JP2001292762A - Method for producing high enzyme-producing bacterium microbial cell in high-density culture - Google Patents

Method for producing high enzyme-producing bacterium microbial cell in high-density culture

Info

Publication number
JP2001292762A
JP2001292762A JP2000107825A JP2000107825A JP2001292762A JP 2001292762 A JP2001292762 A JP 2001292762A JP 2000107825 A JP2000107825 A JP 2000107825A JP 2000107825 A JP2000107825 A JP 2000107825A JP 2001292762 A JP2001292762 A JP 2001292762A
Authority
JP
Japan
Prior art keywords
culture
enzyme
producing
microorganism
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000107825A
Other languages
Japanese (ja)
Inventor
Takeshi Watabe
健 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2000107825A priority Critical patent/JP2001292762A/en
Publication of JP2001292762A publication Critical patent/JP2001292762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high enzyme-producing bacterium microbial cell, capable of culturing a bacterium in a high density, not reducing a produced enzyme activity at the latter term of the culture. SOLUTION: A high enzyme-producing bacterium microbial cell controlling reduction in enzyme activity at the latter term of culture is produced by carrying out a high-density culture of successively adding a bacterium to a medium, etc., after completion of the growth of bacterium, changing a culture solution to a hypotonic solution by a diafiltration using a microfiltration membrane or an ultrafiltration membrane and continuing the culture afterwards. A bacterium belonging the genus Arthrobacter, capable of producing nitrilase can be exemplified as the bacterium. Water or an aqueous solution containing an enzyme-inducing substance can be exemplified as the hypotonic solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、培養後期での酵素
活性の低下を抑制することができる酵素高発現微生物菌
体の製造法、より詳しくは、微生物の高密度培養におい
て、種々のニトリルを加水分解して対応する有機酸を製
造する触媒として有用であるニトリラーゼ等の酵素を高
発現するばかりでなく、酵素活性の低下が抑制された微
生物菌体を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing microbial cells expressing high enzymes capable of suppressing a decrease in enzyme activity at the latter stage of culture, and more particularly, to a method for producing various nitriles in a high-density culture of microorganisms. The present invention relates to a method for producing a microbial cell which not only highly expresses an enzyme such as nitrilase which is useful as a catalyst for producing a corresponding organic acid by hydrolysis, but also suppresses a decrease in enzyme activity.

【0002】[0002]

【従来の技術】従来、ニトリラーゼ産生能を有する微生
物としては、例えば、カゼオバクター(Caseobacter)
属、シュードモナス(Pseudomonas)属、アルカリゲネ
ス(Alcaligenes)属、コリネバクテリウム(Corynebac
terium)属、ブレビバクテリウム(Brevibacterium)
属、ノカルジア(Nocardia)属、ロドコッカス(Rhodoc
occus)属、アースロバクター(Arthrobacter)属、ゴ
ルドナ(Gordona)属、バチルス(Bacillus)属、バク
テリジウム(Bacteridium)属、ミクロコッカス(Micro
coccus)属、アシネトバクター(Acinetobacter)属等
に属する微生物が知られている(特公昭63−2596
号公報、特開平3−251192号公報、特開平4−4
0898号公報、特開平8−173152号公報、特開
平8−173175号公報、国際公開WO96−094
03号公報、国際公開97−32030号公報参照)。
2. Description of the Related Art Conventionally, microorganisms having nitrilase producing ability include, for example, Caseobacter.
Genus, Pseudomonas genus, Alcaligenes genus, Corynebacterium
terium), Brevibacterium
Genus, Nocardia, Rhodoccus
occus, Arthrobacter, Gordona, Bacillus, Bacteridium, Micrococcus
Microorganisms belonging to the genus Coccus, the genus Acinetobacter, etc. are known (JP-B-63-2596).
JP, JP-A-3-251192, JP-A-4-4
0898, JP-A-8-173152, JP-A-8-173175, International Publication WO96-094
No. 03, WO 97-3230).

【0003】しかし、ニトリラーゼ産生能を有する微生
物におけるニトリラーゼ活性は一般に低く、そのニトリ
ラーゼ活性を高めるために、上記特公昭63−2596
号公報、特開平3−251192号公報、特開平8−1
73152号公報等に記載されているように、イソブチ
ロニトリル、エチレンシアンヒドリンなどのニトリル化
合物やラクタム化合物をニトリラーゼ誘導物質として添
加して微生物の培養を行う方法が提案されている。これ
らニトリラーゼ誘導物質の添加によりニトリラーゼの活
性発現にかなりの改善が見られるものの、実用的見地か
らは未だ不十分であった。
[0003] However, microorganisms having nitrilase-producing ability generally have low nitrilase activity.
JP, JP-A-3-251192, JP-A-8-1
As described in 73152 and the like, a method of culturing a microorganism by adding a nitrile compound such as isobutyronitrile and ethylene cyanohydrin or a lactam compound as a nitrilase-inducing substance has been proposed. Although the addition of these nitrilase-inducing substances significantly improved the expression of nitrilase activity, they were still insufficient from a practical standpoint.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、ニトリ
ラーゼ産生能を有する微生物を高密度培養し、対数増殖
期が終了した後、炭素源を添加してさらに熟成培養する
ニトリラーゼ高発現微生物菌体の製造法を開発している
(特開平11−341979号公報)。この方法は、ニ
トリラーゼの活性の高発現という点については優れてい
るものの、一度発現したニトリラーゼ活性が培養後期に
低下するという現象が見受けられ、この活性低下を抑制
する方法の開発が望まれていた。すなわち、本発明の課
題は、微生物を高密度培養し、発現した酵素活性が培養
後期でも低下しない、酵素高発現微生物菌体の製造法を
提供することにある。
DISCLOSURE OF THE INVENTION The present inventors have developed a high nitrilase-expressing microbial bacterium in which a microorganism having a nitrilase-producing ability is cultured at a high density, and after a logarithmic growth phase is completed, a carbon source is added and the culture is further matured. A body manufacturing method has been developed (JP-A-11-341979). Although this method is excellent in terms of high expression of nitrilase activity, it has been observed that the nitrilase activity once expressed decreases in the latter stage of culture, and it has been desired to develop a method for suppressing this decrease in activity. . That is, an object of the present invention is to provide a method for producing a high-enzyme-expressing microbial cell in which a microorganism is cultured at high density and the expressed enzyme activity does not decrease even in the latter stage of the culture.

【0005】[0005]

【課題を解決するための手段】本発明者らは、微生物を
高密度培養し、微生物の生育が終了した後、培養液を低
張液に交換することによって、培養後期での酵素活性の
低下が抑制された微生物菌体が得られることを見い出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors cultured the microorganisms at high density, and after the growth of the microorganisms was completed, exchanged the culture solution with a hypotonic solution to reduce the enzyme activity in the latter stage of the culture. The present inventors have found that microbial cells with reduced S. can be obtained, and have completed the present invention.

【0006】すなわち本発明は、微生物の高密度培養に
おいて、微生物の生育が終了した後、培養液を低張液に
交換することを特徴とする培養後期での酵素活性の低下
が抑制された酵素高発現微生物菌体の製造法(請求項
1)や、精密濾過膜又は限外濾過膜を使用するダイアフ
ィルトレーションによって、培養液を低張液に交換する
ことを特徴とする請求項1記載の培養後期での酵素活性
の低下が抑制された酵素高発現微生物菌体の製造法(請
求項2)や、低張液が、水又は酵素誘導物質含有水溶液
であることを特徴とする請求項1又は2記載の培養後期
での酵素活性の低下が抑制された酵素高発現微生物菌体
の製造法(請求項3)や、酵素高発現微生物菌体が、ニ
トリラーゼ高発現微生物菌体であることを特徴とする請
求項1〜3のいずれか記載の培養後期での酵素活性の低
下が抑制された酵素高発現微生物菌体の製造法(請求項
4)や、微生物が、アースロバクター(Arthrobacter)
属に属する微生物であることを特徴とする請求項1〜4
のいずれか記載の培養後期での酵素活性の低下が抑制さ
れた酵素高発現微生物菌体の製造法(請求項5)や、ア
ースロバクター(Arthrobacter)属に属する微生物が、
アースロバクター(Arthrobacter)sp.NSSC10
4株であることを特徴とする請求項5記載の培養後期で
の酵素活性の低下が抑制された酵素高発現微生物菌体の
製造法(請求項6)に関する。
[0006] That is, the present invention provides an enzyme in which a decrease in enzyme activity in the late stage of culture is suppressed in a high-density culture of microorganisms, wherein the culture solution is replaced with a hypotonic solution after the growth of the microorganism is completed. The method according to claim 1, wherein the culture solution is exchanged for a hypotonic solution by a method for producing high-expressing microbial cells (claim 1) or diafiltration using a microfiltration membrane or an ultrafiltration membrane. The method for producing a microbial cell with high enzyme expression in which the decrease in enzyme activity in the late stage of culturing is suppressed (Claim 2), and the hypotonic solution is water or an aqueous solution containing an enzyme inducer. 3. The method for producing a high-enzyme-expressing microbial cell in which a decrease in enzyme activity at the latter stage of culture according to 1 or 2 is suppressed (claim 3), and the high-enzyme-expressing microbial cell is a nitrilase-high-expressing microbial cell. Any of claims 1 to 3, Enzyme high expression microbial cell manufacturing method decreases the enzyme activity was inhibited in culture late described (claim 4) or, microorganisms, Arthrobacter (Arthrobacter)
5. A microorganism belonging to the genus.
The method for producing an enzyme-overexpressing microbial cell in which a decrease in enzyme activity at the latter stage of culture according to any one of (1) to (5) is described, and a microorganism belonging to the genus Arthrobacter,
Arthrobacter sp. NSSC10
4. The method according to claim 5, wherein the bacterial strain is a high-enzyme-expressing microbial cell in which a decrease in enzyme activity at the latter stage of culture is suppressed.

【0007】[0007]

【発明の実施の形態】本発明において使用することがで
きる微生物としては特に制限されるものではないが、例
えば、ニトリラーゼ産生能を有する微生物を具体的に例
示することができる。種々のニトリルを加水分解して対
応する有機酸を生成させることができる、かかるニトリ
ラーゼ産生能を有する微生物としては、カゼオバクター
属、シュードモナス属、アルカリゲネス属、コリネバク
テリウム属、ブレビバクテリウム属、ノカルジア属、ロ
ドコッカス属、アースロバクター属、ゴルドナ属、バチ
ルス属、バクテリジウム属、ミクロコッカス属、アシネ
トバクター属等に属する公知のニトリラーゼ産生微生物
の他、遺伝子操作により得られるニトリラーゼ産生能を
有する微生物を例示することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The microorganism that can be used in the present invention is not particularly limited, but a specific example is a microorganism having nitrilase-producing ability. Examples of such a nitrilase-producing microorganism capable of hydrolyzing various nitriles to produce the corresponding organic acid include Caseobacter, Pseudomonas, Alcaligenes, Corynebacterium, Brevibacterium, Nocardia. , Rhodococcus, Arthrobacter, Gordona, Bacillus, Bacterium, Micrococcus, Acinetobacter, and other known nitrilase-producing microorganisms. be able to.

【0008】上記ニトリラーゼ産生能を有する微生物の
中でも、アースロバクター属の微生物、特にアースロバ
クター(Arthrobacter)sp.NSSC104株[FE
RMBP−5829]、アースロバクター(Arthrobact
er)sp.HR4株[FERM P−11302]等を
好適に例示することができる。これらのうち、アースロ
バクターsp.NSSC104株は、本出願人らによっ
て見い出されたものであり、その菌学的性質は、国際公
開WO97−32030号公報に詳しく記載されてい
る。
[0008] Among the above microorganisms having nitrilase-producing ability, microorganisms of the genus Arthrobacter, in particular, Arthrobacter sp. NSSC104 strain [FE
RMBP-5829], Arthrobact
er) sp. HR4 strain [FERM P-11302] can be preferably exemplified. Of these, Arthrobacter sp. The NSSC104 strain has been found by the present applicants, and its bacteriological properties are described in detail in WO 97-3230.

【0009】本発明において、微生物の高密度培養と
は、液体培地中の微生物細胞密度が高い条件下での培養
をいい、微生物の高密度培養としては、培地成分の一括
仕込みの培養では通常達成することができず、培地成分
を間欠的に又は連続して逐次添加する流加培養等により
達成することができる細胞密度の培養を好適に例示する
ことができる。その他、高密度培養以外の培養条件は、
当該微生物の培養に適した条件を用いることができる。
例えばニトリラーゼ産生能を有する微生物の培養は、一
般に、通気攪拌による好気的条件下で、pH6〜10、
温度25〜37℃の適当な範囲に制御して行うことがで
きる。
In the present invention, high-density culturing of microorganisms means culturing under a condition in which the cell density of microorganisms in a liquid medium is high. High-density culturing of microorganisms is usually achieved by culturing in a batch of medium components. Cell culture at a cell density that cannot be performed and can be achieved by fed-batch culture in which a medium component is added intermittently or continuously sequentially can be suitably exemplified. Other culture conditions other than high-density culture
Conditions suitable for culturing the microorganism can be used.
For example, culture of a microorganism having nitrilase-producing ability is generally carried out under aerobic conditions with aeration and stirring at pH 6 to 10,
The temperature can be controlled in an appropriate range of 25 to 37 ° C.

【0010】微生物の培養に使用される培地としては、
使用する微生物が生育しうるものであれば天然培地、合
成培地のいずれであってもよく、該微生物が資化しうる
炭素源、窒素源、無機塩類等を含有するものであれば特
に制限されるものではないが、酵素誘導物質を含有する
ものが好ましい。例えば、ニトリラーゼ産生能を有する
微生物の場合の酵素誘導物質としては、イソブチロニト
リル、エチレンシアンヒドリン等のニトリル化合物、ε
−カプロラクタム等の環状アミド化合物などを例示する
ことができる。
[0010] As a medium used for culturing microorganisms,
Any of a natural medium and a synthetic medium may be used as long as the microorganism to be used can grow, and it is particularly limited as long as the microorganism contains a carbon source, a nitrogen source, inorganic salts, and the like which can be used by the microorganism. Although not particularly preferred, those containing an enzyme inducer are preferred. For example, in the case of a microorganism having a nitrilase-producing ability, examples of the enzyme inducer include nitrile compounds such as isobutyronitrile and ethylene cyanohydrin, and ε.
And cyclic amide compounds such as caprolactam.

【0011】また、上記微生物が資化しうる炭素源とし
ては、グルコース、フルクトース、スクロース、マルト
ース又はこれらを含有する糖蜜等の糖類、デンプン又は
デンプン加水分解物等の炭水化物、酢酸、乳酸等の有機
酸、エタノール、グリセリン、プロパノール等のアルコ
ール類などを単独又は混合して用いることができ、窒素
源としては、アミン類、アミノ酸類、硝酸塩類、アンモ
ニア、各種無機酸や有機酸のアンモニウム塩、その他含
窒素化合物、並びにペプトン、トリプトン、肉エキス、
酵母エキス、コーンスチープリカー、カゼイン加水分解
物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びそ
の消化物等を単独又は混合して用いることができ、無機
塩類としては、リン酸水素二カリウム、リン酸二水素カ
リウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一
鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を単独又
は混合して用いることができる。
Examples of carbon sources that can be assimilated by the microorganism include sugars such as glucose, fructose, sucrose, maltose and molasses containing them, carbohydrates such as starch and hydrolyzed starch, and organic acids such as acetic acid and lactic acid. And alcohols such as ethanol, glycerin and propanol, etc. can be used alone or in combination. Nitrogen sources include amines, amino acids, nitrates, ammonia, ammonium salts of various inorganic acids and organic acids, and others. Nitrogen compounds, peptone, tryptone, meat extract,
Yeast extract, corn steep liquor, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and their digestions, etc. can be used alone or in combination. Potassium, potassium dihydrogen phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used alone or in combination.

【0012】本発明において、微生物の生育の終了と
は、培地成分の添加の終了後、培養液中の微生物が利用
可能な成分が欠乏し、微生物の生育が実質的に終了した
状態をいい、かかる微生物の生育の終了は、例えば糖の
濃度を測定し、糖成分の培地中からの消失により、ある
いは培地中の溶存酸素濃度を測定し、溶存酸素濃度の上
昇を検知することにより知ることができる。
In the present invention, terminating the growth of microorganisms refers to a state in which, after the addition of the medium components is completed, the components available for the microorganisms in the culture solution are deficient, and the growth of the microorganisms has been substantially terminated. The termination of the growth of such a microorganism can be known, for example, by measuring the concentration of sugar and disappearing the sugar component from the medium, or by measuring the dissolved oxygen concentration in the medium and detecting an increase in the dissolved oxygen concentration. it can.

【0013】本発明において、低張液とは、水、又は培
養液よりも浸透圧が低い水溶液を意味し、水溶液として
は、ニトリラーゼ酵素誘導物質等の酵素誘導物質、塩化
ナトリウム、塩化カリウム等の塩などの水溶液を例示す
ることができる。かかる低張液による培養液との交換
は、微生物の生育が終了した後、例えば精密濾過(M
F)膜又は限外濾過(UF)膜を使用するダイアフィル
トレーションによって実施することができる。培養液と
低張液との交換液量は、使用した培地の濃度によっても
変化しうるが、通常、培養液量の0.5〜2倍程度を好
適に例示することができる。そして、ダイアフィルトレ
ーション後も、同様の培養条件で微生物を培養すること
により、本発明の培養後期での酵素活性の低下が抑制さ
れた酵素高発現微生物菌体を製造することができる。
[0013] In the present invention, the hypotonic solution means water or an aqueous solution having an osmotic pressure lower than that of a culture solution. Examples of the aqueous solution include an enzyme inducer such as a nitrilase enzyme inducer and sodium chloride and potassium chloride. An aqueous solution such as a salt can be exemplified. The exchange of the culture solution with the hypotonic solution is performed, for example, by microfiltration (M
F) It can be performed by diafiltration using a membrane or an ultrafiltration (UF) membrane. The amount of the exchange solution between the culture solution and the hypotonic solution can vary depending on the concentration of the medium used, but usually, a suitable example is about 0.5 to 2 times the amount of the culture solution. Then, after diafiltration, by culturing the microorganism under the same culture conditions, it is possible to produce the enzyme-overexpressing microbial cells of the present invention in which the decrease in the enzyme activity in the latter stage of the culture is suppressed.

【0014】[0014]

【実施例】以下、実施例により詳細に説明するが、本発
明はこれらの実施例により限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0015】実施例におけるニトリラーゼ活性の測定は
次のようにして行った。培養液をサンプリングし、遠心
によって得た菌体を100mMリン酸カリウムバッファ
ー(pH7.5)に懸濁した。この懸濁液の500μl
をエッペンチューブに取り、35℃で5分間プレインキ
ュベーションした。これに10μlの2−ヒドロキシ−
4−メチルチオブチロニトリルを加えて攪拌し、35℃
で30分間反応させた。反応後直ちに遠心分離によって
菌体を除き、上清を高速液体クロマトグラフィーにか
け、生成した2−ヒドロキシ−4−メチルチオブタン酸
を定量した。1分間に1μmolの2−ヒドロキシ−4
−メチルチオブタン酸を生成する菌体量を1Uとした。
The measurement of nitrilase activity in the examples was performed as follows. The culture was sampled, and the cells obtained by centrifugation were suspended in a 100 mM potassium phosphate buffer (pH 7.5). 500 μl of this suspension
Was placed in an Eppendorf tube and pre-incubated at 35 ° C. for 5 minutes. 10 μl of 2-hydroxy-
Add 4-methylthiobutyronitrile, stir, and add
For 30 minutes. Immediately after the reaction, the cells were removed by centrifugation, and the supernatant was subjected to high performance liquid chromatography to quantify the produced 2-hydroxy-4-methylthiobutanoic acid. 1 μmol of 2-hydroxy-4 per minute
-The amount of cells producing methylthiobutanoic acid was 1 U.

【0016】また、実施例において用いたCSL(コー
ンスチープリカー)抽出液は、次のようにして調製し
た。400gのCSLを水で希釈し、10N水酸化ナト
リウムでpH7.0に調整し、水で1.0Lにメスアッ
プした。これを遠心にかけ、不溶物を除き、上清を得
た。この上清を濾過滅菌し、培養に用いた。
The CSL (corn steep liquor) extract used in the examples was prepared as follows. 400 g of CSL was diluted with water, adjusted to pH 7.0 with 10 N sodium hydroxide, and made up to 1.0 L with water. This was centrifuged to remove insolubles, and a supernatant was obtained. The supernatant was sterilized by filtration and used for culture.

【0017】実施例1 10L容のジャーファーメンターに2.85Lの初期培
地(150mlのCSL抽出液、62mlの20%[W/
V]カザミノ酸、24mlの50%[W/V]グルコース、
75mlの20%[W/V]ε−カプロラクタム、及び
2.54Lの水からなる)を用意し、これにアースロバ
クターsp.NSSC104株を植菌し、33℃で通気
攪拌培養した。培養液中のグルコース濃度を産業計測専
用小型グルコース計Gluco Jr.(株式会社バイオット)
によって測定し、グルコース濃度が0.1〜0.2%に
なるように、2.19Lの追加培地(1.35LのCS
L抽出液、553mlの20%[W/V]カザミノ酸、2
16mlの50%[W/V]グルコース、及び75mlの
20%[W/V]ε−カプロラクタムからなる)、続いて
960mlの50%[W/V]グルコースを流加した。
Example 1 In a 10 L jar fermenter, 2.85 L of an initial medium (150 ml of CSL extract, 62 ml of 20% [W /
V] casamino acid, 24 ml of 50% [W / V] glucose,
75 ml of 20% [W / V] ε-caprolactam and 2.54 L of water), and to this, Arthrobacter sp. NSSC104 strain was inoculated and cultured at 33 ° C. with aeration and stirring. Gluco Jr. (Biot Co., Ltd.), a small glucose meter dedicated to industrial measurement of glucose concentration in culture solution
2.19 L of supplemented medium (1.35 L of CS) so that the glucose concentration is 0.1-0.2%.
L extract, 553 ml of 20% [W / V] casamino acid, 2
16 ml of 50% [W / V] glucose and 75 ml of 20% [W / V] ε-caprolactam), followed by 960 ml of 50% [W / V] glucose.

【0018】培養開始から2日間が経過した時点で、培
養を継続しながら、培養液をチューブポンプによってMi
niKrosホローファイバーモジュール(孔径0.05μ
m、膜面積3,900cm2、東洋紡エンジニアリング
株式会社)に循環させ、3.0L(培養液量の0.5
倍)の濾液を除きながら、同量の水を補充した。その
後、さらに4日間培養を継続した。ニトリラーゼ活性
は、培養5日目で最大に達し、10.0U/ml培養液
であった。培養6日目でも、ニトリラーゼ活性は9.1
1U/ml培養液であった。
At the time when two days have passed since the start of the culture, the culture solution was pumped by a tube pump while continuing the culture.
niKros hollow fiber module (0.05μ pore size)
m, membrane area of 3,900 cm 2 , Toyobo Engineering Co., Ltd.) and 3.0 L (0.5 of culture volume)
The same amount of water was replenished while removing the filtrate of (2). Thereafter, the culture was continued for another 4 days. The nitrilase activity reached a maximum on the 5th day of the culture and was 10.0 U / ml culture. Even on the sixth day of culture, the nitrilase activity was 9.1.
It was a 1 U / ml culture.

【0019】比較例1 10L容のジャーファーメンターに2.85Lの初期培
地(実施例1と同じ)を用意し、これにアースロバクタ
ーsp.NSSC104株を植菌し、33℃で通気攪拌
培養した。培養液中のグルコース濃度をGluco Jr.によ
って測定し、それが0.1〜0.2%になるように、
2.19Lの追加培地(実施例1と同じ)、続いて96
0mlの50%[W/V]グルコースを流加した。培養を
6日間継続した結果、ニトリラーゼ活性は、培養4日目
で最大に達し、8.97U/ml培養液であり、実施例
1で得られた活性の約90%であった。また、ニトリラ
ーゼ活性は、培養6日目には5.66U/ml培養液ま
で低下した。
COMPARATIVE EXAMPLE 1 2.85 L of an initial medium (same as in Example 1) was prepared in a 10 L jar fermenter. NSSC104 strain was inoculated and cultured at 33 ° C. with aeration and stirring. The glucose concentration in the culture was measured by Gluco Jr.
2.19 L of supplemented medium (as in Example 1) followed by 96
0 ml of 50% [W / V] glucose was fed. As a result of continuing the culture for 6 days, the nitrilase activity reached the maximum on the fourth day of the culture, and was 8.97 U / ml culture solution, which was about 90% of the activity obtained in Example 1. The nitrilase activity was reduced to 5.66 U / ml on the sixth day of culture.

【0020】実施例2 10L容のジャーファーメンターに2.85Lの初期培
地(実施例1と同じ)を用意し、これにアースロバクタ
ーsp.NSSC104株を植菌し、33℃で通気攪拌
培養した。培養液中のグルコース濃度をGluco Jr.によ
って測定し、それが0.1〜0.2%になるように、
2.19Lの追加培地(実施例1と同じ)、続いて96
0mlの50%[W/V]グルコースを流加した。培養開
始から2日間が経過した時点で、培養を継続しながら、
培養液をチューブポンプによってMiniKrosホローファイ
バーモジュール(実施例1と同じ)に循環させ、6.0
L(培養液量の1倍)の濾液を除きながら、同量の0.
5%[W/V]ε−カプロラクタム水溶液を補充した。そ
の後、さらに5日間培養を継続した。ニトリラーゼ活性
は培養6日目で最大に達し、11.5U/ml培養液で
あった。培養7日目でも、ニトリラーゼ活性は11.0
U/ml培養液であった。
Example 2 In a 10-L jar fermenter, 2.85 L of an initial medium (same as in Example 1) was prepared, and this was added to Arthrobacter sp. NSSC104 strain was inoculated and cultured at 33 ° C. with aeration and stirring. The glucose concentration in the culture was measured by Gluco Jr.
2.19 L of supplemented medium (as in Example 1) followed by 96
0 ml of 50% [W / V] glucose was fed. At the time when two days have passed since the start of the culture, while continuing the culture,
The culture was circulated through a MiniKros hollow fiber module (same as in Example 1) by a tube pump and 6.0
L (1 time of the amount of culture solution) while removing the filtrate.
A 5% [W / V] ε-caprolactam aqueous solution was supplemented. Thereafter, the culture was continued for another 5 days. The nitrilase activity reached a maximum on day 6 of the culture and was 11.5 U / ml culture. Even on the seventh day of the culture, the nitrilase activity was 11.0.
U / ml culture.

【0021】実施例3 10L容のジャーファーメンターに2.85Lの初期培
地(実施例1と同じ)を用意し、これにアースロバクタ
ーsp.NSSC104株を植菌し、33℃で通気攪拌
培養した。培養液中のグルコース濃度をGluco Jr.によ
って測定し、それが0.1〜0.2%になるように、
2.19Lの追加培地(実施例1と同じ)、続いて96
0mlの50%[W/V]グルコースを流加した。培養開
始から2日間が経過した時点で、培養を継続しながら、
培養液をチューブポンプによってMiniKrosホローファイ
バーモジュール(実施例1と同じ)に循環させ、3.0
L(培養液量の0.5倍)の濾液を除きながら、同量の
0.5%[W/V]ε−カプロラクタム水溶液を補充し
た。その後、さらに5日間培養を継続した。ニトリラー
ゼ活性は、培養5日目で最大に達し、10.7U/ml
培養液であった。培養7日目には、ニトリラーゼ活性は
7.91U/ml培養液であった。
Example 3 In a 10 L jar fermenter, 2.85 L of an initial culture medium (same as in Example 1) was prepared, and this was added to an Earthobacter sp. NSSC104 strain was inoculated and cultured at 33 ° C. with aeration and stirring. The glucose concentration in the culture was measured by Gluco Jr.
2.19 L of supplemented medium (as in Example 1) followed by 96
0 ml of 50% [W / V] glucose was fed. At the time when two days have passed since the start of the culture, while continuing the culture,
The culture was circulated through a MiniKros hollow fiber module (same as in Example 1) by a tube pump, and 3.0
The same amount of 0.5% [W / V] ε-caprolactam aqueous solution was replenished while removing the filtrate of L (0.5 times the amount of the culture solution). Thereafter, the culture was continued for another 5 days. The nitrilase activity reached a maximum on the 5th day of culture and reached 10.7 U / ml.
It was a culture solution. On day 7 of the culture, the nitrilase activity was 7.91 U / ml culture.

【0022】実施例4 10L容のジャーファーメンターに1.86Lの初期培
地(150mlのCSL抽出液、12mlの50%[W/
V]グルコース、50mlの20%[W/V]ε−カプロラ
クタム、及び1.65Lの水からなる)を用意し、これ
にアースロバクターsp.NSSC104株を植菌し、
33℃で通気攪拌培養した。培養液中のグルコース濃度
をGluco Jr.によって測定し、それが0.1〜0.2%
になるように、3.18Lの追加培地(2.85LのC
SL抽出液、228mlの50%[W/V]グルコース、
及び100mlの20%[W/V]ε−カプロラクタムか
らなる)、続いて960mlの50%[W/V]グルコー
スを流加した。
Example 4 1.86 L of an initial medium (150 ml of CSL extract, 12 ml of 50% [W /
V] glucose, 50 ml of 20% [W / V] ε-caprolactam, and 1.65 L of water). Inoculate NSSC104 strain,
The cells were cultured at 33 ° C. with aeration and stirring. The glucose concentration in the culture was measured by Gluco Jr.
3.18 L of additional medium (2.85 L of C
SL extract, 228 ml of 50% [W / V] glucose,
And 100 ml of 20% [W / V] ε-caprolactam), followed by 960 ml of 50% [W / V] glucose.

【0023】培養開始から2日間が経過した時点で、培
養を継続しながら、培養液をチューブポンプによってMi
niKrosホローファイバーモジュール(実施例1と同じ)
に循環させ、6.0L(培養液量の1倍)の濾液を除き
ながら、同量の0.5%[W/V]ε−カプロラクタム水
溶液を補充した。その後、さらに4日間培養を継続し
た。ニトリラーゼ活性は、培養5日目で最大に達し、
9.42U/ml培養液であった。培養6日目でも、ニ
トリラーゼ活性は8.42U/ml培養液であった。
At the time when two days have passed since the start of the culture, the culture solution was supplied by a tube pump while continuing the culture.
niKros hollow fiber module (same as Example 1)
And the same amount of 0.5% [W / V] ε-caprolactam aqueous solution was replenished while removing 6.0 L (1 time of the amount of the culture solution) of the filtrate. Thereafter, the culture was continued for another 4 days. Nitrilase activity reached a maximum on day 5 of culture,
It was a 9.42 U / ml culture solution. Even on the sixth day of culture, the nitrilase activity was 8.42 U / ml culture.

【0024】比較例2 10L容のジャーファーメンターに1.86Lの初期培
地(実施例4と同じ)を用意し、これにアースロバクタ
ーsp.NSSC104株を植菌し、33℃で通気攪拌
培養した。培養液中のグルコース濃度をGluco Jr.によ
って測定し、それが0.1〜0.2%になるように、
3.18Lの追加培地(実施例3と同じ)、続いて96
0mlの50%[W/V]グルコースを流加した。培養を
6日間継続した結果、ニトリラーゼ活性は、培養4日目
で最大に達し、8.67U/ml培養液であり、実施例
3で得られた活性の約92%であった。培養6日目に
は、ニトリラーゼ活性は6.36U/ml培養液まで低
下した。
Comparative Example 2 1.86 L of an initial medium (same as in Example 4) was prepared in a 10-L jar fermenter, and this was added to Arthrobacter sp. NSSC104 strain was inoculated and cultured at 33 ° C. with aeration and stirring. The glucose concentration in the culture was measured by Gluco Jr.
3.18 L of supplemented medium (as in Example 3), followed by 96
0 ml of 50% [W / V] glucose was fed. As a result of continuing the culture for 6 days, the nitrilase activity reached the maximum on the fourth day of the culture, and was 8.67 U / ml culture solution, which was about 92% of the activity obtained in Example 3. On the sixth day of culture, nitrilase activity decreased to 6.36 U / ml culture.

【0025】[0025]

【発明の効果】本発明によると、高密度培養の培養後期
での酵素活性の低下が抑制されるとともに、酵素高発現
微生物菌体が得られる。
According to the present invention, a decrease in the enzyme activity at the latter stage of the high-density culture can be suppressed, and a microorganism cell overexpressing the enzyme can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微生物の高密度培養において、微生物の
生育が終了した後、培養液を低張液に交換することを特
徴とする培養後期での酵素活性の低下が抑制された酵素
高発現微生物菌体の製造法。
In a high-density culture of microorganisms, a culture solution is replaced with a hypotonic solution after the growth of the microorganisms is completed. A method for producing cells.
【請求項2】 精密濾過膜又は限外濾過膜を使用するダ
イアフィルトレーションによって、培養液を低張液に交
換することを特徴とする請求項1記載の培養後期での酵
素活性の低下が抑制された酵素高発現微生物菌体の製造
法。
2. The method according to claim 1, wherein the culture solution is exchanged for a hypotonic solution by diafiltration using a microfiltration membrane or an ultrafiltration membrane. A method for producing a suppressed bacterial cell with high expression of an enzyme.
【請求項3】 低張液が、水又は酵素誘導物質含有水溶
液であることを特徴とする請求項1又は2記載の培養後
期での酵素活性の低下が抑制された酵素高発現微生物菌
体の製造法。
3. The microorganism according to claim 1, wherein the hypotonic solution is water or an aqueous solution containing an enzyme-inducing substance. Manufacturing method.
【請求項4】 酵素高発現微生物菌体が、ニトリラーゼ
高発現微生物菌体であることを特徴とする請求項1〜3
のいずれか記載の培養後期での酵素活性の低下が抑制さ
れた酵素高発現微生物菌体の製造法。
4. The microorganism cell overexpressing an enzyme is a microorganism cell overexpressing nitrilase.
4. The method for producing a microorganism according to any one of the above, wherein a decrease in enzyme activity in the latter stage of the culture is suppressed.
【請求項5】 微生物が、アースロバクター(Arthroba
cter)属に属する微生物であることを特徴とする請求項
1〜4のいずれか記載の培養後期での酵素活性の低下が
抑制された酵素高発現微生物菌体の製造法。
5. The method according to claim 5, wherein the microorganism is Arthrobacter.
5. The method according to claim 1, wherein the microorganism is a microorganism belonging to the genus cter).
【請求項6】 アースロバクター(Arthrobacter)属に
属する微生物が、アースロバクター(Arthrobacter)s
p.NSSC104株であることを特徴とする請求項5
記載の培養後期での酵素活性の低下が抑制された酵素高
発現微生物菌体の製造法。
6. The microorganism belonging to the genus Arthrobacter, wherein the microorganism belonging to the genus Arthrobacter is Arthrobacter s.
p. 6. The strain is NSSC104 strain.
A method for producing an enzyme-overexpressing microbial cell in which a decrease in enzyme activity in the latter stage of the culture is suppressed.
JP2000107825A 2000-04-10 2000-04-10 Method for producing high enzyme-producing bacterium microbial cell in high-density culture Pending JP2001292762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107825A JP2001292762A (en) 2000-04-10 2000-04-10 Method for producing high enzyme-producing bacterium microbial cell in high-density culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107825A JP2001292762A (en) 2000-04-10 2000-04-10 Method for producing high enzyme-producing bacterium microbial cell in high-density culture

Publications (1)

Publication Number Publication Date
JP2001292762A true JP2001292762A (en) 2001-10-23

Family

ID=18620768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107825A Pending JP2001292762A (en) 2000-04-10 2000-04-10 Method for producing high enzyme-producing bacterium microbial cell in high-density culture

Country Status (1)

Country Link
JP (1) JP2001292762A (en)

Similar Documents

Publication Publication Date Title
FI87579C (en) FRAMEWORK FOR MICRO-ORGANISMS
RU2053300C1 (en) Strain of bacterium rhodococcus rhodochrous - a producer of nitrile hydratase
EP0773297B1 (en) Process for producing alpha-hydroxy acid or alpha-hydroxyamide by microorganism
EP0109083B1 (en) Method for cultivation of pseudomonas bacteria
US5179014A (en) Process for the preparation of amides using microorganisms
CA1337718C (en) Method of producing acid urease and the use of the urease
Tsugawa et al. Production of l-Glutamic Acid from dl-Hydantoin-5-propionic Acid by Microoganisms: Part I. Screening of l-Glutamic Acid-Producing Microorganisms and Some Optimal Conditions for Production of l-Glutamic Acid
US4584273A (en) Method for the production of phenylalanine ammonia-lyase by fermentation
JPS62289A (en) Enzymatic production of l-alpha-amino acid from alpha-ketoic acid
JP2001292762A (en) Method for producing high enzyme-producing bacterium microbial cell in high-density culture
Kulla et al. Energy-dependent inactivation of citrate lyase in Enterobacter aerogenes
US5258305A (en) Manufacture of optically active 2-phenylpropionic acid and 2-phenylpropionamide from the nitrile using Rhodococcus equi
JPH11341979A (en) Production of bacterial cell body having high nitrilase productivity
EP0844308A2 (en) Method for producing L-glutamic acid by continuous fermentation
JP4841162B2 (en) Microbial culture method
EP0215414B1 (en) Process for producing l-phenylalanine
JP2003159091A (en) Method for producing lactic acid
JP2899071B2 (en) Method for producing L-α-alanine
JP4269416B2 (en) Process for producing α-halo-α, β-saturated carbonyl compound
JP3437879B2 (en) Bacterial culture method
JPS6117475B2 (en)
JP2000125891A (en) Production of alpha-hydroxy acid ammonium salt using microbial catalyst
JPH0449997B2 (en)
WO1990000613A1 (en) Process for preparing optically active 2-hydroxy-4-phenyl-3-butenoic acid
JPH05284989A (en) Production of bacterium cellulose