JPH08199044A - Epoxy resin composition for equipment insulated with sulfur hexafluoride gas - Google Patents

Epoxy resin composition for equipment insulated with sulfur hexafluoride gas

Info

Publication number
JPH08199044A
JPH08199044A JP7011520A JP1152095A JPH08199044A JP H08199044 A JPH08199044 A JP H08199044A JP 7011520 A JP7011520 A JP 7011520A JP 1152095 A JP1152095 A JP 1152095A JP H08199044 A JPH08199044 A JP H08199044A
Authority
JP
Japan
Prior art keywords
epoxy resin
core
gas
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7011520A
Other languages
Japanese (ja)
Other versions
JP3428203B2 (en
Inventor
Masakatsu Sato
政勝 佐藤
Takeo Henmi
武男 逸見
Kazuo Suzuki
和雄 鈴木
Manabu Ito
学 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP01152095A priority Critical patent/JP3428203B2/en
Publication of JPH08199044A publication Critical patent/JPH08199044A/en
Application granted granted Critical
Publication of JP3428203B2 publication Critical patent/JP3428203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Transformer Cooling (AREA)

Abstract

PURPOSE: To obtain an epoxy resin composition used for an equipment insulated with an S6 gas and having a low dielectric constant, a low dielectric loss, high resistance to a gas formed by discharge decomposition of SF6 and high cracking resistance. CONSTITUTION: This composition is prepared by adding an inorganic filler selected from among aluminum fluoride, calcium fluoride, magnesium fluoride or a mixture thereof and core/shell rubber particles in each of which the core comprises a styrene/butadiene rubber to an epoxy resin mixture used in the production of an epoxy casting for an instrument insulated with a sulfur hexafluoride gas. It is desirable that the amount of the inorganic filler added is 50-300 pts.wt. per 100 pts.wt. epoxy resin mixture and that the amount of the core/shell rubber particles added is 3-30 pts.wt. per 100 pts.wt. epoxy resin mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、六フッ化硫黄ガス(以
下「SF6 ガス」という。)を充填した電気機器に使用
されると共にSF6 ガスと共存するSF6 ガス絶縁機器
用エポキシ注型品の製造に使用されるエポキシ樹脂組成
物に関するものである。
The present invention relates to a sulfur hexafluoride gas (hereinafter referred to as. "SF 6 gas") epoxy for SF 6 gas insulated apparatus coexists with SF 6 gas while being used in electrical appliances filled with Notes The present invention relates to an epoxy resin composition used for producing a mold product.

【0002】[0002]

【従来の技術】SF6 ガスは、電気絶縁性と消弧性に優
れ、機器の小型軽量化を図ることができるため、遮断
器、断路器、変圧器、ケーブル端末ブッシング、母線等
の電気機器の絶縁に広く使われている。このSF6 ガス
は、機器内で発生するアークやコロナ放電によって分解
し、極めて反応性の強い分解物を生成する。このため、
電気機器に使用されるエポキシ注型品においては、その
分解生成物に侵食されたり、変質を受けたりせず、長年
月に亙って安定した特性を維持する必要がある。そのエ
ポキシ注型品の絶縁ガス分解生成物に対する耐久性に関
しては、エポキシ注型品の主要成分の一つである充填剤
の特性が大きく関係しており、通常、耐久性を維持する
目的で充填剤として酸化アルミニウム(アルミナ)を使
用することが多い。
2. Description of the Related Art SF 6 gas is excellent in electrical insulation and arc extinguishing properties, and can be made compact and lightweight. Therefore, electrical equipment such as circuit breakers, disconnectors, transformers, cable terminal bushings, busbars, etc. Widely used for insulation. This SF 6 gas is decomposed by an arc or corona discharge generated in the equipment to generate a highly reactive decomposed product. For this reason,
Epoxy cast products used for electric equipment are required to maintain stable properties for many years without being eroded by the decomposition products or undergoing alteration. Regarding the durability of the epoxy cast product against insulation gas decomposition products, the characteristics of the filler, which is one of the main components of the epoxy cast product, are greatly related, and normally, the filling is performed for the purpose of maintaining durability. Aluminum oxide (alumina) is often used as the agent.

【0003】[0003]

【発明が解決しようとする課題】ところで、最近、電気
機器の高電圧化、小型化のため、従来よりも厳しい条件
に耐えることができるエポキシ注型品が要望されてい
る。特に、使用されるエポキシ樹脂組成物の誘電率が大
きい場合、電気機器の絶縁設計或いは当該エポキシ注型
品の形状等によっては局部的な電界集中が起って所期の
絶縁破壊特性を満足しえないことがあり、低誘電率化が
強く要求されている。エポキシ樹脂組成物の誘電率が比
較的大きな値になる理由は、エポキシ樹脂組成物におい
てアルミナが70重量%程度含有されているためである。
By the way, recently, in order to increase the voltage and size of electric equipment, there is a demand for an epoxy cast product which can withstand more severe conditions than before. In particular, when the epoxy resin composition used has a high dielectric constant, local electric field concentration may occur depending on the insulation design of electric equipment or the shape of the epoxy cast product, and the desired dielectric breakdown characteristics may not be satisfied. In some cases, low dielectric constant is strongly required. The reason why the epoxy resin composition has a relatively large dielectric constant is that the epoxy resin composition contains about 70% by weight of alumina.

【0004】このため、誘電率がアルミナよりも小さく
て、絶縁ガス分解生成物に耐性のある充填剤として、フ
ッ化アルミニウム、フッ化カルシウム、フッ化マグネシ
ウム等があげられている。しかし、これらの充填剤を添
加したエポキシ樹脂硬化物は概して機械的強度に劣り、
金属導体や取り付け金具等を埋め込んだエポキシ注型品
においてはクラックを発生しやすい欠点があった。
For this reason, aluminum fluoride, calcium fluoride, magnesium fluoride and the like are mentioned as fillers having a dielectric constant smaller than that of alumina and resistant to insulating gas decomposition products. However, epoxy resin cured products containing these fillers are generally inferior in mechanical strength,
Epoxy cast products with embedded metal conductors, mounting brackets, etc. had the drawback of being prone to cracking.

【0005】また、電気機器の高電圧化、大容量化、小
型化に伴い、電気機器の発熱温度上昇が大きくなるた
め、エポキシ樹脂硬化物には従来以上に高い耐熱性が要
求されるようになってきた。一般に、エポキシ樹脂硬化
物の高温の機械的、電気的特性は樹脂の熱変形温度を越
えると著しく低下する傾向を示すので、これらの電気機
器には従来以上に高い熱変形温度を有するエポキシ樹脂
硬化物が必要になるが、この種のエポキシ樹脂硬化物は
一層クラックを発生しやすい傾向になり、耐クラック性
と耐熱性の両立が極めて難しい技術課題となっていた。
Further, as the electric equipment becomes higher in voltage, larger in capacity and smaller in size, the heat generation temperature of the electric equipment increases, so that the epoxy resin cured product is required to have higher heat resistance than ever before. It's coming. Generally, the high temperature mechanical and electrical properties of cured epoxy resin tend to decrease significantly when the heat distortion temperature of the resin is exceeded. Although an epoxy resin cured product of this kind tends to cause cracks more easily, it has been a very difficult technical problem to achieve both crack resistance and heat resistance.

【0006】エポキシ樹脂硬化物の耐クラック性を向上
させる手段として、ガラス短繊維等の無機物繊維を混入
することやタルク粉、マイカ粉のような鱗片状充填剤を
添加することが提案されているが、これらはクラックの
防止には有効ではあるものの、成分としてシリカを含有
しているため、耐SF6 放電分解ガス性を低下させるこ
とが認められた。
As a means for improving the crack resistance of a cured epoxy resin product, it has been proposed to mix inorganic fibers such as short glass fibers and to add scale-like fillers such as talc powder and mica powder. However, although they are effective in preventing cracks, they contain silica as a component, and thus it was confirmed that the SF 6 discharge decomposition gas resistance is lowered.

【0007】本発明は、これらの事情を考慮してなされ
たものであり、その目的は、低誘電率、低誘電損失で、
しかも良好な耐SF6 放電分解ガス性と耐クラック性を
有するSF6 ガス絶縁機器用エポキシ樹脂組成物を提供
することにある。
The present invention has been made in consideration of these circumstances, and an object thereof is to have a low dielectric constant and a low dielectric loss.
Moreover, it is an object of the present invention to provide an epoxy resin composition for SF 6 gas insulation equipment, which has good SF 6 discharge decomposition gas resistance and crack resistance.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明のSF6 ガス絶縁機器用エポキシ樹脂組成物
は、六フッ化硫黄ガス絶縁機器用エポキシ注型品の製造
に使用されるエポキシ樹脂混合物に、フッ化アルミニウ
ム、フッ化カルシウム、フッ化マグネシウム単独又はそ
れらの混合物からなる無機充填剤とコア部がスチレン−
ブタジエンゴムからなるコア−シェル形ゴム粒子とを添
加してなるものである。
In order to achieve the above-mentioned object, the epoxy resin composition for SF 6 gas insulation equipment of the present invention is used for producing an epoxy cast product for sulfur hexafluoride gas insulation equipment. The epoxy resin mixture contains an inorganic filler consisting of aluminum fluoride, calcium fluoride, magnesium fluoride alone or a mixture thereof and styrene-containing core.
Core-shell type rubber particles made of butadiene rubber are added.

【0009】前記無機充填剤の添加量はエポキシ樹脂混
合物 100重量部に対して50〜300 重量部であると共に、
コア−シェル形ゴム粒子の添加量はエポキシ樹脂混合物
100重量部に対して 3〜30重量部であることが好まし
い。
The amount of the inorganic filler added is 50 to 300 parts by weight based on 100 parts by weight of the epoxy resin mixture, and
Addition amount of core-shell type rubber particles is epoxy resin mixture
It is preferably 3 to 30 parts by weight with respect to 100 parts by weight.

【0010】すなわち、本発明に使用されるエポキシ樹
脂組成物は、エポキシ樹脂、酸無水物系硬化剤からなる
エポキシ樹脂混合物(エポキシ樹脂ベース)に無機充填
剤とコア−シェル形ゴム粒子とを添加してなり、このエ
ポキシ樹脂組成物を減圧脱泡後、金型に注入し、これを
加熱硬化してエポキシ注型品が得られる。
That is, in the epoxy resin composition used in the present invention, an inorganic filler and core-shell type rubber particles are added to an epoxy resin mixture (epoxy resin base) comprising an epoxy resin and an acid anhydride type curing agent. The epoxy resin composition is degassed under reduced pressure, poured into a mold, and cured by heating to obtain an epoxy cast product.

【0011】エポキシ樹脂としては、分子内に2個以上
のエポキシ基を有するものが好ましく、ビスフェノール
系エポキシ樹脂、環状脂肪族エポキシ樹脂、ノボラック
型エポキシ樹脂、ナフタレン系エポキシ樹脂等があげら
れ、必要に応じて2種類以上の樹脂を混合して使用する
こともできる。
As the epoxy resin, those having two or more epoxy groups in the molecule are preferable, and examples thereof include bisphenol epoxy resin, cycloaliphatic epoxy resin, novolac epoxy resin, naphthalene epoxy resin, and the like. Two or more types of resins can be mixed and used accordingly.

【0012】酸無水物系エポキシ樹脂硬化剤としては、
無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサ
ヒドロフタル酸、メチル無水テトラヒドロフタル酸、メ
チル無水ヘキサヒドロフタル酸、メチルエンドメチレン
無水テトラヒドロフタル酸、無水トリメリット酸等があ
げられ、これらの2種以上を併用することもできる。無
機充填剤としては、低誘電率で耐SF6 放電分解ガス性
にずぐれたフッ化アルミニウム、フッ化カルシウム、フ
ッ化マグネシウム単独又はそれらの混合物が用いられ
る。
As the acid anhydride type epoxy resin curing agent,
Phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, trimellitic anhydride, and the like. Two or more of these Can also be used together. As the inorganic filler, aluminum fluoride, calcium fluoride, magnesium fluoride, or a mixture thereof, which has a low dielectric constant and is resistant to SF 6 discharge decomposition gas, is used.

【0013】無機充填剤の添加量は、エポキシ樹脂、酸
無水物硬化剤からなるエポキシ樹脂ベース 100重量部に
対して50〜300 重量部であることが好ましく、特に注型
作業性や機械的強度の低下が許容される範囲内でできる
だけ多量に充填剤を使用した方が硬化時の収縮量、硬化
樹脂の熱膨張係数が小さくなり、耐クラック性、放熱性
が向上する。充填剤の添加量が50重量部より少ない場
合、耐クラック性が不十分になり、 300重量部よりも多
い場合、注型作業が困難になる。
The amount of the inorganic filler added is preferably 50 to 300 parts by weight based on 100 parts by weight of the epoxy resin base consisting of the epoxy resin and the acid anhydride curing agent. Particularly, casting workability and mechanical strength are preferable. If the filler is used in an amount as large as possible within the range in which the decrease in the temperature is allowed, the shrinkage amount at the time of curing and the coefficient of thermal expansion of the cured resin become smaller, and the crack resistance and heat dissipation are improved. If the amount of the filler added is less than 50 parts by weight, the crack resistance becomes insufficient, and if it is more than 300 parts by weight, the casting operation becomes difficult.

【0014】クラック防止用強化剤として使用されるコ
ア−シェル形ゴム粒子としては、低誘電率・低誘電損失
化と耐クラック性の改善を図るため、コア部がスチレン
−ブタジエンゴムからなるコア−シェル形ゴム粒子が適
している。
As the core-shell type rubber particles used as a crack preventing reinforcing agent, the core portion is made of styrene-butadiene rubber in order to achieve a low dielectric constant, a low dielectric loss and an improvement in crack resistance. Shell-shaped rubber particles are suitable.

【0015】外側のシェル部はポリメチルメタクリレー
ト、ポリ(メチルメタクリレート−アクリロニトリ
ル)、ポリ(メチルメタクリレート−グリシジルメタク
リレート)等エポキシ樹脂マトリックスへの分散性を向
上させる樹脂層で構成され、一般に平均粒径 0.1〜 1μ
m程度の微小な球状粒子となっている。
The outer shell portion is composed of a resin layer such as polymethylmethacrylate, poly (methylmethacrylate-acrylonitrile), poly (methylmethacrylate-glycidylmethacrylate) which improves dispersibility in an epoxy resin matrix, and generally has an average particle size of 0.1. ~ 1μ
It is a fine spherical particle of about m.

【0016】工業的には呉羽化学工業(株)より「パラ
ロイドEXL2655」、鐘淵化学工業(株)より「カネエ
ースB−12」、日本ゼオン(株)より「ハイブレンB−
208X」等の商品名で市販されているものである。
Industrially, "Karaha Chemical Industry Co., Ltd.""ParaloidEXL2655", Kanebuchi Chemical Industry Co., Ltd. "Kaneace B-12", Nippon Zeon Co., Ltd. "Hybrene B-"
It is marketed under the trade name such as "208X".

【0017】コア−シェル形ゴム粒子の添加量は、エポ
キシ樹脂、酸無水物硬化剤からなるエポキシ樹脂ベース
100重量部に対して 3〜30重量部が好ましく、添加量が
3重量部よりも少ない場合クラック防止用補強効果が不
十分となり、30重量部よりも多い場合機械的強度の低下
が大きくなる。
The amount of the core-shell type rubber particles added is an epoxy resin base composed of an epoxy resin and an acid anhydride curing agent.
3 to 30 parts by weight is preferable to 100 parts by weight, and the addition amount is
If the amount is less than 3 parts by weight, the reinforcing effect for crack prevention becomes insufficient, and if the amount is more than 30 parts by weight, the mechanical strength is greatly reduced.

【0018】本発明のエポキシ樹脂組成物には必要に応
じて硬化促進剤、着色剤、酸化防止剤等を配合すること
ができる。
A curing accelerator, a colorant, an antioxidant and the like can be added to the epoxy resin composition of the present invention, if necessary.

【0019】また本来の目的を損わない限りにおいて、
注型作業時における充填剤の沈降を防止したり、機械的
強度を向上させるため、酸化アルミニウム、炭酸カルシ
ウム粉末やウィスカー等耐SF6 放電分解ガス性にすぐ
れた他の無機充填剤を併用することもできる。
As long as the original purpose is not impaired,
In order to prevent sedimentation of the filler during casting work and to improve the mechanical strength, use other inorganic fillers such as aluminum oxide, calcium carbonate powder and whiskers which have excellent SF 6 discharge decomposition gas resistance. You can also

【0020】同じように液晶性芳香族ポリアミド繊維、
液晶性芳香族ポリエステル繊維等の耐SF6 放電分解ガ
ス性にすぐれた高強度・高弾性率の強化用有機短繊維を
添加することもできる。
Similarly, a liquid crystalline aromatic polyamide fiber,
It is also possible to add high-strength and high-modulus reinforcing organic short fibers having excellent SF 6 discharge decomposition gas resistance, such as liquid crystalline aromatic polyester fibers.

【0021】したがって、エポキシ樹脂、酸無水物系硬
化剤からなるエポキシ樹脂混合物(エポキシ樹脂ベー
ス)に、フッ化アルミニウム、フッ化カルシウム、フッ
化マグネシウム単独又はそれらの混合物からなる耐SF
6 放電分解ガス性にすぐれた低誘電率の無機充填剤と低
誘電率、低誘電損失で、SF6 放電分解ガスに侵されな
いコア部がスチレン−ブタジエンゴムからなるコア−シ
ェル形ゴム粒子とを添加することで、コア−シェル形ゴ
ム粒子が耐クラック性の改善に寄与するので、低誘電
率、低誘電損失で、しかも良好な耐SF6 放電分解ガス
性と耐クラック性を有するSF6 ガス絶縁機器用として
好適なエポキシ樹脂組成物が得られることになる。
Accordingly, an epoxy resin mixture (epoxy resin base) comprising an epoxy resin and an acid anhydride-based curing agent is added to aluminum fluoride, calcium fluoride, magnesium fluoride alone or a mixture of these, which is resistant to SF.
6 An inorganic filler having a low dielectric constant excellent in discharge decomposition gas property and a core-shell type rubber particle having a low dielectric constant and a low dielectric loss and a core portion which is not attacked by SF 6 discharge decomposition gas and is made of styrene-butadiene rubber. By adding, since the core-shell type rubber particles contribute to the improvement of crack resistance, a SF 6 gas having a low dielectric constant, low dielectric loss, and good SF 6 discharge decomposition gas resistance and crack resistance. An epoxy resin composition suitable for insulating equipment can be obtained.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0023】表1の実施例1〜5および比較例1〜5の
各欄に示すような配合組成に従って、各種成分を配合し
た。エポキシ樹脂は、ビスフェノール系液状樹脂エピコ
ート828〔油化シェルエポキシ(株)製〕を使用した。
硬化剤としては無水テトラヒドロフタル酸系硬化剤アラ
ルダイトHT903 〔日本チバガイギー(株)製〕、硬化
促進剤にはベンジルジメチルアミンBDMA〔日本化薬
(株)製〕を使用した。コア部がスチレン−ブタジエン
ゴムからなるコア−シェル形ゴム粒子にはパラロイドE
XL2655〔呉羽化学工業(株)製〕を用いた。比較用に
使用したコア部がアクリルゴムからできているコア−シ
ェル形ゴム粒子はカネエースFM−21〔鐘淵化学工業
(株)製〕である。有機短繊維としては液晶性芳香族ポ
リエステル繊維ベクトランHT〔(株)クラレ製〕を使
用した。
Various components were blended according to the blending composition shown in each column of Examples 1 to 5 and Comparative Examples 1 to 5 in Table 1. As the epoxy resin, bisphenol liquid resin Epicoat 828 (produced by Yuka Shell Epoxy Co., Ltd.) was used.
A tetrahydrophthalic acid type curing agent Araldite HT903 [manufactured by Nippon Ciba Geigy Co., Ltd.] was used as a curing agent, and benzyldimethylamine BDMA [manufactured by Nippon Kayaku Co., Ltd.] was used as a curing accelerator. The core-shell type rubber particles whose core part is made of styrene-butadiene rubber have Paraloid E
XL2655 [Kureha Chemical Industry Co., Ltd.] was used. The core-shell type rubber particle whose core portion used for comparison is made of acrylic rubber is Kaneace FM-21 (Kanebuchi Chemical Industry Co., Ltd.). As the organic short fibers, liquid crystalline aromatic polyester fiber Vectran HT [manufactured by Kuraray Co., Ltd.] was used.

【0024】前述のように配合した組成物を、減圧脱泡
後金型に注入、加熱硬化して硬化樹脂を作製した。硬化
樹脂の特性について調べ、その結果を表1の下欄に示
す。各評価法は下記の通りである。
The composition blended as described above was defoamed under reduced pressure, poured into a mold and heat-cured to prepare a cured resin. The properties of the cured resin were investigated, and the results are shown in the lower column of Table 1. Each evaluation method is as follows.

【0025】硬化樹脂の特性は、常温および高温におけ
る電気特性耐SF6 放電分解ガス性、耐クラック性につ
いて調べた。 120℃で減圧脱泡した組成物を金型に注入
し、120℃、20h一次硬化後、 150℃、20h二次硬化し
て作製した試験片について試験した。
The characteristics of the cured resin were examined with respect to electrical characteristics at room temperature and high temperature, such as SF 6 discharge decomposition gas resistance and crack resistance. The composition degassed under reduced pressure at 120 ° C. was poured into a mold, and after primary curing at 120 ° C. for 20 hours, secondary curing at 150 ° C. for 20 hours was performed.

【0026】SF6 ガス絶縁機器に使用されるSF6
スは機器内で発生するアークやコロナ放電によって分解
し、SF2 、SF4 、S2 2 、SOF2 、SOF4
SO2 4 等の反応性の強い分解物を生成する。これら
の分解物の中で最も多く生成するのはSF4 であり、S
4 の場合、水または水蒸気と接触すると、 SF4 +H2 O→SOF2 +2HF SOF2 +H2 O→SO2 +2HF のような分解反応を行い、腐蝕性の強いフッ化水素酸を
生成する。
The SF 6 gas used in SF 6 gas-insulated equipment is decomposed by the arc and corona discharge generated in the apparatus, SF 2, SF 4, S 2 F 2, SOF 2, SOF 4,
It produces highly reactive decomposition products such as SO 2 F 4 . SF 4 produces most of these decomposition products, and S
In the case of F 4 , when it comes into contact with water or water vapor, it undergoes a decomposition reaction such as SF 4 + H 2 O → SOF 2 + 2HF SOF 2 + H 2 O → SO 2 + 2HF to generate corrosive hydrofluoric acid.

【0027】従って、絶縁材料の耐SF6 放電分解ガス
性と耐フッ化水素酸(HF)性とは密接な相関性があ
り、耐HF性試験によって耐SF6 放電分解ガス性を予
測できる。ここでは、室内のプラスチック製デシケータ
ーの底にバットに入れた試薬特級フッ化水素酸を置い
て、デシケーター内部をフッ化水素雰囲気とした棚の上
に100mmφ×3mmtの試験片を 120時間静置してから取り
出し、この表面を拭いた後ドラフト内で24時間乾燥して
から、誘電率、誘電正接、体積抵抗率を測定し、耐HF
性試験前の初期値と比較した。誘電率、誘電正接、体積
抵抗率はJIS K6911に準拠し、誘電率、誘電正接はシェ
ーリングブリッジにより、60Hz、1000Vで測定し、体
積抵抗率は超絶縁計によりDC 500V 1分値を測定し
た。
Therefore, the SF 6 discharge decomposition gas resistance and the hydrofluoric acid (HF) resistance of the insulating material have a close correlation, and the SF 6 discharge decomposition gas resistance can be predicted by the HF resistance test. Here, place the reagent grade hydrofluoric acid in the vat on the bottom of the plastic desiccator in the room, and leave the 100 mmφ × 3 mmt test piece for 120 hours on the shelf where the inside of the desiccator is in the hydrogen fluoride atmosphere. After removing it, wipe the surface and dry it in a draft for 24 hours, then measure the dielectric constant, dielectric loss tangent and volume resistivity to determine the HF resistance.
It was compared with the initial value before the sex test. Dielectric constant, dielectric loss tangent, and volume resistivity were in accordance with JIS K6911. Dielectric constant and dielectric loss tangent were measured by a Schering bridge at 60 Hz and 1000 V, and volume resistivity was measured by a super-insulator at DC 500 V for 1 minute.

【0028】耐クラック性は、M12、長さ40mmの鋼製ボ
ルトを中心に埋め込んだ径28mm、長さ50mmの試験片につ
いて表2に示すヒートサイクル試験を実施してクラック
を発生した段数を求めた。ヒートサイクル試験の低温側
は冷凍機で冷却したエタノール槽を、高温側は空気恒温
層をそれぞれ使用した。
The crack resistance was determined by performing the heat cycle test shown in Table 2 on a test piece having a diameter of 28 mm and a length of 50 mm, which was embedded with a steel bolt having a length of M12 and a length of 40 mm as the number of cracked steps. It was The low temperature side of the heat cycle test used an ethanol tank cooled by a refrigerator, and the high temperature side used an air constant temperature layer.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1からも明らかな通り、本発明に係る実
施例1〜5のエポキシ樹脂組成物は、いずれも誘電率、
誘電正接が小さく、また耐HF性試験における電気特性
の低下が小さく、さらに耐クラック性が向上しておりS
6 ガス絶縁機器用として有用なものである。
As is clear from Table 1, the epoxy resin compositions of Examples 1 to 5 according to the present invention all have a dielectric constant,
The dielectric loss tangent is small, the deterioration of electrical characteristics in the HF resistance test is small, and the crack resistance is improved.
It is useful for F 6 gas insulation equipment.

【0032】これに対して、コア−シェル形ゴム粒子の
配合量が規定値より少ない比較例1および無形充填剤の
配合量が規定値より少ない比較例2は以下ずれも耐クラ
ック性に劣る。
On the other hand, Comparative Example 1 in which the content of the core-shell type rubber particles is smaller than the specified value and Comparative Example 2 in which the content of the intangible filler is smaller than the specified value are inferior in crack resistance even with the following deviations.

【0033】コア部がアクリルゴムよりなるコア−シェ
ル形ゴム粒子を配合した比較例3は高温における誘電正
接が大きくなっている。
In Comparative Example 3 in which the core-shell type rubber particles whose core portion is made of acrylic rubber is blended, the dielectric loss tangent at high temperature is large.

【0034】アルミナを配合した比較例4は誘電率が高
く、石英粉を配合した比較例5は耐HF性が極めて劣悪
である。
Comparative Example 4 containing alumina has a high dielectric constant, and Comparative Example 5 containing quartz powder has extremely poor HF resistance.

【0035】[0035]

【発明の効果】以上要するに本発明によれば、低誘電
率、低誘電損失で、良好な耐SF6 放電分解ガス性と耐
クラック性を有したSF6 ガス絶縁機器用として好適な
エポキシ樹脂組成物が得られる。
In summary, according to the present invention, an epoxy resin composition having a low dielectric constant and a low dielectric loss and having good SF 6 discharge decomposition gas resistance and crack resistance, which is suitable for an SF 6 gas insulation device, is obtained. The thing is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 学 茨城県日立市日高町5丁目1番1号 日立 電線エフエム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Manabu Ito 5-1-1 Hidaka-cho, Hitachi-shi, Ibaraki Hitachi Cable FM Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】六フッ化硫黄ガス絶縁機器用エポキシ注型
品の製造に使用されるエポキシ樹脂混合物に、フッ化ア
ルミニウム、フッ化カルシウム、フッ化マグネシウム単
独又はそれらの混合物からなる無機充填剤とコア部がス
チレン−ブタジエンゴムからなるコア−シェル形ゴム粒
子とを添加してなることを特徴とする六フッ化硫黄ガス
絶縁機器用エポキシ樹脂組成物。
1. An epoxy resin mixture used for producing an epoxy cast product for sulfur hexafluoride gas insulation equipment, and an inorganic filler comprising aluminum fluoride, calcium fluoride, magnesium fluoride alone or a mixture thereof. An epoxy resin composition for a sulfur hexafluoride gas insulating device, characterized in that a core portion is added with core-shell type rubber particles made of styrene-butadiene rubber.
【請求項2】前記無機充填剤の添加量が前記エポキシ樹
脂混合物 100重量部に対して50〜300 重量部であると共
に、前記コア−シェル形ゴム粒子の添加量がエポキシ樹
脂混合物 100重量部に対して 3〜30重量部である請求項
1記載の組成物。
2. The addition amount of the inorganic filler is 50 to 300 parts by weight with respect to 100 parts by weight of the epoxy resin mixture, and the addition amount of the core-shell type rubber particles is 100 parts by weight of the epoxy resin mixture. The composition according to claim 1, which is 3 to 30 parts by weight.
JP01152095A 1995-01-27 1995-01-27 Epoxy resin composition for sulfur hexafluoride gas insulation equipment Expired - Fee Related JP3428203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01152095A JP3428203B2 (en) 1995-01-27 1995-01-27 Epoxy resin composition for sulfur hexafluoride gas insulation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01152095A JP3428203B2 (en) 1995-01-27 1995-01-27 Epoxy resin composition for sulfur hexafluoride gas insulation equipment

Publications (2)

Publication Number Publication Date
JPH08199044A true JPH08199044A (en) 1996-08-06
JP3428203B2 JP3428203B2 (en) 2003-07-22

Family

ID=11780267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01152095A Expired - Fee Related JP3428203B2 (en) 1995-01-27 1995-01-27 Epoxy resin composition for sulfur hexafluoride gas insulation equipment

Country Status (1)

Country Link
JP (1) JP3428203B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283539A (en) * 1995-04-13 1996-10-29 Fujikura Ltd Epoxy composition for electric power part
WO2008023692A1 (en) * 2006-08-23 2008-02-28 Kabushiki Kaisha Toshiba Casting resin composition, insulating material using the same, and insulating structure
CN104151777A (en) * 2014-08-07 2014-11-19 广东生益科技股份有限公司 Thermosetting resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297553A (en) * 1988-10-03 1990-04-10 Hitachi Chem Co Ltd Epoxy resin composition
JPH0496921A (en) * 1990-08-15 1992-03-30 Nippon Oil Co Ltd Resin composition for composite material, intermediate material and composite material
JPH0525366A (en) * 1990-11-22 1993-02-02 Nippon Shokubai Co Ltd Epoxy resin composition and its production
JPH0649179A (en) * 1990-03-30 1994-02-22 Ciba Geigy Ag Modified epoxy resin
JPH06263966A (en) * 1993-03-17 1994-09-20 Showa Electric Wire & Cable Co Ltd Epoxy resin composition
JPH0770411A (en) * 1993-09-03 1995-03-14 Hitachi Cable Ltd Epoxide cast articles for sulfur hexafluoride insulator
JPH0770412A (en) * 1993-09-03 1995-03-14 Hitachi Cable Ltd Epoxide resin composition for sulfur hexafluoride gas insulator
JPH08193164A (en) * 1995-01-19 1996-07-30 Hitachi Cable Ltd Epoxy resin composition for apparatus insulated with sulfur hexafluoride gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297553A (en) * 1988-10-03 1990-04-10 Hitachi Chem Co Ltd Epoxy resin composition
JPH0649179A (en) * 1990-03-30 1994-02-22 Ciba Geigy Ag Modified epoxy resin
JPH0496921A (en) * 1990-08-15 1992-03-30 Nippon Oil Co Ltd Resin composition for composite material, intermediate material and composite material
JPH0525366A (en) * 1990-11-22 1993-02-02 Nippon Shokubai Co Ltd Epoxy resin composition and its production
JPH06263966A (en) * 1993-03-17 1994-09-20 Showa Electric Wire & Cable Co Ltd Epoxy resin composition
JPH0770411A (en) * 1993-09-03 1995-03-14 Hitachi Cable Ltd Epoxide cast articles for sulfur hexafluoride insulator
JPH0770412A (en) * 1993-09-03 1995-03-14 Hitachi Cable Ltd Epoxide resin composition for sulfur hexafluoride gas insulator
JPH08193164A (en) * 1995-01-19 1996-07-30 Hitachi Cable Ltd Epoxy resin composition for apparatus insulated with sulfur hexafluoride gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283539A (en) * 1995-04-13 1996-10-29 Fujikura Ltd Epoxy composition for electric power part
WO2008023692A1 (en) * 2006-08-23 2008-02-28 Kabushiki Kaisha Toshiba Casting resin composition, insulating material using the same, and insulating structure
CN104151777A (en) * 2014-08-07 2014-11-19 广东生益科技股份有限公司 Thermosetting resin composition

Also Published As

Publication number Publication date
JP3428203B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JPH07109337A (en) Casting material of epoxy resin
JPS6132330B2 (en)
WO2019111298A1 (en) Insulating spacer
JPH07278413A (en) Molded resin product
JPH08199044A (en) Epoxy resin composition for equipment insulated with sulfur hexafluoride gas
JPH09176288A (en) Epoxy resin composition and insulating spacer
JPH0297553A (en) Epoxy resin composition
JPH0770412A (en) Epoxide resin composition for sulfur hexafluoride gas insulator
JPH08193164A (en) Epoxy resin composition for apparatus insulated with sulfur hexafluoride gas
JPH08225715A (en) Epoxy resin composition for gas-insulated equipment
JPH0770411A (en) Epoxide cast articles for sulfur hexafluoride insulator
JPH0812854A (en) Epoxy resin composition for gas insulation equipment and epoxy cast product
JPH03200858A (en) Epoxy resin composition and production of insulation structure therefrom
JPH04341711A (en) Epoxy resin molding
JP2847936B2 (en) Epoxy resin composition
KR20140127356A (en) Curable compositions
JPH03247619A (en) Production of epoxy resin composition and insulation structure
JPH0923519A (en) Insulation spacer, and sulfur hexafluoride gas-insulated switching device using the spacer
JPS5818217A (en) Cast epoxy resin item
Imai Polymer Composites for Switchgears
JP2001103641A (en) Insulation spacer and gas insulated apparatus
JPH11224537A (en) Insulating spacer
JPH1046007A (en) Epoxy resin composition and epoxy resin cast product for gas insulating instrument
CA1211806A (en) Gas insulated electrical apparatus having insulating supports made of bisphenol a-cycloaliphatic epoxy resins resistant to arced sf.sub.6
JPS59100128A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

LAPS Cancellation because of no payment of annual fees