JP2003027172A - Aluminum-alloy sheet for structural purpose having fine structure, and its manufacturing method - Google Patents

Aluminum-alloy sheet for structural purpose having fine structure, and its manufacturing method

Info

Publication number
JP2003027172A
JP2003027172A JP2001207425A JP2001207425A JP2003027172A JP 2003027172 A JP2003027172 A JP 2003027172A JP 2001207425 A JP2001207425 A JP 2001207425A JP 2001207425 A JP2001207425 A JP 2001207425A JP 2003027172 A JP2003027172 A JP 2003027172A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
aluminum alloy
rolling
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001207425A
Other languages
Japanese (ja)
Other versions
JP4398117B2 (en
Inventor
Hiroki Tanaka
宏樹 田中
Hiroki Ezaki
宏樹 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Sky Aluminium Co Ltd
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Sumitomo Light Metal Industries Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Furukawa Electric Co Ltd
Sky Aluminium Co Ltd
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Furukawa Electric Co Ltd, Sky Aluminium Co Ltd, Kobe Steel Ltd, Nippon Light Metal Co Ltd, Sumitomo Light Metal Industries Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2001207425A priority Critical patent/JP4398117B2/en
Publication of JP2003027172A publication Critical patent/JP2003027172A/en
Application granted granted Critical
Publication of JP4398117B2 publication Critical patent/JP4398117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg alloy sheet for structural purposes having fine structure and capable of attaining high strength without deteriorating formability, and its manufacturing method. SOLUTION: The aluminum-alloy sheet has a composition consisting of 4-7% Mg, 0.4-1.0% Mn, 0.05-0.25% Zr, 0.5-2% Zn and the balance Al with inevitable impurities and further containing Cu. In this aluminum-alloy sheet, average grain size in a final heat treated state is <=7 μm and grain boundaries of 3-10 deg. grain misorientation are contained in amounts of >=25% in a sheet surface. This aluminum-alloy sheet can be manufactured by subjecting an ingot to homogenizing treatment and hot working, carrying out rolling of >=4 passes, after the temperature of the resultant alloy plate after the completion of hot working reaches a value in the neighborhood of room temperature, while controlling mill-roll temperature to >=60 deg.C and holding alloy-sheet temperature at 420-200 deg.C to apply >=70% draft to prescribed sheet thickness, and then applying final heat treatment at 350-420 deg.C for >=30 s.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの車両
用部材、船舶用部材などとして好適な構造用アルミニウ
ム合金板、とくに成形性を低下させることなしに高強度
が得られ、部材の薄肉化を可能とする微細組織を有する
構造用アルミニウム合金板およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural aluminum alloy plate suitable as a member for vehicles such as automobiles, a member for ships, etc., in particular, high strength can be obtained without lowering moldability, and the member can be made thinner. The present invention relates to a structural aluminum alloy plate having a microstructure that enables the above and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、構造用アルミニウム合金は、M
g、Znを主要合金成分として含有し、さらにMn、C
u、Zrなどを組合わせてなるものであり、このアルミ
ニウム合金の板材は、鋳塊を均質化処理後、熱間圧延を
行い、中間熱処理を施しまたは施すことなしに、例えば
加工度20〜60%の冷間圧延を行った後、焼鈍処理と
して350〜480℃の温度で熱処理を行うことにより
製造される。
2. Description of the Related Art Conventionally, a structural aluminum alloy is M
g, Zn as main alloying components, and Mn, C
u, Zr, etc. are combined, and the aluminum alloy sheet material is, for example, worked at a workability of 20 to 60 without being subjected to intermediate heat treatment or hot rolling after homogenizing the ingot. % Cold rolling, and then heat treatment at a temperature of 350 to 480 ° C. as an annealing treatment.

【0003】しかしながら、従来の構造用アルミニウム
合金板の強度には限度があるため、車両用、船舶用など
の輸送機器部材への適用における薄肉化の要求に対して
は自ずから限界があり、ある程度以上の薄肉化は達成で
きないのが現状である。
However, since the strength of the conventional structural aluminum alloy plate is limited, there is a limit to the requirement for thinning in application to transportation equipment members for vehicles, ships, etc. Currently, it is not possible to achieve thinning.

【0004】金属材料の強度向上に関しては、結晶粒径
を細かくするのが望ましいことが知られている。金属材
料の強度と結晶粒径との間にはHall−Petchの
関係が成立ち、結晶粒微細化と強度の向上には正の相関
がある。また、結晶粒微細化による強化法は他の強化法
とは異なり、材料の伸びをあまり損なうことなく強度を
向上させることができることも知られている。従来、結
晶粒を微細化するための方法として、強加工を加えて歪
を蓄積し、その後適当な熱処理を施して再結晶させるこ
とが試みられているが、Al−Mg系などの構造用アル
ミニウム合金にこの方法を適用してもある程度以上の結
晶粒微細化は困難である。
It is known that it is desirable to make the crystal grain size fine in order to improve the strength of the metal material. A Hall-Petch relationship is established between the strength of the metal material and the crystal grain size, and there is a positive correlation between the refinement of the crystal grains and the improvement of the strength. It is also known that the strengthening method by refining crystal grains can improve the strength without significantly impairing the elongation of the material, unlike other strengthening methods. Conventionally, as a method for refining crystal grains, it has been attempted to accumulate strain by applying strong working and then recrystallize by performing an appropriate heat treatment, but structural aluminum such as Al-Mg system is used. Even if this method is applied to an alloy, it is difficult to refine the crystal grains to a certain extent.

【0005】粗大な再結晶粒の発生を抑制して、グレイ
ンストリークやリジングマークの生じない表面性状に優
れたアルミニウム合金板を得るために、熱間粗圧延、熱
間仕上圧延における圧延温度、圧延速度、圧延ロール温
度などを制御する手法(特開2000−119782号
公報)が提案されているが、この手法によって100μ
m以上の粗大粒発生は抑制できるものの、最終板の結晶
粒径としては20〜40μm程度のものしか得られな
い。
In order to suppress the generation of coarse recrystallized grains and obtain an aluminum alloy sheet having excellent surface properties without grain streaks or ridging marks, the rolling temperature in hot rough rolling and hot finish rolling, rolling A method of controlling speed, rolling roll temperature, etc. (Japanese Patent Laid-Open No. 2000-119782) has been proposed.
Although the generation of coarse particles of m or more can be suppressed, only the crystal grain size of the final plate is about 20 to 40 μm.

【0006】5182アルミニウム合金を用いて、47
3K以下の温度で98.3%の強加工を施した材料を4
73Kで焼鈍することにより平均粒径約600nmの超
微細粒組織が形成され、380MPaの引張強さと20
%の伸びが得られることも報告(日本金属学会誌、第6
3巻第2号(1999)243−251頁)されている
が、この場合、結晶粒径1μm以下の超微細粒が材料中
の7〜8割、最高でも9割程度の領域に形成されるのみ
で、残りの領域には超微細粒の形成は無く、また、57
3K以上の温度で焼鈍すると通常の再結晶組織となり、
高延性を安定的に得るための高温処理を行うことができ
ないため実用化には問題が多い。微細組織を有する高強
度高延性の材料を安定して得るためには、比較的高温で
熱処理を施しても粗大粒化しない熱的に安定な微細組織
の形成が必要である。
47 using a 5182 aluminum alloy
Material that has undergone 98.3% strong working at a temperature of 3K or less
By annealing at 73K, an ultra-fine grain structure with an average grain size of about 600 nm is formed, and a tensile strength of 380 MPa and 20
% Growth is also reported (Journal of Japan Institute of Metals, No. 6)
3 No. 2 (1999) pp. 243-251), in this case, ultrafine particles having a crystal grain size of 1 μm or less are formed in 70 to 80% of the material, and at most about 90%. However, there is no formation of ultra-fine grains in the remaining region, and 57
When it is annealed at a temperature of 3K or higher, it becomes a normal recrystallization structure,
There are many problems in practical use because high-temperature treatment for stably obtaining high ductility cannot be performed. In order to stably obtain a high-strength and high-ductility material having a fine structure, it is necessary to form a thermally stable fine structure that does not coarsen even when heat-treated at a relatively high temperature.

【0007】一方、先に、発明者らは、温間圧延におけ
る材料温度と圧延ロール温度を制御するとともに、隣り
合う結晶粒の方位差(ミスオリエンテーション)(注:
隣り合う結晶粒の方位差とは、図1に示すように、結晶
粒Aと結晶粒Bに共通な回転軸に対してどの程度の角度
差(方位差θ)があるかを示すもの)の考え方を導入
し、高強度高耐食性構造用Al−Zn−Mg系合金板お
よびその製造方法(特願2001−039464号)を
提案した。
On the other hand, first, the inventors have controlled the material temperature and the rolling roll temperature in the warm rolling, and at the same time, misorientation of adjacent crystal grains (Note:
As shown in FIG. 1, the orientation difference between adjacent crystal grains indicates how much an angle difference (orientation difference θ) is with respect to the rotation axis common to the crystal grains A and B). The idea was introduced, and an Al-Zn-Mg alloy plate for high strength and high corrosion resistance structure and a method for producing the same (Japanese Patent Application No. 2001-039464) were proposed.

【0008】[0008]

【発明が解決しようとする課題】本発明は、熱的に安定
した微細組織を有するAl−Mg系合金板を得るため
に、発明者らがAl−Zn−Mg系合金について行った
上記の手法についてさらに試験、検討を加えた結果とし
てなされたものであり、その目的は、高温処理を行って
も安定した組織性状をそなえ、延性を損なうことなしに
高強度を達成することを可能とする構造用Al−Mg系
合金板およびその製造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention provides the above-mentioned method for the Al—Zn—Mg based alloys by the inventors in order to obtain an Al—Mg based alloy plate having a thermally stable microstructure. It was made as a result of further tests and examinations regarding the structure, and the purpose thereof is to provide stable structure properties even after high-temperature treatment, and to achieve high strength without impairing ductility. It is intended to provide an Al-Mg alloy plate for use and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による微細組織を有する構造用ア
ルミニウム合金は、Mg:4〜7%、Mn:0.4〜
1.0%、Zr:0.05〜0.25%、Zn:0.5
〜2%を含有し、残部Alおよび不可避的不純物よりな
るアルミニウム合金板であって、最終熱処理状態での平
均結晶粒径が7μm以下で、板面において結晶粒方位差
が3〜10°の結晶粒界を25%以上含むことを特徴と
する。
A structural aluminum alloy having a fine structure according to claim 1 of the present invention for achieving the above object comprises Mg: 4 to 7% and Mn: 0.4 to.
1.0%, Zr: 0.05 to 0.25%, Zn: 0.5
An aluminum alloy plate containing 2% by weight and the balance Al and unavoidable impurities, having an average crystal grain size of 7 μm or less in the final heat treatment state, and a crystal grain orientation difference of 3 to 10 ° on the plate surface. It is characterized by containing 25% or more of grain boundaries.

【0010】請求項2による微細組織を有する構造用ア
ルミニウム合金板は、請求項1において、前記アルミニ
ウム合金板が、さらにCu:0.1〜0.5%を含有す
ることを特徴とする。
A structural aluminum alloy plate having a fine structure according to claim 2 is characterized in that, in claim 1, the aluminum alloy plate further contains Cu: 0.1 to 0.5%.

【0011】また、本発明の請求項3による微細組織を
有する構造用アルミニウム合金板の製造方法は、Mg:
4〜7%、Mn:0.4〜1.0%、Zr:0.05〜
0.25%、Zn:0.5〜2%を含有し、残部Alお
よび不可避的不純物よりなるアルミニウム合金または該
アルミニウム合金にさらにCu:0.1〜0.5%を含
有してなるアルミニウム合金の鋳塊を均質化処理後、熱
間加工を行い、熱間加工終了後の合金板の温度が室温近
傍になった後に中間熱処理を施しまたは中間熱処理を施
すことなく、圧延ロールの温度を60℃以上に制御し且
つ合金板の温度を420〜200℃の温度に保持しなが
ら4パス以上の圧延を行い、70%以上の加工度を与え
て所定の板厚とした後、350〜420℃で30秒以上
の最終熱処理を施すことを特徴とする。
A method of manufacturing a structural aluminum alloy sheet having a microstructure according to claim 3 of the present invention is directed to Mg:
4-7%, Mn: 0.4-1.0%, Zr: 0.05-
Aluminum alloy containing 0.25% and Zn: 0.5 to 2% and the balance Al and unavoidable impurities, or an aluminum alloy further containing Cu: 0.1 to 0.5%. After the homogenizing treatment of the ingot, the hot rolling is performed, and after the temperature of the alloy sheet after the hot working is close to room temperature, the temperature of the rolling roll is set to 60 without performing the intermediate heat treatment or the intermediate heat treatment. After controlling the temperature to ℃ or more and maintaining the temperature of the alloy plate at a temperature of 420 to 200 ° C., rolling is performed for 4 passes or more to give a working ratio of 70% or more to a predetermined plate thickness, and then 350 to 420 ° C. The final heat treatment is performed for 30 seconds or more.

【0012】[0012]

【発明の実施の形態】本発明は、最終的に延性回復のた
めの熱処理を行って使用するAl−Mg系合金板に関す
るものであり、まず、本発明における含有成分の意義お
よび限定理由について説明すると、Mgは、強度を向上
させる主要元素であり、好ましい含有範囲は4〜7%で
ある。4%未満では従来合金並の強度が得られず、また
微細粒化も阻害され、7%を越えて含有されると、熱間
加工性が低下して板材の製造が困難となる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to an Al-Mg based alloy sheet which is finally heat-treated for recovering ductility and used. First, the meanings of the components contained in the present invention and the reasons for limitation are explained. Then, Mg is a main element that improves strength, and the preferable content range is 4 to 7%. If it is less than 4%, strength equivalent to that of conventional alloys cannot be obtained, and fine graining is also hindered. If it is contained in excess of 7%, hot workability is deteriorated and it becomes difficult to manufacture a plate material.

【0013】Mnは、熱的に安定な組織を形成させるよ
う機能する元素である。すなわち、後述する420〜2
00℃での温間圧延において、固溶していたMnが微細
に析出して、加工によって導入された転位の移動を抑制
する作用があり、さらに繰り返し加工することで不動転
位が形成されて結果的に熱的安定な組織となる。Mnの
好ましい含有量は0.4〜1.0%の範囲であり、0.
4%未満では上記の効果が十分でなく、熱的安定な組織
が形成し難い。1.0%を越えると、加工性が劣化して
圧延割れや成形性不良などの問題が生じる。Mnのさら
に好ましい含有範囲は0.5〜0.8%である。
Mn is an element that functions to form a thermally stable structure. That is, 420 to 2 described later
In warm rolling at 00 ° C, the solid solution Mn is finely precipitated, which has the effect of suppressing the movement of dislocations introduced by working, and further, by repeatedly working, the formation of immobile dislocations results. Becomes a thermally stable organization. The preferable content of Mn is in the range of 0.4 to 1.0%, and
If it is less than 4%, the above effect is not sufficient and it is difficult to form a thermally stable structure. If it exceeds 1.0%, the workability deteriorates and problems such as rolling cracks and poor formability occur. The more preferable content range of Mn is 0.5 to 0.8%.

【0014】Zrは、Mnとともに熱的に安定した組織
を形成するために必要な元素であり、ZrもMnと同
様、後述する420〜200℃での温間圧延の際に微細
に析出し、加工によって導入された転位の移動を抑制す
る作用があり、さらに繰り返し加工することで不動転位
が形成されて結果的に熱的安定な組織を形成する。Zr
の好ましい含有範囲は0.05〜0.25%であり、
0.05%未満ではこの効果が小さく、0.25%を越
えても、熱的に安定な組織形成への寄与は変わらず、む
しろ鋳造時にZr系の巨大晶出物が形成し易くなるため
好ましくない。Zrのさらに好ましい含有量は0.10
〜0.20%の範囲である。
Zr is an element necessary for forming a thermally stable structure together with Mn, and like Mn, Zr is finely precipitated during the warm rolling at 420 to 200 ° C., which will be described later, It has the effect of suppressing the movement of dislocations introduced by processing, and by further processing it, immobile dislocations are formed and consequently a thermally stable structure is formed. Zr
The preferable content range of is 0.05 to 0.25%,
If it is less than 0.05%, this effect is small, and if it exceeds 0.25%, the contribution to the formation of a thermally stable structure does not change, and rather, a Zr-based giant crystallized product is easily formed during casting. Not preferable. The more preferable content of Zr is 0.10.
Is in the range of 0.20%.

【0015】Znは、Mn、Zrと同様に熱的に安定な
組織を形成するよう機能する。すなわち、後述する42
0〜200℃での温間加工中にMg−Zn系の化合物を
形成し、加工によって導入された転位の移動を抑制する
作用がある。また、最終熱処理時にも析出して結晶粒成
長を抑制する。Znの好ましい含有量は0.5〜2%の
範囲であり、0.5%未満ではその効果が十分でなく、
2%を越えると、熱間加工性が低下して割れなどの問題
が生じる。
Like Mn and Zr, Zn functions to form a thermally stable structure. That is, 42 described later
It has an action of forming a Mg—Zn-based compound during warm working at 0 to 200 ° C. and suppressing the movement of dislocations introduced by working. Also, it precipitates during the final heat treatment to suppress crystal grain growth. The preferable content of Zn is in the range of 0.5 to 2%, and if it is less than 0.5%, the effect is not sufficient.
If it exceeds 2%, the hot workability deteriorates and problems such as cracking occur.

【0016】Cuは、熱的に安定な微細組織をより確実
に形成するよう機能する。すなわち、後述する420〜
200℃での温間加工中にAl−Cu−Mg系化合物が
微細に析出して、加工によって導入された転位の移動を
補助的に抑制し、また、Znと同様、最終熱処理時にも
析出して結晶粒成長を抑制する。Cuの好ましい含有量
は0.1〜0.5%の範囲であり、0.1%未満ではこ
の効果が小さく、0.5%を越えると熱間加工性が低下
して割れなどの問題が生じる。
Cu functions to more reliably form a thermally stable microstructure. That is, 420 to be described later
Al-Cu-Mg-based compound finely precipitates during warm working at 200 ° C to suppress movement of dislocations introduced by working, and, like Zn, precipitates during final heat treatment. Suppresses grain growth. The preferable content of Cu is in the range of 0.1 to 0.5%, and if it is less than 0.1%, this effect is small, and if it exceeds 0.5%, the hot workability is deteriorated and problems such as cracking occur. Occurs.

【0017】本発明においては、Al−Mg系(500
0系)合金に含有される程度の量のCr、Ti、B、F
e、Siを含有しても本発明の効果に影響することはな
いが、最終板の成形性の観点から各々0.5%以下に制
限するのが好ましい。
In the present invention, the Al--Mg system (500
(0 series) Cr, Ti, B, F in an amount enough to be contained in the alloy
Although containing e and Si does not affect the effect of the present invention, it is preferable to limit the content to 0.5% or less from the viewpoint of the formability of the final plate.

【0018】本発明によるアルミニウム合金板は、平均
結晶粒径が7μm以下、板面において結晶粒方位差(ミ
スオリエンテーション)が3〜10°の小角粒界を全結
晶粒界の25%以上含む組織性状を有することを特徴と
し、この組織性状によって、実用上十分な成形性と高強
度をそなえた微細組織を有するアルミニウム合金板が得
られる。
The aluminum alloy plate according to the present invention has an average grain size of 7 μm or less, and a structure containing small-angle grain boundaries having a grain orientation difference (misorientation) of 3 to 10 ° in the plate surface in an amount of 25% or more of all grain boundaries. The aluminum alloy plate is characterized by having a property, and by virtue of this structure property, an aluminum alloy plate having a fine structure having practically sufficient formability and high strength can be obtained.

【0019】結晶粒方位差が3〜10°の小角粒界を全
結晶粒界の25%以上含み、平均結晶粒径が7μm以下
の微細組織は熱的に安定であり、結晶粒方位差が3〜1
0°の小角粒界を全結晶粒界の25%以上含む組織は平
均結晶粒径を微細にする。平均結晶粒径が7μmを越え
ると、材料強度向上の度合いが小さくなる。
A fine structure containing small-angle grain boundaries having a grain size difference of 3 to 10 ° in an amount of 25% or more of all grain boundaries and having an average grain size of 7 μm or less is thermally stable and has a grain size difference. 3-1
The structure containing 25% or more of the small-angle grain boundaries of 0 ° of all the grain boundaries makes the average grain size fine. When the average crystal grain size exceeds 7 μm, the degree of improvement in material strength decreases.

【0020】結晶粒方位差の測定は、走査型電子顕微鏡
(SEM)とCCDカメラを組合わせた自動測定装置に
より行う。具体的は、試料表面に現れた結晶面に電子線
を入射させて菊池パターンをCCDカメラに取り込み、
コンピュータで結晶面を特定するもので、隣り合う結晶
粒の方位差は、各々の結晶面がわかれば共通の回転軸が
特定でき、回転軸に対する角度差(=方位差=ミスオリ
エンテーション)が判明する。結晶粒方位差の下限3°
は、上記測定装置の分解能、誤差などを考慮して規定し
たものである。
The crystal grain orientation difference is measured by an automatic measuring device which is a combination of a scanning electron microscope (SEM) and a CCD camera. Specifically, an electron beam is incident on the crystal surface that appears on the sample surface, and the Kikuchi pattern is captured by a CCD camera,
The crystal plane is specified by a computer. For the orientation difference between adjacent crystal grains, if the crystal planes are known, the common rotation axis can be identified, and the angle difference (= orientation difference = misorientation) with respect to the rotation axis is found. . Lower limit of crystal grain orientation difference 3 °
Is defined in consideration of the resolution and error of the measuring device.

【0021】以下、平均結晶粒径が7μm以下、板面に
おいて結晶粒方位差(ミスオリエンテーション)が3〜
10°の小角粒界を全結晶粒界の25%以上含む微細組
織を安定して得るアルミニウム合金板の製造方法につい
て説明すると、前記の組成を有するアルミニウム合金
を、例えば、通常のDC鋳造によって造塊し、得られた
鋳塊について常法に従って均質化処理、熱間加工を行
う。
Hereinafter, the average crystal grain size is 7 μm or less, and the crystal grain orientation difference (misorientation) is 3 to 3 on the plate surface.
Explaining a method for producing an aluminum alloy plate that stably obtains a fine structure containing small-angle grain boundaries of 10 ° in an amount of 25% or more of all crystal grain boundaries, an aluminum alloy having the above composition is produced by, for example, ordinary DC casting. The obtained ingot is subjected to a homogenization treatment and hot working according to a conventional method.

【0022】熱間加工終了後の合金板の温度が室温近傍
になった後に中間熱処理を施しまたは中間熱処理を施す
ことなく、圧延ロールの温度を60℃以上に制御し且つ
合金板の温度を420〜200℃、さらに好ましくは4
00〜250℃の温度に保持しながら繰り返し温間圧延
を行う。
After the temperature of the alloy sheet after the hot working is close to room temperature, the temperature of the rolling roll is controlled to 60 ° C. or higher and the temperature of the alloy sheet is controlled to 420 ° C. or less without intermediate heat treatment. ~ 200 ° C, more preferably 4
Repeated warm rolling is performed while maintaining the temperature of 00 to 250 ° C.

【0023】上記の工程により熱的に安定な微細組織が
形成される。圧延ロールの温度が60℃未満では、材料
表面のみに加工が集中して材料内部への均一な加工が施
されず、結果として最終熱処理において結晶粒の粗大化
が生じる。
A thermally stable microstructure is formed by the above steps. When the temperature of the rolling roll is lower than 60 ° C., the processing is concentrated only on the surface of the material and the uniform processing inside the material is not performed, resulting in coarsening of crystal grains in the final heat treatment.

【0024】板材の温度が420℃を越えると、組織の
回復現象が優先的に起こり、不動転位の形成が阻害さ
れ、結果として熱的に安定な微細組織を形成することが
できなくなる。板材の温度が200℃未満では、Mn、
Zrの析出が遅れ、加工によって導入された転位の移動
を抑制する作用が弱まる結果、不動転位の形成が阻害さ
れ、最終熱処理において結晶粒の粗大化が生じる。
When the temperature of the plate material exceeds 420 ° C., the recovery phenomenon of the structure occurs preferentially, the formation of stationary dislocations is hindered, and as a result, a thermally stable fine structure cannot be formed. When the temperature of the plate material is less than 200 ° C., Mn,
The precipitation of Zr is delayed, and the effect of suppressing the movement of dislocations introduced by working is weakened. As a result, the formation of stationary dislocations is hindered, and coarsening of crystal grains occurs in the final heat treatment.

【0025】繰り返し圧延は、4パス以上行うことが好
ましく、パス数が3パス以下では、板厚中心部まで十分
に加工されず、不動転位の形成が阻害される結果、熱的
の安定な微細組織を形成することができないため、最終
熱処理後に中心部に粗大結晶粒が形成されることがあ
る。
Repeated rolling is preferably carried out for 4 passes or more. If the number of passes is 3 passes or less, the central portion of the plate thickness is not sufficiently processed and the formation of stationary dislocations is hindered, resulting in a thermally stable fine grain. Since the structure cannot be formed, coarse crystal grains may be formed in the central portion after the final heat treatment.

【0026】上記温度域での加工度は70%以上とする
のが好ましく、加工度が70%未満では、不動転位の形
成が不十分となり、最終熱処理後に部分的に粗大結晶粒
が混在する組織となり易い。
The workability in the above temperature range is preferably 70% or more. When the workability is less than 70%, the formation of stationary dislocations is insufficient, and a structure in which coarse crystal grains are partially mixed after the final heat treatment. It is easy to become.

【0027】圧延加工後、延性を回復するために、35
0〜420℃の温度で最終熱処理を施す。従来のAl−
Mg系の硬質アルミニウム合金板においては、350℃
程度の温度に加熱すると再結晶が起こり、延性は向上す
るが強度は大幅に低下するが、本発明によるAl−Mg
系合金板材の組織性状は熱的に安定なため、350℃以
上の温度に加熱しても微細組織が維持され、延性が回復
して実用上十分な成形性が得られ、且つ高強度が達成で
きる。420℃を越える温度では、部分的に粗大結晶粒
が生じ易くなり好ましくない。
After rolling, in order to recover ductility, 35
A final heat treatment is applied at a temperature of 0 to 420 ° C. Conventional Al-
350 ° C for Mg-based hard aluminum alloy plate
When heated to a temperature of about 300 ° C., recrystallization occurs and the ductility is improved but the strength is significantly reduced.
Since the microstructure of the alloy-based alloy sheet is thermally stable, the microstructure is maintained even when heated to a temperature of 350 ° C or higher, the ductility is restored, practically sufficient formability is obtained, and high strength is achieved. it can. At a temperature above 420 ° C., coarse crystal grains are liable to be partially generated, which is not preferable.

【0028】[0028]

【実施例】以下、本発明の実施例を比較例と対比して説
明するとともに、それに基づいてその効果を実証する。
なお、これらの実施例は、本発明の好ましい一実施態様
を説明するためのものであって、これにより本発明が制
限されるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples, and the effects thereof will be demonstrated based on the examples.
It should be noted that these examples are for explaining one preferred embodiment of the present invention, and the present invention is not limited thereby.

【0029】実施例1 DC鋳造法により表1に示す組成を有するアルミニウム
合金を造塊し、得られたスラブから厚さ30mmのスラ
イスを調製し、480℃の温度で12hの均質化処理を
行った。なお、表1において、合金A、Bは発明合金、
合金Sは5083標準組成の比較合金である。
Example 1 An aluminum alloy having the composition shown in Table 1 was cast by a DC casting method, a slice having a thickness of 30 mm was prepared from the obtained slab, and a homogenizing treatment was performed at a temperature of 480 ° C. for 12 hours. It was In Table 1, alloys A and B are invention alloys,
Alloy S is a comparative alloy of 5083 standard composition.

【0030】ついで、スライスを480℃に加熱して、
厚さ30mmから8mmまで熱間圧延を行い、材料温度
が室温近傍に低下した後、塩浴炉で450℃で60sの
中間熱処理を施し、その後、表2に示す条件に従って温
間圧延および最終熱処理を行った。圧延は各パス後に再
加熱することにより行い、各パス後の再加熱温度は、圧
延温度域の上限温度とした。
Then, the slices are heated to 480 ° C.,
After hot rolling to a thickness of 30 mm to 8 mm, and after the material temperature has dropped to near room temperature, intermediate heat treatment for 60 s at 450 ° C. is performed in a salt bath furnace, and then warm rolling and final heat treatment according to the conditions shown in Table 2. I went. Rolling was performed by reheating after each pass, and the reheating temperature after each pass was the upper limit temperature of the rolling temperature range.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】最終熱処理後の各試験材について、結晶粒
方位差、平均結晶粒径および引張特性を評価した。評価
結果を表3に示す。なお、結晶粒方位差は、日立製作所
製SEM、Oxford社製EBSD(Electro
n backscatterdiffraction)
装置を用いて行い、結晶粒方位差(ミスオリエンテーシ
ョン)分布を示すヒストグラムから、傾角3〜10°を
示す小角粒界の比率を求めた。
With respect to each test material after the final heat treatment, the crystal grain orientation difference, the average crystal grain size and the tensile property were evaluated. The evaluation results are shown in Table 3. In addition, the crystal grain orientation difference is SEM manufactured by Hitachi, Ltd. and EBSD (Electronic manufactured by Oxford).
n backscatterdiffraction)
Using a device, the ratio of small-angle grain boundaries showing a tilt angle of 3 to 10 ° was determined from a histogram showing a crystal grain orientation difference (misorientation) distribution.

【0034】平均結晶粒径は、光学顕微鏡による偏光組
織写真あるいは透過型電子顕微鏡写真から切片法により
求め、引張特性は、圧延方向に平行に試験片を採取し、
標点間距離を10mmとしてインストロン型引張試験機
を用いて求めた。
The average crystal grain size is obtained by a sectioning method from a polarized structure photograph by an optical microscope or a transmission electron microscope photograph, and tensile properties are obtained by taking a test piece in parallel with the rolling direction.
It was determined using an Instron type tensile tester with the gauge length set to 10 mm.

【0035】[0035]

【表3】 [Table 3]

【0036】表3にみられるように、本発明に従う試験
材No.1〜7はいずれも、小角粒界の比率が高く、平
均結晶粒径が7μm以下の微細組織であり、引張強さが
350MPaを越え、伸び率も15%以上の高強度、高
延性を示した。
As can be seen in Table 3, the test material Nos. Nos. 1 to 7 each have a high proportion of small-angle grain boundaries, a fine structure with an average crystal grain size of 7 μm or less, a tensile strength of more than 350 MPa, and an elongation of 15% or more showing high strength and high ductility. It was

【0037】比較例1 実施例1で得られた表1に示す組成のスラブから厚さ3
0mmのスライスを調製し、480℃の温度で12hの
均質化処理を行った。
Comparative Example 1 From a slab having the composition shown in Table 1 obtained in Example 1, a thickness of 3 was obtained.
0 mm slices were prepared and homogenized at 480 ° C. for 12 h.

【0038】ついで、実施例1と同様、スライスを48
0℃に加熱して、厚さ30mmから8mmまで熱間圧延
を行い、材料温度が室温近傍に低下した後、塩浴炉で4
50℃で60sの中間熱処理を施し、その後、表4に示
す条件に従って温間圧延および最終熱処理を行った。圧
延は各パス後に再加熱することにより行い、各パス後の
再加熱温度は、圧延温度域の上限温度とした。
Then, as in the first embodiment, 48 slices are prepared.
After heating to 0 ° C and hot rolling to a thickness of 30 mm to 8 mm, after the material temperature has dropped to around room temperature, 4 in a salt bath furnace
Intermediate heat treatment was performed at 50 ° C. for 60 s, and then warm rolling and final heat treatment were performed according to the conditions shown in Table 4. Rolling was performed by reheating after each pass, and the reheating temperature after each pass was the upper limit temperature of the rolling temperature range.

【0039】[0039]

【表4】 [Table 4]

【0040】最終熱処理後の各試験材について、実施例
1と同一の方法により、結晶粒方位差、平均結晶粒径お
よび引張特性を評価した。評価結果を表5に示す。
With respect to each test material after the final heat treatment, the crystal grain orientation difference, the average crystal grain diameter and the tensile property were evaluated by the same method as in Example 1. The evaluation results are shown in Table 5.

【0041】[0041]

【表5】 《表注》平均結晶粒径 混粒:一部粗大結晶粒が混在する組織[Table 5] << Table Note >> Average grain size Mixed grain: Microstructure in which some coarse grain is mixed

【0042】表5に示すように、試験材No.8〜9
は、圧延ロールの温度が低いため最終熱処理後の組織が
粗大粒組織となり強度が低いものとなった。試験材N
o.10は、圧延開始温度が高いため回復現象が優先さ
れて微細粒組織が得られず、強度の低いものとなった。
試験材No.11は、圧延温度が低いためMn、Zrの
析出が遅れ、結果として微細粒組織が得られず強度の低
いものとなった。
As shown in Table 5, the test material No. 8-9
Since the temperature of the rolling roll was low, the structure after the final heat treatment became a coarse grain structure and the strength was low. Test material N
o. In No. 10, since the rolling start temperature was high, the recovery phenomenon was prioritized and a fine grain structure could not be obtained, resulting in low strength.
Test material No. In No. 11, since the rolling temperature was low, precipitation of Mn and Zr was delayed, and as a result, a fine grain structure was not obtained and the strength was low.

【0043】試験材No.12は、圧延加工度が70%
未満のため不動転位の形成が十分でなく、粗大粒の混在
する組織形態となり強度の低いものとなった。試験材N
o.13は、最終熱処理温度が高いため、粗大粒の混在
する組織形態となり強度の低いものとなった。試験材N
o.14はパス回数が少ないため、粗大粒の混在する組
織形態となり強度の低いものとなった。試験材No.1
5は、従来の5083合金で、微細結晶組織が得られな
かった。
Test material No. 12, rolling degree is 70%
Therefore, the formation of immobile dislocations was not sufficient, and a coarse morphology was present in the microstructure, resulting in low strength. Test material N
o. Since No. 13 had a high final heat treatment temperature, it had a structure morphology in which coarse grains were mixed and the strength was low. Test material N
o. Since No. 14 had a small number of passes, it had a structure in which coarse grains were mixed and the strength was low. Test material No. 1
No. 5 was a conventional 5083 alloy, and no fine crystal structure was obtained.

【0044】実施例2、比較例2 DC鋳造法により表6に示す組成を有するアルミニウム
合金を造塊し、得られたスラブから厚さ30mmのスラ
イスを調製し、480℃の温度で12hの均質化処理を
行った。
Example 2 and Comparative Example 2 An aluminum alloy having the composition shown in Table 6 was agglomerated by the DC casting method, a slice having a thickness of 30 mm was prepared from the obtained slab, and the slice was homogenized at a temperature of 480 ° C. for 12 hours. The chemical treatment was performed.

【0045】ついで、スライスを480℃に加熱して、
厚さ30mmから8mmまで熱間圧延を行い、材料温度
が室温近傍に低下した後、塩浴炉で450℃で60sの
中間熱処理を施し、その後、表2の試験材No.1と同
一の条件に従って温間圧延および最終熱処理を行って、
最終熱処理後の各試験材について、実施例1と同じ方法
により結晶粒方位差、平均結晶粒径および引張特性を評
価した。評価結果を表7に示す。
Then, the slices are heated to 480 ° C.,
After performing hot rolling from a thickness of 30 mm to 8 mm and lowering the material temperature to near room temperature, an intermediate heat treatment was performed at 450 ° C. for 60 s in a salt bath furnace, and then the test material Nos. Warm rolling and final heat treatment according to the same conditions as 1
With respect to each test material after the final heat treatment, the crystal grain orientation difference, the average crystal grain size and the tensile property were evaluated by the same method as in Example 1. The evaluation results are shown in Table 7.

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【表7】 《表注》試験材No.25:量産規模で作製された5083合金軟質板[Table 7] << Table Note >> Test material No. 25: 5083 alloy soft plate manufactured on a mass production scale

【0048】表7に示すように、本発明に従う試験材N
o.16〜19はいずれも、小角粒界の比率が高く、平
均結晶粒径が7μm以下の微細組織であり、引張強さが
350MPaを越え、伸び率も15%以上の高強度、高
延性を示した。
As shown in Table 7, test material N according to the present invention
o. All of 16 to 19 have a high ratio of small-angle grain boundaries, a fine structure with an average crystal grain size of 7 μm or less, a tensile strength of more than 350 MPa, and an elongation of 15% or more, showing high strength and high ductility. It was

【0049】これに対して、試験材No.20はMg、
Mnの含有量が少なく、試験材No.21、22はZr
の含有量が少なく、また試験材No.23はZr、Zn
の含有量が少なく、いずれも微細粒組織が得られず強度
の低いものとなった。試験材No.24はMnおよびZ
nの含有量が多いため、熱間圧延性が低下して圧延途中
で割れが生じ、それ以降の圧延を行うことができなかっ
た。試験材No.25は従来の5083合金軟質板であ
り、微細結晶組織が得られず強度が低い。
On the other hand, the test material No. 20 is Mg,
The content of Mn is small, and the test material No. 21 and 22 are Zr
Of the test material No. 23 is Zr, Zn
The content was low, and no fine grain structure was obtained in either case, resulting in low strength. Test material No. 24 is Mn and Z
Since the content of n was large, the hot rolling property was deteriorated and cracks were generated during the rolling, so that the rolling thereafter could not be performed. Test material No. No. 25 is a conventional 5083 alloy soft plate, which does not have a fine crystal structure and has low strength.

【0050】[0050]

【発明の効果】本発明によれば、高温処理を行っても安
定した組織性状をそなえ、成形性を低下させることなし
に高強度を達成することができ、自動車などの車両用部
材、船舶用部材などとして好適に使用され、部材の薄肉
化を可能とする微細組織を有する構造用Al−Mg系合
金板およびその製造方法が提供される。
EFFECTS OF THE INVENTION According to the present invention, it is possible to achieve a high strength without deteriorating the moldability by providing a stable texture even when subjected to a high temperature treatment. Provided is a structural Al—Mg alloy plate having a fine structure which is suitably used as a member or the like and enables the member to be thin, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶粒の方位を示す図である。FIG. 1 is a diagram showing the orientation of crystal grains.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 C22F 1/00 630K 631 631A 683 683 691 691B 694 694A 694B (71)出願人 000004743 日本軽金属株式会社 東京都品川区東品川二丁目2番20号 (71)出願人 000005290 古河電気工業株式会社 東京都千代田区丸の内2丁目6番1号 (71)出願人 000176707 三菱アルミニウム株式会社 東京都港区芝2丁目3番3号 (72)発明者 田中 宏樹 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 江崎 宏樹 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 C22F 1/00 630K 631 631A 683 683 691 691B 694 694A 694B (71) Applicant 000004743 Nippon Light Metal Co., Ltd. Company 2-20, Higashi-Shinagawa, Shinagawa-ku, Tokyo (71) Applicant 000005290 Furukawa Electric Co., Ltd. 2-6-1, Marunouchi, Chiyoda-ku, Tokyo (71) Applicant 000176707 Mitsubishi Aluminum Co., Ltd. Shiba, Minato-ku, Tokyo 2-3-3 (72) Inventor Hiroki Tanaka 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries, Ltd. (72) Inventor Hiroki Ezaki 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mg:4〜7%(質量%、以下同じ)、
Mn:0.4〜1.0%、Zr:0.05〜0.25
%、Zn:0.5〜2%を含有し、残部Alおよび不可
避的不純物よりなるアルミニウム合金板であって、最終
熱処理状態での平均結晶粒径が7μm以下で、板面にお
いて結晶粒方位差が3〜10°の結晶粒界を25%以上
含むことを特徴とする微細組織を有する構造用アルミニ
ウム合金板。
1. Mg: 4 to 7% (mass%, the same applies hereinafter),
Mn: 0.4 to 1.0%, Zr: 0.05 to 0.25
%, Zn: 0.5 to 2%, an aluminum alloy plate consisting of the balance Al and unavoidable impurities, having an average crystal grain size of 7 μm or less in the final heat treatment state, and a crystal grain orientation difference on the plate surface. Is a structural aluminum alloy plate having a fine structure characterized by containing 25% or more of crystal grain boundaries of 3 to 10 °.
【請求項2】 前記アルミニウム合金板が、さらにC
u:0.1〜0.5%を含有することを特徴とする請求
項1記載の微細組織を有する構造用アルミニウム合金
板。
2. The aluminum alloy plate further comprises C
u: 0.1-0.5% is contained, The structural aluminum alloy plate which has a microstructure of Claim 1 characterized by the above-mentioned.
【請求項3】 Mg:4〜7%、Mn:0.4〜1.0
%、Zr:0.05〜0.25%、Zn:0.5〜2%
を含有し、残部Alおよび不可避的不純物よりなるアル
ミニウム合金または該アルミニウム合金にさらにCu:
0.1〜0.5%を含有してなるアルミニウム合金の鋳
塊を均質化処理後、熱間加工を行い、熱間加工終了後の
合金板の温度が室温近傍になった後に中間熱処理を施し
または中間熱処理を施すことなく、圧延ロールの温度を
60℃以上に制御し且つ合金板の温度を420〜200
℃の温度に保持しながら4パス以上の圧延を行い、70
%以上の加工度を与えて所定の板厚とした後、350〜
420℃で30秒以上の最終熱処理を施すことを特徴と
する微細組織を有する構造用アルミニウム合金板の製造
方法。
3. Mg: 4 to 7%, Mn: 0.4 to 1.0
%, Zr: 0.05 to 0.25%, Zn: 0.5 to 2%
Containing aluminum and the balance Al and unavoidable impurities, or an aluminum alloy further containing Cu:
After homogenizing an aluminum alloy ingot containing 0.1 to 0.5%, hot working is performed, and an intermediate heat treatment is performed after the temperature of the alloy sheet after the hot working is close to room temperature. The temperature of the rolling roll is controlled to 60 ° C. or higher and the temperature of the alloy sheet is 420 to 200 without performing the heat treatment or the intermediate heat treatment.
Rolling for 4 passes or more while maintaining the temperature of ℃, 70
% To give a predetermined plate thickness and then 350-
A method for producing a structural aluminum alloy plate having a fine structure, which comprises performing a final heat treatment at 420 ° C. for 30 seconds or more.
JP2001207425A 2001-07-09 2001-07-09 Structural aluminum alloy plate having microstructure and method for producing the same Expired - Lifetime JP4398117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207425A JP4398117B2 (en) 2001-07-09 2001-07-09 Structural aluminum alloy plate having microstructure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207425A JP4398117B2 (en) 2001-07-09 2001-07-09 Structural aluminum alloy plate having microstructure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003027172A true JP2003027172A (en) 2003-01-29
JP4398117B2 JP4398117B2 (en) 2010-01-13

Family

ID=19043412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207425A Expired - Lifetime JP4398117B2 (en) 2001-07-09 2001-07-09 Structural aluminum alloy plate having microstructure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4398117B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2006316332A (en) * 2005-05-16 2006-11-24 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability, and method for producing the same
WO2018012481A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
WO2018012482A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
WO2018155531A1 (en) 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
WO2018181505A1 (en) 2017-03-29 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
WO2019188452A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2019188451A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
US10648738B2 (en) 2015-06-24 2020-05-12 Novelis Inc. Fast response heaters and associated control systems used in combination with metal treatment furnaces
WO2020158683A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy, and electroconductive member, battery member, fastener component, spring component, structural component and cabtyre cable using same
WO2020158682A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component, structural component and cabtyre cable each using same
US12129531B2 (en) 2019-01-31 2024-10-29 Furukawa Electric Co., Ltd. Aluminum alloy, and conductive member, battery member, fastening component, spring component, structural component and cabtire cable using same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
JP2006316332A (en) * 2005-05-16 2006-11-24 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability, and method for producing the same
US10648738B2 (en) 2015-06-24 2020-05-12 Novelis Inc. Fast response heaters and associated control systems used in combination with metal treatment furnaces
US11268765B2 (en) 2015-06-24 2022-03-08 Novelis Inc. Fast response heaters and associated control systems used in combination with metal treatment furnaces
WO2018012481A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
WO2018012482A1 (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component and structural component using same
KR20190028373A (en) 2016-07-13 2019-03-18 후루카와 덴끼고교 가부시키가이샤 Aluminum alloy materials and conductive members, battery members, fastening parts, spring parts and structural parts using the same
WO2018155531A1 (en) 2017-02-23 2018-08-30 古河電気工業株式会社 Aluminum alloy material and fastening component, structural component, spring component, conductive member, and battery member using aluminum alloy material
KR20190121292A (en) 2017-02-23 2019-10-25 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and fastening parts, structural parts, spring parts, conductive members and battery members using the same
KR20190133151A (en) 2017-03-29 2019-12-02 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and conductive member, battery member, fastening part, spring part and structural part using it
WO2018181505A1 (en) 2017-03-29 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
US10808299B2 (en) 2017-03-29 2020-10-20 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening component, spring component, and structural component including the aluminum alloy material
WO2019188451A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2019188452A1 (en) 2018-03-27 2019-10-03 古河電気工業株式会社 Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
US11306373B2 (en) 2018-03-27 2022-04-19 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
KR20200130236A (en) 2018-03-27 2020-11-18 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy materials and conductive members using the same, battery members, fastening parts, spring parts and structural parts
KR20200130237A (en) 2018-03-27 2020-11-18 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy materials and conductive members using the same, battery members, fastening parts, spring parts and structural parts
US11236410B2 (en) 2018-03-27 2022-02-01 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening part, spring part, and structural part using aluminum alloy material
WO2020158683A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy, and electroconductive member, battery member, fastener component, spring component, structural component and cabtyre cable using same
KR20210078495A (en) 2019-01-31 2021-06-28 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and conductive members using the same, battery members, fastening parts, spring parts, structural parts, cabtire cables
KR20210077694A (en) 2019-01-31 2021-06-25 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and conductive members using the same, battery members, fastening parts, spring parts, structural parts, cabtire cables
WO2020158682A1 (en) 2019-01-31 2020-08-06 古河電気工業株式会社 Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component, structural component and cabtyre cable each using same
US12116654B2 (en) 2019-01-31 2024-10-15 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening component, spring component, structural component and cabtire cable each using same
US12129531B2 (en) 2019-01-31 2024-10-29 Furukawa Electric Co., Ltd. Aluminum alloy, and conductive member, battery member, fastening component, spring component, structural component and cabtire cable using same

Also Published As

Publication number Publication date
JP4398117B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
EP0097319B1 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP5343333B2 (en) Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2020182506A1 (en) Method of manufacturing a 5xxx-series sheet product
JP4398117B2 (en) Structural aluminum alloy plate having microstructure and method for producing the same
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP4712159B2 (en) Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
JP2004231985A (en) High strength copper alloy with excellent bendability
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
WO2000034544A2 (en) High strength aluminium alloy sheet and process
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JP3557953B2 (en) Aluminum alloy sheet for precision machining and method of manufacturing the same
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term