JP2001288335A - Insulating spacer, its use and method for producing the same - Google Patents

Insulating spacer, its use and method for producing the same

Info

Publication number
JP2001288335A
JP2001288335A JP2000104034A JP2000104034A JP2001288335A JP 2001288335 A JP2001288335 A JP 2001288335A JP 2000104034 A JP2000104034 A JP 2000104034A JP 2000104034 A JP2000104034 A JP 2000104034A JP 2001288335 A JP2001288335 A JP 2001288335A
Authority
JP
Japan
Prior art keywords
insulating spacer
insulating
epoxy resin
gas
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000104034A
Other languages
Japanese (ja)
Inventor
Shigeo Suzuki
重雄 鈴木
Kenji Ikeda
賢二 池田
Haruichi Nakai
晴一 中井
Toshio Sugawara
捷夫 菅原
Yuuichi Satsuu
祐一 佐通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000104034A priority Critical patent/JP2001288335A/en
Publication of JP2001288335A publication Critical patent/JP2001288335A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an insulating spacer improved in a phenomenon which is a problem in conventional insulating spacers that modulus of elasticity is remarkably decreased at temperatures above the glass transition temperature (Tg), having high modulus of elasticity even at temperatures above Tg, having a small deformation against a mechanical loading and excellent in reliability and to provide a method for producing the spacer. SOLUTION: This insulating spacer is characterized in that the spacer is formed by a cured product of an epoxy resin composition comprising a polyfunctional epoxy resin, a specific organosilicon compound, an acid anhydride and an inorganic filler in the insulating spacer insulatively supporting a conductor arranged in a container filled with an insulating gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な絶縁スペーサ
とその製造方法に係り、好ましくは六フッ化イオウ(SF
6)ガス等の絶縁ガスが充填された容器内に配設された
導体を絶縁支持する絶縁スペーサとその製造方法及びそ
れを用いたガス絶縁開閉装置並びにガス絶縁管路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel insulating spacer and a method for manufacturing the same, and preferably to sulfur hexafluoride (SF).
6 ) An insulating spacer for insulating and supporting a conductor disposed in a container filled with an insulating gas such as a gas, a method for manufacturing the same, a gas-insulated switchgear using the same, and a gas-insulated conduit.

【0002】[0002]

【従来の技術】ガス絶縁機器用絶縁スペーサはSF6ガス
等の絶縁ガスを充填した接地金属容器内の高電圧導体を
支持するもので、ベース樹脂に充填剤を配合した構成で
ある。SF6を絶縁ガスとする場合、アーク放電やコロナ
放電によってSF6ガスが分解され、フッ化水素(HF)が
発生することから、絶縁スペーサの構成材料には耐フッ
化水素性を有する材料が適用されている。ベース樹脂に
は機械特性、電気特性及び製造時の注型作業性から主に
エポキシ樹脂と酸無水物の混合物が、充填剤には耐フッ
化水素性の観点からアルミナが主流になっている。
BACKGROUND ART insulating spacer gas insulated equipment is intended to support the high-voltage conductor in the grounding metal container filled with insulating gas such as SF 6 gas, a structure obtained by blending the filler into the base resin. When SF 6 is used as an insulating gas, the SF 6 gas is decomposed by arc discharge or corona discharge, and hydrogen fluoride (HF) is generated. Have been applied. A mixture of an epoxy resin and an acid anhydride is mainly used for the base resin from the viewpoint of mechanical properties, electrical characteristics and casting workability during production, and an alumina is mainly used for the filler from the viewpoint of hydrogen fluoride resistance.

【0003】近年、消費電力の増大、都市近郊の用地確
保難及び地下変電設備の開発等から、送変電機器である
ガス絶縁開閉装置やガス絶縁管路気中送電線には大容量
化並びにコンパクト化が要求されている。したがって、
これら装置に適用される絶縁スペーサには、低誘電率化
と高耐熱化が要求されている。これに対処するため、低
誘電率化を図るには充填剤として、例えば特開平5―1
46035号公報、特開平9―176288号公報には
フッ化アルミニウムとアルミナを混合して用いる方法
が、また高耐熱化を図るために多官能エポキシ樹脂の適
用による高Tg(ガラス転移温度)化する方法等が開示
されている。一方、各種電気機器用絶縁樹脂の低コスト
充填剤として知られているシリカは、低誘電率にも係わ
らず前述の様に耐フッ化水素性が著しく劣るため、SF6
ガスを絶縁ガスとする装置等への適用が避けられてき
た。しかし、近年の経済不況による価格競争の激化と共
に、これら装置においてSF6分解ガスが発生し難い部所
には、シリカを充填剤とする低コスト絶縁スペーサの適
用が検討され始めている。これに伴い、絶縁スペーサの
構成材料にケイ素化合物を積極的に採用し、高性能化を
図る気運も高まっている。
[0003] In recent years, due to the increase in power consumption, difficulty in securing land near the city, and development of underground substation, etc., gas insulated switchgear and gas insulated conduit air transmission lines as transmission and substation equipment have been increased in capacity and compactness. Is required. Therefore,
Insulating spacers applied to these devices are required to have low dielectric constant and high heat resistance. In order to cope with this, to reduce the dielectric constant, as a filler, for example, JP-A-5-15-1
JP-A-46035 and JP-A-9-176288 disclose a method of using a mixture of aluminum fluoride and alumina, and increase the Tg (glass transition temperature) by applying a polyfunctional epoxy resin in order to achieve high heat resistance. Methods and the like are disclosed. Meanwhile, a silica which is known as a low-cost filler of the insulating resin for various electrical equipment, because the resistance to hydrogen fluoride resistance as described above despite the low dielectric constant significantly inferior, SF 6
Application to devices using gas as an insulating gas has been avoided. However, the price competition by recent economic recession, SF 6 decomposition gas in these devices the hardly occurs duty post, the application of low-cost insulating spacer silica-filler has begun to be studied. Along with this, there is an increasing trend to improve the performance by actively adopting a silicon compound as a constituent material of the insulating spacer.

【0004】[0004]

【本発明が解決しようとする課題】前記公報に示す絶縁
スペーサは特定のエポキシ当量を有する多官能エポキシ
を適用することにより、比較的高耐熱性が得られるもの
の、送電容量の大容量化に伴う導体温度がさらに上昇す
る場合を考慮すると、必ずしも十分とは言い難い。特に
これら絶縁スペーサではTgを越えると急激な弾性率の
低下や線膨張係数の増加を招き、機械的強度に対する信
頼性が損なわれる。
The insulating spacer disclosed in the above-mentioned publication can obtain relatively high heat resistance by applying a polyfunctional epoxy having a specific epoxy equivalent, but is accompanied by an increase in power transmission capacity. Considering the case where the conductor temperature further increases, it is not always sufficient. In particular, when these insulating spacers exceed Tg, a sudden decrease in elastic modulus and an increase in linear expansion coefficient are caused, and reliability with respect to mechanical strength is impaired.

【0005】本発明の目的は従来の絶縁スペーサの問題
点であるTgを越えると急激に弾性率が低下する現象を
改善し、Tgを越えた温度においても弾性率が高く、機
械的強度に優れた絶縁スペーサとその製造方法を提供す
ることである。
An object of the present invention is to improve the problem that the elastic modulus suddenly decreases when the temperature exceeds Tg, which is a problem of the conventional insulating spacer, and the elastic modulus is high even at a temperature exceeding Tg, and the mechanical strength is excellent. And a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、絶縁ガスが充
填された容器内に配設された導体を絶縁支持する絶縁ス
ペーサにおいて、該絶縁スペーサは多官能エポキシ樹脂
と、下記一般式(1)又は(2)に示す、
According to the present invention, there is provided an insulating spacer for insulating and supporting a conductor provided in a container filled with an insulating gas, wherein the insulating spacer comprises a polyfunctional epoxy resin and the following general formula (1): ) Or (2),

【0007】[0007]

【化5】 Embedded image

【0008】[0008]

【化6】 Embedded image

【0009】の有機ケイ素化合物(Rは酸無水物と付加
反応を起こす官能基を含む有機基であり、nは0個から
3個、XがH、CH3あるいはC25である)と、酸無
水物と、無機充填剤とを含むエポキシ樹脂組成物の硬化
物で形成されていることを特徴とする。
(R is an organic group containing a functional group which causes an addition reaction with an acid anhydride, n is 0 to 3 and X is H, CH 3 or C 2 H 5 ) , A cured product of an epoxy resin composition containing an acid anhydride and an inorganic filler.

【0010】本発明に用いるエポキシ樹脂は絶縁スペー
サとして要求される耐熱性及び絶縁スペーサが注型で作
製されることから、注型時の温度で粘度が低く作業性が
良好なこと等を両立するために、エポキシ当量150〜
250の多官能エポキシ樹脂が好ましい。係るエポキシ
樹脂としてはビスフェノールA型エポキシ樹脂、ビスフ
ェノールF型エポキシ樹脂、ビスフェノールA/F型エ
ポキシ樹脂、脂環式エポキシ樹脂等を単独あるいはこれ
ら混合物が挙げられる。
The epoxy resin used in the present invention has both the heat resistance required as an insulating spacer and the fact that the insulating spacer is made by casting, so that it has low viscosity at the temperature at the time of casting and good workability. For epoxy equivalent of 150 ~
250 polyfunctional epoxy resins are preferred. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol A / F type epoxy resin, alicyclic epoxy resin, and the like, or a mixture thereof.

【0011】本発明は、絶縁ガスが充填された容器内に
配設された導体を絶縁支持する絶縁スペーサの製造方法
において、該絶縁スペーサは下記一般式(3)又は
(4)に示す
According to the present invention, there is provided a method of manufacturing an insulating spacer for insulating and supporting a conductor provided in a container filled with an insulating gas, wherein the insulating spacer is represented by the following general formula (3) or (4).

【0012】[0012]

【化7】 Embedded image

【0013】[0013]

【化8】 Embedded image

【0014】の有機ケイ素化合物(ただし、Rは前記酸
無水物と付加反応を起こす官能基を含む有機基であり、
かつ、R1およびR2はメチル基またはエチル基である)
と、水と、加水分解用触媒とを含む有機ケイ素混合溶液
を製造する工程と、該混合溶液にエポキシ樹脂を加えて
加熱混合するエポキシ樹脂混合溶液を製造する工程と、
該エポキシ樹脂混合溶液に酸無水物と、無機充填剤とを
添加して混合し、次いでその混合溶液を所望の型に注入
し加熱硬化することを特徴とする。
An organosilicon compound (where R is an organic group containing a functional group which causes an addition reaction with the acid anhydride,
And R 1 and R 2 are a methyl group or an ethyl group)
And, a step of producing an organosilicon mixed solution containing water and a hydrolysis catalyst, and a step of producing an epoxy resin mixed solution in which an epoxy resin is added to the mixed solution and heated and mixed,
An acid anhydride and an inorganic filler are added to and mixed with the epoxy resin mixed solution, and then the mixed solution is poured into a desired mold and cured by heating.

【0015】即ち、一般式(3)または一般式(4)に
示す有機ケイ素化合物(ただし、Rは前記酸無水物と付
加反応を起こす官能基を含む有機基であり、かつ、R1
およびR2はメチル基またはエチル基である)に前記多
官能エポキシ樹脂、および水を含む混合物を好ましくは
60〜160℃で1〜10時間の熱処理を施こす。ここ
で、水の量は有機ケイ素化合物に対してモル比で3〜
0.02倍量が好ましい。この様にして作製した前記多
官能エポキシ樹脂と一般式(1)あるいは一般式(2)
の混合物に酸無水物を硬化剤として添加し、さらに機械
的強度の向上や低線膨張係数化を図るために無機充填剤
を添加する。
That is, an organosilicon compound represented by the general formula (3) or (4) (where R is an organic group containing a functional group that causes an addition reaction with the acid anhydride, and R 1
And R 2 is a methyl group or an ethyl group), and the mixture containing the polyfunctional epoxy resin and water is subjected to a heat treatment at preferably 60 to 160 ° C. for 1 to 10 hours. Here, the amount of water is 3 to
A 0.02 volume is preferred. The polyfunctional epoxy resin produced in this manner is combined with the general formula (1) or (2)
An acid anhydride is added as a curing agent to the above mixture, and an inorganic filler is further added to improve the mechanical strength and lower the coefficient of linear expansion.

【0016】本発明に用いる酸無水物としてはエポキシ
樹脂用硬化剤として知られている酸無水物であれば特に
制限がない。このような酸無水物としてはヘキサヒドロ
無水フタル酸、メチルヘキサヒドロ無水フタル酸、テト
ラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル
酸、ナジック酸無水物、メチルナジック酸無水物、無水
コハク酸、オクタデシル無水コハク酸、無水マレイン酸
等があり、これら単独あるいは混合物が挙げられる。
The acid anhydride used in the present invention is not particularly limited as long as it is an acid anhydride known as a curing agent for epoxy resins. Such acid anhydrides include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, nadic anhydride, methylnadic anhydride, succinic anhydride, octadecylsuccinic anhydride And maleic anhydride, and these may be used alone or as a mixture.

【0017】また、無機充填剤としてはエポキシ樹脂に
用いられる既知の材料が適宜選択されて使用され、例え
ば結晶質シリカ、溶融シリカ、アルミナ、フッ化アルミ
ニウム、酸化マグネシウム、炭酸カルシウム、炭酸マグ
ネシウム、ドロマイト、窒化ホウ素、水酸化アルミニウ
ム、水酸化マグネシウム等が挙げられるが、コスト及び
硬化物特性の観点から結晶質シリカ、溶融シリカ、アル
ミナ等が好ましい。
As the inorganic filler, known materials used for epoxy resins are appropriately selected and used, for example, crystalline silica, fused silica, alumina, aluminum fluoride, magnesium oxide, calcium carbonate, magnesium carbonate, dolomite. , Boron nitride, aluminum hydroxide, magnesium hydroxide and the like, and crystalline silica, fused silica, alumina and the like are preferable from the viewpoint of cost and cured product characteristics.

【0018】さらに注型用レジンとしての特性を改善す
るために必要に応じて各種助剤が添加され、例えば可と
う化剤、硬化促進剤、カップリング剤、着色剤及び酸化
防止剤等が適宜適用される。
Further, various auxiliaries are added as needed to improve the properties as a casting resin. For example, a flexible agent, a curing accelerator, a coupling agent, a coloring agent, an antioxidant and the like are appropriately added. Applied.

【0019】[0019]

【作用】本発明において、Tgを越えた温度領域で弾性
率が低下し難くなる理由は以下のような作用によると考
えられる。多官能エポキシ樹脂、有機ケイ素化合物(た
だし、酸無水物とと付加反応を起こす官能基を有する)
及び水の混合物の状態で熱処理を施すと、重付加型官能
基同士による分散性が高く、かつ粒径5nm以下の分子
レベルで均一に分散したオリゴマー程度の有機ケイ素化
合物が生成し易いことが、29Si―NMRの化学シフト
からわかった。一般式(3)または一般式(4)の有機
ケイ素化合物(ただし、Rは前記酸無水物と付加反応を
起こす官能基を含む有機基であり、かつ、R1およびR2
はメチル基またはエチル基である)の29Si―NMRの
化学シフトはー41ppmからー44ppmに吸収が現
れる。また、一般式(5)に示されるようなSi−O−
Siの結合を1つ持つSiの 29Si−NMRの化学シフ
トは
According to the present invention, elasticity in a temperature range exceeding Tg is obtained.
It is considered that the reason why the rate is hard to decrease is as follows.
available. Polyfunctional epoxy resin, organosilicon compound
However, it has a functional group that causes an addition reaction with acid anhydride)
And heat treatment in the state of a mixture of
Molecules with high dispersibility between groups and a particle size of 5 nm or less
Of organosilicon at the level of oligomers uniformly dispersed at the same level
That the compound is easy to produce,29Chemical shift of Si-NMR
I knew from Organic compounds of the general formula (3) or (4)
A silicon compound (where R represents an addition reaction with the acid anhydride)
An organic group containing a functional group,1And RTwo
Is a methyl or ethyl group)29Si-NMR
The chemical shift shows absorption from -41 ppm to -44 ppm.
It is. Further, Si—O— as represented by the general formula (5)
Si with one Si bond 29Chemical shift of Si-NMR
Is

【0020】[0020]

【化9】 Embedded image

【0021】ー48ppmからー52ppmに吸収が現
れる。また、一般式(6)に示されるような
Absorption appears from -48 ppm to -52 ppm. Further, as shown in the general formula (6),

【0022】[0022]

【化10】 Embedded image

【0023】Si―O−Siの結合を2つ持つSiの29
Si―NMRの化学シフトはー53ppm〜―63pp
mに吸収が現れる。さらに、一般式(7)に示されるよ
うなSi−O−Siの結
Si 29 having two Si—O—Si bonds
The chemical shift of Si-NMR is from -53 ppm to -63 pp
Absorption appears at m. Further, the bonding of Si—O—Si as represented by the general formula (7)

【0024】[0024]

【化11】 Embedded image

【0025】合を3つ持つSiの29Si―NMRの化学
シフトはー63ppmからー72ppmに吸収が現れ
る。
The absorption of the chemical shift of 29 Si-NMR of Si having three groups appears from -63 ppm to -72 ppm.

【0026】本発明の熱硬化させた樹脂について、29
i−NMRの化学シフトを測定すると、―40ppmか
ら−75ppmに吸収が現れる。このうち、−53pp
m〜−75ppmの吸収の積分値は−40ppm〜−52
ppmの吸収の積分値に比べて大きいので、樹脂中の有
機ケイ素化合物はSi−O−Siの結合を形成して、オ
リゴマー程度の大きさの分子が形成されていることがわ
かった。このように、有機ケイ素化合物の分子量が増加
してもエポキシ樹脂と相溶性が良いために、硬化前の樹
脂組成物は低粘度である。さらに本発明の特徴とすると
ころのTg以上の温度領域における弾性率の低下が少な
い理由については、ベース樹脂である多官能エポキシ樹
脂、有機ケイ素化合物及び酸無水物において、温度変化
に対して物性変化が小さく、力学的に安定なSiO2
格を分子レベルで均一に生成させ、また、そのSiO2
骨格の末端に硬化剤と共有結合する官能基を付与するこ
とにより硬化剤と結合し、温度変化に対する硬化物の弾
性率の変化を小さくでき、Tgを越えた温度領域におい
ても弾性率の低下が少ないと推察する。したがって、こ
のような樹脂組成物に充填剤としてシリカやアルミナ等
を添加した硬化物は、特に高温領域での機械的特性が優
れた絶縁スペーサを提供することができる。
[0026] The heat-cured resin of the present invention, 29 S
When the chemical shift of i-NMR is measured, an absorption appears from -40 ppm to -75 ppm. Of these, -53pp
The integrated value of the absorption from m to -75 ppm is from -40 ppm to -52.
Since the value was larger than the integrated value of the absorption in ppm, it was found that the organosilicon compound in the resin formed a bond of Si—O—Si to form a molecule having a size of about an oligomer. As described above, even if the molecular weight of the organosilicon compound increases, the resin composition before curing has a low viscosity because of good compatibility with the epoxy resin. Further, the reason why the decrease in the elastic modulus in the temperature region above Tg, which is a feature of the present invention, is small, is that in the base resin, the polyfunctional epoxy resin, the organosilicon compound, and the acid anhydride, the physical property change with temperature change. is small, uniformly to produce a mechanically stable SiO 2 skeleton at the molecular level, also its SiO 2
By providing a functional group that is covalently bonded to the curing agent at the end of the skeleton, it is combined with the curing agent, and the change in the elastic modulus of the cured product with respect to temperature change can be reduced. Even in a temperature range exceeding Tg, the elastic modulus is reduced. Infer that there are few. Therefore, a cured product obtained by adding silica, alumina, or the like as a filler to such a resin composition can provide an insulating spacer having excellent mechanical properties particularly in a high-temperature region.

【0027】[0027]

【発明の実施の形態】(実施例1及び比較例1)本実施
例では有機ケイ素化合物として、3―グリシドキシトリ
メトキシシラン(チッソ(株)製)を、加水分解触媒と
してジブチルジラウリン酸錫(和光純薬工業(株))製
を、多官能エポキシ樹脂としてビスフェノールA/F型
エポキシ樹脂(チバスペシャルティケミカルズ(株)
製、商品名PY−302−2)を、酸無水物硬化剤とし
てメチルヘキサヒドロ無水フタル酸(日立化成工業
(株)製、商品名HN5500)を、充填剤としてフッ
化アルミニウム(日本軽金属(株)製、商品名T−32
6)を、硬化促進剤として1−(2−シアノエチル)−
2−エチル−4−メチルイミダゾール(四国化成(株)
製、商品名2E4MZ−CN)を各々用いた。
(Example 1 and Comparative Example 1) In this example, 3-glycidoxytrimethoxysilane (manufactured by Chisso Corporation) was used as an organosilicon compound, and tin dibutyl dilaurate was used as a hydrolysis catalyst. (Wako Pure Chemical Industries, Ltd.) and bisphenol A / F type epoxy resin (Ciba Specialty Chemicals Co., Ltd.) as polyfunctional epoxy resin.
PY-302-2), methylhexahydrophthalic anhydride (HN5500, manufactured by Hitachi Chemical Co., Ltd.) as an acid anhydride curing agent, and aluminum fluoride (Nippon Light Metal Co., Ltd.) as a filler. ) Product name, T-32
6) as 1- (2-cyanoethyl)-as a curing accelerator
2-ethyl-4-methylimidazole (Shikoku Chemicals Co., Ltd.)
And trade name 2E4MZ-CN).

【0028】本実施例の絶縁スペーサ用エポキシ樹脂組
成物は以下の製造方法で作製した。 (1)3―グリシドキシトリメトキシシラン55重量部
に、水5.5重量部及びジブチルジラウリン酸錫0.6重
量部を加えて攪拌した後、1晩室温で放置する。 (2)(1)の混合液にビスフェノールA/F型エポキ
シ樹脂100重量部を加えて、攪拌する。 (3)(2)の混合液を150℃で4時間の熱処理をす
る。 (4)(3)の熱処理混合液にメチルヘキサヒドロ無水
フタル酸135重量部、フッ化アルミニウム722重量
部を加えて、攪拌する。 (5)(4)の混合液に1−(2−シアノエチル)−2
−エチル−4−メチルイミダゾール0.13重量部を加
えて再度攪拌し、絶縁スペーサ用エポキシ樹脂組成物を
得た。
The epoxy resin composition for an insulating spacer of this example was produced by the following production method. (1) 5.5 parts by weight of water and 0.6 parts by weight of tin dibutyl dilaurate are added to 55 parts by weight of 3-glycidoxytrimethoxysilane, and the mixture is stirred and left overnight at room temperature. (2) 100 parts by weight of a bisphenol A / F type epoxy resin is added to the mixed solution of (1) and stirred. (3) The mixed solution of (2) is heat-treated at 150 ° C. for 4 hours. (4) 135 parts by weight of methylhexahydrophthalic anhydride and 722 parts by weight of aluminum fluoride are added to the heat-treated mixture of (3), and the mixture is stirred. (5) 1- (2-cyanoethyl) -2 was added to the mixed solution of (4).
0.13 parts by weight of -ethyl-4-methylimidazole was added and stirred again to obtain an epoxy resin composition for an insulating spacer.

【0029】次に得られたエポキシ樹脂組成物を幅14
0mmX高さ120mmX厚さ5mmの金型に流し込
み、100℃・10時間+150℃・15時間の加熱硬
化を行い、樹脂板を作製した。作製した樹脂板は動的粘
弾性等を測定した。本実施例においては1〜2んm程度
のエポキシシリコンオリゴマが分散していると思われ
る。
Next, the obtained epoxy resin composition was applied to a width 14
The resin was poured into a mold having a size of 0 mm, a height of 120 mm, and a thickness of 5 mm. The prepared resin plate was measured for dynamic viscoelasticity and the like. In this embodiment, it is considered that about 1 to 2 m of epoxy silicon oligomer is dispersed.

【0030】動的粘弾性の測定はレオロジー(株)製P
VEレオスペクトラ装置を用いて、昇温速度2℃/分、
周波数10Hz、チャック間距離20mm、変位振幅2
μmとした。この時のTg(ガラス転移温度)と、50
℃、200℃における貯蔵弾性率及び29Si−NMRに
よる化学シフトのピークの積分値の比を調べた。さらに
曲げ試験による機械的強度を測定した。曲げ試験は樹脂
板から幅10mmX長さ120mmX厚さ5mmの試験
片を切り出し、曲げ試験装置(島津製作所(株)、DS
S−500型)を使用して支点間距離80mm、たわみ
速度2mm/分とし、室温(23℃)および140℃で
測定した。
The measurement of the dynamic viscoelasticity was carried out by using a rheology
Using a VE Rheospectra apparatus, the temperature was raised at a rate of 2 ° C./min.
Frequency 10Hz, distance between chucks 20mm, displacement amplitude 2
μm. At this time, Tg (glass transition temperature) and 50
° C., was examined the ratio of the integral value of the peak of the storage modulus and 29 Si-NMR by the chemical shift at 200 ° C.. Further, the mechanical strength was measured by a bending test. In the bending test, a test piece having a width of 10 mm, a length of 120 mm and a thickness of 5 mm was cut out from a resin plate, and a bending test apparatus (Shimadzu Corporation, DS
(S-500 type), and measured at room temperature (23 ° C.) and 140 ° C. with a distance between supporting points of 80 mm and a deflection speed of 2 mm / min.

【0031】又、比較として、上記製造方法で(1)の
工程を経ずに、(2)の工程から出発した場合の硬化物
特性も検討した。
Further, as a comparison, the properties of the cured product when starting from the step (2) without going through the step (1) in the above production method were also examined.

【0032】表1は、これらの測定結果を示す。本実施
例で得られた硬化物は比較例1の硬化物の特性と比較し
てTgは同程度であるが、Tg以上での貯蔵弾性率(2
20℃)及び曲げ強さ(140℃)の低下が少なく、T
gを越えた温度においても弾性率が高く機械的強度の信
頼性に優れている。また、本実施例における硬化物の 29
Si−NMRでの化学シフトの−53ppmから−72
ppmのピーク積分値は、−40から−52ppmのピ
ーク積分値に対して10.5倍となり、有機ケイ素化合
物がオリゴマーレベルの分子であった。
Table 1 shows the results of these measurements. This implementation
The cured product obtained in the example was compared with the properties of the cured product of Comparative Example 1.
Tg is about the same, but the storage elastic modulus above Tg (2
20 ° C) and bending strength (140 ° C)
high elastic modulus even at temperatures exceeding
Excellent reliability. In addition, of the cured product in this embodiment 29
Chemical shift of -53 ppm to -72 in Si-NMR
The peak integrated value in ppm is -40 to -52 ppm peak.
10.5 times the peak integration value,
The product was an oligomer-level molecule.

【0033】[0033]

【表1】 [Table 1]

【0034】図1は、本実施例の樹脂硬化物を用いたポ
スト型絶縁スペーサの斜視図である。本実施例の樹脂硬
化物において、Tgを越えた温度領域で機械的強度の信
頼性に優れていることが確認されたので、さらに本実施
例のエポキシ樹脂組成物をポスト型絶縁スペーサ(中心
外径80φ、高さ90mm、埋め込み電極外径45m
m、電極間距離40mm)用金型に注型し、100℃・
10時間+150℃・15時間の加熱硬化を行い、図1
に示すポスト型絶縁スペーサを作製した。外観観察にお
いても不具合個所は発見されず、良好なポスト型絶縁ス
ペーサを得た。そこで作製したポスト型絶縁スペーサの
機械的強度を試験した。試験は前述の曲げ試験装置を使
用し、140℃の雰囲気中でポスト型絶縁スペーサの埋
め込み電極に5kg/cm2の荷重を2時間加えた後の
高さ方向の寸法変化を調べた。その結果、本実施例で得
られたポスト型絶縁スペーサは高さが85mmと5mm
変形したのに対し、比較例1に示す樹脂組成で作製した
ポスト型絶縁スペーサは高さが65mmと25mm変形
した。
FIG. 1 is a perspective view of a post-type insulating spacer using the cured resin of the present embodiment. Since it was confirmed that the resin cured product of this example had excellent mechanical strength reliability in a temperature range exceeding Tg, the epoxy resin composition of this example was further applied to a post-type insulating spacer (outside center). Diameter 80φ, height 90mm, embedded electrode outer diameter 45m
m, distance between electrodes 40 mm)
Heat curing for 10 hours at + 150 ° C for 15 hours.
Was manufactured. No defect was found in the external observation, and a good post-type insulating spacer was obtained. Then, the mechanical strength of the manufactured post-type insulating spacer was tested. In the test, the above-mentioned bending test apparatus was used, and a dimensional change in the height direction after applying a load of 5 kg / cm 2 to the embedded electrode of the post-type insulating spacer in an atmosphere at 140 ° C. for 2 hours was examined. As a result, the height of the post-type insulating spacer obtained in this example was 85 mm and 5 mm.
In contrast, the post-type insulating spacer made of the resin composition shown in Comparative Example 1 had a height of 65 mm and a deformation of 25 mm.

【0035】本実施例によれば、Tg以上の温度で弾性
率が高い樹脂組成物で絶縁スペーサを作製することによ
り、機械的強度に対する変形が少なく信頼性が優れる絶
縁スペーサを得ることができる。
According to the present embodiment, by forming the insulating spacer from a resin composition having a high elastic modulus at a temperature equal to or higher than Tg, it is possible to obtain an insulating spacer having little deformation with respect to mechanical strength and excellent reliability.

【0036】(実施例2及び比較例2)本実施例では多
官能エポキシ樹脂としてビスフェノールA型エポキシ樹
脂(旭チバ(株)製、商品名AER260)を、有機ケ
イ素化合物として2−(3,4−エポキシシクロヘキシ
ル)エチルトリメトキシシラン(チッソ(株)製)を充
填剤として結晶質シリカ(龍森(株)製、商品名C−B
ASE−1)に替えた以外は実施例1と同様(但し、結
晶質シリカの添加量は618重量部)にして、絶縁スペ
ーサ用エポキシ樹脂組成物を作製した。また、上記材料
を用いた以外は比較例1と同様にして、有機ケイ素化合
物を含まないエポキシ樹脂組成物を作製した。これら樹
脂組成物について、実施例1と同様な方法で樹脂板を作
製し、実施例1と同様に硬化物特性を検討した。
Example 2 and Comparative Example 2 In this example, bisphenol A type epoxy resin (AER260, trade name, manufactured by Asahi Ciba Co., Ltd.) was used as a polyfunctional epoxy resin, and 2- (3,4) was used as an organosilicon compound. -Epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Chisso Corporation) as a filler and crystalline silica (manufactured by Tatsumori Corporation, trade name CB)
An epoxy resin composition for an insulating spacer was prepared in the same manner as in Example 1 except that ASE-1) was used (however, the amount of crystalline silica added was 618 parts by weight). An epoxy resin composition containing no organosilicon compound was prepared in the same manner as in Comparative Example 1 except that the above-mentioned materials were used. For these resin compositions, resin plates were prepared in the same manner as in Example 1, and cured product characteristics were examined in the same manner as in Example 1.

【0037】表2は、これらの測定結果を示す。本実施
例の硬化物は特に室温や高温(140℃)での曲げ強度
が高い特長を有し、比較例の硬化物特性と比較した場
合、Tgは同程度であるが、Tg以上での貯蔵弾性率
(220℃)及び曲げ強さ(140℃)の低下が少な
く、Tgを越えた温度においても弾性率が高く機械的強
度の信頼性が優れている。また、本実施例における硬化
物の29Si−NMRでの化学シフトの−53ppmから
−72ppmのピーク積分値は、−40から−52pp
mのピーク積分値に対して12.0倍となり、実施例1
と同様の大きさの有機ケイ素化合物がオリゴマーレベル
の分子であった。
Table 2 shows the results of these measurements. The cured product of this example has a characteristic of high flexural strength especially at room temperature or high temperature (140 ° C.), and when compared with the cured product characteristics of the comparative example, the Tg is about the same, but the storage at Tg or more. The elastic modulus (220 ° C.) and the flexural strength (140 ° C.) are less reduced, and the elastic modulus is high and the mechanical strength is excellent even at a temperature exceeding Tg. In addition, the peak integrated value of the chemical shift of the cured product in the present example from -53 ppm to -72 ppm in 29 Si-NMR is from -40 to -52 pp.
Example 1 was 12.0 times the peak integrated value of m.
An organosilicon compound having a size similar to that of was a molecule at the oligomer level.

【0038】[0038]

【表2】 [Table 2]

【0039】本実施例の樹脂硬化物において、Tgを越
えた温度領域で機械的強度の信頼性に優れていることを
確認したので、さらに本実施例のエポキシ樹脂組成物を
用い実施例1と同様にして、ポスト型絶縁スペーサを作
製した。外観観察においても不具合個所は発見されず、
良好なポスト型絶縁スペーサを得た。そこで、実施例1
と同様にしてポスト型絶縁スペーサの機械的強度を評価
した。その結果、本実施例で得たポスト型絶縁スペーサ
は高さが88mmと2mm変形したのに対し、比較例2
の樹脂組成で作製したポスト型絶縁スペーサは高さが6
0mmと20mm変形した。
It was confirmed that the cured resin of the present example had excellent mechanical strength reliability in a temperature range exceeding Tg. Similarly, a post-type insulating spacer was manufactured. No defects were found in the external observation,
A good post-type insulating spacer was obtained. Therefore, the first embodiment
The mechanical strength of the post-type insulating spacer was evaluated in the same manner as described above. As a result, the height of the post-type insulating spacer obtained in the present example was changed to 88 mm and 2 mm, while that of the comparative example 2 was changed.
The post-type insulating spacer made with the resin composition of
Deformed by 0 mm and 20 mm.

【0040】本実施例によれば、Tg以上の温度で弾性
率が高い樹脂組成物で絶縁スペーサを作製することによ
り、機械的強度に対する変形が特に少なく信頼性が非常
に優れる絶縁スペーサを得ることができる。
According to this embodiment, by forming the insulating spacer from a resin composition having a high elastic modulus at a temperature of Tg or higher, it is possible to obtain an insulating spacer which has a particularly small deformation with respect to the mechanical strength and a very excellent reliability. Can be.

【0041】(実施例3及び比較例3)本実施例では多
官能エポキシ樹脂としてビスフェノールF型エポキシ樹
脂(旭電化(株)製、商品名EP−4901)を、有機
ケイ素化合物として3−グリシドキシプロピルトリエト
キシシラン(チッソ(株)製)を充填剤としてアルミナ
(昭和電工(株)製、商品名FA−1)に替えた以外は
実施例1と同様(但し、アルミナの添加量は920重量
部)にして、絶縁スペーサ用エポキシ樹脂組成物を作製
した。また、上記材料を用いた以外は比較例1と同様に
して、有機ケイ素化合物を含まないエポキシ樹脂組成物
を作製した。これら樹脂組成物について、実施例1と同
様な方法で樹脂板を作製し、実施例1と同様に硬化物特
性を検討した。
Example 3 and Comparative Example 3 In this example, bisphenol F type epoxy resin (trade name: EP-4901, manufactured by Asahi Denka Co., Ltd.) was used as a polyfunctional epoxy resin, and 3-glycidyl was used as an organosilicon compound. Same as Example 1 except that xyloxypropyltriethoxysilane (manufactured by Chisso Corporation) was replaced by alumina (manufactured by Showa Denko KK, trade name: FA-1) as a filler (however, the amount of alumina added was 920). Parts by weight) to produce an epoxy resin composition for insulating spacers. An epoxy resin composition containing no organosilicon compound was prepared in the same manner as in Comparative Example 1 except that the above-mentioned materials were used. For these resin compositions, resin plates were prepared in the same manner as in Example 1, and cured product characteristics were examined in the same manner as in Example 1.

【0042】表3は、これらの測定結果を示す。本実施
例の硬化物は特に室温や高温(140℃)での曲げ強度
が高い特長を有し、比較例の硬化物特性と比較した場
合、Tgは同程度であるが、Tg以上での貯蔵弾性率
(220℃)及び曲げ強さ(140℃)の低下が少な
く、Tgを越えた温度においても弾性率が高く機械的強
度の信頼性が優れている。また、本実施例における硬化
物の29Si−NMRでの化学シフトの−53ppmから
−72ppmのピーク積分値は、−40から−52pp
mのピーク積分値に対して9.2倍となり、有機ケイ素
化合物がオリゴマーレベルの分子であった。
Table 3 shows the results of these measurements. The cured product of this example has a characteristic of high flexural strength especially at room temperature or high temperature (140 ° C.), and when compared with the cured product characteristics of the comparative example, the Tg is about the same, but the storage at Tg or more. The elastic modulus (220 ° C.) and the flexural strength (140 ° C.) are less reduced, and the elastic modulus is high and the mechanical strength is excellent even at a temperature exceeding Tg. In addition, the peak integrated value of the chemical shift of the cured product in the present example from -53 ppm to -72 ppm in 29 Si-NMR is from -40 to -52 pp.
m, which was 9.2 times the peak integrated value, and the organosilicon compound was an oligomer-level molecule.

【0043】[0043]

【表3】 [Table 3]

【0044】本実施例の樹脂硬化物において、Tgを越
えた温度領域で機械的強度の信頼性に優れていることを
確認したので、さらに本実施例のエポキシ樹脂組成物を
用い実施例1と同様にして、ポスト型絶縁スペーサを作
製した。外観観察においても不具合個所は発見されず、
良好なポスト型絶縁スペーサを得た。そこで、実施例1
と同様にしてポスト型絶縁スペーサの機械的強度を評価
した。その結果、本実施例で得たポスト型絶縁スペーサ
は高さが87mmと3mm変形したのに対し、比較例3
の樹脂組成で作製したポスト型絶縁スペーサは高さが6
0mmと20mm変形した。
Since it was confirmed that the cured resin of this example had excellent mechanical strength reliability in a temperature range exceeding Tg, the epoxy resin composition of this example was further used, and Similarly, a post-type insulating spacer was manufactured. No defects were found in the external observation,
A good post-type insulating spacer was obtained. Therefore, the first embodiment
The mechanical strength of the post-type insulating spacer was evaluated in the same manner as described above. As a result, the height of the post-type insulating spacer obtained in this example was changed to 87 mm and 3 mm, while that of Comparative Example 3 was changed.
The post-type insulating spacer made with the resin composition of
Deformed by 0 mm and 20 mm.

【0045】本実施例によれば、Tg以上の温度で弾性
率が高い樹脂組成物で絶縁スペーサを作製することによ
り、機械的強度に対する変形が特に少なく信頼性が非常
に優れる絶縁スペーサを得ることができる。
According to the present embodiment, by forming the insulating spacer with a resin composition having a high elastic modulus at a temperature of Tg or higher, it is possible to obtain an insulating spacer which has a particularly small deformation with respect to the mechanical strength and a very excellent reliability. Can be.

【0046】[0046]

【発明の効果】本発明によれば、エポキシ樹脂硬化物は
力学特性的に安定なSiO2骨格を分子レベルで均一に
含むため、温度変化に対する弾性率の変化が小さく、ガ
ラス転移温度を越える領域においても機械的荷重に対す
る変形が少なく信頼性が優れた絶縁スペーサが得られ
る。
According to the present invention, the cured epoxy resin uniformly contains a mechanically stable SiO 2 skeleton at the molecular level, so that the change in the elastic modulus with respect to temperature change is small and the epoxy resin cured region exceeds the glass transition temperature. In this case, an insulating spacer having less deformation due to a mechanical load and excellent reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポスト型絶縁スペーサの斜視図であ
る。
FIG. 1 is a perspective view of a post-type insulating spacer of the present invention.

【符号の説明】[Explanation of symbols]

1……エポキシ樹脂硬化物、2……埋め込み電極。 1 ... epoxy resin cured product, 2 ... embedded electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 83/04 C08L 83/04 5G365 H01B 3/40 H01B 3/40 A C H02B 13/02 H02G 5/06 351Z H02G 5/06 351 C08G 59/32 // C08G 59/32 H02B 13/06 S (72)発明者 中井 晴一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 菅原 捷夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 佐通 祐一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4J002 CD00W CD02W CD05W CP05X DD036 DE076 DE146 DE236 DJ016 DK006 FD016 GQ01 4J035 BA11 CA111 EA01 EB02 LB02 LB03 4J036 AB07 AB20 AC08 AD07 AD08 AJ21 DB15 JA06 JA07 5G017 FF07 5G305 AA02 AA20 AB01 AB15 AB24 BA26 CA15 CA26 CC02 CD01 5G365 DA14 DF01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 83/04 C08L 83/04 5G365 H01B 3/40 H01B 3/40 A C H02B 13/02 H02G 5/06 351Z H02G 5/06 351 C08G 59/32 // C08G 59/32 H02B 13/06 S (72) Inventor Seichi Nakai 7-1-1, Omika-cho, Hitachi City, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi Ltd. (72 Inventor Katsuo Sugawara 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Yuichi Sado 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. F-term in Hitachi Laboratory (reference) 4J002 CD00W CD02W CD05W CP05X DD036 DE076 DE146 DE236 DJ016 DK006 FD016 GQ01 4J035 BA11 CA111 EA01 E B02 LB02 LB03 4J036 AB07 AB20 AC08 AD07 AD08 AJ21 DB15 JA06 JA07 5G017 FF07 5G305 AA02 AA20 AB01 AB15 AB24 BA26 CA15 CA26 CC02 CD01 5G365 DA14 DF01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】絶縁ガスが充填された容器内に配設された
導体を絶縁支持する絶縁スペーサにおいて、該絶縁スペ
ーサは多官能エポキシ樹脂と、下記一般式(1)又は
(2)に示す 【化1】 【化2】 の有機ケイ素化合物(Rは酸無水物と付加反応を起こす
官能基を含む有機基であり、nは0個から3個、Xが
H、CH3あるいはC25である)と、酸無水物と、無
機充填剤とを含むエポキシ樹脂組成物の硬化物で形成さ
れていることを特徴とする絶縁スペーサ。
1. An insulating spacer for insulating and supporting a conductor provided in a container filled with an insulating gas, wherein the insulating spacer is represented by the following general formula (1) or (2): Formula 1 Embedded image (R is an organic group containing a functional group that causes an addition reaction with an acid anhydride, n is 0 to 3, and X is H, CH 3 or C 2 H 5 ); An insulating spacer formed of a cured product of an epoxy resin composition containing a material and an inorganic filler.
【請求項2】前記硬化物は、200℃における貯蔵弾性
率が1GPa以上及び140℃における曲げ強さが55
MPa以上の少なくとも一方の特性を有することを特徴
とする絶縁スペーサ。
2. The cured product has a storage modulus at 200 ° C. of 1 GPa or more and a flexural strength at 140 ° C. of 55
An insulating spacer having at least one characteristic of MPa or more.
【請求項3】前記充填剤がシリカあるいはアルミナであ
ることを特徴とする請求項1記載の絶縁スペーサ。
3. The insulating spacer according to claim 1, wherein said filler is silica or alumina.
【請求項4】六フッ化イオウ(SF6)ガスの絶縁ガスが
充填された容器内に配設された導体を絶縁支持する請求
項1又は2に記載の絶縁スペーサを備えたことを特徴と
するガス絶縁開閉装置。
4. An insulating spacer according to claim 1, wherein the insulating spacer is provided to insulate and support a conductor provided in a container filled with an insulating gas of sulfur hexafluoride (SF 6 ) gas. Gas insulated switchgear.
【請求項5】気中送電線の課電部導体を密閉容器から絶
縁して支持する請求項1又は2に記載の絶縁スペーサを
備えたことを特徴とするガス絶縁管路。
5. A gas-insulated conduit provided with the insulating spacer according to claim 1 or 2, which supports the power-carrying portion conductor of the aerial transmission line insulated from the sealed container.
【請求項6】絶縁ガスが充填された容器内に配設された
導体を絶縁支持する絶縁スペーサの製造方法において、
該絶縁スペーサは下記一般式(3)又は(4)に示す 【化3】 【化4】 の有機ケイ素化合物(ただし、Rは前記酸無水物と付加
反応を起こす官能基を含む有機基であり、かつ、R1
よびR2はメチル基またはエチル基である)と、水と、
加水分解用触媒とを含む有機ケイ素混合溶液を製造する
工程と、該混合溶液にエポキシ樹脂を加えて加熱混合す
るエポキシ樹脂混合溶液を製造する工程と、該エポキシ
樹脂混合溶液に酸無水物と、無機充填剤とを添加して混
合し、次いでその混合溶液を所望の型に注入し加熱硬化
することを特徴とする絶縁スペーサの製造方法。
6. A method of manufacturing an insulating spacer for insulating and supporting a conductor disposed in a container filled with an insulating gas,
The insulating spacer is represented by the following general formula (3) or (4): Embedded image Wherein R is an organic group containing a functional group that causes an addition reaction with the acid anhydride, and R 1 and R 2 are a methyl group or an ethyl group; and water;
A step of producing an organosilicon mixed solution containing a hydrolysis catalyst, and a step of producing an epoxy resin mixed solution in which an epoxy resin is added to the mixed solution and heat-mixed, and an acid anhydride in the epoxy resin mixed solution, A method for producing an insulating spacer, comprising adding and mixing an inorganic filler, and then injecting the mixed solution into a desired mold and curing by heating.
JP2000104034A 2000-04-05 2000-04-05 Insulating spacer, its use and method for producing the same Pending JP2001288335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104034A JP2001288335A (en) 2000-04-05 2000-04-05 Insulating spacer, its use and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104034A JP2001288335A (en) 2000-04-05 2000-04-05 Insulating spacer, its use and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001288335A true JP2001288335A (en) 2001-10-16

Family

ID=18617651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104034A Pending JP2001288335A (en) 2000-04-05 2000-04-05 Insulating spacer, its use and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001288335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133406A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Composite insulating resin, and insulating spacer and gas insulation instrument using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133406A (en) * 2011-12-27 2013-07-08 Hitachi Ltd Composite insulating resin, and insulating spacer and gas insulation instrument using the same

Similar Documents

Publication Publication Date Title
EP2230267B1 (en) Method of producing a curable epoxy resin composition
EP1978049B1 (en) Curable Epoxy Resin Composition
EP2546275B1 (en) Curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic parts, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation.
US8399577B2 (en) Curable epoxy resin composition
JPH07242732A (en) Epoxy resin composition for molding, molded product made using the same for high-voltage apparatus, and production thereof
KR20140040150A (en) Insulation formulations
KR100697108B1 (en) Epoxy resin composition
WO2013123648A1 (en) Curable epoxy composition with milled glass fiber
JP2001114868A (en) Epoxy resin composition and insulating and sealing material using the same
WO2019111891A1 (en) Insulation spacer
JP2001288335A (en) Insulating spacer, its use and method for producing the same
JPH09176288A (en) Epoxy resin composition and insulating spacer
JP4322047B2 (en) Cast epoxy resin composition for electrical insulation and cured product
JPH0586262A (en) Casting resin composition and insulating spacer using the same composition
JP2001135144A (en) Cast molding for sf6 gas insulated equipment and its production
JP2001288334A (en) Molded coil and method for producing the same
KR20140127356A (en) Curable compositions
JPH03247619A (en) Production of epoxy resin composition and insulation structure
JP2001172495A (en) Epoxy resin composition for casting
JPH04341711A (en) Epoxy resin molding
JPH08199044A (en) Epoxy resin composition for equipment insulated with sulfur hexafluoride gas
JP3949436B2 (en) Casting epoxy resin composition and electrical / electronic component equipment
JPH1160912A (en) Resin composition for casting, and insulation spacer comprising the resin composition
CN113214602A (en) Insulating resin composite material, high-voltage insulating sleeve and preparation method and application thereof
JPS6114612B2 (en)