JP2001288334A - Molded coil and method for producing the same - Google Patents

Molded coil and method for producing the same

Info

Publication number
JP2001288334A
JP2001288334A JP2000104033A JP2000104033A JP2001288334A JP 2001288334 A JP2001288334 A JP 2001288334A JP 2000104033 A JP2000104033 A JP 2000104033A JP 2000104033 A JP2000104033 A JP 2000104033A JP 2001288334 A JP2001288334 A JP 2001288334A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
molded coil
mixed solution
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000104033A
Other languages
Japanese (ja)
Inventor
Kenji Ikeda
賢二 池田
Shigeo Suzuki
重雄 鈴木
Yuuichi Satsuu
祐一 佐通
Toshio Sugawara
捷夫 菅原
Haruichi Nakai
晴一 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000104033A priority Critical patent/JP2001288334A/en
Publication of JP2001288334A publication Critical patent/JP2001288334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Insulating Of Coils (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molded coil scarcely causing a cracking and excellent in insulation reliability by applying an epoxy resin composition improved in modulus of elasticity at a high temperature thereto and to provide a method for producing the molded coil. SOLUTION: This molded coil and the method for producing the coil are characterized in that the epoxy resin composition comprises an epoxy resin, a specific organosilicon compound, a curing agent of an acid anhydride and an inorganic filler as essential components in the molded coil obtained by carrying out mold curing of a coil prepared by coating a conductor with an electrical insulating material by the epoxy resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規なモールドした
モールドコイル及びその製造方法に関する。
The present invention relates to a novel molded coil and a method of manufacturing the same.

【0002】[0002]

【従来の技術】モールドコイルは電気絶縁物を導体に被
覆した巻線にエポキシ樹脂組成物を注型後,硬化して作
製される。前記モールドコイルは鉄心等と一緒に組み立
てられてモールド変圧器に使用され,このモールド変圧
器の稼動時における銅損や鉄損等が生じるため発熱して
高温になる。したがって,高温時にエポキシ樹脂組成物
の力学的特性等が低下すると,機器稼動時の振動や短絡
時の電磁力等の応力が生じた際に,モールドコイルにひ
び割れ(クラック)が発生してトラブルとなる。したがっ
て,モールドコイルは高温時のクラック等を防止するた
め,特にエポキシ樹脂組成物の高温時における力学的特
性を向上することが重要課題である。
2. Description of the Related Art A molded coil is produced by casting an epoxy resin composition onto a winding having an electric insulator coated on a conductor and then curing the same. The mold coil is assembled together with an iron core or the like and used in a mold transformer. When the mold transformer operates, copper loss or iron loss occurs, so that the mold coil generates heat and becomes high temperature. Therefore, if the mechanical properties of the epoxy resin composition deteriorate at high temperatures, cracks (cracks) will occur in the molded coil when stresses such as vibration during equipment operation and electromagnetic force during a short circuit occur, causing trouble. Become. Therefore, in order to prevent cracks and the like at high temperatures in the molded coil, it is important to improve the mechanical properties of the epoxy resin composition particularly at high temperatures.

【0003】前記エポキシ樹脂組成物の高温における力
学的特性を向上するために,種々の方法が開示されてい
る。特開平7−331069 号公報および特開平7−331070 号
公報にはポリアミドイミド樹脂に金属酸化物ゾルを分散
させる方法が,特開平8−100107 号公報にはエポキシ樹
脂に金属アルコキシドを添加し縮重合させる方法が,ま
た,特開平9−216938 号公報にはフェノール樹脂中に金
属アルコキシドを膨潤させた後に縮重合させる方法が,
さらに特開平9−291131 号公報はポリウレタン樹脂に金
属アルコキシドを添加しゾルゲル法により縮合する方法
が報告されている。しかしながら,これらの方法では硬
化反応が縮重合のために水の発生を伴い,複合材料の界
面で膨れが生じるという問題がある。また,これらの技
術では,温度変化により複合材料の界面で発生する剥離
の防止やクラックの発生防止については考慮されていな
い。
Various methods have been disclosed to improve the mechanical properties of the epoxy resin composition at high temperatures. JP-A-7-331069 and JP-A-7-331070 disclose a method of dispersing a metal oxide sol in a polyamideimide resin, and JP-A-8-100107 discloses a method in which a metal alkoxide is added to an epoxy resin to perform condensation polymerization. Japanese Patent Application Laid-Open No. 9-216938 discloses a method in which a metal alkoxide is swollen in a phenol resin and then subjected to polycondensation.
Further, Japanese Patent Application Laid-Open No. 9-291131 reports a method of adding a metal alkoxide to a polyurethane resin and condensing it by a sol-gel method. However, these methods have a problem that the curing reaction involves water generation due to polycondensation, and swelling occurs at the interface of the composite material. Further, in these techniques, no consideration is given to prevention of peeling or cracks occurring at the interface of the composite material due to a temperature change.

【0004】次に,特開平8−199045 号公報には熱応力
の発生を小さくするため,有機溶媒中に溶解したエポキ
シ樹脂にアルコキシシランと水を添加して,アルコキシ
シランのアルコキシ基を加水分解した後に溶媒除去し,
加熱して樹脂の硬化および水酸基の脱水をする方法が開
示されている。しかしながら,この方法においても加熱
硬化の際の水の発生,高温における複合材料の界面での
接着性に問題がある。
Japanese Patent Application Laid-Open No. Hei 8-199045 discloses that in order to reduce the generation of thermal stress, an alkoxysilane and water are added to an epoxy resin dissolved in an organic solvent to hydrolyze the alkoxy group of the alkoxysilane. After removing the solvent,
A method of curing a resin and dehydrating a hydroxyl group by heating is disclosed. However, this method also has problems in the generation of water during heat curing and the adhesion at the interface of the composite material at high temperatures.

【0005】以上,従来技術は,熱硬化性樹脂,有機ケ
イ素化合物および水の混合物を金属,セラミック等の基
材とともに硬化させて複合体を作る方法であり,硬化の
際に副生成物として水とアルコールが発生する。この水
とアルコールのために,金属基材が腐食したり,基材と
樹脂との界面で膨れが生じたり,成形品にクラックや剥
離が生じたりする。さらに,温度変化による基材と樹脂
との界面で発生する膨れの防止やクラックの発生防止に
ついて考慮されていない。
[0005] As described above, the prior art is a method of forming a composite by curing a mixture of a thermosetting resin, an organosilicon compound and water together with a base material such as a metal or a ceramic. And alcohol is generated. Due to the water and alcohol, the metal base material is corroded, swells at the interface between the base material and the resin, and cracks and peels occur in the molded product. Furthermore, no consideration is given to prevention of swelling or cracks occurring at the interface between the base material and the resin due to a temperature change.

【0006】[0006]

【発明が解決しようとする課題】本発明は,高温時にお
ける弾性率が高く、クラック等が発生しにくい絶縁信頼
性に優れたモールドコイル及びその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a molded coil having a high elastic modulus at a high temperature and excellent insulation reliability in which cracks and the like are less likely to occur, and a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は,エポキシ樹
脂,特定の有機ケイ素化合物,酸無水物硬化剤および無
機充填剤とを混合したエポキシ樹脂組成物を適用するこ
とにより,高温時の熱応力等によるクラックが発生しに
くいため,絶縁信頼性に優れたモールドコイルとその製
造方法にある。
SUMMARY OF THE INVENTION The present invention provides an epoxy resin composition in which an epoxy resin, a specific organosilicon compound, an acid anhydride curing agent, and an inorganic filler are mixed to provide a thermal stress at high temperatures. Thus, there is provided a molded coil having excellent insulation reliability and a method of manufacturing the same, since cracks due to cracks and the like are less likely to occur.

【0008】即ち,本発明は、電気絶縁物を導体に被覆
した巻線をエポキシ樹脂組成物でモールドした後,エポ
キシ樹脂組成物を硬化したモールドコイルにおいて,該
エポキシ樹脂組成物はエポキシ樹脂と,下記一般式
(1)又は(2)に示す
That is, the present invention provides a molded coil obtained by molding a coil having an electric insulator coated on a conductor with an epoxy resin composition and then curing the epoxy resin composition, wherein the epoxy resin composition comprises an epoxy resin; Represented by the following general formula (1) or (2)

【0009】[0009]

【化5】 Embedded image

【0010】[0010]

【化6】 Embedded image

【0011】の有機ケイ素化合物(Rは前記エポキシ樹
脂の酸無水物硬化剤と付加反応を起こす官能基を含む有
機基であり,nは0個から3個,XがH,CH3,C2
5である)と,前記酸無水物硬化剤と、無機充填剤とを混
合したエポキシ樹脂組成物の硬化物であることを特徴と
する。
Wherein R is an organic group containing a functional group that causes an addition reaction with the acid anhydride curing agent of the epoxy resin, n is from 0 to 3, and X is H, CH 3 , C 2 H
5 ), and a cured product of an epoxy resin composition obtained by mixing the acid anhydride curing agent and an inorganic filler.

【0012】モールドコイルに用いられるエポキシ樹脂
組成物は,室温から高温における種々の条件下での使用
による応力や電磁力等の応力を絶えず受けているため,
高温で外部から受ける力の負荷によるエポキシ樹脂組成
物の変形が発生しないための弾性率を確保することが重
要である。ここで,高温時の力学的特性の向上や温度変
化による物性変化を小さくするため,通常はエポキシ樹
脂組成物に数μm〜10nmのフィラを添加する方法が
取られている。しかし,この方法では樹脂組成物の物性
変化そのものは抑えられていないため,フィラを添加し
たエポキシ樹脂組成物の複合材料としての物性はフィラ
を添加していないエポキシ樹脂組成物単独の時と同様な
変化をする。したがって,エポキシ樹脂組成物の高温時
の力学的特性や温度変化に対する物性変化を抑えるに
は,温度変化に対して物性変化の小さい物質を分子レベ
ルで添加することが重要と考えられる。本発明は温度変
化に対して物性変化が小さく,力学的特性が安定なSi
2 骨格を好ましくは5nm以下の分子レベルで均一に
生成させ,また,そのSiO2 骨格の末端にエポキシ樹
脂と共有結合する官能基を付与することによりエポキシ
樹脂と結合し,エポキシ樹脂組成物の高温時の力学的特
性を向上する技術である。
The epoxy resin composition used for the molded coil is constantly subjected to stresses such as electromagnetic force and the like due to use under various conditions from room temperature to high temperature.
It is important to secure an elastic modulus so that deformation of the epoxy resin composition does not occur due to a load of an external force at a high temperature. Here, in order to improve the mechanical properties at high temperatures and to reduce the change in physical properties due to the temperature change, a method of adding a filler of several μm to 10 nm to the epoxy resin composition is usually adopted. However, in this method, since the change in the physical properties of the resin composition itself is not suppressed, the physical properties of the epoxy resin composition to which the filler is added as a composite material are similar to those of the epoxy resin composition without the filler alone. Make a change. Therefore, it is considered important to add a substance having a small change in physical properties with respect to the temperature change at the molecular level in order to suppress the mechanical properties of the epoxy resin composition at high temperatures and the change in physical properties with respect to the temperature change. According to the present invention, a Si material having a small change in physical properties with respect to a temperature change and having stable mechanical properties is provided.
The O 2 skeleton is preferably formed uniformly at a molecular level of 5 nm or less, and is bonded to the epoxy resin by providing a functional group that is covalently bonded to the epoxy resin at the end of the SiO 2 skeleton to form an epoxy resin composition. This technology improves mechanical properties at high temperatures.

【0013】更に、本発明は、電気絶縁物を導体に被覆
した巻線にエポキシ樹脂組成物の混合溶液を注入し、エ
ポキシ樹脂組成物の硬化物でモールドするモールドコイ
ルの製造方法において,下記一般式(3)又は(4)に
示す
Further, the present invention relates to a method for manufacturing a molded coil in which a mixed solution of an epoxy resin composition is injected into a winding in which an electric insulator is coated on a conductor and molded with a cured product of the epoxy resin composition. Equation (3) or (4)

【0014】[0014]

【化7】 Embedded image

【0015】[0015]

【化8】 Embedded image

【0016】の有機ケイ素化合物(ただし,Rはエポキ
シ樹脂の酸無水物硬化剤と付加反応を起こす官能基を含
む有機基であり,かつ,R1およびR2はメチル基または
エチル基である)のと、水と、加水分解用触媒とを含む
混合溶液を加熱処理する有機ケイ素化合物の混合溶液を
製造する工程と、該混合溶液にエポキシ樹脂を加えて加
熱処理するエポキシ混合溶液を製造する工程と、該エポ
キシ混合溶液 に酸無水物硬化剤と硬化促進剤と無機充
填剤とを添加して加熱混合し、次いでその混合溶液を前
記注入し加熱硬化する工程とを有することことを特徴と
する。
(Where R is an organic group containing a functional group that causes an addition reaction with an acid anhydride curing agent of an epoxy resin, and R 1 and R 2 are a methyl group or an ethyl group) And a step of producing a mixed solution of an organosilicon compound by heat-treating a mixed solution containing water and a hydrolysis catalyst; and a step of producing an epoxy mixed solution by heat-treating by adding an epoxy resin to the mixed solution. And a step of adding an acid anhydride curing agent, a curing accelerator, and an inorganic filler to the epoxy mixed solution, heating and mixing, and then injecting the mixed solution and heating and curing the mixed solution. .

【0017】前述の有機ケイ素化合物(ただし,Rはエ
ポキシ樹脂の酸無水物硬化剤と付加反応を起こす官能基
を含む有機基であり,かつ,R1およびR2はメチル基ま
たはエチル基である)の混合溶液に加える水の量は、有
機ケイ素化合物に対してモル比で3〜0.02 倍量が好
ましい。前記硬化物は,高温でも高弾性率を維持できる
ため,外部から受ける力の負荷によるエポキシ樹脂組成
物の変形の発生が抑えられる。また,前記のように酸無
水物硬化剤を添加する前に加熱処理を施すため,酸無水
物硬化剤を添加した後の加熱硬化の際に,水やアルコー
ル等の副生成物の発生が僅かであるから,導体および絶
縁フィルム等とともにエポキシ樹脂組成物を用いてモー
ルドコイルを製造しても,導体あるいは絶縁フィルムと
エポキシ樹脂組成物との界面で膨れやクラックが生じに
くい。
The aforementioned organosilicon compound (where R is an organic group containing a functional group that causes an addition reaction with an acid anhydride curing agent of the epoxy resin, and R 1 and R 2 are a methyl group or an ethyl group. The amount of water to be added to the mixed solution of (3) is preferably 3 to 0.02 times the molar amount of the organosilicon compound. Since the cured product can maintain a high elastic modulus even at a high temperature, deformation of the epoxy resin composition due to a load applied from the outside can be suppressed. In addition, since the heat treatment is performed before the addition of the acid anhydride curing agent as described above, generation of by-products such as water and alcohol during the heat curing after the addition of the acid anhydride curing agent is slight. Therefore, even when a molded coil is manufactured using the epoxy resin composition together with the conductor and the insulating film, swelling and cracking are less likely to occur at the interface between the conductor or the insulating film and the epoxy resin composition.

【0018】また,このエポキシ樹脂組成物が硬化した
時の29Si−NMRの化学シフトの−53ppmから−7
2ppmのピークの積分値は,−40ppmから−52ppmの
ピークの積分値の1倍から50倍である。これは,有機
ケイ素化合物がSi−O−Siの結合を形成して分子量
が増加したことを示すが,エポキシ樹脂と相溶性が良い
ため,固体の粒子が無く透明である。
Further, when the epoxy resin composition is cured, the chemical shift of 29 Si-NMR is from -53 ppm to -7 ppm.
The integrated value of the peak at 2 ppm is 1 to 50 times the integrated value of the peak at -40 ppm to -52 ppm. This indicates that the organosilicon compound formed a bond of Si-O-Si to increase the molecular weight. However, since the organic silicon compound had good compatibility with the epoxy resin, it was transparent without solid particles.

【0019】前述の有機ケイ素化合物(ただし,Rはエ
ポキシ樹脂の酸無水物硬化剤と付加反応を起こす官能基
を含む有機基であり,かつ,R1およびR2はメチル基ま
たはエチル基である)および水を含む混合物は好ましく
は60℃〜160℃で1〜10時間の加熱処理を施すこ
と、加熱処理が施された混合物にエポキシ樹脂の酸無水
物硬化剤を添加するステップとを含むことにある。
The above-mentioned organosilicon compound (where R is an organic group containing a functional group that causes an addition reaction with an acid anhydride curing agent of an epoxy resin, and R 1 and R 2 are a methyl group or an ethyl group. ) And water is preferably subjected to a heat treatment at 60 ° C to 160 ° C for 1 to 10 hours, and a step of adding an acid anhydride curing agent for the epoxy resin to the heat-treated mixture. It is in.

【0020】ここで,本発明では樹脂の硬化プロセスに
おいて,エポキシ樹脂組成物と導体等の異種材料との界
面の膨れやクラック等を防止するため,副生成物の発生
を抑えることが重要である。樹脂としてエポキシ樹脂を
用いたのは硬化の際に,副生成物の発生をなくすためで
ある。また,エポキシ樹脂に有機ケイ素化合物と水を添
加した混合溶液に予め加熱処理を施した後,その混合溶
液に対して酸無水物硬化剤を添加するのは,エポキシ樹
脂組成物の加熱硬化を行う前に副生成物として発生する
水やアルコールの生成を抑えることを考慮している。本
発明の発明者らは,硬化反応の際に水やアルコール等の
副生成物の発生を極力抑えたエポキシ樹脂組成物を得る
には,エポキシ樹脂,有機ケイ素化合物および水の混合
物の状態で,予め加熱処理を施すことが有効であること
を見出した。ここで,有機ケイ素化合物はエポキシ樹脂
の酸無水物硬化剤と付加反応を起こす官能基を有するも
のである。この特徴によれば,酸無水物硬化剤を添加す
る前に,エポキシ樹脂,有機ケイ素化合物および水を含
む混合物に加熱処理を施すので,本発明のエポキシ樹脂
組成物の硬化物は,高温時における弾性率の変化が少な
いため,熱応力が生じにくく,クラックが発生しにく
い。更に,高温でも高弾性率を維持できるため,外部か
ら受ける力の負荷によるエポキシ樹脂組成物の変形の発
生が抑えられる。また,硬化する際に,水やアルコール
等の副生成物の発生は微量であるから,導体,絶縁フィ
ルム等とエポキシ樹脂組成物を用いてモールドコイルを
製造しても,導体等とエポキシ樹脂組成物との界面にお
ける膨れやモールドコイルにクラック等が生じにくい。
Here, in the present invention, in the curing process of the resin, it is important to suppress the generation of by-products in order to prevent swelling and cracks at the interface between the epoxy resin composition and different materials such as conductors. . The reason for using epoxy resin as the resin is to eliminate the generation of by-products during curing. The heat treatment of a mixed solution of an epoxy resin and an organosilicon compound and water is performed in advance, and then the addition of an acid anhydride curing agent to the mixed solution involves heating and curing the epoxy resin composition. Consideration is given to suppressing the generation of water and alcohol which are generated as by-products before. In order to obtain an epoxy resin composition in which the generation of by-products such as water and alcohol during the curing reaction is minimized, the inventors of the present invention require a mixture of an epoxy resin, an organosilicon compound and water, It has been found that it is effective to perform a heat treatment in advance. Here, the organosilicon compound has a functional group that causes an addition reaction with an acid anhydride curing agent of the epoxy resin. According to this feature, before adding the acid anhydride curing agent, the mixture containing the epoxy resin, the organosilicon compound and water is subjected to a heat treatment, so that the cured product of the epoxy resin composition of the present invention can be used at high temperatures. Since the change in elastic modulus is small, thermal stress is hardly generated, and cracks are hardly generated. Further, since a high elastic modulus can be maintained even at a high temperature, deformation of the epoxy resin composition due to a load applied from the outside can be suppressed. In addition, since the generation of by-products such as water and alcohol during curing is very small, even if a molded coil is manufactured using an epoxy resin composition and a conductor, insulating film, etc., the conductor and the epoxy resin composition Swelling at the interface with the object and cracks and the like in the molded coil are less likely to occur.

【0021】本発明に示すエポキシ樹脂としては,加熱
することにより3次元架橋して固化する樹脂であって,
特に制限されるものではなく,公知のものが使用でき
る。例えば,ビスフェノールA型エポキシ樹脂,ビスフ
ェノールF型エポキシ樹脂,ビスフェノールA/F型エポキ
シ樹脂,ノボラック型エポキシ樹脂,脂環型エポキシ樹
脂等が挙げられる。エポキシ樹脂は前記エポキシ樹脂を
単独または2種類以上混合して用いることができる。
The epoxy resin shown in the present invention is a resin which is solidified by three-dimensional crosslinking by heating.
There is no particular limitation, and known ones can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol A / F type epoxy resin, novolak type epoxy resin, alicyclic type epoxy resin and the like can be mentioned. Epoxy resins can be used alone or in combination of two or more.

【0022】本発明に示す酸無水物硬化剤としては通常
一般に用いられている公知の化合物で,さらに注型性や
硬化物物性等の観点から,例えば,無水フタル酸,無水
ヘキサヒドロフタル酸,無水メチルヘキサヒドロフタル
酸等が挙げられる。
The acid anhydride curing agent shown in the present invention is a known compound which is generally used. Further, from the viewpoints of castability and physical properties of the cured product, for example, phthalic anhydride, hexahydrophthalic anhydride, And methylhexahydrophthalic anhydride.

【0023】本発明では,さらに力学的特性の向上や線
膨張係数を低減するために無機充填剤を添加する。この
無機充填剤は,エポキシ樹脂組成物の硬化前および硬化
後の諸物性,素材コストおよび製造コスト等の観点から
結晶質シリカ,溶融シリカ等を挙げることができる。硬
化促進剤は本発明のエポキシ樹脂組成物の用途,特性の
向上あるいは改善等に応じて適宜使用され,例えば,2
−メチルイミダゾール,2−エチル−4−メチルイミダゾ
ール,1−シアノエチル−2−メチルイミダゾール,1−
(2−シアノエチル)−2−エチル−4−メチルイミダゾー
ル,エポキシアダクトイミダゾール化合物等のイミダゾ
ール類,ベンジルジメチルアミン,N−ベンジルジメチ
ルアミン等の第三級アミン類がある。これらの硬化促進
剤は単独または2種以上混合して用いても良い。
In the present invention, an inorganic filler is added to further improve the mechanical properties and reduce the coefficient of linear expansion. Examples of the inorganic filler include crystalline silica and fused silica from the viewpoints of various physical properties before and after curing of the epoxy resin composition, material costs, production costs, and the like. The curing accelerator is appropriately used in accordance with the use of the epoxy resin composition of the present invention, improvement or improvement of the properties, and the like.
-Methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-
There are imidazoles such as (2-cyanoethyl) -2-ethyl-4-methylimidazole and epoxy adductimidazole compounds, and tertiary amines such as benzyldimethylamine and N-benzyldimethylamine. These curing accelerators may be used alone or in combination of two or more.

【0024】また,その他公知のカップリング剤,離型
剤,着色剤,可塑剤,希釈剤,可とう化剤,各種のゴム
状物および光感光剤等を目的と用途に応じて適宜添加し
て用いることができる。
Further, other known coupling agents, release agents, coloring agents, plasticizers, diluents, flexibilizers, various rubber-like substances, photosensitizers, etc. are appropriately added according to the purpose and use. Can be used.

【0025】本発明において,(一般式3)で示される
有機ケイ素化合物の例として,次の(化学式5)〜(化
学式6)のエポキシ基を有する有機ケイ素化合物があ
る。
In the present invention, examples of the organosilicon compound represented by the general formula 3 include the following organosilicon compounds having an epoxy group represented by the following formulas 5 and 6.

【0026】[0026]

【化9】 Embedded image

【0027】[0027]

【化10】 Embedded image

【0028】さらに,本発明において,(一般式4)で
示される有機ケイ素化合物の例として,次の(化学式
7)の有機ケイ素化合物がある。
Furthermore, in the present invention, as an example of the organosilicon compound represented by (general formula 4), there is an organosilicon compound represented by the following (formula 7).

【0029】[0029]

【化11】 Embedded image

【0030】前記のようにエポキシ樹脂,有機ケイ素化
合物および水の混合物の状態で加熱処理を施すことで,
エポキシ基同士の分散性が高くなり,またオリゴマー程
度の有機ケイ素化合物が生成しやすいことが,29Si−
NMRの化学シフトからわかった。
By performing the heat treatment in the state of the mixture of the epoxy resin, the organosilicon compound and water as described above,
The higher the dispersibility between the epoxy group and be easily generated by an organosilicon compound of about oligomer, 29 Si-
It was found from the chemical shift of NMR.

【0031】[0031]

【化12】 Embedded image

【0032】またはOr

【0033】[0033]

【化13】 Embedded image

【0034】の有機ケイ素化合物(ただし,Rはエポキ
シ樹脂の酸無水物硬化剤と付加反応を起こす官能基を含
む有機基であり,かつ,R1およびR2はメチル基または
エチル基である)の29Si−NMRの化学シフトは−4
1ppm〜−44ppmに吸収が現われる。
(Where R is an organic group containing a functional group that causes an addition reaction with an acid anhydride curing agent of an epoxy resin, and R 1 and R 2 are a methyl group or an ethyl group) Has a chemical shift of -4 of 29 Si-NMR.
Absorption appears between 1 ppm and -44 ppm.

【0035】[0035]

【化14】 Embedded image

【0036】に示されるようなSi−O−Siの結合を
1つもつSiの29Si−NMRの化学シフトは−48pp
m〜−52ppmに吸収が現われる。
The chemical shift of 29 Si-NMR of Si having one Si--O--Si bond as shown in FIG.
Absorption appears between m and -52 ppm.

【0037】[0037]

【化15】 Embedded image

【0038】に示されるようなSi−O−Siの結合を
2つもつSiの29Si−NMRの化学シフトは−53pp
m〜−63ppmに吸収が現われる。
The chemical shift of 29 Si-NMR of Si having two Si—O—Si bonds as shown in FIG.
Absorption appears between m and -63 ppm.

【0039】[0039]

【化16】 Embedded image

【0040】に示されるようなSi−O−Siの結合を
3つもつSiの29Si−NMRの化学シフトは−63pp
m〜−72ppmに吸収が現われる。
The chemical shift of 29 Si-NMR of Si having three Si—O—Si bonds as shown in FIG.
Absorption appears between m and -72 ppm.

【0041】本発明のエポキシ樹脂と有機ケイ素化合物
および水の混合物の状態で予め加熱処理した後,酸無水
物硬化剤を添加して加熱硬化させたエポキシ樹脂組成物
について,29Si−NMRの化学シフトを測定すると,
−40ppm〜−75ppmに吸収が現われる。このうち,−
53ppm〜−75ppmの吸収の積分値は,−40ppm〜−
52 ppm の吸収の積分値に比べて大きいので,樹脂中
の有機ケイ素化合物は,Si−O−Siの結合を形成し
て,オリゴマー程度の大きさの分子が形成されているこ
とがわかった。このように,有機ケイ素化合物の分子量
が増加しても,エポキシ樹脂と相溶性が良いため,硬化
前のエポキシ樹脂組成物は固体の粒子が生成せず透明で
ある。
The epoxy resin composition of the present invention, which was previously heat-treated in the state of a mixture of an epoxy resin, an organosilicon compound and water, and then heat-cured by adding an acid anhydride curing agent, was subjected to 29 Si-NMR chemistry. When you measure the shift,
Absorption appears between -40 ppm and -75 ppm. Of these,
The integrated value of absorption from 53 ppm to -75 ppm is -40 ppm to-
Since the value was larger than the integrated value of the absorption at 52 ppm, it was found that the organosilicon compound in the resin formed a bond of Si—O—Si to form a molecule having a size of an oligomer. As described above, even if the molecular weight of the organosilicon compound is increased, the epoxy resin composition has good compatibility with the epoxy resin, and thus the epoxy resin composition before curing is transparent without generating solid particles.

【0042】本発明のようなエポキシ樹脂,有機ケイ素
化合物および水の混合物の状態で予め加熱処理を施した
酸無水物硬化剤が含まれないエポキシ樹脂組成物に対し
て,エポキシ樹脂と混合させずに(一般式3)または
(一般式4)の有機ケイ素化合物に水を添加して加熱処
理を施した場合は,エポキシ樹脂モノマーができずに,
有機ケイ素化合物は固化するか10000ポイズ以上の
高粘度溶液になってしまうため,上記加熱処理後にエポ
キシ樹脂と混合しても分子レベルで均一に混合すること
はできない。
The epoxy resin composition which does not contain an acid anhydride curing agent which has been subjected to a heat treatment in advance in the state of a mixture of an epoxy resin, an organosilicon compound and water as in the present invention is not mixed with the epoxy resin. When water is added to the organosilicon compound of the general formula (3) or (general formula 4) and heat-treated, an epoxy resin monomer is not formed,
Since the organosilicon compound solidifies or becomes a high-viscosity solution of 10,000 poise or more, even if it is mixed with the epoxy resin after the above-mentioned heat treatment, it cannot be uniformly mixed at the molecular level.

【0043】以上述べたエポキシ樹脂組成物は電気絶縁
物を導体に被覆した巻線に注型後,加熱硬化すること
で,高温時における弾性率が向上した硬化物が得られる
ため,応力等によるクラックが発生しにくいモールドコ
イルが作製できる。
The above-described epoxy resin composition is cast into a winding in which an electrical insulator is coated on a conductor, and then cured by heating. As a result, a cured product having an improved elastic modulus at a high temperature can be obtained. A molded coil in which cracks are less likely to be produced.

【0044】[0044]

【発明の実施の形態】(実施例1および比較例1)本実
施例に用いたエポキシ樹脂組成物の作製手順,硬化物物
性について説明する。本実施例用エポキシ樹脂組成物の
組成は表1に示すように,有機ケイ素化合物が3−グリ
シドキシプロピルトリメトキシシラン(チッソ株式会社
製,商品名サイラエースS510),エポキシ樹脂がビ
スフェノールA型エポキシ樹脂(旭チバ株式会社製,商
品名AER−260),酸無水物硬化剤が無水メチルハ
イミック酸(日立化成株式会社製,商品名MHAC−
P),硬化促進剤がエポキシアダクトイミダゾール(油化
シェル株式会社製,商品名P−200),無機充填剤が
結晶質シリカ(龍森株式会社製,商品名C−BASE−
1)等を用いて以下の手順で作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Example 1 and Comparative Example 1) The procedure for preparing the epoxy resin composition used in this example and the physical properties of the cured product will be described. As shown in Table 1, the composition of the epoxy resin composition for this example was as follows: the organosilicon compound was 3-glycidoxypropyltrimethoxysilane (manufactured by Chisso Corporation, trade name: SILAACE S510), and the epoxy resin was bisphenol A type epoxy. Resin (AER-260, manufactured by Asahi Ciba Co., Ltd.), and acid anhydride curing agent is methylhymic anhydride (MHAC-, manufactured by Hitachi Chemical Co., Ltd.)
P), the curing accelerator is epoxy adduct imidazole (manufactured by Yuka Shell Co., Ltd., trade name P-200), and the inorganic filler is crystalline silica (Tatsumori Corporation, trade name C-BASE-).
It was prepared by the following procedure using 1) and the like.

【0045】図1は、本実施例のエポキシ樹脂組成物の
作製のフローチャートである。
FIG. 1 is a flowchart of the preparation of the epoxy resin composition of this example.

【0046】(1)有機ケイ素化合物,水および加水分
解用触媒のジブチルジラウリン酸錫(和光純薬工業(株)
社製)を秤量後,混合して1日以上室温で放置して有機
ケイ素混合溶液を作製する。 (2)(1)の有機ケイ素混合溶液にエポキシ樹脂を秤量
して混合する。 (3)(2)の混合後,150℃で4時間の加熱処理を行
いエポキシ混合溶液を作製する。 (4)(3)のエポキシ混合溶液を室温まで冷却してか
ら,酸無水物硬化剤,硬化促進剤および結晶質シリカ等
を秤量して約90℃で混合する。
(1) Organosilicon compound, water and tin dibutyl dilaurate as a catalyst for hydrolysis (Wako Pure Chemical Industries, Ltd.)
Weighed, mixed and left at room temperature for at least one day to prepare an organosilicon mixed solution. (2) The epoxy resin is weighed and mixed with the organosilicon mixed solution of (1). (3) After the mixing of (2), heat treatment is performed at 150 ° C. for 4 hours to prepare an epoxy mixed solution. (4) After cooling the epoxy mixed solution of (3) to room temperature, an acid anhydride curing agent, a curing accelerator, crystalline silica and the like are weighed and mixed at about 90 ° C.

【0047】上記(4)でできた混合溶液が本実施例で用
いるエポキシ樹脂組成物である。
The mixed solution obtained in the above (4) is the epoxy resin composition used in this embodiment.

【0048】これに対して,比較例1用エポキシ樹脂組
成物は,表1に示すエポキシ樹脂,酸無水物硬化剤,硬
化促進剤および結晶質シリカ等を秤量後,約90℃で混
合して作製した。
On the other hand, the epoxy resin composition for Comparative Example 1 was prepared by weighing the epoxy resin, the acid anhydride curing agent, the curing accelerator, the crystalline silica, etc. shown in Table 1 and mixing them at about 90 ° C. Produced.

【0049】[0049]

【表1】 [Table 1]

【0050】上記の本実施例用および比較例1用エポキ
シ樹脂組成物は金型に注入後,100℃・5時間+17
0℃・7時間の条件で加熱硬化して硬化物を作製した。
これら硬化物の貯蔵弾性率,ガラス転移温度(以下Tg
とする)を表1に示す。貯蔵弾性率の測定は動的粘弾性
装置PVEレオスペクトラー(レオロジー株式会社製)を
用いて昇温速度:2℃/min.,周波数:10Hz,チャッ
ク間距離:20mm,変位振幅:5μmの条件で行った。
また,Tgの測定は熱物理試験機TM−1500型(真
空理工株式会社製)を用いて昇温速度:2℃/min.の条
件で行った。
The above-mentioned epoxy resin compositions for the present example and comparative example 1 were injected into a mold, and then heated at 100 ° C. for 5 hours + 17 hours.
The composition was cured by heating at 0 ° C. for 7 hours to prepare a cured product.
The storage elastic modulus and glass transition temperature (hereinafter Tg) of these cured products
Are shown in Table 1. The storage elastic modulus was measured using a dynamic viscoelasticity device PVE Rheospectler (manufactured by Rheology Co., Ltd.) under the conditions of a heating rate: 2 ° C./min., A frequency: 10 Hz, a distance between chucks: 20 mm, and a displacement amplitude: 5 μm. I went in.
The Tg was measured using a thermophysical tester TM-1500 (manufactured by Vacuum Riko Co., Ltd.) under the condition of a heating rate of 2 ° C./min.

【0051】まず,エポキシ樹脂組成物の硬化物物性と
して,本実施例用の50℃の貯蔵弾性率は15GPaで
比較例1用(14GPa)とほぼ同等であるが,220℃
の貯蔵弾性率が1.5GPaと比較例1用(0.4GP
a)より約3倍以上高い。次に,本実施例用のエポキシ
樹脂組成物のTgは155℃で比較例1用(151℃)と
ほぼ同等である。また,本実施例用は29Si−NMRの
化学シフトの-53ppmから-72ppmのピークの積分値
は,-40ppmから-52ppmのピークの積分値に対して1
0.5倍となり,有機ケイ素化合物はオリゴマーレベル
の分子であった。
First, as the physical properties of the cured product of the epoxy resin composition, the storage elastic modulus at 50 ° C. for this example is 15 GPa, which is almost the same as that for Comparative Example 1 (14 GPa), but 220 ° C.
Has a storage elastic modulus of 1.5 GPa for Comparative Example 1 (0.4 GPa
About three times higher than a). Next, the Tg of the epoxy resin composition for this example is 155 ° C., which is almost the same as that for Comparative Example 1 (151 ° C.). In this example, the integrated value of the peak from -53 ppm to -72 ppm of the chemical shift of 29 Si-NMR is 1 to the integrated value of the peak from -40 ppm to -52 ppm.
0.5 times, and the organosilicon compound was an oligomer-level molecule.

【0052】図2は本実施例のモールドコイルの構成を
示す一部を断面とした斜視図である。前述したエポキシ
樹脂組成物を適用して本実施例のモールドコイルを作製
した例について説明する。このモールドコイルは,内外
周をそれぞれプリプレグ絶縁物2a,3aでモールドして
内周絶縁層2,外周絶縁層3を形成し,コイル内部には
本実施例のエポキシ樹脂組成物4を巻線1の内部にも含
浸注入した後,加熱硬化することにより作製される。
FIG. 2 is a partially sectional perspective view showing the structure of the molded coil of this embodiment. An example in which the above-described epoxy resin composition is applied to manufacture the molded coil of the present example will be described. In this molded coil, the inner and outer peripheries are molded with prepreg insulators 2a and 3a, respectively, to form an inner perimeter insulating layer 2 and an outer perimeter insulating layer 3, and the epoxy resin composition 4 of the present embodiment is wound inside the coil 1 It is manufactured by impregnating and injecting into the inside of the substrate and then heating and curing.

【0053】図3は、巻き線機で製作したコイルの側面
図である。本実施例におけるモールドコイルの製造方法
は,図3のように巻線機6の巻心8にプリプレグ絶縁物
2aをエポキシ樹脂組成物の漏れ止め用フランジ7に密
着するようにして巻回し,その上に巻線1を巻回する。
FIG. 3 is a side view of a coil manufactured by a winding machine. As shown in FIG. 3, the method of manufacturing a molded coil in this embodiment is as follows. A prepreg insulator 2a is wound around a core 8 of a winding machine 6 so as to be in intimate contact with a flange 7 for preventing leakage of an epoxy resin composition. The winding 1 is wound thereon.

【0054】図4は、エポキシ樹脂組成物を含侵注入後
のモールドコイルの断面図である。巻線1は図4に示す
ように導体1aと層間絶縁物5とが交互に巻回される。
図3において巻線1の巻回後,更にその上面にプリプレ
グ絶縁物3aを一方の端部がフランジ7に密着するよう
にして巻回し,その後,170℃で4時間加熱して巻線
1の乾燥とプリプレグ絶縁物2a,3aの硬化を行う。図
4に示すように,フランジ7を下にして内周絶縁層2と
外周絶縁層3で囲まれた空間および導体1aと層間絶縁
物5に囲まれた空間に,本実施例1用エポキシ樹脂組成
物を含浸注入し,100℃・5時間の加熱硬化した後に
フランジ7および巻心8を取り外し,更に170℃・7
時間の加熱硬化後,約12時間かけて室温まで冷却して
モールドコイルを作製した。同様に,比較例1のモール
ドコイルは本実施例と同様な方法で,巻線に比較例1用
エポキシ樹脂組成物を含浸注入して作製した。
FIG. 4 is a cross-sectional view of the molded coil after the impregnation and injection of the epoxy resin composition. As shown in FIG. 4, the winding 1 has a conductor 1a and an interlayer insulator 5 wound alternately.
In FIG. 3, after winding of the winding 1, a prepreg insulator 3a is further wound on the upper surface of the winding 1 so that one end thereof is in close contact with the flange 7, and then heated at 170 ° C. for 4 hours. Drying and curing of the prepreg insulators 2a and 3a are performed. As shown in FIG. 4, the epoxy resin for the first embodiment is provided in a space surrounded by the inner circumferential insulating layer 2 and the outer circumferential insulating layer 3 with the flange 7 down and a space surrounded by the conductor 1a and the interlayer insulator 5. After impregnating and injecting the composition and heating and hardening at 100 ° C. for 5 hours, the flange 7 and the core 8 were removed.
After heating and curing for a time, the mold coil was prepared by cooling to room temperature over about 12 hours. Similarly, the molded coil of Comparative Example 1 was manufactured by impregnating and injecting the epoxy resin composition for Comparative Example 1 into the winding in the same manner as in this example.

【0055】本実施例および比較例1のモールドコイル
の短絡試験(短絡事故時に発生する電流を模擬的に通電
する試験)を行い,クラックの有無を確認した。その結
果,本実施例のモールドコイルは高温時における力学的
特性(貯蔵弾性率)が向上したエポキシ樹脂組成物を用い
ているため,通電によりモールドコイルが約150℃に
昇温し,同時に電磁力も発生したがクラックは発生しな
かった。これに対し,比較例1用エポキシ樹脂組成物は
高温時の力学的特性について全く考慮していないため,
モールドコイルが通電により約150℃に昇温し,同時
に電磁力が発生した際に,クラックが発生した。
A short-circuit test (test for simulating the current generated at the time of a short-circuit accident) of the molded coil of this embodiment and Comparative Example 1 was performed to confirm the presence or absence of cracks. As a result, since the molded coil of this example uses an epoxy resin composition having improved mechanical properties (storage elastic modulus) at high temperatures, the temperature of the molded coil rises to about 150 ° C. by energization, and the electromagnetic force also increases. It occurred but no crack occurred. On the other hand, the epoxy resin composition for Comparative Example 1 does not consider mechanical properties at high temperature at all.
Cracks occurred when the temperature of the molded coil was raised to about 150 ° C. by energization and at the same time an electromagnetic force was generated.

【0056】本実施例によれば,エポキシ樹脂組成物は
硬化後に比較例1用エポキシ樹脂組成物に比べて,高温
での弾性率が向上しているため,モールドコイルに電磁
力等の応力が生じてもクラックが発生しないため絶縁信
頼性が向上できた。
According to the present embodiment, the epoxy resin composition has an improved elastic modulus at a high temperature after curing as compared with the epoxy resin composition for Comparative Example 1, so that stress such as electromagnetic force is applied to the mold coil. Even if it did, no cracking occurred, and insulation reliability could be improved.

【0057】(実施例2および比較例2)本実施例用エ
ポキシ樹脂組成物は表2に示すように,有機ケイ素化合
物が2−(3,4−エポキシシクロヘキシル)エチルトリ
メトキシシラン(チッソ株式会社製,商品名サイラエー
スS530),エポキシ樹脂がビスフェノールA/F型エ
ポキシ樹脂(チバガイギ株式会社製,商品名PY−30
2−2),酸無水物硬化剤が無水メチルハイミック酸,
硬化促進剤が1−(2−シアノエチル)−2−エチル−4
−メチルイミダゾール(四国化成株式会社製,商品名2
E4MZ−CN),無機充填剤が結晶質シリカ等を用い
て,実施例1と同様な作製手順で行った。また,比較例
2用エポキシ樹脂組成物も同様に,表2に示すエポキシ
樹脂,酸無水物硬化剤,硬化促進剤および結晶質シリカ
等を秤量して約90℃で混合した。実施例2用エポキシ
樹脂組成物および比較例2用エポキシ樹脂組成物は実施
例1と同様な方法で硬化物を作製して硬化物物性を測定
した。
(Example 2 and Comparative Example 2) As shown in Table 2, the epoxy resin composition for this example was such that the organosilicon compound was 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (Chisso Corporation). (Trade name: SILA ACE S530), epoxy resin is bisphenol A / F type epoxy resin (trade name: PY-30, manufactured by Ciba-Geigy Corporation)
2-2), the acid anhydride curing agent is methylhymic anhydride,
When the curing accelerator is 1- (2-cyanoethyl) -2-ethyl-4
-Methylimidazole (Shikoku Chemicals Co., Ltd., trade name 2
E4MZ-CN) and an inorganic filler using crystalline silica or the like was used in the same manufacturing procedure as in Example 1. Similarly, the epoxy resin composition for Comparative Example 2 was weighed and mixed at about 90 ° C. with the epoxy resin, acid anhydride curing agent, curing accelerator, crystalline silica, and the like shown in Table 2. For the epoxy resin composition for Example 2 and the epoxy resin composition for Comparative Example 2, cured products were prepared in the same manner as in Example 1, and the properties of the cured products were measured.

【0058】まず,エポキシ樹脂組成物の硬化物物性と
して,本実施例用の50℃の貯蔵弾性率は14GPaで
比較例2用 (13GPa)とほぼ同等であるが,220
℃の貯蔵弾性率が1.2GPaと比較例2用(0.4G
Pa)より3倍高い。次に,本実施例用のエポキシ樹脂
組成物のTgは151℃で比較例1用(150℃)とほぼ
同等である。また,本実施例用は29Si−NMRの化学
シフトの-53ppmから-72ppmのピークの積分値は,-
40ppmから-52ppmのピークの積分値に対して10.
5倍となり,有機ケイ素化合物はオリゴマーレベルの分
子であった。
First, as the physical properties of a cured product of the epoxy resin composition, the storage elastic modulus at 50 ° C. for this example is 14 GPa, which is almost equal to that for comparative example 2 (13 GPa).
° C storage elastic modulus of 1.2 GPa and that for Comparative Example 2 (0.4 G
3 times higher than Pa). Next, the Tg of the epoxy resin composition for this example is 151 ° C., which is almost the same as that for Comparative Example 1 (150 ° C.). In the present example, the integrated value of the peak from -53 ppm to -72 ppm of the chemical shift of 29 Si-NMR is-
10. For the integrated value of the peak from 40 ppm to -52 ppm.
The number was 5 times, and the organosilicon compound was an oligomer-level molecule.

【0059】[0059]

【表2】 [Table 2]

【0060】次に本実施例のモールドコイルは,前述し
た本実施例用エポキシ樹脂組成物を適用して実施例1と
同様な方法で作製した。また,比較例2のモールドコイ
ルは本実施例と同様な方法で,巻線に比較例2用エポキ
シ樹脂組成物を含浸注入して作製した。
Next, the molded coil of the present example was manufactured in the same manner as in Example 1 by applying the above-described epoxy resin composition for the present example. Further, the molded coil of Comparative Example 2 was manufactured by impregnating and injecting the epoxy resin composition for Comparative Example 2 into the winding in the same manner as in this example.

【0061】本実施例および比較例2のモールドコイル
の短絡試験(短絡事故時に発生する電流を模擬的に通電
する試験)を行い,クラックの有無を確認した。その結
果,本実施例のモールドコイルは高温時における力学的
特性(貯蔵弾性率)が向上したエポキシ樹脂組成物を用い
ているため,通電によりモールドコイルが約150℃に
昇温し,同時に電磁力も発生したがクラックは発生しな
かった。これに対し,比較例2用エポキシ樹脂組成物は
高温時の力学的特性について全く考慮していないため,
モールドコイルが通電により約150℃に昇温し,同時
に電磁力が発生した際に,クラックが発生した。
A short-circuit test (test for simulating a current generated at the time of a short-circuit accident) of the molded coils of this embodiment and Comparative Example 2 was performed to confirm the presence or absence of cracks. As a result, since the molded coil of this example uses an epoxy resin composition having improved mechanical properties (storage elastic modulus) at high temperatures, the temperature of the molded coil rises to about 150 ° C. by energization, and the electromagnetic force also increases. It occurred but no crack occurred. In contrast, the epoxy resin composition for Comparative Example 2 did not consider mechanical properties at high temperatures at all, and
Cracks occurred when the temperature of the molded coil was raised to about 150 ° C. by energization and at the same time an electromagnetic force was generated.

【0062】本実施例によれば,エポキシ樹脂組成物は
硬化後に比較例2用エポキシ樹脂組成物に比べて,高温
での弾性率が向上しているため,モールドコイルに電磁
力等の応力が生じてもクラックが発生しないため絶縁信
頼性が向上できた。
According to the present embodiment, the epoxy resin composition has an improved elastic modulus at a high temperature after curing as compared with the epoxy resin composition for Comparative Example 2, so that stress such as electromagnetic force is applied to the mold coil. Even if it did, no cracking occurred, and insulation reliability could be improved.

【0063】(実施例3および比較例3)本実施例用エ
ポキシ樹脂組成物は表3に示すように,有機ケイ素化合
物が2−(3,4−エポキシシクロヘキシル)エチルトリ
メトキシシラン,エポキシ樹脂がビスフェノールA型エ
ポキシ樹脂とビスフェノールF型エポキシ樹脂(旭電化
株式会社製,商品名EP−4901)の混合物,酸無水
物硬化剤がメチルヒドロ無水フタル酸,硬化促進剤がエ
ポキシアダクトイミダゾール,無機充填剤が結晶質シリ
カ等を用いて,実施例1と同様な作製手順で行った。ま
た,比較例3用エポキシ樹脂組成物も同様に,表2に示
すエポキシ樹脂,酸無水物硬化剤,硬化促進剤および結
晶質シリカ等を秤量して約90℃で混合した。実施例3
用エポキシ樹脂組成物および比較例3用エポキシ樹脂組
成物は実施例1と同様な方法で硬化物を作製して硬化物
物性を測定した。
(Example 3 and Comparative Example 3) As shown in Table 3, the epoxy resin composition for this example was composed of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and an epoxy silicon resin. A mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (manufactured by Asahi Denka Co., Ltd., trade name EP-4901), acid anhydride curing agent is methylhydrophthalic anhydride, curing accelerator is epoxy adduct imidazole, inorganic filler is The same procedure as in Example 1 was performed using crystalline silica or the like. Similarly, the epoxy resin composition for Comparative Example 3 was prepared by weighing the epoxy resin, acid anhydride curing agent, curing accelerator, crystalline silica, and the like shown in Table 2 and mixing them at about 90 ° C. Example 3
For the epoxy resin composition for Comparative Example 3 and the epoxy resin composition for Comparative Example 3, cured products were prepared in the same manner as in Example 1, and the physical properties of the cured products were measured.

【0064】[0064]

【表3】 [Table 3]

【0065】まず,エポキシ樹脂組成物の硬化物物性と
して,本実施例用の50℃の貯蔵弾性率は15GPaで
比較例3用 (14GPa)とほぼ同等であるが,220
℃の貯蔵弾性率が1.3GPaと比較例3用(0.4G
Pa)より約3倍高い。次に,本実施例用のエポキシ樹
脂組成物のTgは153℃で比較例3用(150℃)とほ
ぼ同等である。また,本実施例用は29Si−NMRの化
学シフトの-53ppmから-72ppmのピークの積分値は,
-40ppmから-52ppmのピークの積分値に対して12.
0倍となり,有機ケイ素化合物はオリゴマーレベルの分
子であった。
First, as the physical properties of the cured product of the epoxy resin composition, the storage elastic modulus at 50 ° C. for this example was 15 GPa, which was almost the same as that for Comparative Example 3 (14 GPa).
° C storage elastic modulus of 1.3 GPa for Comparative Example 3 (0.4 G
About 3 times higher than Pa). Next, the Tg of the epoxy resin composition for this example is 153 ° C., which is almost the same as that for Comparative Example 3 (150 ° C.). Also, for this example, the integrated value of the peak from -53 ppm to -72 ppm of the 29 Si-NMR chemical shift is:
11. For integrated value of peak from -40 ppm to -52 ppm.
It was 0 times, and the organosilicon compound was an oligomer-level molecule.

【0066】次に本実施例のモールドコイルは,前述し
た本実施例用エポキシ樹脂組成物を適用して実施例1と
同様な方法で作製した。また,比較例3のモールドコイ
ルは本実施例と同様な方法で,巻線に比較例3用エポキ
シ樹脂組成物を含浸注入して作製した。
Next, the molded coil of this example was manufactured in the same manner as in Example 1 by applying the epoxy resin composition for this example described above. Further, the molded coil of Comparative Example 3 was manufactured by impregnating and injecting the epoxy resin composition for Comparative Example 3 into the winding in the same manner as in this example.

【0067】本実施例および比較例3のモールドコイル
の短絡試験(短絡事故時に発生する電流を模擬的に通電
する試験)を行い,クラックの有無を確認した。その結
果,本実施例のモールドコイルは高温時における力学的
特性(貯蔵弾性率)が向上した本実施例用エポキシ樹脂組
成物を用いているため,通電によりモールドコイルが約
150℃に昇温し,同時に電磁力も発生したがクラック
は発生しなかった。これに対し,比較例3用エポキシ樹
脂組成物は高温時の力学的特性について全く考慮してい
ないため,モールドコイルが通電により約150℃に昇
温し,同時に電磁力が発生した際に,クラックが発生し
た。
A short-circuit test (a test for simulating a current generated at the time of a short-circuit accident) of the molded coils of this embodiment and Comparative Example 3 was performed to confirm the presence or absence of cracks. As a result, since the molded coil of this example uses the epoxy resin composition for this example that has improved mechanical properties (storage modulus) at high temperatures, the temperature of the molded coil rises to about 150 ° C. by energization. At the same time, electromagnetic force was generated, but no crack was generated. On the other hand, since the epoxy resin composition for Comparative Example 3 did not consider the mechanical properties at high temperatures at all, the temperature of the mold coil rose to about 150 ° C. by energization, and at the same time, when the electromagnetic force was generated, cracks occurred. There has occurred.

【0068】本実施例によれば,エポキシ樹脂組成物は
硬化後に比較例3用エポキシ樹脂組成物に比べて,高温
での弾性率が向上しているため,モールドコイルに電磁
力等の応力が生じてもクラックが発生しないため絶縁信
頼性が向上できた。
According to this example, the epoxy resin composition has an improved elastic modulus at a high temperature after curing as compared with the epoxy resin composition for Comparative Example 3, so that a stress such as an electromagnetic force is applied to the mold coil. Even if it did, no cracking occurred, and insulation reliability could be improved.

【0069】[0069]

【発明の効果】本発明によれば,高温時における弾性率
が向上したエポキシ樹脂組成物を適用することで,クラ
ックが発生しにくいため絶縁信頼性に優れたモールドコ
イルが得られる顕著な効果を有する。
According to the present invention, the use of an epoxy resin composition having an improved elastic modulus at a high temperature has a remarkable effect that a molded coil excellent in insulation reliability can be obtained because cracks are hardly generated. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3のエポキシ樹脂組成物の作製フロ
ーチャートを示す図である。
FIG. 1 is a view showing a production flowchart of an epoxy resin composition of Examples 1 to 3.

【図2】実施例1〜3および比較例1〜3のモールドコ
イルの構成を示す一部を断面とした斜視図である。
FIG. 2 is a perspective view, partially in section, showing a configuration of a molded coil of Examples 1 to 3 and Comparative Examples 1 to 3.

【図3】実施例1〜3および比較例1〜3において巻線
機で作製したコイルの側面図である。
FIG. 3 is a side view of a coil manufactured by a winding machine in Examples 1 to 3 and Comparative Examples 1 to 3.

【図4】実施例1〜3および比較例1〜3のエポキシ樹
脂組成物を含浸注入後のモールドコイルの断面図であ
る。
FIG. 4 is a cross-sectional view of a molded coil after the impregnation and injection of the epoxy resin compositions of Examples 1 to 3 and Comparative Examples 1 to 3.

【符号の説明】[Explanation of symbols]

1…巻線,1a…導体,2…内周絶縁物,2a…プリプレグ絶
縁物,3…外周絶縁物,3a…プリプレグ絶縁物,4…エポ
キシ樹脂組成物,5…層間絶縁物,6…巻線機,7…フラ
ンジ,8…巻心
1 ... winding, 1a ... conductor, 2 ... inner circumference insulation, 2a ... prepreg insulation, 3 ... outer circumference insulation, 3a ... prepreg insulation, 4 ... epoxy resin composition, 5 ... interlayer insulation, 6 ... winding Wire machine, 7 ... flange, 8 ... core

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 27/02 H01F 27/32 A 5E070 27/32 41/04 A 41/04 15/02 L (72)発明者 佐通 祐一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 菅原 捷夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 中井 晴一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4J002 CD02X CD05X CD06X CP05W DJ016 EL137 EL147 FD016 FD147 GQ01 4J035 BA11 CA11M CA111 GA10 GB05 LB20 4J036 AA01 AA02 AD01 AF01 AJ21 DB15 FA01 FA05 JA05 JA07 5E044 AA03 AA07 AB01 AB07 AC01 AD02 AD05 AD06 5E062 FF02 5E070 AA01 AB10 DA12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 27/02 H01F 27/32 A 5E070 27/32 41/04 A 41/04 15/02 L (72) Inventor Yuichi Sado 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Katsuo Sugawara 7-1-1, Omika-cho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. In the laboratory (72) Inventor Seichi Nakai 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) GB05 LB20 4J036 AA01 AA02 AD01 AF01 AJ21 DB15 FA01 FA05 JA05 JA07 5E044 AA03 AA07 AB01 AB07 AC01 AD02 AD05 AD06 5E062 FF02 5E070 AA01 AB10 DA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁物を導体に被覆した巻線がエポキ
シ樹脂組成物でモールドされたモールドコイルにおい
て,該エポキシ樹脂組成物はエポキシ樹脂と、下記一般
式(1)又は(2)に示す 【化1】 【化2】 の有機ケイ素化合物(Rは前記エポキシ樹脂の酸無水物
硬化剤と付加反応を起こす官能基を含む有機基であり,
nは0個から3個,XがH,CH3,C25である)と,
前記酸無水物硬化剤と、該無機充填剤とを混合したエポ
キシ樹脂組成物の硬化物であることを特徴とするモール
ドコイル。
1. A molded coil in which a winding in which an electric insulator is coated on a conductor is molded with an epoxy resin composition, wherein the epoxy resin composition is represented by the following general formula (1) or (2): Embedded image Embedded image Wherein R is an organic group containing a functional group that causes an addition reaction with the acid anhydride curing agent of the epoxy resin,
n is 0 to 3 and X is H, CH 3 , C 2 H 5 )
A mold coil, which is a cured product of an epoxy resin composition obtained by mixing the acid anhydride curing agent and the inorganic filler.
【請求項2】請求項1において、前記硬化物は、220
℃における貯蔵弾性率が1GPa以上であることを特徴
とするモールドコイル。
2. The method according to claim 1, wherein the cured product is 220
A molded coil having a storage elastic modulus at 1 ° C. of 1 GPa or more.
【請求項3】請求項1又は2に記載のモールドコイルを
備えたことを特徴とする変圧記。
3. A transformer comprising the molded coil according to claim 1.
【請求項4】電気絶縁物を導体に被覆した巻線にエポキ
シ樹脂組成物の混合溶液を注入し、エポキシ樹脂組成物
の硬化物でモールドするモールドコイルの製造方法にお
いて,下記一般式(3)又は(4)に示す 【化3】 【化4】 の有機ケイ素化合物(ただし,Rはエポキシ樹脂の酸無
水物硬化剤と付加反応を起こす官能基を含む有機基であ
り,かつ,R1およびR2はメチル基またはエチル基であ
る)と、水と、加水分解用触媒とを含む混合溶液を製造
する工程と、該混合溶液にエポキシ樹脂を加えて混合し
た後に加熱処理するエポキシ混合溶液を製造する工程
と、該エポキシ混合溶液 に酸無水物硬化剤と硬化促進
剤と無機充填剤とを添加して加熱混合し、次いでその混
合溶液を前記注入した後に加熱硬化する工程とを有する
ことことを特徴とするモールドコイルの製造方法。
4. A method of manufacturing a molded coil in which a mixed solution of an epoxy resin composition is injected into a winding having an electric insulator coated on a conductor and molded with a cured product of the epoxy resin composition, the following general formula (3): Or as shown in (4): Embedded image (Where R is an organic group containing a functional group that causes an addition reaction with an acid anhydride curing agent of the epoxy resin, and R 1 and R 2 are a methyl group or an ethyl group) and water Producing a mixed solution containing an epoxy resin and a hydrolysis catalyst; adding an epoxy resin to the mixed solution; mixing the mixed solution and heat-treating the mixed solution; and curing the epoxy mixed solution with an acid anhydride. Adding a curing agent, a curing accelerator, and an inorganic filler, heating and mixing the mixture, then injecting the mixed solution and then heating and curing the mixture to produce a molded coil.
JP2000104033A 2000-04-05 2000-04-05 Molded coil and method for producing the same Pending JP2001288334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104033A JP2001288334A (en) 2000-04-05 2000-04-05 Molded coil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104033A JP2001288334A (en) 2000-04-05 2000-04-05 Molded coil and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001288334A true JP2001288334A (en) 2001-10-16

Family

ID=18617650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104033A Pending JP2001288334A (en) 2000-04-05 2000-04-05 Molded coil and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001288334A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123533A1 (en) * 2005-05-18 2006-11-23 Murata Manufacturing Co., Ltd Composite material vibrating apparatus
JP2007294702A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Electric insulation coil, total impregnation coil, and rotating-electric machine using these
WO2008032704A1 (en) * 2006-09-12 2008-03-20 Somar Corporation One-component epoxy resin composition and motor or electric generator utilizing the same
JP2008248074A (en) * 2007-03-30 2008-10-16 Somar Corp One-pack epoxy resin composition, and methods of producing insulating coil and cured fiber structure using the composition
JP5400383B2 (en) * 2006-09-12 2014-01-29 ソマール株式会社 One-pack type epoxy resin composition and motor or generator using the same
JP2018073903A (en) * 2016-10-26 2018-05-10 株式会社村田製作所 Electronic component and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123533A1 (en) * 2005-05-18 2006-11-23 Murata Manufacturing Co., Ltd Composite material vibrating apparatus
JP2007294702A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Electric insulation coil, total impregnation coil, and rotating-electric machine using these
US8314342B2 (en) 2006-04-26 2012-11-20 Hitachi, Ltd. Winding applied single vacuum pressure impregnation insulation system, a winding applied global vacuum pressure impregnation insulation system and an electrical rotating machine having said insulation systems
WO2008032704A1 (en) * 2006-09-12 2008-03-20 Somar Corporation One-component epoxy resin composition and motor or electric generator utilizing the same
US8372922B2 (en) 2006-09-12 2013-02-12 Somar Corporation One component epoxy resin composition and motor or dynamo using the same
JP5400383B2 (en) * 2006-09-12 2014-01-29 ソマール株式会社 One-pack type epoxy resin composition and motor or generator using the same
CN103539923A (en) * 2006-09-12 2014-01-29 索马龙株式会社 One-component epoxy resin composition and motor or electric generator utilizing the same
JP2008248074A (en) * 2007-03-30 2008-10-16 Somar Corp One-pack epoxy resin composition, and methods of producing insulating coil and cured fiber structure using the composition
JP2018073903A (en) * 2016-10-26 2018-05-10 株式会社村田製作所 Electronic component and method of manufacturing the same
US10510479B2 (en) 2016-10-26 2019-12-17 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3359410B2 (en) Epoxy resin composition for molding, molded product for high voltage equipment using the same, and method for producing the same
US20120025151A1 (en) Curable epoxy resin composition
JP3651729B2 (en) Impregnating resin composition
JP2001288334A (en) Molded coil and method for producing the same
JP6152321B2 (en) Epoxy resin composition for casting ignition coil, ignition coil and method for producing the same
JP2001114868A (en) Epoxy resin composition and insulating and sealing material using the same
JP2002145996A (en) Thermosetting resin composition and insulated coil using the same
JP2001011291A (en) Epoxy resin composition and mold coil
JPS62108555A (en) Semiconductor device
JPS6351447B2 (en)
JP3317115B2 (en) Epoxy resin composition for sealing material, method for producing the same, and inorganic filler
JPS6248968B2 (en)
JP3567334B2 (en) Epoxy varnish composition and method of use
JP2001135144A (en) Cast molding for sf6 gas insulated equipment and its production
JPH09137041A (en) Resin composition for impregnation and electrical insulating coil using the same
JPH1131625A (en) Dry-type transformer coil
JP3343136B2 (en) Heat-resistant and insulating varnish composition and method for forming coating film using the same
JPH0455483A (en) Heat-resistant and insulating varnish composition and formation of coating film using the same
JPS61280738A (en) Manufacture of heat-resistant insulated coil
JP2011246553A (en) Varnish composition and coil device
JP2000086742A (en) Epoxy resin composition and electroconductive paste
JP3204461B2 (en) Epoxy resin composition and cured product thereof
EP0356195B1 (en) Cracking resistant resin-sealed coil
JPS6012714A (en) Manufacture of electrically insulated coil
JPH06157723A (en) Epoxy resin composition