Mg系合金板に、70%以上の
比較的大きな圧下を加え、冷間圧延前の結晶粒組織にお
ける大傾角粒界を高密度に蓄積した未再結晶組織のAl
−Mg系合金板を作製し、ついで、該Al−Mg系合金
冷間圧延板を、200〜300℃の温間で引張る(スト
レッチする)ことにより、未再結晶組織を動的に再結晶
させ、再結晶組織の平均結晶粒径を3μm以下とするこ
とを特徴とするものである。
According to the present invention, as described above,
A relatively large reduction of 70% or more is applied to an Al-Mg-based alloy sheet containing a relatively large amount within the component specification of the Mg content of the system-based aluminum alloy, and the large-angle grains in the crystal grain structure before cold rolling are applied. Unrecrystallized Al with high density of field
An Mg-based alloy sheet is prepared, and then the Al-Mg-based alloy cold-rolled sheet is stretched (stretched) at a temperature of 200 to 300 ° C to dynamically recrystallize an unrecrystallized structure. And the average crystal grain size of the recrystallized structure is 3 μm or less.

【0017】[0017]

【発明の実施の形態】本発明におけるAl−Mg系合金
の成分元素の意義および限定理由について説明すると、
Mgは、固溶強化により合金の強度、成形性を向上させ
るよう機能する元素であり、好ましい含有量は3.0〜
5.0%の範囲である。3.0%未満では十分な固溶強
化が得られない。また、比較的大きな圧下量で冷間圧延
を行った場合における回復を抑制できず、冷間圧延後の
温間の引張りの際の未再結晶組織の動的再結晶が不足し
て、未再結晶組織や転位組織が残存し、微細な再結晶組
織が得られず、十分な強度および成形性が達成できな
い。5.0%を越えて含有されると、鋳造、熱間圧延お
よび冷間圧延時のエッジクラックにより板材の製造が困
難となり、製造できたとしても歩留りが顕著に低下する
ため、工業的な製造に適しなくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of the constituent elements of an Al-Mg based alloy in the present invention and the reasons for limitation will be described.
Mg is an element that functions to improve the strength and formability of the alloy by solid solution strengthening, and the preferred content is 3.0 to 3.0.
It is in the range of 5.0%. If it is less than 3.0%, sufficient solid solution strengthening cannot be obtained. In addition, recovery in the case of performing cold rolling with a relatively large rolling reduction cannot be suppressed, and the dynamic recrystallization of the unrecrystallized structure during warm stretching after cold rolling is insufficient, and the A crystal structure and a dislocation structure remain, a fine recrystallized structure cannot be obtained, and sufficient strength and formability cannot be achieved. If the content exceeds 5.0%, the production of a sheet material becomes difficult due to edge cracks at the time of casting, hot rolling and cold rolling, and even if it can be produced, the yield is remarkably reduced. Not suitable for

【0018】Mn、Cr、Zrは、Al−Mn系、Al
−Cr系、Al−Zr系などの化合物粒子(晶出物)を
生成して、温間引張りで形成された微細結晶粒の成長、
粗大化を抑制し、再結晶粒を微細化するために機能す
る。好ましい含有量は、Mn:0.05〜0.5%、C
r:0.05〜0.2%、Zr:0.05〜0.2%の
範囲であり、それぞれ下限未満ではその効果が十分でな
く、それぞれ上限を越えた場合には、結晶粒微細化の効
果が飽和し、また、鋳造時に粗大な晶出物が生じ、破壊
靱性、疲労強度、伸び、成形性などの特性が劣化し易く
なる。
Mn, Cr and Zr are Al-Mn type, Al
-Generation of compound particles (crystals) such as Cr-based and Al-Zr-based, and growth of fine crystal grains formed by warm tension;
It functions to suppress coarsening and refine recrystallized grains. The preferred content is Mn: 0.05-0.5%, C
r: 0.05 to 0.2%, Zr: 0.05 to 0.2%, the effect is not sufficient below the lower limit, and the grain size is reduced when the upper limit is exceeded, respectively. Effect is saturated, and coarse crystals are formed during casting, and properties such as fracture toughness, fatigue strength, elongation, and formability are easily deteriorated.

【0019】Ti、Bは鋳塊の結晶粒を微細化する効果
を有する。とくにTiは、通常、アルミニウム合金に添
加される元素である。好ましい含有量は、Ti:0.0
01〜0.1%、B:1〜300ppmの範囲であり、
それぞれ下限未満ではその効果が小さく、上限を越えて
含有すると鋳造時に粗大な晶出物が生成し易くなる。な
お、本発明においては、上記の成分の他、Al−Mg系
合金中に通常含まれる0.2%以下のCu、0.25%
以下のZn、0.5%以下のSi、O.5%以下のF
e、0.05%以下のVなどが含有していても本発明の
効果が害されることはない。
Ti and B have the effect of refining the crystal grains of the ingot. In particular, Ti is an element usually added to an aluminum alloy. The preferred content is Ti: 0.0
01 to 0.1%, B: 1 to 300 ppm,
If the content is less than the lower limit, the effect is small, and if the content exceeds the upper limit, a coarse crystallized substance is easily formed at the time of casting. In the present invention, in addition to the above components, 0.2% or less of Cu, 0.25% or less usually contained in an Al—Mg alloy.
Zn, 0.5% or less of Si, O. F of 5% or less
e, the effect of the present invention is not impaired even if V and the like are contained at 0.05% or less.

【0020】本発明のアルミニウム合金板の製造方法に
ついて説明すると、本発明における出発材料、すなわち
冷間圧延−温間引張りに供するAl−Mg系合金板は、
常法により製造することができる。すなわち、上記組成
を有するAl−Mg系合金を溶解し、半連続鋳造(DC
鋳造)により造塊して、得られた鋳塊を均質化処理後熱
間圧延、必要に応じて中間焼鈍、あるいは熱間圧延後冷
間圧延、中間焼鈍することにより製造される。
The method for producing the aluminum alloy sheet of the present invention will be described. The starting material in the present invention, that is, the Al-Mg alloy sheet to be subjected to cold rolling and warm stretching is as follows:
It can be manufactured by an ordinary method. That is, the Al-Mg alloy having the above composition is melted and semi-continuous casting (DC
The ingot is produced by homogenization, hot rolling after homogenization treatment, intermediate annealing as necessary, or cold rolling after hot rolling, and intermediate annealing.

【0021】鋳塊の均質化処理は、Al−Mn系、Al
−Fe系、Al−Cr系、Al−Zr系などの化合物粒
子を微細に且つ多数析出させるために、430〜540
℃の温度で行うのが好ましい。430℃未満では拡散に
よる均質化自体の効果が不足し、540℃を越えると、
上記の化合物粒子が粗大化する可能性が大きい。
The ingot is homogenized by an Al—Mn system, Al
430 to 540 in order to precipitate fine and many compound particles such as Fe-based, Al-Cr-based, and Al-Zr-based particles.
It is preferably carried out at a temperature of ° C. If the temperature is lower than 430 ° C., the effect of homogenization itself by diffusion is insufficient.
There is a high possibility that the above compound particles become coarse.

【0022】熱間圧延は常法により行うことが可能であ
るが、熱間圧延の加工度(圧下率)は冷間圧延の圧下率
に影響するから、冷間圧延の圧下率を高くするために
は、最終板厚が同じ場合、熱間圧延終了時の板厚が大き
いほうが好ましい。また、熱間圧延時に導入される歪
(転位密度)を大きくすることが望ましいから、熱間圧
延の終了温度は低いほうが好ましい。
Hot rolling can be carried out by a conventional method. However, since the working ratio (reduction ratio) of hot rolling affects the reduction ratio of cold rolling, it is necessary to increase the reduction ratio of cold rolling. In the case where the final plate thickness is the same, it is preferable that the plate thickness at the end of hot rolling be large. Further, since it is desirable to increase the strain (dislocation density) introduced at the time of hot rolling, the end temperature of hot rolling is preferably lower.

【0023】本発明においては、鋳造工程において、A
l−Mn系、Al−Fe系、Al−Cr系、Al−Zr
系などの化合物の固溶を促進し、これらの析出を抑制す
るのが好ましく、そのためには、鋳造の際の冷却速度を
大きくすることが望ましいから、鋳造は、通常のDC鋳
造より、凝固時、液相線温度から固相線温度までの冷却
速度を2℃/秒〜10℃/秒とすることができる、回転
式水冷鋳型などを用いる双ロール鋳造法、スチールベル
トを鋳型とするベルト鋳造法、3C法、水冷鋳型ブロッ
クを使用するブロックキャスター法などの連続鋳造方式
によるのが好ましい。
In the present invention, in the casting step, A
l-Mn, Al-Fe, Al-Cr, Al-Zr
It is preferable to promote the solid solution of compounds such as the system and to suppress the precipitation of these compounds. For this purpose, it is desirable to increase the cooling rate during casting. A twin-roll casting method using a rotary water-cooled mold or the like, a belt casting method using a steel belt as a mold, capable of setting a cooling rate from a liquidus temperature to a solidus temperature of 2 ° C./sec to 10 ° C./sec. It is preferable to use a continuous casting method such as a method, a 3C method, or a block caster method using a water-cooled mold block.

【0024】上記の鋳造方式により鋳造された板材は、
上記の熱間圧延、必要に応じて中間焼鈍、熱間圧延後冷
間圧延、中間焼鈍、または熱間圧延することなく直接冷
間圧延、中間焼鈍を行うことにより、本発明における出
発材料、すなわち冷間圧延−温間引張りに供するAl−
Mg系合金板とする。中間焼鈍は、バッチ式の熱処理炉
または連続焼鈍炉(CAL)により行われる。
The plate material cast by the above casting method is
The above hot rolling, if necessary, intermediate annealing, cold rolling after hot rolling, intermediate annealing, or direct cold rolling without hot rolling, by performing intermediate annealing, the starting material in the present invention, namely Cold rolling-Al for warm tension-
An Mg-based alloy plate is used. The intermediate annealing is performed by a batch type heat treatment furnace or a continuous annealing furnace (CAL).

【0025】本発明の特徴とする冷間圧延工程−温間引
張り工程について説明すると、まず、冷間圧延工程にお
いては、70%以上の圧下率で冷間圧延を行う。この工
程は、引き続いて行われる温間引張り工程において再結
晶粒径を3μm以下に微細化するための重要な工程であ
る。70%以上の圧下率で冷間圧延することにより、冷
間圧延前に形成されていた大傾角粒界を高密度に分布さ
せ、本発明の特定条件下での温間の引張りにおいて、局
部的な粒界すべりにより隣接する亜結晶粒が回転して粒
界傾角を増加させ、微細結晶組織を得ることが可能とな
る。
The cold rolling step-warm stretching step which is a feature of the present invention will be described. First, in the cold rolling step, cold rolling is performed at a rolling reduction of 70% or more. This step is an important step for reducing the recrystallized grain size to 3 μm or less in the subsequent warm stretching step. By cold rolling at a rolling reduction of 70% or more, the large-angle grain boundaries formed before the cold rolling are distributed at a high density. Adjacent sub-crystal grains rotate due to a large grain boundary slip, thereby increasing the grain boundary tilt angle, thereby making it possible to obtain a fine crystal structure.

【0026】続いて行われる温間引張りは、200〜3
00℃の温度において、歪み速度1×10-4/秒以上、
引張量10%以上の条件で行われ、冷間圧延板のマトリ
ックスの未再結晶を動的に再結晶させる。この場合、実
質的に再結晶組織が形成されればよく、本発明の効果に
影響しない程度の若干の未再結晶組織や転位組織が混在
していてもよい。温度が200℃未満では未再結晶を動
的に再結晶させることが十分にできず、未再結晶組織や
転位組織が残存して平均結晶粒径3μm以下の微細再結
晶粒組織が得られない。300℃を越えると、再結晶粒
が粗大化するため平均結晶粒径3μm以下の微細再結晶
粒組織が形成できない。
The subsequent warm tension is 200 to 3
At a temperature of 00 ° C., a strain rate of 1 × 10 −4 / sec or more,
This is performed under the condition of a tensile amount of 10% or more, and dynamically recrystallizes the unrecrystallized matrix of the cold-rolled sheet. In this case, a recrystallized structure may be substantially formed, and a slight unrecrystallized structure or dislocation structure which does not affect the effects of the present invention may be present. If the temperature is lower than 200 ° C., it is not possible to sufficiently recrystallize the unrecrystallized crystal, and the unrecrystallized structure and the dislocation structure remain, and a fine recrystallized grain structure having an average crystal grain size of 3 μm or less cannot be obtained. . If the temperature exceeds 300 ° C., the recrystallized grains become coarse, so that a fine recrystallized grain structure having an average crystal grain size of 3 μm or less cannot be formed.

【0027】また、歪み速度が1×10-4/秒未満で
は、引張量10%以上の引張りを行っても、200〜3
00℃にアルミニウム合金板が加熱される時間が長くな
るために再結晶粒が粗大化する。引張量が10%未満で
は、200〜300℃の温度で歪み速度1×10-4/秒
以上で引張りを行っても、未再結晶の動的再結晶が不足
し、未再結晶組織や転位組織が残存して平均結晶粒径3
μm以下の微細再結晶粒組織が得られない。
When the strain rate is less than 1 × 10 −4 / sec, even if a tensile amount of 10% or more is applied, 200 to 3
Since the time during which the aluminum alloy plate is heated to 00 ° C. becomes long, recrystallized grains become coarse. If the tensile amount is less than 10%, the dynamic recrystallization of the unrecrystallized crystal is insufficient even when the film is stretched at a strain rate of 1 × 10 −4 / sec or more at a temperature of 200 to 300 ° C. Structure remains and average grain size 3
A fine recrystallized grain structure of μm or less cannot be obtained.

【0028】本発明における温間引張りは、例えば、加
熱・保温装置を付設したストレッチャーなどの引張矯正
機やレベラーなどのロール矯正機を使用して行うことが
できる。
The warm stretching in the present invention can be performed by using, for example, a tension straightening machine such as a stretcher provided with a heating / heating device or a roll straightening machine such as a leveler.

【0029】なお、本発明における結晶粒径の測定は、
アルミニウム合金板の長さ方向(圧延方向)の断面につ
いて、光学顕微鏡および集束イオンビーム加工観察装置
(FIB)を用い、切断法により行う。具体的には、直
線で切断される結晶粒の数が100個以上となるように
直線を描き、この直線の長さを切断された結晶粒の数で
除して再結晶粒径とする。
In the present invention, the crystal grain size is measured by
The cross section in the length direction (rolling direction) of the aluminum alloy plate is cut by a cutting method using an optical microscope and a focused ion beam processing observation device (FIB). Specifically, a straight line is drawn so that the number of crystal grains cut by the straight line becomes 100 or more, and the length of the straight line is divided by the number of cut crystal grains to obtain a recrystallized grain size.

【0030】通常、Al−Mg系合金板においては、最
終的に高温焼鈍を行い、各種用途で要求される伸びや絞
り高さなどの成形性を向上させるが、本発明の温間引張
りは高温焼鈍処理の代わりとなるものであり、温間引張
り工程を経たAl−Mg系合金板は平均結晶粒径3μm
以下の微細組織となっているから、高強度で高成形性を
そなえており、通常行われる高温焼鈍は不要である。最
終の高温焼鈍は再結晶粒径を粗大化するため有害であ
る。最終焼鈍を行わずに製品板とする点も本発明の特徴
の一つである。
Normally, Al—Mg based alloy sheets are finally subjected to high-temperature annealing to improve formability such as elongation and drawing height required for various applications. This is an alternative to the annealing treatment, and the Al-Mg-based alloy plate that has undergone the warm tensile process has an average crystal grain size of 3 μm.
Since it has the following microstructure, it has high strength and high formability, and ordinary high-temperature annealing is unnecessary. The final high-temperature annealing is harmful because it coarsens the recrystallized grain size. One of the features of the present invention is that a product plate is formed without performing final annealing.

【0031】上記の工程により製造されるアルミニウム
合金板は、平均結晶粒径3μm以下のきわめて微細な再
結晶粒組織を有し、且つ耐力が240MPa以上、望ま
しくは260MPa以上、伸びが10%以上、望ましく
は13%以上の機械的特性をそなえており、強度および
成形性に優れたものとなる。
The aluminum alloy sheet produced by the above process has a very fine recrystallized grain structure having an average crystal grain size of 3 μm or less, and has a proof stress of 240 MPa or more, preferably 260 MPa or more, and an elongation of 10% or more. Desirably, it has mechanical properties of 13% or more, and has excellent strength and moldability.

【0032】[0032]

【実施例】以下、本発明の実施例を比較例と対比して説
明するとともに、それに基づいてその効果を実証する。
なお、これらの実施例は、本発明の好ましい一実施態様
を説明するためのものであって、これにより本発明が制
限されるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples, and the effects thereof will be demonstrated based on them.
It should be noted that these examples are for describing a preferred embodiment of the present invention, and the present invention is not limited thereto.

【0033】実施例1 表1に示す組成を有するAl−Mg系合金を、DC鋳造
(冷却速度5℃/秒)により造塊し、得られた鋳塊(厚
さ50mm)を、520℃の温度で4時間均質化処理
(昇温速度50℃/秒)した後、この温度で熱間圧延を
開始し、300℃で熱間圧延を終了して厚さ10mmの
板材とした。
Example 1 An Al-Mg alloy having the composition shown in Table 1 was formed by DC casting (cooling rate: 5 ° C./sec), and the obtained ingot (thickness: 50 mm) was cooled to 520 ° C. After homogenizing at a temperature of 4 hours (heating rate: 50 ° C./sec), hot rolling was started at this temperature, and hot rolling was completed at 300 ° C. to obtain a sheet material having a thickness of 10 mm.

【0034】ついで、これらの熱延板を、表2に示すよ
うに、90%および80%の圧下率で冷間圧延し、得ら
れた冷間圧延板について、加熱装置を付設したストレッ
チャーを用いて表2に示す条件で温間引張りを行った。
Next, as shown in Table 2, these hot-rolled sheets were cold-rolled at a rolling reduction of 90% and 80%, and a stretcher provided with a heating device was mounted on the obtained cold-rolled sheets. Then, warm tension was performed under the conditions shown in Table 2.

【0035】温間引張り後のAl−Mg系合金板(試験
材)について、長さ方向の断面の再結晶粒径を前記の方
法により測定して平均再結晶粒径を求め、引張試験(J
ISZ 2241)を行って引張強さ(σB ) 、耐力
(σ0.2)、伸び(δ)を測定した。また、プレス成形性
を評価するために、試験材からブランク材を採取し、L
DH0 (最大張出し高さ)測定用の金型(直径50.8
mmの球頭ポンチ)を用いて球頭張出試験を行い、その
際に割れを生じることなく成形できたLDH0(最大張
出し高さ)を求めた。これらの結果を表2に示す。
With respect to the Al—Mg alloy plate (test material) after the warm tension, the average recrystallized particle size was determined by measuring the recrystallized particle size of the cross section in the length direction by the above-mentioned method, and the tensile test (J
ISZ 2241), and the tensile strength (σ B ), proof stress (σ 0.2 ), and elongation (δ) were measured. Also, in order to evaluate press formability, a blank material was sampled from the test material, and L
Mold for measuring DH 0 (maximum overhang height) (diameter 50.8
A ball-head overhang test was performed using a ball-head punch (mm), and the LDH 0 (maximum overhang height) that could be formed without cracking at that time was determined. Table 2 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】表2にみられるように、本発明に従う試験
材No.1〜9は、いずれも平均結晶粒径3μm以下の
微細再結晶組織を有し、温間引張り状態で、優れた機械
的性質をそなえ、成形性にも優れたものとなっている。
これらの試験材のうち、冷間圧延の圧下率がやや低い試
験材No.2、歪み速度、引張量が比較的低い試験材N
o.4、5は、再結晶粒径が比較的大きくなっているた
め、また、引張温度が比較的低い試験材No.3は組織
中に転位組織が若干混在しているため、いずれも機械的
特性の一部が、他の試験材に比べるとやや劣ったものと
なった。
As can be seen from Table 2, the test material No. Nos. 1 to 9 each have a fine recrystallized structure having an average crystal grain size of 3 μm or less, have excellent mechanical properties in a warm tensile state, and have excellent moldability.
Of these test materials, test material No. with a slightly lower rolling reduction in cold rolling was used. 2. Test material N with relatively low strain rate and tensile strength
o. Test materials Nos. 4 and 5 have relatively large recrystallized grain diameters and have relatively low tensile temperatures. In Sample No. 3, since a dislocation structure was slightly mixed in the structure, some of the mechanical properties were slightly inferior to those of the other test materials.

【0039】比較例1 表3に示す組成を有するAl−Mg系合金を、DC鋳造
(冷却速度5℃/秒)により造塊し、得られた鋳塊(厚
さ50mm)を、520℃の温度で4時間均質化処理
(昇温速度50℃/秒)した後、この温度で熱間圧延を
開始し、300℃で熱間圧延を終了して厚さ10mmの
板材とした。
Comparative Example 1 An Al-Mg alloy having a composition shown in Table 3 was formed by DC casting (cooling rate: 5 ° C./sec), and the obtained ingot (thickness: 50 mm) was cooled to 520 ° C. After homogenizing at a temperature of 4 hours (heating rate: 50 ° C./sec), hot rolling was started at this temperature, and hot rolling was completed at 300 ° C. to obtain a sheet material having a thickness of 10 mm.

【0040】ついで、これらの熱延板および実施例1の
合金No.Aの熱延板を、表4に示すように、90%お
よび60%の圧下率で冷間圧延し、得られた冷間圧延板
について、実施例1と同様、加熱装置を付設したストレ
ッチャーを用いて表2に示す条件で温間引張りを行い、
温間引張り後の板材(試験材)について、実施例1と同
じ測定、試験を行った。結果を表4に示す。なお、表3
〜4において、本発明の条件を外れたものには下線を付
した。
Next, these hot rolled sheets and alloy No. 1 of Example 1 were used. As shown in Table 4, the hot-rolled sheet A was cold-rolled at a rolling reduction of 90% and 60%, and the obtained cold-rolled sheet was stretched with a heating device in the same manner as in Example 1 And subjected to warm tension under the conditions shown in Table 2,
The same measurement and test as in Example 1 were performed on the plate material (test material) after the warm tension. Table 4 shows the results. Table 3
In Nos. To 4, those which did not satisfy the conditions of the present invention are underlined.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 《表注》平均結晶粒径 ※:未再結晶組織[Table 4] << Table Note >> Average crystal grain size *: Unrecrystallized structure

【0043】表4に示すように、試験材No.10は優
れた特性を示しているが、Mgの含有量が多いため、鋳
造、熱間圧延、冷間圧延においてエッジクラックが顕著
に発生し、健全部として採取できた板材の歩留りは70
%程度ときわめて低く、実用化には問題がある。試験材
No.11は、Mg量が少ないため3μm以下の平均結
晶粒径の組織が得られず、機械的強度が低くなってい
る。また、試験材No.12〜16は、冷間圧延の圧下
率または温間引張り条件が本発明の条件を外れているた
め、いずれも再結晶粒径が大きくあるいは未再結晶組織
となり、機械的強度、成形性(伸び)のいずれかが劣る
結果となった。
As shown in Table 4, the test material No. No. 10 shows excellent properties, but the content of Mg is large, so that edge cracks are remarkably generated in casting, hot rolling, and cold rolling, and the yield of a plate material obtained as a healthy part is 70%.
%, Which is extremely low, and there is a problem in practical use. Test material No. In No. 11, a structure having an average crystal grain size of 3 μm or less was not obtained because the amount of Mg was small, and the mechanical strength was low. The test material No. In Nos. 12 to 16, the reduction ratio of cold rolling or the conditions of warm tension are out of the conditions of the present invention, so that any of them has a large recrystallized grain size or an unrecrystallized structure, and has mechanical strength and formability (elongation). ) Resulted in inferior results.

【0044】[0044]

【発明の効果】以上のとおり、本発明によれば、3.0
〜5.0%と比較的少ないMgを含有するAl−Mg合
金について、微細な再結晶粒組織を有し、強度、成形性
に優れた板材を再結晶焼鈍を経ることなく製造すること
が可能となる。
As described above, according to the present invention, 3.0 is obtained.
For Al-Mg alloy containing relatively small amount of Mg of up to 5.0%, it is possible to manufacture a sheet material having a fine recrystallized grain structure and excellent strength and formability without undergoing recrystallization annealing. Becomes

【0045】本発明により得られるアルミニウム合金板
は、平均結晶粒径が3μm以下のきわめて微細な組織を
そなえ、強度、成形性に優れたものであり、輸送機器へ
のアルミニウム合金板材の用途を大きく拡大することが
でき、工業的価値の高いものである。
The aluminum alloy sheet obtained by the present invention has an extremely fine structure having an average crystal grain size of 3 μm or less, and is excellent in strength and formability. It can be expanded and has high industrial value.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630K 685 685Z 685A 691 691B 694 694A (71)出願人 000004743 日本軽金属株式会社 東京都品川区東品川二丁目2番20号 (71)出願人 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (71)出願人 000176707 三菱アルミニウム株式会社 東京都港区芝2丁目3番3号 (72)発明者 小林 一徳 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所内Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 630 C22F 1/00 630K 685 685Z 685A 691 691B 694 694A (71) Applicant 000004743 Nippon Light Metal Co., Ltd. Shinagawa, Tokyo Furukawa Electric Co., Ltd. 2-6-1 Marunouchi, Chiyoda-ku, Tokyo (71) Applicant 000176707 Mitsubishi Aluminum Co., Ltd. 2-3-3 Shiba, Minato-ku, Tokyo No. 3 (72) Inventor Kazunori Kobayashi 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Steel, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mg:3.0〜5.0%(質量%、以下
同じ)を含有し、残部Alおよび不純物からなるアルミ
ニウム合金板を、70%以上の圧下率で冷間圧延して該
アルミニウム合金板のマトリックスを未再結晶組織と
し、その後、200〜300℃の温度において1×10
-4/秒以上の歪速度および10%以上の引張量で引張
り、前記未再結晶組織を動的に再結晶させて3μm以下
の平均結晶粒径を有するアルミニウム合金板を得ること
を特徴とする高強度高成形性アルミニウム合金板の製造
方法。
1. An aluminum alloy sheet containing Mg: 3.0 to 5.0% (mass%, the same applies hereinafter) and the balance of Al and impurities is cold-rolled at a rolling reduction of 70% or more. The matrix of the aluminum alloy plate is made to have an unrecrystallized structure, and then, at a temperature of 200 to 300 ° C., 1 × 10
An aluminum alloy sheet having an average crystal grain size of 3 μm or less is obtained by dynamically recrystallizing the unrecrystallized structure by pulling at a strain rate of -4 / sec or more and a tensile amount of 10% or more. A method for producing a high-strength, high-formability aluminum alloy sheet.
【請求項2】 前記アルミニウム合金板が、さらに、M
n:0.05〜0.5%、Cr:0.05〜0.2%、
Zr:0.05〜0.2%のうちの1種または2種以上
を含有することを特徴とする請求項1記載の高強度高成
形性アルミニウム合金板の製造方法。
2. The method according to claim 1, wherein the aluminum alloy plate further comprises M
n: 0.05 to 0.5%, Cr: 0.05 to 0.2%,
2. The method for producing a high-strength, high-formability aluminum alloy sheet according to claim 1, wherein one or more of Zr: 0.05 to 0.2% is contained.
【請求項3】 前記アルミニウム合金板が、さらに、T
i:0.001〜0.1%、B:1〜300ppmのう
ちの1種または2種を含有することを特徴とする請求項
1または2記載の高強度高成形性アルミニウム合金板の
製造方法。
3. The method according to claim 2, wherein the aluminum alloy plate further comprises
The method for producing a high-strength and high-formability aluminum alloy sheet according to claim 1 or 2, wherein one or two of i: 0.001 to 0.1% and B: 1 to 300 ppm are contained. .
【請求項4】 請求項1〜3のいずれかに記載の方法に
より製造されたアルミニウム合金板であって、平均結晶
粒径が3μm以下であり、耐力が250MPa以上、伸
びが11%以上であることを特徴とする高強度高成形性
アルミニウム合金板。
4. An aluminum alloy sheet produced by the method according to claim 1, having an average crystal grain size of 3 μm or less, a proof stress of 250 MPa or more, and an elongation of 11% or more. A high-strength, high-formability aluminum alloy sheet characterized by the above-mentioned.
【請求項5】 請求項1〜3のいずれかに記載の方法に
より製造されたアルミニウム合金板であって、平均結晶
粒径が3μm以下であり、耐力が260MPa以上、伸
びが13%以上であることを特徴とする高強度高成形性
アルミニウム合金板。
5. An aluminum alloy sheet produced by the method according to claim 1, having an average crystal grain size of 3 μm or less, a proof stress of 260 MPa or more, and an elongation of 13% or more. A high-strength, high-formability aluminum alloy sheet characterized by the above-mentioned.
JP2000112090A 2000-04-13 2000-04-13 Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method Expired - Fee Related JP3983454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112090A JP3983454B2 (en) 2000-04-13 2000-04-13 Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112090A JP3983454B2 (en) 2000-04-13 2000-04-13 Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method

Publications (2)

Publication Number Publication Date
JP2001295007A true JP2001295007A (en) 2001-10-26
JP3983454B2 JP3983454B2 (en) 2007-09-26

Family

ID=18624315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112090A Expired - Fee Related JP3983454B2 (en) 2000-04-13 2000-04-13 Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method

Country Status (1)

Country Link
JP (1) JP3983454B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270351A (en) * 2006-03-08 2007-10-18 Toyo Aluminium Kk Aluminum foil
JP2008508421A (en) * 2004-07-30 2008-03-21 日本軽金属株式会社 Aluminum alloy plate and manufacturing method thereof
JP2020513063A (en) * 2017-04-05 2020-04-30 ノベリス・インコーポレイテッドNovelis Inc. Anodizing quality 5XXX aluminum alloy having high strength and high formability and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508421A (en) * 2004-07-30 2008-03-21 日本軽金属株式会社 Aluminum alloy plate and manufacturing method thereof
JP4740941B2 (en) * 2004-07-30 2011-08-03 日本軽金属株式会社 Method for producing aluminum alloy plate
KR101057264B1 (en) 2004-07-30 2011-08-16 니폰게이긴조쿠가부시키가이샤 Aluminum alloy sheet and manufacturing method
US8425698B2 (en) 2004-07-30 2013-04-23 Nippon Light Metal Co., Ltd Aluminum alloy sheet and method for manufacturing the same
JP2007270351A (en) * 2006-03-08 2007-10-18 Toyo Aluminium Kk Aluminum foil
JP2020513063A (en) * 2017-04-05 2020-04-30 ノベリス・インコーポレイテッドNovelis Inc. Anodizing quality 5XXX aluminum alloy having high strength and high formability and method for producing the same
JP2022037039A (en) * 2017-04-05 2022-03-08 ノベリス・インコーポレイテッド Anodized quality 5xxx aluminum alloys with high strength and high formability and methods of making the same
US11821061B2 (en) 2017-04-05 2023-11-21 Novelis Inc. Anodized quality 5XXX aluminum alloys with high strength and high formability and methods of making the same

Also Published As

Publication number Publication date
JP3983454B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
EP0097319B1 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
WO2005103313A1 (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
WO2008120237A1 (en) Alloy composition and preparation thereof
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
US5540791A (en) Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP2003027172A (en) Aluminum-alloy sheet for structural purpose having fine structure, and its manufacturing method
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP2003328065A (en) Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JP2001295007A (en) Method for producing high strength and high formability aluminum alloy sheet and aluminum alloy sheet obtained by the same producing method
JP2006037139A (en) 6000 series aluminum alloy sheet for superplastic forming having excellent paint baking hardenability and its production method
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP4164206B2 (en) High-strength, high-formability aluminum alloy sheet with excellent recrystallization grain refinement during high-temperature annealing
EP1141433A2 (en) High strength aluminium alloy sheet and process
JP2004124154A (en) Rolled wire rod of magnesium based alloy, and production method therefor
JP2001234270A (en) Method for producing aluminum alloy sheet having fine crystal grain structure and aluminum alloy sheet obtained by the same producing method
JPH0718389A (en) Production of al-mg series alloy sheet for forming
WO2019021899A1 (en) Aluminum alloy plate and method for producing same
JPH10216806A (en) Method for hot-rolling al-mg base alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees