JP2001289505A - Hot-water heater and hot-water supplier - Google Patents

Hot-water heater and hot-water supplier

Info

Publication number
JP2001289505A
JP2001289505A JP2000102756A JP2000102756A JP2001289505A JP 2001289505 A JP2001289505 A JP 2001289505A JP 2000102756 A JP2000102756 A JP 2000102756A JP 2000102756 A JP2000102756 A JP 2000102756A JP 2001289505 A JP2001289505 A JP 2001289505A
Authority
JP
Japan
Prior art keywords
hot water
heat
heat exchanger
circuit
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000102756A
Other languages
Japanese (ja)
Inventor
Toshio Fukuoka
稔夫 福岡
Kazuyoshi Irisawa
一義 入沢
Hatsuo Yajima
初男 矢島
Hidemitsu Imai
英充 今井
Kenji Irino
賢志 入野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Electric Appliances Co Ltd
Original Assignee
Toshiba Electric Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electric Appliances Co Ltd filed Critical Toshiba Electric Appliances Co Ltd
Priority to JP2000102756A priority Critical patent/JP2001289505A/en
Publication of JP2001289505A publication Critical patent/JP2001289505A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot-water supplier which is reduced in running cost by making the heating time until the hot water in a bathtub 25 is heated to a prescribed temperature shorter even when the efficiency of heat collecting operation is low. SOLUTION: The hot-water supplier 11 is provided with a refrigerant circulating circuit 41 which circulates a refrigerant and a bathtub water circulating circuit 37 which circulates the hot water in the bathtub 25. The circuit 41 is provided with a heat collection operating circuit 48 constituted by successively connecting a compressor 42, a heat exchanger 39, and a heat collector 44 to each other and a refrigerant heating operating circuit 50 constituted by successively connecting the compressor 42, heat exchanger 39, and a heater 45 to each other. The bathtub hot water circulating circuit 37 is constituted by successively connecting the circulating port 36 of the bathtub 25, a circulating pump 38, and the heat exchanger 39 to each other and circulates the hot water. The supplier 11 discriminates the efficiency of heat collecting operation in accordance with the outside air temperature and the temperature of the hot water and, when the efficiency is high, switches the operation circuit to the circuit 48. When the efficiency is low, the supplier 11 switches the operation circuit to the circuit 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浴槽内の湯水を昇
温させる湯沸装置、および、冷媒循環回路の冷媒と貯湯
タンク内の湯水との熱交換によって貯湯タンク内の湯水
を昇温させる給湯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater for raising the temperature of hot water in a bathtub, and to raise the temperature of hot water in a hot water storage tank by exchanging heat between the refrigerant in a refrigerant circuit and the hot water in the hot water storage tank. The present invention relates to a water heater.

【0002】[0002]

【従来の技術】従来、例えば、特開平11−72269
号公報に記載されているように、圧縮機、熱交換器およ
び集熱器が順次接続されて冷媒が循環される冷媒循環回
路(ヒートポンプ回路)と、貯湯タンク、循環ポンプお
よび熱交換器が順次接続されて湯水が循環される貯湯湯
水循環回路とを備えており、熱交換器での冷媒循環回路
の冷媒と貯湯タンク内の湯水との熱交換によって貯湯タ
ンク内の湯水を昇温させるようにしたヒートポンプ方式
の給湯装置がある。
2. Description of the Related Art Conventionally, for example, Japanese Unexamined Patent Application Publication No.
As described in the publication, a refrigerant circulation circuit (heat pump circuit) in which a compressor, a heat exchanger, and a heat collector are sequentially connected to circulate a refrigerant, and a hot water storage tank, a circulation pump, and a heat exchanger are sequentially arranged. A hot-water storage circuit that is connected and circulates the hot-water, so that the temperature of the hot-water in the hot-water storage tank is raised by heat exchange between the refrigerant in the refrigerant circulation circuit in the heat exchanger and the hot-water in the hot water storage tank. There is a heat pump type hot water supply device.

【0003】そして、ヒートポンプ方式による集熱運転
では、循環ポンプの駆動により貯湯タンク内の湯水が熱
交換器との間で循環され、また、圧縮機の駆動により冷
媒循環回路内の冷媒が熱交換器と集熱器との間で循環さ
れ、冷媒が熱交換器に送られて液化され、液化した冷媒
が集熱器で気化され、再び熱交換器に送られるサイクル
を繰り返すことにより、熱交換器を介して冷媒循環回路
の冷媒と貯湯タンク内の湯水とが熱交換されて、貯湯タ
ンク内の湯水が昇温される。
[0003] In the heat collecting operation by the heat pump system, the water in the hot water storage tank is circulated between the heat exchanger and the heat exchanger by driving the circulation pump, and the refrigerant in the refrigerant circulation circuit is heat exchanged by driving the compressor. Circulating between the heat collector and the heat exchanger, the refrigerant is sent to the heat exchanger and liquefied, and the liquefied refrigerant is vaporized in the heat collector and then sent to the heat exchanger again to repeat the heat exchange. Heat exchange between the refrigerant in the refrigerant circuit and the hot water in the hot water storage tank is performed through the heat exchanger, and the temperature of the hot water in the hot water storage tank is raised.

【0004】また、特開平11−72269号公報に記
載されている給湯装置では、貯湯湯水循環回路に加え
て、浴槽に設置される循環口、浴槽用循環ポンプおよび
熱交換器が順次接続されて浴槽内の湯水循環される浴槽
湯水循環回路を備え、熱交換器での冷媒循環回路の冷媒
と浴槽内の湯水との熱交換によって浴槽内の湯水を昇温
させるようにしている。
In the hot water supply apparatus described in Japanese Patent Application Laid-Open No. H11-72269, a circulation port installed in a bathtub, a circulation pump for the bathtub, and a heat exchanger are sequentially connected in addition to a hot water circulation circuit. A bath water circulation circuit for circulating water in the bath is provided, and the temperature of the water in the bath is raised by heat exchange between the refrigerant in the refrigerant circuit and the water in the bath in the heat exchanger.

【0005】[0005]

【発明が解決しようとする課題】ところで、ヒートポン
プ方式の給湯装置では、外気温度が高く、貯湯タンク内
の湯温が低いほど、集熱運転効率(集熱熱量/使用熱量
=COP)が高くなる傾向にあるが、外気温度が例えば
氷点下に低下したり、貯湯タンク内の湯温が例えば50
℃以上に上昇すると、集熱運転効率が低くなる傾向にあ
る。
By the way, in the heat pump type hot water supply apparatus, the higher the outside air temperature and the lower the hot water temperature in the hot water storage tank, the higher the heat collection operation efficiency (heat collection heat amount / use heat amount = COP). Although there is a tendency, the outside air temperature drops below the freezing point, for example, or the hot water temperature in the hot water storage tank becomes 50
When the temperature rises above ℃, the heat collecting operation efficiency tends to decrease.

【0006】そのため、従来のヒートポンプ方式の給湯
装置では、浴槽内の湯水や貯湯タンク内の湯水を所定温
度まで沸き上げるためには、外気温度が低下したり、浴
槽内の湯温や貯湯タンク内の湯温が上昇して集熱運転効
率が低下した状況下でも集熱運転を実行しなければなら
ず、所定温度まで沸き上げる沸上時間が長くかかり、ラ
ンニングコストが増加する問題がある。
Therefore, in the conventional heat pump type hot water supply apparatus, in order to boil the hot water in the bathtub or the hot water in the hot water storage tank to a predetermined temperature, the outside air temperature decreases, the hot water temperature in the bathtub or the hot water storage tank increases. The heat collecting operation must be performed even in a situation where the temperature of the hot water rises and the heat collecting operation efficiency is reduced, so that it takes a long time to heat up to a predetermined temperature and the running cost increases.

【0007】本発明は、このような点に鑑みなされたも
ので、集熱運転効率が低い状況下でも浴槽内の湯水を所
定温度まで沸き上げる沸上時間を短くできるとともにラ
ンニングコストを低減できる湯沸装置、および、集熱運
転効率が低い状況下でも浴槽内の湯水や貯湯タンク内の
湯水を所定温度まで沸き上げる沸上時間を短くできると
ともにランニングコストを低減できる給湯装置を提供す
ることを目的とする。
[0007] The present invention has been made in view of the above-mentioned points, and it is possible to shorten the boiling time for boiling water in a bath tub to a predetermined temperature and reduce running costs even in a situation where the heat collecting operation efficiency is low. An object of the present invention is to provide a boiling device and a hot water supply device capable of shortening a boiling time for boiling hot water in a bathtub or hot water in a hot water storage tank to a predetermined temperature even under low heat collecting operation efficiency and reducing running costs. And

【0008】[0008]

【課題を解決するための手段】請求項1記載の湯沸装置
は、圧縮機、熱交換器、集熱器および加熱器を有すると
ともに、これら圧縮機、熱交換器および集熱器が順次接
続されて構成される集熱運転回路と、圧縮機、熱交換器
および加熱器が順次接続されて構成される冷媒加熱運転
回路とのいずれかに切り換える切換手段を有し、これら
集熱運転回路および冷媒加熱運転回路に冷媒が循環され
る冷媒循環回路と、浴槽に設置される循環口および循環
ポンプを有し、これら循環口、循環ポンプおよび前記熱
交換器が順次接続されて浴槽内の湯水が循環される浴槽
湯水循環回路とを具備しているものである。
According to a first aspect of the present invention, there is provided a water heater having a compressor, a heat exchanger, a heat collector, and a heater, and the compressor, the heat exchanger, and the heat collector are sequentially connected. And a switching means for switching between a heat collection operation circuit configured and a refrigerant heating operation circuit configured by sequentially connecting a compressor, a heat exchanger, and a heater. It has a refrigerant circulation circuit in which the refrigerant is circulated in the refrigerant heating operation circuit, a circulation port and a circulation pump installed in the bathtub, and these circulation ports, the circulation pump and the heat exchanger are sequentially connected, and hot water in the bathtub is And a circulating bath water circulation circuit.

【0009】そして、浴槽湯水循環回路との間で熱交換
する冷媒循環回路に、圧縮機、熱交換器および集熱器が
順次接続されて構成される集熱運転回路と、圧縮機、熱
交換器および加熱器が順次接続されて構成される冷媒加
熱運転回路とを備え、これら集熱運転回路と冷媒加熱運
転回路とを切換手段で切り換えるように構成しているこ
とで、例えば、集熱運転効率が高い場合には集熱運転回
路による集熱運転を実行し、集熱運転効率が低い場合に
は冷媒加熱運転回路による加熱運転を実行することによ
り、集熱運転効率が低い状況下でも浴槽内の湯水を所定
温度まで沸き上げる沸上時間が短くなるとともにランニ
ングコストが低減される。
[0009] A compressor, a heat exchanger and a heat collector are sequentially connected to a refrigerant circuit for exchanging heat with the bathtub hot and cold water circuit. And a refrigerant heating operation circuit configured by sequentially connecting a heater and a heater, and the heat collection operation circuit and the refrigerant heating operation circuit are configured to be switched by the switching unit. If the efficiency is high, the heat collection operation is performed by the heat collection operation circuit.If the efficiency of the heat collection operation is low, the heating operation is performed by the refrigerant heating operation circuit. The boiling time for boiling the hot water inside to a predetermined temperature is shortened and the running cost is reduced.

【0010】請求項2記載の給湯装置は、圧縮機、第1
の熱交換器、第2の熱交換器、集熱器および加熱器を有
するとともに、これら圧縮機、第1の熱交換器および集
熱器が順次接続されて構成される第1の集熱運転回路
と、圧縮機、第2の熱交換器および集熱器が順次接続さ
れて構成される第2の集熱運転回路と、圧縮機、第1の
熱交換器および加熱器が順次接続されて構成される第1
の冷媒加熱運転回路と、圧縮機、第2の熱交換器および
加熱器が順次接続されて構成される第2の冷媒加熱運転
回路とのいずれかに切り換える切換手段を有し、これら
各集熱運転回路および各冷媒加熱運転回路に冷媒が循環
される冷媒循環回路と、貯湯タンクおよび第1の循環ポ
ンプを有し、これら貯湯タンク、第1の循環ポンプおよ
び前記第1の熱交換器が順次接続されて貯湯タンク内の
湯水が循環される貯湯湯水循環回路と、浴槽に設置され
る循環口および第2の循環ポンプを有し、これら循環
口、第2の循環ポンプおよび前記第2の熱交換器が順次
接続されて浴槽内の湯水が循環される浴槽湯水循環回路
とを具備しているものである。
[0010] The hot water supply apparatus according to claim 2 is a compressor,
A first heat collecting operation comprising a heat exchanger, a second heat exchanger, a heat collector and a heater, and the compressor, the first heat exchanger and the heat collector being sequentially connected. A circuit, a second heat collecting operation circuit configured by sequentially connecting the compressor, the second heat exchanger and the heat collector, and a compressor, the first heat exchanger and the heater sequentially connected to each other. First composed
And a second refrigerant heating operation circuit configured to sequentially connect a compressor, a second heat exchanger, and a heater. An operation circuit and a refrigerant circulation circuit in which refrigerant is circulated through each refrigerant heating operation circuit, a hot water storage tank and a first circulation pump, and the hot water storage tank, the first circulation pump and the first heat exchanger are sequentially arranged. A hot water circulation circuit for connecting and circulating the hot water in the hot water storage tank, a circulation port and a second circulation pump installed in the bathtub, the circulation port, the second circulation pump, and the second heat pump; A bathtub hot water circulation circuit in which exchangers are sequentially connected to circulate hot water in the bathtub.

【0011】そして、冷媒循環回路に、圧縮機、第1の
熱交換器および集熱器が順次接続されて構成される第1
の集熱運転回路と、圧縮機、第2の熱交換器および集熱
器が順次接続されて構成される第2の集熱運転回路と、
圧縮機、第1の熱交換器および加熱器が順次接続されて
構成される第1の冷媒加熱運転回路と、圧縮機、第2の
熱交換器および加熱器が順次接続されて構成される第2
の冷媒加熱運転回路とを備え、これら各運転回路を切換
手段で切り換えるように構成し、第1の熱交換器を介し
て貯湯湯水循環回路との間で熱交換するとともに、第2
の熱交換器を介して浴槽湯水循環回路との間で熱交換す
ることで、例えば、集熱運転効率が高い場合には集熱運
転回路による集熱運転を実行し、集熱運転効率が低い場
合には冷媒加熱運転回路による加熱運転を実行すること
により、集熱運転効率が低い状況下でも浴槽内の湯水や
貯湯タンク内の湯水を所定温度まで沸き上げる沸上時間
が短くなるとともにランニングコストが低減される。
[0011] A first circuit configured by sequentially connecting a compressor, a first heat exchanger and a heat collector to the refrigerant circuit is provided.
A second heat collecting operation circuit configured by sequentially connecting the compressor, the second heat exchanger and the heat collector,
A first refrigerant heating operation circuit configured by sequentially connecting the compressor, the first heat exchanger and the heater, and a first refrigerant heating operation circuit configured by sequentially connecting the compressor, the second heat exchanger and the heater. 2
And a refrigerant heating operation circuit. The operation circuit is configured to be switched by a switching means, and heat is exchanged with the hot and cold water circulation circuit via the first heat exchanger.
By exchanging heat with the bathtub hot water circulation circuit through the heat exchanger, for example, when the heat collection operation efficiency is high, the heat collection operation by the heat collection operation circuit is performed, and the heat collection operation efficiency is low. In this case, by performing the heating operation by the refrigerant heating operation circuit, even when the heat collection operation efficiency is low, the boiling time for boiling the hot water in the bathtub or the hot water in the hot water storage tank to a predetermined temperature is shortened and the running cost is reduced. Is reduced.

【0012】請求項3記載の給湯装置は、圧縮機、第1
の熱交換器、第2の熱交換器、集熱器および加熱器を有
するとともに、これら圧縮機、第1の熱交換器、第2の
熱交換器および集熱器が順次接続されて構成される共通
集熱運転回路と、圧縮機、第1の熱交換器、第2の熱交
換器および加熱器が順次接続されて構成される共通冷媒
加熱運転回路とのいずれかに切り換える切換手段を有
し、これら共通集熱運転回路および共通冷媒加熱運転回
路に冷媒が循環される冷媒循環回路と、貯湯タンクおよ
び第1の循環ポンプを有し、これら貯湯タンク、第1の
循環ポンプおよび前記第1の熱交換器が順次接続されて
貯湯タンク内の湯水が循環される貯湯湯水循環回路と、
浴槽に設置される循環口および第2の循環ポンプを有
し、これら循環口、第2の循環ポンプおよび前記第2の
熱交換器が順次接続されて浴槽内の湯水が循環される浴
槽湯水循環回路とを具備しているものである。
A hot water supply apparatus according to a third aspect of the present invention includes a compressor,
, A second heat exchanger, a heat collector, and a heater, and the compressor, the first heat exchanger, the second heat exchanger, and the heat collector are sequentially connected. Switching means for switching between a common heat collecting operation circuit and a common refrigerant heating operation circuit in which a compressor, a first heat exchanger, a second heat exchanger and a heater are sequentially connected. A refrigerant circulation circuit in which refrigerant is circulated through the common heat collecting operation circuit and the common refrigerant heating operation circuit; a hot water storage tank and a first circulation pump; and the hot water storage tank, the first circulation pump and the first circulation pump. Hot water circulation circuit in which the heat exchangers are sequentially connected to circulate the hot water in the hot water storage tank;
A bathtub circulation system in which a circulation port and a second circulation pump installed in the bathtub are connected, and the circulation port, the second circulation pump, and the second heat exchanger are sequentially connected to circulate the water in the bathtub. And a circuit.

【0013】そして、冷媒循環回路に、圧縮機、第1の
熱交換器、第2の熱交換器および集熱器が順次接続され
て構成される共通集熱運転回路と、圧縮機、第1の熱交
換器、第2の熱交換器および加熱器が順次接続されて構
成される共通冷媒加熱運転回路とを備え、これら共通集
熱運転回路と共通冷媒加熱運転回路とを切換手段で切り
換えるように構成し、第1の熱交換器を介して貯湯湯水
循環回路との間で熱交換するとともに、第2の熱交換器
を介して浴槽湯水循環回路との間で熱交換することで、
例えば、集熱運転効率が高い場合には集熱運転回路によ
る集熱運転を実行し、集熱運転効率が低い場合には冷媒
加熱運転回路による加熱運転を実行することにより、集
熱運転効率が低い状況下でも浴槽内の湯水や貯湯タンク
内の湯水を所定温度まで沸き上げる沸上時間が短くなる
とともにランニングコストが低減される。
The compressor, the first heat exchanger, the second heat exchanger, and the heat collector are sequentially connected to the refrigerant circuit. And a common refrigerant heating operation circuit configured by sequentially connecting the heat exchanger, the second heat exchanger and the heater, and switching between the common heat collection operation circuit and the common refrigerant heating operation circuit by switching means. By exchanging heat with the hot water circulation circuit via the first heat exchanger and heat exchange with the bath water circulation circuit via the second heat exchanger,
For example, when the heat collection operation efficiency is high, the heat collection operation is performed by the heat collection operation circuit, and when the heat collection operation efficiency is low, the heat collection operation is performed by the refrigerant heating operation circuit. Even in a low condition, the boiling time for boiling the hot water in the bathtub or the hot water in the hot water storage tank to a predetermined temperature is shortened, and the running cost is reduced.

【0014】請求項4記載の給湯装置は、請求項2また
は3記載の給湯装置において、集熱器は、熱交換器に対
して並列に接続される蒸発器およびソーラ集熱器を有し
ているものである。
According to a fourth aspect of the present invention, in the hot water supply apparatus according to the second or third aspect, the heat collector has an evaporator and a solar heat collector connected in parallel to the heat exchanger. Is what it is.

【0015】そして、集熱器としてソーラ集熱器を使用
することにより、ランニングコストが低減される。
[0015] By using a solar heat collector as the heat collector, the running cost is reduced.

【0016】請求項5記載の給湯装置は、請求項2ない
し4いずれか記載の給湯装置において、集熱運転回路に
よる集熱運転効率が所定条件より高いか低いか判断する
集熱運転効率判断手段と、この集熱運転効率判断手段で
集熱運転効率が所定条件より高いと判断されるときは集
熱運転回路による集熱運転を実行させ、所定条件より低
いと判断されるときは冷媒加熱運転回路による冷媒加熱
運転を実行させる制御手段とを備えているものである。
According to a fifth aspect of the present invention, in the hot water supply apparatus according to any one of the second to fourth aspects, the heat collection operation efficiency determining means determines whether the heat collection operation efficiency of the heat collection operation circuit is higher or lower than a predetermined condition. When the heat collection operation efficiency determining means determines that the heat collection operation efficiency is higher than the predetermined condition, the heat collection operation is performed by the heat collection operation circuit, and when the heat collection operation efficiency is determined to be lower than the predetermined condition, the refrigerant heating operation is performed. And control means for executing a refrigerant heating operation by a circuit.

【0017】そして、集熱運転効率判断手段により集熱
運転回路による集熱運転効率が所定条件より高いか低い
か判断することで、制御手段により、集熱運転効率が所
定条件より高いと判断されるときは集熱運転回路による
集熱運転を、所定条件より低いと判断されるときは冷媒
加熱運転回路による冷媒加熱運転を自動的に実行させる
ことが可能となる。
Then, the heat collecting operation efficiency judging means judges whether the heat collecting operation efficiency by the heat collecting operation circuit is higher or lower than a predetermined condition, and the control means judges that the heat collecting operation efficiency is higher than the predetermined condition. In this case, it is possible to automatically execute the heat collection operation by the heat collection operation circuit, and to automatically execute the refrigerant heating operation by the refrigerant heating operation circuit when it is determined that the temperature is lower than the predetermined condition.

【0018】請求項6記載の給湯装置は、請求項5記載
の給湯装置において、外気温度を検知する外気温度検知
手段と、沸き上げる湯水の温度を検知する湯温検知手段
とを備え、集熱運転効率判断手段は、外気温度検知手段
で検知される外気温度と湯温検知手段で検知される湯温
との両方を所定条件として判断するものである。
A hot water supply apparatus according to a sixth aspect of the present invention is the hot water supply apparatus according to the fifth aspect, further comprising an outside air temperature detecting means for detecting an outside air temperature, and a hot water temperature detecting means for detecting a temperature of boiling hot water. The operating efficiency determining means determines both the outside air temperature detected by the outside air temperature detecting means and the hot water temperature detected by the hot water temperature detecting means as predetermined conditions.

【0019】そして、集熱運転効率判断手段が、外気温
度検知手段で検知される外気温度と湯温検知手段で検知
される湯温との両方を所定条件として判断することで、
集熱運転効率の状況を正確に判断することが可能とな
る。
Then, the heat collecting operation efficiency determining means determines both the outside air temperature detected by the outside air temperature detecting means and the hot water temperature detected by the hot water temperature detecting means as predetermined conditions.
It is possible to accurately determine the state of the heat collecting operation efficiency.

【0020】請求項7記載の給湯装置は、請求項6記載
の給湯装置において、集熱運転効率判断手段は、外気温
度変化と湯温変化との関係に基づいて設定される判断基
準ラインを有し、この判断基準ラインより外気温度が高
くかつ湯温が低い場合に集熱運転効率が高いと判断し、
判断基準ラインより外気温度が低くかつ湯温が高い場合
に集熱運転効率が低いと判断するものである。
According to a seventh aspect of the present invention, there is provided the hot water supply apparatus according to the sixth aspect, wherein the heat collection operation efficiency determining means has a determination reference line set based on a relationship between a change in outside air temperature and a change in hot water temperature. Then, if the outside air temperature is higher and the hot water temperature is lower than this determination reference line, it is determined that the heat collection operation efficiency is high,
If the outside air temperature is lower and the hot water temperature is higher than the determination reference line, it is determined that the heat collection operation efficiency is low.

【0021】そして、集熱運転効率判断手段が、外気温
度変化と湯温変化との関係に基づいて設定される判断基
準ラインより外気温度が高くかつ湯温が低い場合に集熱
運転効率が高いと判断し、判断基準ラインより外気温度
が低くかつ湯温が高い場合に集熱運転効率が低いと判断
することにより、外気温度変化および湯温変化に応じた
集熱運転効率を正確に判断することが可能となる。
The heat collecting operation efficiency judging means increases the heat collecting operation efficiency when the outside air temperature is higher and the hot water temperature is lower than a judgment reference line set based on the relationship between the outside air temperature change and the hot water temperature change. It is determined that the heat collection operation efficiency is low when the outside air temperature is lower and the hot water temperature is higher than the determination reference line, thereby accurately determining the heat collection operation efficiency according to the outside air temperature change and the hot water temperature change. It becomes possible.

【0022】[0022]

【発明の実施の形態】以下、本発明の湯沸装置および給
湯装置の一実施の形態を図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a water heater and a water heater of the present invention will be described with reference to the drawings.

【0023】図1において、湯沸装置の機能を有する給
湯装置11は、蓄熱槽ユニット12と、ヒートポンプユニッ
ト13とを備えている。
In FIG. 1, a water heater 11 having the function of a water heater includes a heat storage tank unit 12 and a heat pump unit 13.

【0024】蓄熱槽ユニット12は、貯湯タンク21を備
え、この貯湯タンク21は、先止押上式の給湯方式を採用
しており、貯湯タンク21の下部には減圧弁22を通じて水
を供給する給水管23が接続されているとともに、上部に
は給湯管24が接続されている。給湯管24には、例えば、
風呂場などに設置されて湯と水とを混合して浴槽25に給
湯する給湯給水栓26などの給湯先に接続されている。給
水管23と給湯管24との間に水と湯とを混合して設定温度
の湯水を供給するミキシングバルブ27が接続され、この
ミキシングバルブ27にはミキシングバルブ27で調整され
た湯水を浴槽25に対して供給する浴槽供給管28が接続さ
れている。この浴槽供給管28には、管路を開閉する電磁
弁29、給水源側の圧力低下時に大気を管路内に導入する
負圧作動弁30、流量を検知する流量センサ31、管路を開
閉する電磁弁32が順に接続されている。
The heat storage tank unit 12 is provided with a hot water storage tank 21, which employs a first-stop push-up type hot water supply system, in which water is supplied to a lower portion of the hot water storage tank 21 through a pressure reducing valve 22. A pipe 23 is connected, and a hot water supply pipe 24 is connected to the upper part. For the hot water supply pipe 24, for example,
It is installed in a bathroom or the like and is connected to a hot water supply tap such as a hot water supply tap 26 for mixing hot water and water and supplying hot water to the bathtub 25. A mixing valve 27 that mixes water and hot water and supplies hot water at a set temperature is connected between the water supply pipe 23 and the hot water supply pipe 24. The mixing valve 27 is supplied with hot and cold water adjusted by the mixing valve 27 in the bathtub 25. Is connected to a bathtub supply pipe 28 for supplying water to the bathtub. The bathtub supply pipe 28 has an electromagnetic valve 29 for opening and closing the pipe, a negative pressure operating valve 30 for introducing the atmosphere into the pipe when the pressure of the water supply source drops, a flow sensor 31 for detecting the flow rate, and opening and closing the pipe. Are connected in order.

【0025】貯湯タンク21には、貯湯タンク21の下部位
置から出て貯湯タンク21の中間高さ位置に戻る貯湯湯水
循環回路33が接続されている。この貯湯湯水循環回路33
には、貯湯タンク21内の湯水を貯湯湯水循環回路33内に
強制的に引き込んで循環させる第1の循環ポンプ34、お
よび湯水が通過する湯水通路および冷媒が通過する冷媒
通路を有する第1の熱交換器35が配設されている。
The hot water tank 21 is connected to a hot water circulation circuit 33 which exits from a lower position of the hot water tank 21 and returns to an intermediate height position of the hot water tank 21. This hot water circulation circuit 33
A first circulation pump 34 for forcibly drawing and circulating the hot water in the hot water storage tank 21 into the hot water hot water circulation circuit 33, and a first circulation pump having a hot water passage through which hot water passes and a refrigerant passage through which refrigerant passes. A heat exchanger 35 is provided.

【0026】浴槽25には、浴槽25に設置される循環口36
を通じて浴槽25内の湯水が循環される浴槽湯水循環回路
37が接続されている。この浴槽湯水循環回路37には、浴
槽25内の湯水を浴槽湯水循環回路37内に強制的に引き込
んで循環させる第2の循環ポンプ38、および湯水が通過
する湯水通路および冷媒が通過する冷媒通路を有する第
2の熱交換器39が配設されている。
The bathtub 25 has a circulation port 36 installed in the bathtub 25.
Bath water circulation circuit in which the water in bath 25 is circulated through
37 is connected. The bathtub hot water circulation circuit 37 includes a second circulation pump 38 for forcibly drawing and circulating the hot water in the bathtub 25 into the bathtub hot water circulation circuit 37, a hot water passage through which the hot water passes, and a refrigerant passage through which the refrigerant passes. Is provided.

【0027】また、ヒートポンプユニット13は、冷媒が
充填された冷媒循環回路41を有し、この冷媒循環回路41
では、圧縮機42、凝縮器として機能する第1の熱交換器
35および第2の熱交換器39、膨張弁43、集熱器としての
蒸発器44、および加熱器(冷媒加熱器)45、四方弁46を
有している。そして、圧縮機42、第1の熱交換器35、膨
張弁43、蒸発器44および四方弁46が順次接続されて構成
される第1の集熱運転回路47と、圧縮機42、第2の熱交
換器39、膨張弁43、蒸発器44および四方弁46が順次接続
されて構成される第2の集熱運転回路48と、圧縮機42、
第1の熱交換器35、加熱器45および四方弁46が順次接続
されて構成される第1の冷媒加熱運転回路49と、圧縮機
42、第2の熱交換器39、加熱器45および四方弁46が順次
接続されて構成される第2の冷媒加熱運転回路50とが構
成されている。
The heat pump unit 13 has a refrigerant circulation circuit 41 filled with a refrigerant.
Then, the compressor 42, the first heat exchanger functioning as a condenser
35, a second heat exchanger 39, an expansion valve 43, an evaporator 44 as a heat collector, a heater (refrigerant heater) 45, and a four-way valve 46. Then, a first heat collecting operation circuit 47 configured by sequentially connecting the compressor 42, the first heat exchanger 35, the expansion valve 43, the evaporator 44, and the four-way valve 46, and the compressor 42, the second A second heat collection operation circuit 48 configured by sequentially connecting the heat exchanger 39, the expansion valve 43, the evaporator 44, and the four-way valve 46;
A first refrigerant heating operation circuit 49 configured by sequentially connecting a first heat exchanger 35, a heater 45, and a four-way valve 46;
A second refrigerant heating operation circuit 50 is formed by sequentially connecting the second heat exchanger 39, the heater 45, and the four-way valve 46.

【0028】各集熱運転回路47,48の各熱交換器35,39
と膨張弁43との間、および各冷媒加熱運転回路49,50の
各熱交換器35,39と加熱器45との間には、切換手段とし
ての電磁弁51,52が配設されており、各集熱運転回路4
7,48側の電磁弁51を開くとともに各冷媒加熱運転回路4
9,50側の電磁弁52を閉じることで各集熱運転回路47,4
8が開かれるとともに各冷媒加熱運転回路49,50が閉じ
られ、各集熱運転回路47,48側の電磁弁51を閉じるとと
もに各冷媒加熱運転回路49,50側の電磁弁52を開くこと
で各集熱運転回路47,48が閉じられるとともに各冷媒加
熱運転回路49,50が開かれる。
Each heat exchanger 35, 39 of each heat collecting operation circuit 47, 48
Solenoid valves 51 and 52 as switching means are disposed between the heater 45 and the heat exchangers 35 and 39 of the refrigerant heating operation circuits 49 and 50, respectively. , Each heat collection operation circuit 4
Open the solenoid valves 51 on the 7 and 48 sides and set the refrigerant heating operation circuit 4
By closing the solenoid valves 52 on the sides 9 and 50, each heat collecting operation circuit 47 and 4
8 is opened, the refrigerant heating operation circuits 49 and 50 are closed, and the solenoid valves 51 of the heat collection operation circuits 47 and 48 are closed, and the solenoid valves 52 of the refrigerant heating operation circuits 49 and 50 are opened. The heat collecting operation circuits 47 and 48 are closed and the refrigerant heating operation circuits 49 and 50 are opened.

【0029】圧縮機42と第1の熱交換器35との間、およ
び圧縮機42と第2の熱交換器39との間には、切換手段と
しての電磁弁53,54が配設されており、第1の熱交換器
35側の電磁弁53を開くとともに第2の熱交換器39側の電
磁弁54を閉じることで第1の集熱運転回路47または第1
の冷媒加熱運転回路49が開かれるとともに第2の集熱運
転回路48または第2の冷媒加熱運転回路50が閉じられ、
第1の熱交換器35側の電磁弁53を閉じるとともに第2の
熱交換器39側の電磁弁54を開くことで第1の集熱運転回
路47または第1の冷媒加熱運転回路49が閉じられるとと
もに第2の集熱運転回路48または第2の冷媒加熱運転回
路50が開かれる。
Electromagnetic valves 53 and 54 as switching means are provided between the compressor 42 and the first heat exchanger 35 and between the compressor 42 and the second heat exchanger 39. And the first heat exchanger
By opening the solenoid valve 53 on the side of the 35 and closing the solenoid valve 54 on the side of the second heat exchanger 39, the first heat collecting operation circuit 47 or the first
The refrigerant heating operation circuit 49 is opened and the second heat collection operation circuit 48 or the second refrigerant heating operation circuit 50 is closed,
By closing the solenoid valve 53 on the first heat exchanger 35 side and opening the solenoid valve 54 on the second heat exchanger 39 side, the first heat collection operation circuit 47 or the first refrigerant heating operation circuit 49 is closed. Then, the second heat collecting operation circuit 48 or the second refrigerant heating operation circuit 50 is opened.

【0030】圧縮機42は、例えばインバータ制御可能と
するモータを備えている。
The compressor 42 includes, for example, a motor that can be controlled by an inverter.

【0031】蒸発器44は、外気を蒸発器44に送る送風フ
ァン55およびこの送風ファン55を回転させる送風モータ
56を備えている。
The evaporator 44 includes a blower fan 55 for sending outside air to the evaporator 44 and a blower motor for rotating the blower fan 55.
Has 56.

【0032】加熱器45は、灯油などの燃料を燃焼させる
バーナー57を有し、このバーナー57によって各冷媒加熱
運転回路49,50内の冷媒を加熱するように構成されてい
る。バーナー57に燃料を供給する燃料タンク58はヒート
ポンプユニット13の外部に設置されている。
The heater 45 has a burner 57 for burning fuel such as kerosene. The burner 57 heats the refrigerant in each of the refrigerant heating operation circuits 49 and 50. A fuel tank 58 that supplies fuel to the burner 57 is installed outside the heat pump unit 13.

【0033】また、貯湯タンク21の胴部外壁には貯湯タ
ンク21内の湯水の温度を検知する湯温検知手段としての
湯温検知センサ61が配設され、浴槽湯水循環回路37には
浴槽25内の湯水の温度を検知する湯温検知手段としての
湯温検知センサ62が配設されている。蒸発器44には、外
気温度を検知する外気温度検知手段としての外気温度検
知センサ63が配設されている。
A hot water temperature detecting sensor 61 as a hot water temperature detecting means for detecting the temperature of hot water in the hot water storage tank 21 is provided on the outer wall of the body of the hot water storage tank 21. A hot water temperature detection sensor 62 is provided as hot water temperature detecting means for detecting the temperature of hot water in the inside. The evaporator 44 is provided with an outside air temperature detection sensor 63 as outside air temperature detection means for detecting the outside air temperature.

【0034】また、蓄熱槽ユニット12およびヒートポン
プユニット13はそれぞれ制御部71,72を有し、これら制
御部71,72が互いに通信して給湯装置11の運転を制御す
る。
The heat storage tank unit 12 and the heat pump unit 13 have control units 71 and 72, respectively. The control units 71 and 72 communicate with each other to control the operation of the hot water supply device 11.

【0035】蓄熱槽ユニット12の制御部71は、蓄熱槽ユ
ニット12に設けられた図示しない操作部や屋内に設置さ
れるリモコン73からの信号、流量センサ31、湯温検知セ
ンサ61,62からの信号、ヒートポンプユニット13の制御
部72からの信号を入力し、ヒートポンプユニット13の制
御部72に対して指令を出力し、ミキシングバルブ27、電
磁弁29,32,53,54、循環ポンプ35,39などを制御す
る。
The control unit 71 of the heat storage tank unit 12 receives signals from an operation unit (not shown) provided in the heat storage tank unit 12 and a remote controller 73 installed indoors, a flow rate sensor 31, and a hot water temperature detection sensor 61, 62. A signal and a signal from the control unit 72 of the heat pump unit 13 are input, and a command is output to the control unit 72 of the heat pump unit 13 so that the mixing valve 27, the solenoid valves 29, 32, 53, 54, and the circulation pumps 35, 39 Control and so on.

【0036】ヒートポンプユニット13の制御部72は、外
気温度検知センサ63からの信号、蓄熱槽ユニット12の制
御部71からの信号を入力し、蓄熱槽ユニット12の制御部
71に対して信号を出力し、圧縮機42、加熱器45、電磁弁
51,52、送風モータ56などを制御する。
The control unit 72 of the heat pump unit 13 receives the signal from the outside air temperature sensor 63 and the signal from the control unit 71 of the heat storage tank unit 12 and
Outputs signal to 71, compressor 42, heater 45, solenoid valve
51, 52, the blower motor 56, etc. are controlled.

【0037】そして、制御部71(または制御部72)は、
各集熱運転回路47,48による集熱運転効率(集熱熱量/
使用熱量=COP)が所定条件より高いか低いか判断す
る集熱運転効率判断手段の機能を有するとともに、この
集熱運転効率判断手段で集熱運転効率が所定条件より高
いと判断されるときは各集熱運転回路47,48による集熱
運転(ヒートポンプ運転)を実行させ、所定条件より低
いと判断されるときは各冷媒加熱運転回路49,50による
冷媒加熱運転を実行させる制御手段の機能を有してい
る。
The control unit 71 (or the control unit 72)
Heat collection operation efficiency by each heat collection operation circuit 47, 48 (heat collection heat /
(The amount of used heat = COP) has a function of a heat collecting operation efficiency judging means for judging whether it is higher or lower than a predetermined condition. When the heat collecting operation efficiency judging means judges that the heat collecting operation efficiency is higher than the predetermined condition, The function of the control means for executing the heat collection operation (heat pump operation) by each heat collection operation circuit 47, 48 and executing the refrigerant heating operation by each refrigerant heating operation circuit 49, 50 when it is determined that the temperature is lower than the predetermined condition is determined. Have.

【0038】集熱運転効率判断手段の機能では、外気温
度検知センサ63で検知される外気温度と湯温検知センサ
61,62で検知される湯温との両方を所定条件として判断
する。表1に、外気温度と湯温とに応じた運転モードを
判断するための所定条件の一例を示す。
The function of the heat collection operation efficiency determining means is as follows: the outside air temperature detected by the outside air temperature detection sensor 63 and the hot water temperature detection sensor.
Both the hot water temperature detected in 61 and 62 are determined as predetermined conditions. Table 1 shows an example of predetermined conditions for determining an operation mode according to the outside air temperature and the hot water temperature.

【0039】[0039]

【表1】 次に、本実施の形態の給湯装置11の運転動作について説
明する。
[Table 1] Next, the operation of hot water supply apparatus 11 of the present embodiment will be described.

【0040】まず、貯湯タンク21内の湯水の沸き上げに
ついて、図2または図3を参照して説明する。
First, the boiling of hot water in hot water storage tank 21 will be described with reference to FIG. 2 or FIG.

【0041】貯湯湯水循環回路33側では、第1の循環ポ
ンプ34の駆動により、貯湯タンク21内の湯水が第1の熱
交換器35との間で循環される。
On the side of the hot water storage water circulation circuit 33, the hot water in the hot water storage tank 21 is circulated between the hot water storage tank 21 and the first heat exchanger 35 by driving the first circulation pump 34.

【0042】冷媒循環回路41側では、図2に示すよう
に、集熱運転回路47,48側の電磁弁51が開かれるととも
に冷媒加熱運転回路49,50側の電磁弁52が閉じられ、さ
らに、第1の集熱運転回路47側の電磁弁53が開かれると
ともに第2の集熱運転回路48側の電磁弁54が閉じられ、
これにより、第1の集熱運転回路47が開かれるとともに
第2の集熱運転回路48および各冷媒加熱運転回路49,50
が閉じられる。第1の集熱運転回路47による集熱運転で
は、圧縮機42の駆動により、気化状態の冷媒が第1の熱
交換器35に送られて冷媒熱が貯湯タンク21側の湯水に伝
達されて液化され、この液化した冷媒が膨張弁43および
蒸発器44に送られて大気熱を集熱して気化され、この気
化した冷媒が圧縮機42で圧縮されて第1の熱交換器35に
再び送られるサイクルが繰り返される。
On the refrigerant circulation circuit 41 side, as shown in FIG. 2, the electromagnetic valves 51 on the heat collection operation circuits 47 and 48 are opened, and the electromagnetic valves 52 on the refrigerant heating operation circuits 49 and 50 are closed. The solenoid valve 53 of the first heat collection operation circuit 47 is opened and the solenoid valve 54 of the second heat collection operation circuit 48 is closed,
As a result, the first heat collection operation circuit 47 is opened, and the second heat collection operation circuit 48 and each of the refrigerant heating operation circuits 49 and 50 are opened.
Is closed. In the heat collection operation by the first heat collection operation circuit 47, the refrigerant in the vaporized state is sent to the first heat exchanger 35 by the drive of the compressor 42, and the heat of the refrigerant is transmitted to the hot water in the hot water storage tank 21 side. The liquefied refrigerant is sent to the expansion valve 43 and the evaporator 44 to collect atmospheric heat and is vaporized, and the vaporized refrigerant is compressed by the compressor 42 and sent to the first heat exchanger 35 again. Cycle is repeated.

【0043】また、図3に示すように、集熱運転回路4
7,48側の電磁弁51が閉じられるとともに冷媒加熱運転
回路49,50側の電磁弁52が開かれ、さらに、第1の集熱
運転回路47側の電磁弁53が開かれるとともに第2の集熱
運転回路48側の電磁弁54が閉じられ、これにより、第1
の冷媒加熱運転回路49が開かれるとともに各集熱運転回
路47,48および第2の冷媒加熱運転回路50が閉じられ
る。第1の冷媒加熱運転回路49による冷媒加熱運転で
は、加熱器45のバーナー57が燃焼され、圧縮機42の駆動
により、気化状態の冷媒が第1の熱交換器35に送られて
冷媒熱が貯湯タンク21側の湯水に伝達されて液化され、
この液化した冷媒が加熱器45に送られてバーナー57で加
熱されて気化され、この気化した冷媒が圧縮機42で圧縮
されて第1の熱交換器35に再び送られるサイクルが繰り
返される。
Further, as shown in FIG.
The solenoid valve 51 on the refrigerant heating operation circuit 49 and 50 side is opened while the solenoid valve 51 on the side of 7 and 48 is closed, and the electromagnetic valve 53 on the side of the first heat collection operation circuit 47 is opened and the second valve is opened. The solenoid valve 54 on the heat collection operation circuit 48 side is closed, thereby the first
The refrigerant heating operation circuit 49 is opened, and the heat collection operation circuits 47 and 48 and the second refrigerant heating operation circuit 50 are closed. In the refrigerant heating operation by the first refrigerant heating operation circuit 49, the burner 57 of the heater 45 is burned, and the refrigerant in the vaporized state is sent to the first heat exchanger 35 by the driving of the compressor 42, and the heat of the refrigerant is reduced. It is transmitted to hot water on the hot water storage tank 21 side and liquefied,
The liquefied refrigerant is sent to the heater 45 and is heated and vaporized by the burner 57. The cycle in which the vaporized refrigerant is compressed by the compressor 42 and sent to the first heat exchanger 35 again is repeated.

【0044】これら第1の集熱運転回路47または第1の
冷媒加熱運転回路49は、外気温度検知センサ63で検知さ
れる外気温度と湯温検知センサ61で検知される湯温との
両方を上述した所定条件(表1)に当てはめて、効率の
よい方に自動的に切り換えられる。
The first heat collection operation circuit 47 or the first refrigerant heating operation circuit 49 detects both the outside air temperature detected by the outside air temperature detection sensor 63 and the hot water temperature detected by the hot water temperature detection sensor 61. By switching to the above condition (Table 1), it is automatically switched to the more efficient one.

【0045】そして、第1の熱交換器35を介して貯湯湯
水循環回路33の湯水と冷媒循環回路41(第1の集熱運転
回路47または第1の冷媒加熱運転回路49)の冷媒とで熱
交換して、貯湯タンク21内の湯水が昇温沸上される。
Then, the hot and cold water in the hot and cold water circulation circuit 33 and the refrigerant in the refrigerant circulation circuit 41 (the first heat collection operation circuit 47 or the first refrigerant heating operation circuit 49) are connected via the first heat exchanger 35. After the heat exchange, the hot water in the hot water storage tank 21 is heated and boiled.

【0046】次に、制御部71(または制御部72)による
所定条件(表1)に応じた集熱運転と冷媒加熱運転の切
換動作を図4のフローチャートを参照して説明する。
Next, the switching operation between the heat collecting operation and the refrigerant heating operation according to predetermined conditions (Table 1) by the control unit 71 (or the control unit 72) will be described with reference to the flowchart of FIG.

【0047】所定の沸上開始時刻になると(ステップ
1)、外気温度検知センサ63によって検知される外気温
度と、湯温検知センサ61によって検知される貯湯タンク
21内の湯温とを確認する。
At a predetermined boiling start time (step 1), the outside air temperature detected by the outside air temperature detection sensor 63 and the hot water storage tank detected by the hot water temperature detection sensor 61
Check the hot water inside 21.

【0048】例えば、外気温度が21℃以上の場合(ス
テップ2)、湯温が40℃未満であれば(ステップ
3)、集熱運転効率が高いと判断され、集熱運転が実行
される(ステップ4)。湯温が40℃以上であれば、集
熱運転効率が低いと判断され、冷媒加熱運転が実行され
る(ステップ5)。
For example, when the outside air temperature is equal to or higher than 21 ° C. (step 2), when the hot water temperature is lower than 40 ° C. (step 3), it is determined that the heat collecting operation efficiency is high, and the heat collecting operation is executed (step 3). Step 4). If the hot water temperature is equal to or higher than 40 ° C., it is determined that the heat collecting operation efficiency is low, and the refrigerant heating operation is performed (step 5).

【0049】外気温度が7℃以上21℃未満の場合(ス
テップ6)、湯温が35℃未満であれば(ステップ
7)、集熱運転効率が高いと判断され、集熱運転が実行
される(ステップ8)。湯温が35℃以上であれば、集
熱運転効率が低いと判断され、冷媒加熱運転が実行され
る(ステップ9)。
When the outside air temperature is 7 ° C. or more and less than 21 ° C. (step 6), if the hot water temperature is less than 35 ° C. (step 7), it is determined that the heat collecting operation efficiency is high, and the heat collecting operation is executed. (Step 8). If the hot water temperature is 35 ° C. or higher, it is determined that the heat collection operation efficiency is low, and the refrigerant heating operation is executed (step 9).

【0050】外気温度が0℃以上7℃未満の場合(ステ
ップ10)、湯温が30℃未満であれば(ステップ11)、
集熱運転効率が高いと判断され、集熱運転が実行される
(ステップ12)。湯温が30℃以上であれば、集熱運転
効率が低いと判断され、冷媒加熱運転が実行される(ス
テップ13)。
If the outside air temperature is 0 ° C. or more and less than 7 ° C. (step 10), if the hot water temperature is less than 30 ° C. (step 11),
It is determined that the heat collection operation efficiency is high, and the heat collection operation is executed (step 12). If the hot water temperature is 30 ° C. or higher, it is determined that the heat collecting operation efficiency is low, and the refrigerant heating operation is performed (step 13).

【0051】外気温度が0℃未満の場合、集熱運転効率
が低いと判断され、冷媒加熱運転が実行される。
When the outside air temperature is lower than 0 ° C., it is determined that the heat collecting operation efficiency is low, and the refrigerant heating operation is executed.

【0052】そして、沸き上げが完了するまで(ステッ
プ14)、常に、外気温度と湯温とを監視し、それら外気
温度と湯温の変化、つまり集熱運転効率の変換に応じ
て、集熱運転と冷媒加熱運転とが切り換えられる。沸き
上げが完了すれば、運転を停止する(ステップ15)。
Until the heating is completed (step 14), the outside air temperature and the hot water temperature are constantly monitored, and the heat collecting operation is performed according to the change in the outside air temperature and the hot water temperature, that is, the conversion of the heat collecting operation efficiency. The operation and the refrigerant heating operation are switched. When the heating is completed, the operation is stopped (step 15).

【0053】次に、浴槽25への湯張りおよび保温につい
て、図5を参照して説明する。
Next, filling the bathtub 25 with water and keeping the temperature warm will be described with reference to FIG.

【0054】浴槽25への湯張りでは、リモコン73で自動
湯張りを設定することにより、予め設定された自動湯張
り時刻になると、電磁弁29,32が開かれ、ミキシングバ
ルブ27で貯湯タンク21からの湯水と給水管23からの水と
を混合して例えば42℃の設定温度に調整された湯水
が、浴槽供給管28および浴槽湯水循環回路37を通じて循
環口36から浴槽25内に給湯される。浴槽25内に給湯され
る給湯量は流量センサ31で検知され、所定量の湯水が給
湯されることで、電磁弁29,32が閉じられ、湯張り完了
となる。
When filling the bathtub 25, automatic filling is set by the remote controller 73, and when the preset automatic filling time is reached, the solenoid valves 29 and 32 are opened, and the mixing valve 27 opens the hot water storage tank 21. Hot water adjusted to a set temperature of, for example, 42 ° C. by mixing hot water from the hot water and water from the water supply pipe 23 is supplied into the bathtub 25 from the circulation port 36 through the bathtub supply pipe 28 and the bathtub hot water circulation circuit 37. . The amount of hot water supplied into the bathtub 25 is detected by the flow rate sensor 31, and when a predetermined amount of hot water is supplied, the electromagnetic valves 29 and 32 are closed, and the filling is completed.

【0055】浴槽25への湯張り後は、例えば所定時間毎
に湯水の温度を確認して保温動作が実行される。すなわ
ち、第2の循環ポンプ38の駆動により、浴槽25内の湯水
が、浴槽湯水循環回路37内に引き込まれるとともに第2
の熱交換機39を通じて循環口36に循環され、湯温検知セ
ンサ62で湯水の湯温が検知される。湯温が設定温度より
低い場合に、浴槽湯水循環回路37での湯水の循環を継続
したまま、冷媒循環回路41が動作されて保温が開始され
る。
After filling the bathtub 25, the temperature of the hot water is checked, for example, at predetermined time intervals, and the warming operation is executed. That is, by driving the second circulation pump 38, the hot water in the bathtub 25 is drawn into the bathtub hot water circulation circuit 37 and
Is circulated to the circulation port 36 through the heat exchanger 39, and the hot water temperature sensor 62 detects the hot water temperature. When the hot water temperature is lower than the set temperature, the refrigerant circulation circuit 41 is operated and the heat retention is started while the circulation of the hot water in the bathtub hot water circulation circuit 37 is continued.

【0056】冷媒循環回路41では、集熱運転回路47,48
側の電磁弁51が閉じられるとともに冷媒加熱運転回路4
9,50側の電磁弁52が開かれ、さらに、第1の冷媒加熱
運転回路49側の電磁弁53が閉じられるとともに第2の冷
媒加熱運転回路50側の電磁弁54が開かれ、これにより、
第2の冷媒加熱運転回路50が開かれるとともに各集熱運
転回路47,48および第1の冷媒加熱運転回路49が閉じら
れる。第2の冷媒加熱運転回路50による冷媒加熱運転で
は、加熱器45のバーナー57が燃焼され、圧縮機42の駆動
により、気化状態の冷媒が第2の熱交換器39に送られて
冷媒熱が貯湯タンク21側の湯水に伝達されて液化され、
この液化した冷媒が加熱器45に送られてバーナー57で加
熱されて気化され、この気化した冷媒が圧縮機42で圧縮
されて第2の熱交換器39に再び送られるサイクルが繰り
返される。
In the refrigerant circulation circuit 41, the heat collecting operation circuits 47 and 48
Side solenoid valve 51 is closed and the refrigerant heating operation circuit 4
The solenoid valve 52 on the side of the ninth and fifty is opened, the solenoid valve 53 on the first refrigerant heating operation circuit 49 is closed, and the solenoid valve 54 on the second refrigerant heating operation circuit 50 is opened. ,
The second refrigerant heating operation circuit 50 is opened, and the heat collection operation circuits 47 and 48 and the first refrigerant heating operation circuit 49 are closed. In the refrigerant heating operation by the second refrigerant heating operation circuit 50, the burner 57 of the heater 45 is burned, and the refrigerant in the vaporized state is sent to the second heat exchanger 39 by the operation of the compressor 42, so that the heat of the refrigerant is reduced. It is transmitted to hot water on the hot water storage tank 21 side and liquefied,
The cycle in which the liquefied refrigerant is sent to the heater 45 and heated and vaporized by the burner 57, and the vaporized refrigerant is compressed by the compressor 42 and sent again to the second heat exchanger 39 is repeated.

【0057】そして、第2の熱交換器39を介して浴槽湯
水循環回路37の湯水と冷媒循環回路41(第2の冷媒加熱
運転回路50)の冷媒とで熱交換して、浴槽25内の湯水が
昇温沸上される。湯温検知センサ62の検知で湯水が設定
温度に沸き上げられたことが検知されれば、保温動作を
停止する。
Then, heat exchange between the hot water of the bathtub hot water circulation circuit 37 and the refrigerant of the refrigerant circulation circuit 41 (second refrigerant heating operation circuit 50) is performed via the second heat exchanger 39, and Hot water is heated and boiled. If the hot water temperature sensor 62 detects that the hot water has been heated to the set temperature, the warming operation is stopped.

【0058】また、浴槽25への湯張りにおいては、浴槽
25に水を張ってから所定温度に沸き上げる設定も可能と
している。リモコン73で風呂沸しを指定することによ
り、電磁弁29,32が開かれ、ミキシングバルブ27で給水
管23からの水のみが、浴槽供給管28および浴槽湯水循環
回路37を通じて循環口36から浴槽25内に給水される。浴
槽25内に給水される給水量は流量センサ31で検知され、
所定量の水が給水されることで、電磁弁29,32が閉じら
れ、水張り完了となる。
In addition, when filling the bathtub 25 with hot water,
It is also possible to set the water to 25 and then boil it to a predetermined temperature. By specifying the bath boiling with the remote controller 73, the solenoid valves 29 and 32 are opened, and only water from the water supply pipe 23 is mixed with the mixing valve 27, and the bathtub is circulated from the circulation port 36 through the bathtub supply pipe 28 and the bathtub hot water circulation circuit 37. Water is supplied within 25. The amount of water supplied to the bathtub 25 is detected by the flow sensor 31,
When a predetermined amount of water is supplied, the solenoid valves 29 and 32 are closed, and the water filling is completed.

【0059】その後は、第2の循環ポンプ38の駆動によ
り、浴槽25内の水が浴槽湯水循環回路37内に循環され、
上述したように、冷媒循環回路41(第2の冷媒加熱運転
回路50)が動作されて風呂加温が開始される。湯温検知
センサ62の検知で湯水が設定温度に沸き上げられたこと
が検知されれば、加温動作が停止される。さらに、上述
した保温動作が実行される。
Thereafter, by driving the second circulation pump 38, the water in the bathtub 25 is circulated in the bathtub hot water circulation circuit 37,
As described above, the refrigerant circulation circuit 41 (the second refrigerant heating operation circuit 50) is operated to start bath heating. If the hot water temperature sensor 62 detects that the hot water has been heated to the set temperature, the heating operation is stopped. Further, the above-described warming operation is performed.

【0060】また、浴槽25に湯張りされた湯水の保温、
または水張りされた水の加温の際には、集熱運転でも可
能としている。すなわち、集熱運転回路47,48側の電磁
弁51が開かれるとともに冷媒加熱運転回路49,50側の電
磁弁52が開かれ、さらに、第1の集熱運転回路47側の電
磁弁53が閉じられるとともに第2の集熱運転回路48側の
電磁弁54が開かれ、これにより、第2の集熱運転回路48
が開かれるとともに第1の集熱運転回路47および各冷媒
加熱運転回路49,50が閉じられる。第2の集熱運転回路
48による集熱運転では、圧縮機42の駆動により、気化状
態の冷媒が第2の熱交換器39に送られて冷媒熱が浴槽25
側の湯水に伝達されて液化され、この液化した冷媒が膨
張弁43および蒸発器44に送られて大気熱を集熱して気化
され、この気化した冷媒が圧縮機42で圧縮されて第2の
熱交換器39に再び送られるサイクルが繰り返される。
In addition, the heat retention of the hot water filled in the bathtub 25,
Alternatively, when heating the overfilled water, it is also possible to perform the heat collection operation. That is, the solenoid valves 51 of the heat collection operation circuits 47 and 48 are opened, the solenoid valves 52 of the refrigerant heating operation circuits 49 and 50 are opened, and the solenoid valve 53 of the first heat collection operation circuit 47 is opened. The solenoid valve 54 on the side of the second heat collection operation circuit 48 is closed and the second heat collection operation circuit 48 is opened.
Is opened, and the first heat collecting operation circuit 47 and the refrigerant heating operation circuits 49 and 50 are closed. Second heat collecting operation circuit
In the heat collecting operation by the compressor 48, the refrigerant in the vaporized state is sent to the second heat exchanger 39 by the operation of the compressor 42, and the refrigerant heat is transferred to the bathtub 25.
The liquefied refrigerant is sent to the expansion and contraction valve 43 and the evaporator 44 to collect atmospheric heat and is vaporized, and the vaporized refrigerant is compressed by the compressor 42 to be liquefied. The cycle sent to the heat exchanger 39 again is repeated.

【0061】第2の熱交換器39を介して浴槽湯水循環回
路37の湯水と第2の集熱運転回路48の冷媒とで熱交換し
て、浴槽25に湯張りされた湯水の保温、または水張りさ
れた水の加温される。
Heat exchange between the hot water of the bathtub hot water circulation circuit 37 and the refrigerant of the second heat collecting operation circuit 48 through the second heat exchanger 39 to keep the hot water filled in the bathtub 25 warm, or Warm water is heated.

【0062】そして、これら第2の集熱運転回路48また
は第2の冷媒加熱運転回路50は、外気温度検知センサ63
で検知される外気温度と湯温検知センサ61で検知される
湯温との両方を上述した所定条件(表1)に当てはめ
て、効率のよい方に自動的に切り換えられる。
The second heat collecting operation circuit 48 or the second refrigerant heating operation circuit 50 includes an outside air temperature detecting sensor 63.
By applying both the outside air temperature detected by (1) and the hot water temperature detected by the hot water temperature detection sensor 61 to the above-mentioned predetermined condition (Table 1), it is automatically switched to the more efficient one.

【0063】以上のように、冷媒循環回路41に、圧縮機
42、第1の熱交換器35および蒸発器44が順次接続されて
構成される第1の集熱運転回路47と、圧縮機42、第2の
熱交換器39および蒸発器44が順次接続されて構成される
第2の集熱運転回路48と、圧縮機42、第1の熱交換器35
および加熱器45が順次接続されて構成される第1の冷媒
加熱運転回路49と、圧縮機42、第2の熱交換器39および
加熱器45が順次接続されて構成される第2の冷媒加熱運
転回路50とを備え、これら各運転回路を電磁弁51,52,
53,54で切り換えられるように構成し、第1の熱交換器
35を介して貯湯湯水循環回路33との間で熱交換するとと
もに、第2の熱交換器39を介して浴槽湯水循環回路37と
の間で熱交換するので、集熱運転効率が高い場合には集
熱運転回路47,48による集熱運転を実行し、集熱運転効
率が低い場合には冷媒加熱運転回路49,50による加熱運
転を実行することができ、集熱運転効率が低い状況下で
も浴槽25内の湯水や貯湯タンク21内の湯水を所定温度ま
で沸き上げる沸上時間を短くできるとともにランニング
コストを低減できる。
As described above, the refrigerant circulation circuit 41 has the compressor
42, a first heat collecting operation circuit 47 configured by sequentially connecting the first heat exchanger 35 and the evaporator 44, and a compressor 42, the second heat exchanger 39, and the evaporator 44 are sequentially connected. A second heat collection operation circuit 48 configured by the compressor 42 and the first heat exchanger 35
And a first refrigerant heating operation circuit 49 configured by sequentially connecting the heater 45 and a second refrigerant heating circuit configured by sequentially connecting the compressor 42, the second heat exchanger 39, and the heater 45. An operation circuit 50 is provided, and each of these operation circuits is provided with a solenoid valve 51, 52,
The first heat exchanger is constructed so that it can be switched between 53 and 54.
The heat exchange with the hot water circulation circuit 33 via 35 and the heat exchange with the bath water circulation circuit 37 via the second heat exchanger 39, the heat collection operation efficiency is high. Performs the heat collection operation by the heat collection operation circuits 47 and 48, and can execute the heating operation by the refrigerant heating operation circuits 49 and 50 when the heat collection operation efficiency is low. However, the boiling time for boiling the hot water in the bathtub 25 or the hot water in the hot water storage tank 21 to a predetermined temperature can be shortened, and the running cost can be reduced.

【0064】さらに、制御部71の集熱運転効率判断手段
の機能により集熱運転回路47,48による集熱運転効率が
所定条件より高いか低いか判断することで、制御部71に
より、集熱運転効率が所定条件より高いと判断されると
きは集熱運転回路47,48による集熱運転を、所定条件よ
り低いと判断されるときは冷媒加熱運転回路49,50によ
る冷媒加熱運転を自動的に実行させることができ、集熱
運転効率が低い状況下でも沸上時間を短くできるととも
にランニングコストを低減できる。
Further, the function of the heat collection operation efficiency determining means of the control unit 71 determines whether the heat collection operation efficiency of the heat collection operation circuits 47 and 48 is higher or lower than a predetermined condition. When the operation efficiency is determined to be higher than the predetermined condition, the heat collection operation by the heat collection operation circuits 47 and 48 is automatically performed. When the operation efficiency is determined to be lower than the predetermined condition, the refrigerant heating operation by the refrigerant heating operation circuits 49 and 50 is automatically performed. The boiling time can be shortened and the running cost can be reduced even in a situation where the heat collecting operation efficiency is low.

【0065】しかも、制御部71の集熱運転効率判断手段
の機能では、外気温度検知センサ63で検知される外気温
度と湯温検知センサ61,62で検知される湯温との両方を
所定条件として判断するので、集熱運転効率の状況を正
確に判断できる。
In addition, the function of the heat collecting operation efficiency determining means of the control unit 71 is such that both the outside air temperature detected by the outside air temperature detection sensor 63 and the hot water temperature detected by the hot water temperature detection sensors 61 and 62 are determined by a predetermined condition. Therefore, the state of the heat collection operation efficiency can be accurately determined.

【0066】また、ヒートポンプ運転方式を用いた給湯
装置11では、沸き上げ可能とする湯温がヒータなどで沸
き上げる場合に比べて低いため、必要とする所定湯量を
確保するには貯湯タンク21の容量を多くする必要がある
が、浴槽25に水張りした水を沸き上げることができるの
で、貯湯タンク21の容量を小さくできる。
In the hot water supply apparatus 11 using the heat pump operation method, the temperature of the hot water that can be heated is lower than that of the case of heating with a heater or the like. Although the capacity needs to be increased, the water filled in the bathtub 25 can be boiled, so that the capacity of the hot water storage tank 21 can be reduced.

【0067】なお、冬期の運転で、蒸発器44に霜が付着
する場合、集熱運転回路47,48と冷媒加熱運転回路49,
50との両方開いて加熱器45で冷媒を加熱することで、高
温の冷媒を蒸発器44に送って霜取りできる。
When frost adheres to the evaporator 44 during the winter operation, the heat collecting operation circuits 47 and 48 and the refrigerant heating operation circuit 49 and
By opening both 50 and heating the refrigerant with the heater 45, the high-temperature refrigerant can be sent to the evaporator 44 and defrosted.

【0068】次に、図6に給湯装置の他の実施の形態を
示す。
Next, FIG. 6 shows another embodiment of the hot water supply apparatus.

【0069】この実施の形態では、集熱器として、図1
に示す実施の形態の蒸発器44と、例えば屋根の上などに
設置されて太陽熱を主体として集熱するソーラ集熱器
(太陽熱集熱器)81との両方が用いられる。この場合、
ソーラ集熱器81は、熱交換器35,39と並列に接続される
とともに、膨張弁43、蒸発器44および圧縮機42と並列に
接続される。圧縮機42とソーラ集熱器81との間には切換
手段としての電磁弁82が配設され、ソーラ集熱器81と膨
張弁43との間にはソーラ集熱器81側への冷媒の流れを阻
止する逆止弁83が配設されている。
In this embodiment, as a heat collector, FIG.
Both the evaporator 44 of the embodiment shown in FIG. 1 and a solar heat collector (solar heat collector) 81 that is installed on a roof or the like and mainly collects solar heat, for example, are used. in this case,
The solar collector 81 is connected in parallel with the heat exchangers 35 and 39, and is also connected in parallel with the expansion valve 43, the evaporator 44, and the compressor 42. An electromagnetic valve 82 as switching means is provided between the compressor 42 and the solar collector 81, and a refrigerant is supplied to the solar collector 81 between the solar collector 81 and the expansion valve 43. A check valve 83 for blocking the flow is provided.

【0070】そして、第1の集熱運転回路47または第2
の集熱運転回路48による集熱運転時には、電磁弁82が同
時に開かれ、圧縮機42の駆動により、気化状態の冷媒が
第1の熱交換器35または第2の熱交換器39に送られて冷
媒熱が貯湯タンク21または浴槽25の湯水に伝達されて液
化され、この液化した冷媒がソーラ集熱器81と蒸発器44
とに並列に流れる。ソーラ集熱器81に流れた冷媒が太陽
熱を主体とした集熱にて気化されるとともにこの気化し
た冷媒が第1の熱交換器35または第2の熱交換器39に再
び送られるサイクルが繰り返され、膨張弁43および蒸発
器44に流れた冷媒が大気熱を集熱して気化されるととも
にこの気化した冷媒が圧縮機42で圧縮されて第1の熱交
換器35または第2の熱交換器39に再び送られるサイクル
が繰り返される。
Then, the first heat collecting operation circuit 47 or the second
During the heat collection operation by the heat collection operation circuit 48, the solenoid valve 82 is simultaneously opened, and the refrigerant in the vaporized state is sent to the first heat exchanger 35 or the second heat exchanger 39 by the operation of the compressor 42. The refrigerant heat is transferred to the hot water in the hot water storage tank 21 or the bath 25 to be liquefied, and the liquefied refrigerant is transferred to the solar heat collector 81 and the evaporator 44.
And flows in parallel to A cycle in which the refrigerant flowing to the solar collector 81 is vaporized by heat collection mainly by solar heat and the vaporized refrigerant is sent to the first heat exchanger 35 or the second heat exchanger 39 again is repeated. The refrigerant flowing to the expansion valve 43 and the evaporator 44 collects atmospheric heat and is vaporized, and the vaporized refrigerant is compressed by the compressor 42 to be either the first heat exchanger 35 or the second heat exchanger. The cycle sent again to 39 is repeated.

【0071】ソーラ集熱器81による集熱効率が低い場合
には電磁弁82を閉じることにより集熱器として蒸発器44
のみを用いた集熱運転とされる。
When the efficiency of heat collection by the solar heat collector 81 is low, the electromagnetic valve 82 is closed to operate the evaporator 44 as a heat collector.
It is assumed that only the heat collection operation is performed.

【0072】ソーラ集熱器81を使用することにより、貯
湯タンク21内の湯水や浴槽25内の湯水を所定温度まで沸
き上げる沸上時間を短くできるとともにランニングコス
トを低減できる。
By using the solar heat collector 81, the boiling time for boiling the hot water in the hot water storage tank 21 and the hot water in the bathtub 25 to a predetermined temperature can be shortened, and the running cost can be reduced.

【0073】次に、図7に給湯装置のさらに他の実施の
形態を示す。
Next, still another embodiment of the hot water supply apparatus is shown in FIG.

【0074】この実施の形態では、第1の熱交換器35と
第2の熱交換器39とを直列に接続し、圧縮機42、第2の
熱交換器39、第1の熱交換器35、膨張弁43、蒸発器44お
よび四方弁46が順次接続されて構成される共通集熱運転
回路91と、圧縮機42、第2の熱交換器39、第1の熱交換
器35、加熱器45および四方弁46が順次接続されて構成さ
れる共通冷媒加熱運転回路92とを構成し、これら共通集
熱運転回路91と共通冷媒加熱運転回路92とを切換手段と
しての電磁弁51,52で切り換える。
In this embodiment, the first heat exchanger 35 and the second heat exchanger 39 are connected in series, and the compressor 42, the second heat exchanger 39, and the first heat exchanger 35 are connected. , An expansion valve 43, an evaporator 44, and a four-way valve 46, which are sequentially connected, a common heat collecting operation circuit 91, a compressor 42, a second heat exchanger 39, a first heat exchanger 35, and a heater. 45 and a four-way valve 46 are sequentially connected to form a common refrigerant heating operation circuit 92, and the common heat collection operation circuit 91 and the common refrigerant heating operation circuit 92 are switched by electromagnetic valves 51 and 52 as switching means. Switch.

【0075】このように構成することにより、共通集熱
運転回路91または共通冷媒加熱運転回路92での運転時
に、貯湯湯水循環回路33と浴槽湯水循環回路37とを選択
的に動作させることにより、貯湯タンク21の湯水と浴槽
25の湯水とをそれぞれ個別に沸き上げることができると
ともに、貯湯タンク21の湯水と浴槽25の湯水とを並行し
て沸き上げることもできる。そして、第1の熱交換器35
と第2の熱交換器39とを直列に接続したことで、電磁弁
53,54や配管の一部などを省略して構造的に簡略化でき
るとともに、電磁弁53,54の切換制御が必要なくなって
制御的にも簡略化できる。
With such a configuration, when the common heat collecting operation circuit 91 or the common refrigerant heating operation circuit 92 operates, the hot water circulation circuit 33 and the bath water circulation circuit 37 are selectively operated. Hot water and bathtub in hot water storage tank 21
The 25 hot water can be boiled individually, and the hot water in the hot water storage tank 21 and the hot water in the bathtub 25 can be heated in parallel. Then, the first heat exchanger 35
And the second heat exchanger 39 are connected in series.
The structure can be simplified by omitting 53, 54 and a part of the piping, and the switching control of the solenoid valves 53, 54 is not required, so that the control can be simplified.

【0076】なお、圧縮機42からの冷媒出力側には第1
の熱交換器35、第2の熱交換器39の順に接続してもよ
い。
The first refrigerant output side from the compressor 42 is
The heat exchanger 35 and the second heat exchanger 39 may be connected in this order.

【0077】また、各集熱運転回路47,48による集熱運
転効率(集熱熱量/使用熱量=COP)が所定条件より
高いか低いか判断する集熱運転効率判断手段としては、
上述した表1に示す外気温度と湯温とに応じた運転モー
ドを判断するために段階的に設定された所定条件の他、
外気温度が2℃以上で集熱運転し、湯温が上昇すると冷
媒加熱運転し、図8のグラフのように外気温度と湯温と
に応じた運転モードを判断するために連続的に設定され
た所定条件、または、集熱運転効率(集熱熱量/使用熱
量)COP=4>湯温−水温・貯湯タンク容量/圧縮機
出力・3612kJのときに集熱運転、集熱運転効率(集
熱熱量/使用熱量)COP=4≦湯温−水温・貯湯タン
ク容量/圧縮機出力・3612kJのときに冷媒加熱運転
する所定条件により、運転モードを切り換えることがで
きる。
The heat collection operation efficiency determining means for judging whether the heat collection operation efficiency (heat collection heat amount / use heat amount = COP) by each of the heat collection operation circuits 47 and 48 is higher or lower than a predetermined condition is as follows.
In addition to the predetermined conditions set in stages to determine the operation mode according to the outside air temperature and the hot water temperature shown in Table 1 described above,
The heat collecting operation is performed when the outside air temperature is 2 ° C. or higher, and the refrigerant heating operation is performed when the hot water temperature rises. As shown in the graph of FIG. 8, the operation mode is continuously set to determine the operation mode according to the outside air temperature and the hot water temperature. Heat collection operation, heat collection operation efficiency (heat collection amount / heat use amount) COP = 4> hot water temperature−water temperature / hot water storage tank capacity / compressor output · 3612 kJ The amount of heat / the amount of heat used) COP = 4 ≦ hot water temperature−water temperature / hot water storage tank capacity / compressor output. The operation mode can be switched according to the predetermined condition of the refrigerant heating operation when 3612 kJ.

【0078】図8のグラフに示すように、集熱運転効率
判断手段は、外気温度変化と湯温変化との関係に基づい
て設定される判断基準ラインAを有し、この判断基準ラ
インAより外気温度が高くかつ湯温が低い場合に集熱運
転効率が高いと判断し、判断基準ラインAより外気温度
が低くかつ湯温が高い場合に集熱運転効率が低い(冷媒
過熱運転効率が高い)と判断するので、外気温度変化お
よび湯温変化に応じた運転効率を正確に判断できる。判
断基準ラインAは、集熱運転効率(集熱熱量/使用熱
量)COPに基づいて設定される。
As shown in the graph of FIG. 8, the heat collecting operation efficiency determining means has a criterion line A set based on the relationship between the outside air temperature change and the hot water temperature change. When the outside air temperature is high and the hot water temperature is low, it is determined that the heat collection operation efficiency is high. When the outside air temperature is low and the hot water temperature is higher than the judgment reference line A, the heat collection operation efficiency is low (the refrigerant overheating operation efficiency is high). ), It is possible to accurately determine the operation efficiency according to the change in the outside air temperature and the change in the hot water temperature. The judgment reference line A is set based on the heat collection operation efficiency (heat collection heat amount / use heat amount) COP.

【0079】なお、所定条件を任意に変化させることに
より、冷媒加熱運転の割合を減少させて、加熱器45から
の二酸化炭素の発生量を少なくしたり、ランニングコス
トを少なくすることができる。
By changing the predetermined condition arbitrarily, the rate of the refrigerant heating operation can be reduced, so that the amount of carbon dioxide generated from the heater 45 can be reduced and the running cost can be reduced.

【0080】また、機器移動の際には、四方弁46を逆サ
イクルさせ、圧縮機42の駆動で冷媒循環回路41内の冷媒
を圧縮機42および蒸発器44側に回収させることができ
る。
Further, when the equipment is moved, the four-way valve 46 is cycled in a reverse cycle, and the refrigerant in the refrigerant circuit 41 can be recovered to the compressor 42 and the evaporator 44 by driving the compressor 42.

【0081】また、加熱器45は、灯油などの燃料を燃焼
させるバーナー57の他、ガスなどの燃料を燃焼させるバ
ーナーを用いてもよい。
The heater 45 may use a burner for burning fuel such as gas in addition to the burner 57 for burning fuel such as kerosene.

【0082】[0082]

【発明の効果】請求項1記載の湯沸装置によれば、浴槽
湯水循環回路との間で熱交換する冷媒循環回路に、圧縮
機、熱交換器および集熱器が順次接続されて構成される
集熱運転回路と、圧縮機、熱交換器および加熱器が順次
接続されて構成される冷媒加熱運転回路とを備え、これ
ら集熱運転回路と冷媒加熱運転回路とを切換手段で切り
換えるように構成しているので、例えば、集熱運転効率
が高い場合には集熱運転回路による集熱運転を実行し、
集熱運転効率が低い場合には冷媒加熱運転回路による加
熱運転を実行することができ、集熱運転効率が低い状況
下でも浴槽内の湯水を所定温度まで沸き上げる沸上時間
を短くできるとともにランニングコストを低減できる。
According to the water heater of the first aspect, the compressor, the heat exchanger, and the heat collector are sequentially connected to the refrigerant circulation circuit that exchanges heat with the bathtub water circulation circuit. And a refrigerant heating operation circuit configured by sequentially connecting a compressor, a heat exchanger, and a heater, and switching between the heat collection operation circuit and the refrigerant heating operation circuit by switching means. Since it is configured, for example, when the heat collection operation efficiency is high, the heat collection operation is performed by the heat collection operation circuit,
When the heat collection operation efficiency is low, the heating operation by the refrigerant heating operation circuit can be executed, and even under the condition where the heat collection operation efficiency is low, the boiling time for boiling the water in the bathtub to a predetermined temperature can be reduced and the running can be performed. Cost can be reduced.

【0083】請求項2記載の給湯装置によれば、冷媒循
環回路に、圧縮機、第1の熱交換器および集熱器が順次
接続されて構成される第1の集熱運転回路と、圧縮機、
第2の熱交換器および集熱器が順次接続されて構成され
る第2の集熱運転回路と、圧縮機、第1の熱交換器およ
び加熱器が順次接続されて構成される第1の冷媒加熱運
転回路と、圧縮機、第2の熱交換器および加熱器が順次
接続されて構成される第2の冷媒加熱運転回路とを備
え、これら各運転回路を切換手段で切り換えるように構
成し、第1の熱交換器を介して貯湯湯水循環回路との間
で熱交換するとともに、第2の熱交換器を介して浴槽湯
水循環回路との間で熱交換するので、例えば、集熱運転
効率が高い場合には集熱運転回路による集熱運転を実行
し、集熱運転効率が低い場合には冷媒加熱運転回路によ
る加熱運転を実行することができ、集熱運転効率が低い
状況下でも浴槽内の湯水や貯湯タンク内の湯水を所定温
度まで沸き上げる沸上時間を短くできるとともにランニ
ングコストを低減できる。
According to the hot water supply apparatus of the second aspect, the first heat collecting operation circuit configured by connecting the compressor, the first heat exchanger, and the heat collector to the refrigerant circulation circuit sequentially; Machine,
A second heat collecting operation circuit configured by sequentially connecting the second heat exchanger and the heat collector; and a first heat configured by sequentially connecting the compressor, the first heat exchanger, and the heater. A refrigerant heating operation circuit; and a second refrigerant heating operation circuit configured by sequentially connecting the compressor, the second heat exchanger, and the heater, and each of the operation circuits is switched by switching means. Since heat is exchanged with the hot water circulation circuit via the first heat exchanger and with the hot water circulation circuit via the second heat exchanger, for example, heat collection operation When the efficiency is high, the heat collecting operation by the heat collecting operation circuit can be executed, and when the heat collecting operation efficiency is low, the heating operation by the refrigerant heating operation circuit can be executed. Boiling the water in the bathtub or hot water tank to a predetermined temperature Time the running cost can be reduced with a can be shortened.

【0084】請求項3記載の給湯装置によれば、冷媒循
環回路に、圧縮機、第1の熱交換器、第2の熱交換器お
よび集熱器が順次接続されて構成される共通集熱運転回
路と、圧縮機、第1の熱交換器、第2の熱交換器および
加熱器が順次接続されて構成される共通冷媒加熱運転回
路とを備え、これら共通集熱運転回路と共通冷媒加熱運
転回路とを切換手段で切り換えるように構成し、第1の
熱交換器を介して貯湯湯水循環回路との間で熱交換する
とともに、第2の熱交換器を介して浴槽湯水循環回路と
の間で熱交換するので、例えば、集熱運転効率が高い場
合には集熱運転回路による集熱運転を実行し、集熱運転
効率が低い場合には冷媒加熱運転回路による加熱運転を
実行することができ、集熱運転効率が低い状況下でも浴
槽内の湯水や貯湯タンク内の湯水を所定温度まで沸き上
げる沸上時間を短くできるとともにランニングコストを
低減できる。
According to the third aspect of the present invention, a common heat collector is formed by sequentially connecting the compressor, the first heat exchanger, the second heat exchanger, and the heat collector to the refrigerant circuit. An operation circuit, and a common refrigerant heating operation circuit configured by sequentially connecting the compressor, the first heat exchanger, the second heat exchanger, and the heater. The operation circuit is switched by the switching means to exchange heat with the hot water circulation circuit via the first heat exchanger and to exchange with the bathtub hot water circulation circuit via the second heat exchanger. Since heat is exchanged between, for example, when the heat collection operation efficiency is high, the heat collection operation by the heat collection operation circuit is performed, and when the heat collection operation efficiency is low, the heating operation by the refrigerant heating operation circuit is performed. Hot water and hot water in the bathtub even under low heat collection operation efficiency The hot water in the tank the running cost can be reduced with a shorter heating-up time increasing boiling to a predetermined temperature.

【0085】請求項4記載の給湯装置によれば、請求項
2または3記載の給湯装置の効果に加えて、集熱器とし
てソーラ集熱器を使用することにより、ランニングコス
トを低減できる。
According to the hot water supply device of the fourth aspect, in addition to the effect of the hot water supply device of the second or third aspect, the running cost can be reduced by using a solar heat collector as a heat collector.

【0086】請求項5記載の給湯装置によれば、請求項
2ないし4いずれか記載の給湯装置の効果に加えて、集
熱運転効率判断手段により集熱運転回路による集熱運転
効率が所定条件より高いか低いか判断することで、制御
手段により、集熱運転効率が所定条件より高いと判断さ
れるときは集熱運転回路による集熱運転を、所定条件よ
り低いと判断されるときは冷媒加熱運転回路による冷媒
加熱運転を自動的に実行させることができる。
According to the water heater of the fifth aspect, in addition to the effects of the water heater of any of the second to fourth aspects, the heat collecting operation efficiency of the heat collecting operation circuit is determined by the heat collecting operation efficiency judging means under a predetermined condition. By judging whether the operation is higher or lower, the control means determines that the heat collection operation efficiency is higher than a predetermined condition. The refrigerant heating operation by the heating operation circuit can be automatically executed.

【0087】請求項6記載の給湯装置によれば、請求項
5記載の給湯装置の効果に加えて、集熱運転効率判断手
段は、外気温度検知手段で検知される外気温度と湯温検
知手段で検知される湯温との両方を所定条件として判断
するので、集熱運転効率を正確に判断できる。
According to the hot water supply apparatus of the sixth aspect, in addition to the effect of the hot water supply apparatus of the fifth aspect, the heat collecting operation efficiency determining means includes an outside air temperature detected by the outside air temperature detecting means and a hot water temperature detecting means. And the hot water temperature detected in step (1) is determined as the predetermined condition, so that the heat collecting operation efficiency can be accurately determined.

【0088】請求項7記載の給湯装置によれば、請求項
6記載の給湯装置の効果に加えて、集熱運転効率判断手
段は、外気温度変化と湯温変化との関係に基づいて設定
される判断基準ラインより外気温度が高くかつ湯温が低
い場合に集熱運転効率が高いと判断し、判断基準ライン
より外気温度が低くかつ湯温が高い場合に集熱運転効率
が低いと判断するので、外気温度変化および湯温変化に
応じた集熱運転効率を正確に判断できる。
According to the water heater of the seventh aspect, in addition to the effect of the water heater of the sixth aspect, the heat collecting operation efficiency determining means is set based on the relationship between the outside air temperature change and the hot water temperature change. When the outside air temperature is higher and the hot water temperature is lower than the judgment reference line, it is determined that the heat collection operation efficiency is high. When the outside air temperature is lower and the hot water temperature is higher than the judgment reference line, the heat collection operation efficiency is determined to be low. Therefore, it is possible to accurately determine the heat collection operation efficiency according to the change in the outside air temperature and the change in the hot water temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す給湯装置の構成図
である。
FIG. 1 is a configuration diagram of a hot water supply apparatus according to an embodiment of the present invention.

【図2】同上給湯装置の第1の集熱運転回路による運転
動作を説明する構成図である。
FIG. 2 is a configuration diagram illustrating an operation of the hot water supply apparatus by a first heat collection operation circuit.

【図3】同上給湯装置の第1の冷媒加熱運転回路による
運転動作を説明する構成図である。
FIG. 3 is a configuration diagram illustrating an operation of the water heating apparatus by a first refrigerant heating operation circuit.

【図4】同上給湯装置での所定条件に応じた集熱運転と
冷媒加熱運転の切換動作を説明するフローチャートであ
る。
FIG. 4 is a flowchart illustrating a switching operation between a heat collecting operation and a refrigerant heating operation in the water heater according to predetermined conditions.

【図5】同上給湯装置の第2の冷媒加熱運転回路による
運転動作を説明する構成図である。
FIG. 5 is a configuration diagram illustrating an operation of the hot water supply apparatus by a second refrigerant heating operation circuit.

【図6】本発明の他の実施の形態を示す給湯装置の構成
図である。
FIG. 6 is a configuration diagram of a hot water supply apparatus showing another embodiment of the present invention.

【図7】本発明のさらに他の実施の形態を示す給湯装置
の構成図である。
FIG. 7 is a configuration diagram of a hot water supply apparatus showing still another embodiment of the present invention.

【図8】本発明の給湯装置の外気温度と湯温とに応じた
運転モードを判断する所定条件を示すグラフである。
FIG. 8 is a graph showing predetermined conditions for determining an operation mode according to the outside air temperature and the hot water temperature of the hot water supply apparatus of the present invention.

【符号の説明】[Explanation of symbols]

11 給湯装置 21 貯湯タンク 25 浴槽 33 貯湯湯水循環回路 34 第1の循環ポンプ 35 第1の熱交換器 36 循環口 37 浴槽湯水循環回路 38 第2の循環ポンプ(循環ポンプ) 39 第2の熱交換器(熱交換器) 41 冷媒循環回路 42 圧縮機 44 集熱器としての蒸発器 45 加熱器 47 第1の集熱運転回路 48 第2の集熱運転回路(集熱運転回路) 49 第1の冷媒加熱運転回路 50 第2の冷媒加熱運転回路(冷媒加熱運転回路) 51,52,53,54 切換手段としての電磁弁 61,62 湯温検知手段としての湯温検知センサ 63 外気温度検知手段としての外気温度検知センサ 71 制御手段および集熱運転効率判断手段の機能を有
する制御部 81 集熱器としてのソーラ集熱器 82 切換手段としての電磁弁 91 共通集熱運転回路 92 共通冷媒加熱運転回路
11 Hot water supply device 21 Hot water storage tank 25 Bath tub 33 Hot water storage water circulation circuit 34 First circulation pump 35 First heat exchanger 36 Circulation port 37 Bathtub hot water circulation circuit 38 Second circulation pump (circulation pump) 39 Second heat exchange (Heat exchanger) 41 refrigerant circulation circuit 42 compressor 44 evaporator as a heat collector 45 heater 47 first heat collection operation circuit 48 second heat collection operation circuit (heat collection operation circuit) 49 first Refrigerant heating operation circuit 50 Second refrigerant heating operation circuit (refrigerant heating operation circuit) 51, 52, 53, 54 Electromagnetic valves 61, 62 as switching means Hot water temperature detection sensor as hot water temperature detecting means 63 As outside air temperature detecting means Outside air temperature detection sensor 71 Control unit having functions of control means and heat collection operation efficiency judgment means 81 Solar heat collector as heat collector 82 Solenoid valve as switching means 91 Common heat collection operation circuit 92 Common refrigerant heating operation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢島 初男 群馬県前橋市古市町180番地 東芝機器株 式会社内 (72)発明者 今井 英充 群馬県前橋市古市町180番地 東芝機器株 式会社内 (72)発明者 入野 賢志 群馬県前橋市古市町180番地 東芝機器株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hatsune Yajima 180 Furuichi-cho, Maebashi-shi, Gunma Toshiba Equipment Co., Ltd. (72) Inventor Hidemitsu Imai 180 Furuichi-cho, Maebashi-shi, Gunma Pref. 72) Inventor Kenshi Irino 180 Furuichi-cho, Maebashi City, Gunma Prefecture Inside Toshiba Equipment Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱交換器、集熱器および加熱器
を有するとともに、これら圧縮機、熱交換器および集熱
器が順次接続されて構成される集熱運転回路と、圧縮
機、熱交換器および加熱器が順次接続されて構成される
冷媒加熱運転回路とのいずれかに切り換える切換手段を
有し、これら集熱運転回路および冷媒加熱運転回路に冷
媒が循環される冷媒循環回路と、 浴槽に設置される循環口および循環ポンプを有し、これ
ら循環口、循環ポンプおよび前記熱交換器が順次接続さ
れて浴槽内の湯水が循環される浴槽湯水循環回路とを具
備していることを特徴とする湯沸装置。
1. A heat collecting operation circuit comprising a compressor, a heat exchanger, a heat collector and a heater, wherein the compressor, the heat exchanger and the heat collector are sequentially connected, and a compressor; A refrigerant circulation circuit in which a refrigerant is circulated through the heat collection operation circuit and the refrigerant heating operation circuit, the switching device having a switching unit for switching to any one of a refrigerant heating operation circuit configured by sequentially connecting a heat exchanger and a heater; A circulating port and a circulating pump installed in the bathtub, and a bathtub hot water circulation circuit in which the circulating port, the circulating pump and the heat exchanger are sequentially connected to circulate the hot water in the bathtub; A water heater characterized by the above.
【請求項2】 圧縮機、第1の熱交換器、第2の熱交換
器、集熱器および加熱器を有するとともに、これら圧縮
機、第1の熱交換器および集熱器が順次接続されて構成
される第1の集熱運転回路と、圧縮機、第2の熱交換器
および集熱器が順次接続されて構成される第2の集熱運
転回路と、圧縮機、第1の熱交換器および加熱器が順次
接続されて構成される第1の冷媒加熱運転回路と、圧縮
機、第2の熱交換器および加熱器が順次接続されて構成
される第2の冷媒加熱運転回路とのいずれかに切り換え
る切換手段を有し、これら各集熱運転回路および各冷媒
加熱運転回路に冷媒が循環される冷媒循環回路と、 貯湯タンクおよび第1の循環ポンプを有し、これら貯湯
タンク、第1の循環ポンプおよび前記第1の熱交換器が
順次接続されて貯湯タンク内の湯水が循環される貯湯湯
水循環回路と、 浴槽に設置される循環口および第2の循環ポンプを有
し、これら循環口、第2の循環ポンプおよび前記第2の
熱交換器が順次接続されて浴槽内の湯水が循環される浴
槽湯水循環回路とを具備していることを特徴とする給湯
装置。
2. It has a compressor, a first heat exchanger, a second heat exchanger, a heat collector, and a heater, and the compressor, the first heat exchanger, and the heat collector are sequentially connected. A first heat collection operation circuit configured by connecting a compressor, a second heat exchanger, and a heat collector in this order; a compressor; and a first heat collection operation circuit. A first refrigerant heating operation circuit configured by sequentially connecting an exchanger and a heater; a second refrigerant heating operation circuit configured by sequentially connecting a compressor, a second heat exchanger and a heater; A refrigerant circulation circuit in which refrigerant is circulated through each of the heat collection operation circuit and each of the refrigerant heating operation circuits; a hot water storage tank and a first circulation pump; A first circulation pump and the first heat exchanger are sequentially connected to each other to A hot and cold water circulation circuit for circulating hot and cold water in the bath, a circulation port and a second circulation pump installed in the bathtub, and these circulation ports, the second circulation pump and the second heat exchanger are sequentially arranged. A hot water supply device, comprising: a bathtub hot water circulation circuit that is connected to circulate hot water in the bathtub.
【請求項3】 圧縮機、第1の熱交換器、第2の熱交換
器、集熱器および加熱器を有するとともに、これら圧縮
機、第1の熱交換器、第2の熱交換器および集熱器が順
次接続されて構成される共通集熱運転回路と、圧縮機、
第1の熱交換器、第2の熱交換器および加熱器が順次接
続されて構成される共通冷媒加熱運転回路とのいずれか
に切り換える切換手段を有し、これら共通集熱運転回路
および共通冷媒加熱運転回路に冷媒が循環される冷媒循
環回路と、 貯湯タンクおよび第1の循環ポンプを有し、これら貯湯
タンク、第1の循環ポンプおよび前記第1の熱交換器が
順次接続されて貯湯タンク内の湯水が循環される貯湯湯
水循環回路と、 浴槽に設置される循環口および第2の循環ポンプを有
し、これら循環口、第2の循環ポンプおよび前記第2の
熱交換器が順次接続されて浴槽内の湯水が循環される浴
槽湯水循環回路とを具備していることを特徴とする給湯
装置。
3. A compressor, a first heat exchanger, a second heat exchanger, a collector and a heater, and the compressor, the first heat exchanger, the second heat exchanger and A common heat collecting operation circuit configured by sequentially connecting the heat collectors, a compressor,
Switching means for switching to one of a first heat exchanger, a second heat exchanger, and a common refrigerant heating operation circuit configured by sequentially connecting the heaters, the common heat collection operation circuit and the common refrigerant; A refrigerant circulation circuit for circulating refrigerant in a heating operation circuit, a hot water storage tank and a first circulation pump, wherein the hot water storage tank, the first circulation pump and the first heat exchanger are sequentially connected, and A hot water circulation circuit for circulating hot water in the bath, a circulation port and a second circulation pump installed in the bathtub, and these circulation ports, the second circulation pump and the second heat exchanger are sequentially connected. A hot tub circulation circuit for circulating hot and cold water in the bath tub.
【請求項4】 集熱器は、熱交換器に対して並列に接続
される蒸発器およびソーラ集熱器を有していることを特
徴とする請求項2または3記載の給湯装置。
4. The water heater according to claim 2, wherein the heat collector has an evaporator and a solar heat collector connected in parallel to the heat exchanger.
【請求項5】 集熱運転回路による集熱運転効率が所定
条件より高いか低いか判断する集熱運転効率判断手段
と、 この集熱運転効率判断手段で集熱運転効率が所定条件よ
り高いと判断されるときは集熱運転回路による集熱運転
を実行させ、所定条件より低いと判断されるときは冷媒
加熱運転回路による冷媒加熱運転を実行させる制御手段
とを備えていることを特徴とする請求項2ないし4いず
れか記載の給湯装置。
5. A heat collecting operation efficiency judging means for judging whether the heat collecting operation efficiency by the heat collecting operation circuit is higher or lower than a predetermined condition, and if the heat collecting operation efficiency is higher than the predetermined condition. Control means for executing a heat collection operation by the heat collection operation circuit when judged, and executing a refrigerant heating operation by the refrigerant heating operation circuit when judged to be lower than a predetermined condition. The hot water supply device according to claim 2.
【請求項6】 外気温度を検知する外気温度検知手段
と、 沸き上げる湯水の温度を検知する湯温検知手段とを備
え、 集熱運転効率判断手段は、外気温度検知手段で検知され
る外気温度と湯温検知手段で検知される湯温との両方を
所定条件として判断することを特徴とする請求項5記載
の給湯装置。
6. An outside air temperature detecting means for detecting an outside air temperature, and a hot water temperature detecting means for detecting a temperature of boiling hot water, the heat collecting operation efficiency judging means includes an outside air temperature detected by the outside air temperature detecting means. 6. The hot water supply apparatus according to claim 5, wherein both of the predetermined condition and the hot water temperature detected by the hot water temperature detecting means are determined.
【請求項7】 集熱運転効率判断手段は、外気温度変化
と湯温変化との関係に基づいて設定される判断基準ライ
ンを有し、この判断基準ラインより外気温度が高くかつ
湯温が低い場合に集熱運転効率が高いと判断し、判断基
準ラインより外気温度が低くかつ湯温が高い場合に集熱
運転効率が低いと判断することを特徴とする請求項6記
載の給湯装置。
7. The heat collecting operation efficiency determining means has a criterion line set based on a relationship between a change in outside air temperature and a change in hot water temperature, wherein the outside air temperature is higher and the hot water temperature is lower than the criterion line. 7. The hot water supply apparatus according to claim 6, wherein the heat collection operation efficiency is determined to be high in the case, and the heat collection operation efficiency is determined to be low when the outside air temperature is lower than the determination reference line and the hot water temperature is higher.
JP2000102756A 2000-04-04 2000-04-04 Hot-water heater and hot-water supplier Pending JP2001289505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000102756A JP2001289505A (en) 2000-04-04 2000-04-04 Hot-water heater and hot-water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000102756A JP2001289505A (en) 2000-04-04 2000-04-04 Hot-water heater and hot-water supplier

Publications (1)

Publication Number Publication Date
JP2001289505A true JP2001289505A (en) 2001-10-19

Family

ID=18616578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000102756A Pending JP2001289505A (en) 2000-04-04 2000-04-04 Hot-water heater and hot-water supplier

Country Status (1)

Country Link
JP (1) JP2001289505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097804A (en) * 2007-10-17 2009-05-07 Panasonic Electric Works Co Ltd Water heating system
JP2010117083A (en) * 2008-11-13 2010-05-27 Nippon Thermoener Co Ltd Hot water supply system
JP2014142153A (en) * 2013-01-25 2014-08-07 Toho Gas Co Ltd Hot water system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097804A (en) * 2007-10-17 2009-05-07 Panasonic Electric Works Co Ltd Water heating system
JP2010117083A (en) * 2008-11-13 2010-05-27 Nippon Thermoener Co Ltd Hot water supply system
JP2014142153A (en) * 2013-01-25 2014-08-07 Toho Gas Co Ltd Hot water system

Similar Documents

Publication Publication Date Title
KR900000809B1 (en) Room-warming/cooling and hot-water supplying heat-pump apparatus
JP4023139B2 (en) Hybrid water heater
JP5185091B2 (en) Heat pump hot water supply system
JP3969154B2 (en) Hot water storage water heater
JP2002048398A (en) Heat pump hot water supply apparatus
JP3788419B2 (en) Water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2004317093A (en) Heat pump hot water supply and heating apparatus
KR101298323B1 (en) Method for controlling hot water circulation system associated with heat pump
JP3387474B2 (en) Heat pump water heater
JP2001289505A (en) Hot-water heater and hot-water supplier
JPH0539957A (en) Hot water feeding, cooling and heating device
JPH01285758A (en) Heat pump type room cooling and hot-water supplying machine
JP2006003077A (en) Heat pump type hot water supply apparatus
JP3985773B2 (en) Hot water storage water heater
CN213273217U (en) Heat pump water heater
JP3888117B2 (en) Hot water storage water heater
JP5097054B2 (en) Heat pump water heater
CN112066551A (en) Heat pump water heater and control method thereof
JP4790538B2 (en) Hot water storage hot water heater
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JP2012242012A (en) Hot water storage type water heater
JP2007071471A (en) Heating device and hot-water supply heating device
JPH0740926Y2 (en) Water heater
JP2005147557A (en) Hot water supply apparatus