JP2001287991A - Abrasion resistant aggregate and method for producing the same - Google Patents

Abrasion resistant aggregate and method for producing the same

Info

Publication number
JP2001287991A
JP2001287991A JP2000136445A JP2000136445A JP2001287991A JP 2001287991 A JP2001287991 A JP 2001287991A JP 2000136445 A JP2000136445 A JP 2000136445A JP 2000136445 A JP2000136445 A JP 2000136445A JP 2001287991 A JP2001287991 A JP 2001287991A
Authority
JP
Japan
Prior art keywords
aluminum
producing
component
abrasion
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136445A
Other languages
Japanese (ja)
Inventor
Masahiro Matsunaga
全央 松永
Mikiya Kitami
幹冶 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MN Engineering Co Ltd
Original Assignee
MN Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MN Engineering Co Ltd filed Critical MN Engineering Co Ltd
Priority to JP2000136445A priority Critical patent/JP2001287991A/en
Publication of JP2001287991A publication Critical patent/JP2001287991A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new aggregate produced from a starting material consisting essentially of a burned ash from a refuge incinerator, and a thermite exothermic reagent, and excellent in abrasion resistance, and further to provide a method for producing the aggregate. SOLUTION: (1) This abrasion resistant aggregate comprises a material obtained by melting and solidified the starting material consisting essentially of the burned ash from the refuge incinerator, and the thermite exothermic reagent, and is characterized in that the solidified material contains 6-35% alumina component, and the amount of the remaining aluminum is <=0.2%. (2) The method for producing the aggregate is characterized in that the thermite exothermic reagent is mixed and melted with the burned ash from the refuge incinerator to provide a vitrified inorganic composition, and the melted material is gradually cooled and solidified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐磨耗性骨材とそ
の製造方法にかかわり、更に詳しくは、ゴミ焼却炉の焼
却灰とテルミット発熱反応剤を必須成分とする出発原料
から製造される耐磨耗性に優れた新規な骨材とそれを製
造する方法に関するものである。
[0001] The present invention relates to an abrasion-resistant aggregate and a method for producing the same, and more particularly, it is produced from a starting material containing incinerated ash from a garbage incinerator and a thermite exothermic reactant as essential components. The present invention relates to a novel aggregate having excellent wear resistance and a method for producing the aggregate.

【0002】[0002]

【従来の技術】周知のように工場や家庭から排出される
廃棄物は加速的に増加し最終処分場の残余年数は逼迫し
ている。ゴミが地球を埋め尽くす感がある。ゴミの減容
化は緊急の課題である。減容化には焼却が最も効果的で
あるが、結果として焼却灰が発生する。この焼却灰は軽
くて飛散しやすく、埋め立てもままならず、まことに厄
介なものである。最近の傾向として焼却灰を溶融、ガラ
ス化して減容化し、土木建設資材等に再利用することが
試みられているが、溶融処理に伴って新たな問題も発生
している。それは焼却灰に金属アルミニウムが残存する
問題である。近年、アルミニウム飲料缶、アルミニウム
箔、プラスチック菓子袋へのアルミニウム箔のラミネー
ト等の製品の排出が激増し、焼却炉の焼却灰に金属アル
ミニウムが必然的に残留するようになったためである。
金属アルミニウムは酸性、アルカリ性の水と反応して水
素を発生させ、場合によっては爆発が起こり人身事故が
発生することもある。焼却灰を溶融、ガラス化してもア
ルミニウムはそのまま残るために水素発生の問題はその
まま残り、土木建設資材に利用してもクラックが発生す
る。アルミニウムが残存するためにガラスが脆弱で広範
な用途開発が難しいのが現状である。せっかく減容化し
ても使い道がないのである。また焼却灰は残留アルミニ
ウムの問題とは別に、成分的にもシリカ成分が多く強度
が弱く、耐磨耗性に劣る欠点もある。焼却灰の有効利用
を図るためには、残留アルミニウムを除去すること、
高強度、高耐磨耗性の成分組成に改質すること、溶
融固化物の結晶組織を歪のない徐冷組織にすることが必
要である。
2. Description of the Related Art As is well known, wastes discharged from factories and homes are increasing at an accelerating rate, and the remaining years of final disposal sites are becoming tight. There is a feeling that garbage fills the earth. Reducing garbage is an urgent issue. Incineration is most effective for volume reduction, but incineration ash is generated as a result. This incinerated ash is light and easily scattered, does not remain in landfills, and is very troublesome. As a recent tendency, there has been an attempt to melt and vitrify incinerated ash to reduce its volume and reuse it for civil engineering construction materials and the like. However, new problems have also arisen with the melting process. It is a problem that aluminum metal remains in the incineration ash. In recent years, the discharge of products such as aluminum beverage cans, aluminum foil, and laminates of aluminum foil on plastic confectionery bags has increased dramatically, and metallic aluminum has inevitably remained in the incineration ash of incinerators.
Metallic aluminum reacts with acidic or alkaline water to generate hydrogen, which in some cases can explode and cause personal injury. Even if the incinerated ash is melted and vitrified, the aluminum remains as it is, and the problem of hydrogen generation remains as it is, and cracks occur even when used for civil engineering construction materials. At present, it is difficult to develop a wide range of applications because the glass remains brittle due to the remaining aluminum. There is no use even if the volume is reduced. In addition to the problem of residual aluminum, incinerated ash also has a disadvantage that it has a large amount of a silica component and low strength, and is inferior in abrasion resistance. In order to use incinerated ash effectively, remove residual aluminum,
It is necessary to modify the component composition to have high strength and high abrasion resistance and to make the crystal structure of the molten and solidified product a slow cooling structure without distortion.

【0003】[0003]

【発明が解決しようとする課題】本発明はかかる問題点
に鑑みてなされたもので、焼却灰を出発原料として上記
、、の課題を解決した高強度で耐磨耗性に優れた
新規な骨材とその製造方法を提供せんとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a novel bone having high strength and excellent abrasion resistance, which solves the above-mentioned problems, using incinerated ash as a starting material. It is intended to provide materials and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は上記課題に関
して鋭意研究を行った結果、下記の知見を得た。すなわ
ち、 (1)ゴミ焼却炉の焼却灰とテルミット発熱反応剤を必
須成分とする出発原料を溶融固化し、該固化物質のアル
ミナ量を6〜35%とし、かつ残留アルミニウム量を
0.2%以下にすることにより解決できること。そし
て、 (2)上記溶融固化物質は、テルミット発熱反応剤をゴ
ミ焼却炉の焼却灰に混合、溶融してガラス状無機質組成
物を溶造し、この溶融物を徐冷固化させることにより製
造することが出来ること。そして、 (3)上記テルミット発熱反応剤は、アルミニウム成分
を含む粉粒体と酸化鉄成分を含む粉粒体を混合して、該
混合物のアルミ含有量を5%以上、アルミ成分と酸化鉄
成分の比率は、1:(2.0〜5.0)にすることが最
も好ましいこと。また (4)上記粉粒体の混合物のアルミ含有量は5%以上、
アルミ成分と酸化鉄成分の比率は、1:(2.0〜5.
0)、かつ該混合物の中に、チタン酸化物3〜12重量
%、マンガン酸化物1〜5重量%含有させることが最も
好ましい。そして、 (5)上記アルミニウム成分を含有する粉粒体に廃アル
ミ缶の粉砕物を好適に使用できること。 (6)上記アルミニウム成分を含有する粉粒体にアルミ
残灰を好適に利用できること。 (7)上記酸化鉄成分を含有する粉粒体に磁性酸化鉄汚
泥を好適に利用できること。 (8)上記酸化鉄成分を含有する粉粒体に水酸化アルミ
ナ製造時の赤泥を好適に利用できること。 (9)上記粉粒体の混合物とゴミ焼却炉の焼却灰は圧縮
成形するとより好ましいこと。 (10)上記粉粒体の混合物はゴミ焼却炉の焼却灰と混
合した時の全体の10〜40%混合するのが最も好まし
いこと。 以上の知見を得た。本発明は以上の知見を元になされた
ものである。
Means for Solving the Problems The present inventor has made intensive studies on the above problems and obtained the following findings. (1) The incineration ash of the refuse incinerator and the starting material containing the thermite exothermic reactant as essential components are melt-solidified, the amount of alumina of the solidified material is 6 to 35%, and the amount of residual aluminum is 0.2%. What can be solved by doing the following. And, (2) the above-mentioned melt-solidified substance is produced by mixing and melting the thermite exothermic reactant with the incineration ash of a garbage incinerator to forge a glassy inorganic composition, and gradually cooling and solidifying this melt. What you can do. And (3) the thermite exothermic reactant is obtained by mixing a powder containing an aluminum component and a powder containing an iron oxide component, and adjusting the aluminum content of the mixture to 5% or more, the aluminum component and the iron oxide component. Is most preferably 1: (2.0-5.0). (4) The aluminum content of the mixture of the powder and granules is 5% or more;
The ratio of the aluminum component to the iron oxide component is 1: (2.0 to 5.
0) Most preferably, the mixture contains 3 to 12% by weight of titanium oxide and 1 to 5% by weight of manganese oxide. (5) The pulverized waste aluminum can can be suitably used for the powder containing the aluminum component. (6) The residual aluminum ash can be suitably used for the powder containing the aluminum component. (7) The magnetic iron oxide sludge can be suitably used for the powder containing the iron oxide component. (8) Red mud from the production of alumina hydroxide can be suitably used for the powder containing the iron oxide component. (9) It is more preferable that the mixture of the granules and the incineration ash of the garbage incinerator are compression molded. (10) It is most preferable that the mixture of the above-mentioned powder and granules is mixed at 10 to 40% of the whole when mixed with the incineration ash of the refuse incinerator. The above findings were obtained. The present invention has been made based on the above findings.

【0005】[0005]

【発明の実施の形態】本発明の耐磨耗性骨材は、焼却灰
とテルミット発熱反応剤を必須成分とする出発原料を溶
融、徐冷固化させることにより得られる。溶融過程で、
焼却灰に残留する金属アルミニウムは無害な無機質の化
合物(主にアルミナ)に変化する。このときの反応は以
下のような機構によるものと推察される。即ち、テルミ
ット発熱反応剤のアルミニウムと酸化鉄が反応してテル
ミット発熱反応が起こり、このとき焼却灰に含まれるア
ルミニウムも同時に反応して無害な無機物(アルミナ)
に変わるものと推察される。したがって本発明ではテル
ミット反応が起こることが、必須である。テルミット反
応を起こさせるためには、テルミット反応剤の中のアル
ミ含有量は5%以上が好ましい。5%未満ではテルミッ
ト発熱反応が起きないので好ましくない。アルミニウム
と酸化鉄の混合比率は、アルミニウム含有量1に対して
酸化鉄含有量2.0〜5.0の比率が好ましい。アルミ
ニウム含有原料と酸化鉄含有原料の比率が上限を超える
と酸化鉄が過多になってテルミット発熱反応が起きなく
なるので好ましくない。また、下限値未満では、アルミ
が過多になって溶融物にアルミニウムが残存するので好
ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The abrasion-resistant aggregate of the present invention can be obtained by melting and gradually cooling and solidifying a starting material containing incinerated ash and a thermite exothermic reactant as essential components. During the melting process,
The metallic aluminum remaining in the incineration ash changes into harmless inorganic compounds (mainly alumina). The reaction at this time is presumed to be due to the following mechanism. That is, thermite exothermic reactant aluminum reacts with iron oxide to cause a thermite exothermic reaction. At this time, the aluminum contained in the incineration ash also reacts at the same time, causing harmless inorganic substances (alumina).
It is presumed to change to Therefore, in the present invention, it is essential that a thermite reaction occurs. In order to cause a thermite reaction, the aluminum content in the thermite reactant is preferably 5% or more. If it is less than 5%, thermite exothermic reaction does not occur, which is not preferable. The mixing ratio of aluminum to iron oxide is preferably such that the aluminum content is 1 and the iron oxide content is 2.0 to 5.0. If the ratio of the aluminum-containing raw material to the iron oxide-containing raw material exceeds the upper limit, the amount of iron oxide becomes excessive and thermite exothermic reaction does not occur, which is not preferable. On the other hand, if the amount is less than the lower limit, aluminum is excessive and aluminum remains in the melt, which is not preferable.

【0006】また混合物の中に酸化チタン3〜12重量
%、酸化マンガン1〜5重量%含有させると溶融ガラス
の融点が下がって溶流性が良くなり、スラグが途切れる
ことなく連続して流れるようになる。操業安定化のため
には極めて重要である。アルミ原料と酸化鉄原料に酸化
チタンと酸化マンガンがすでに含まれて入るときは、酸
化チタンと酸化マンガンの不足分を新たに追加して加え
れば良い。酸化チタンと酸化マンガンの添加方法は、酸
化チタンと酸化マンガンそのものを添加しても良いし、
あるいは酸化チタン、酸化マンガン成分を含有するもの
を添加しても良い。酸化チタン、酸化マンガンを含む廃
棄物を利用するのが最も好ましい。
[0006] When 3 to 12% by weight of titanium oxide and 1 to 5% by weight of manganese oxide are contained in the mixture, the melting point of the molten glass is lowered and the flowability is improved, so that the slag flows continuously without interruption. become. It is extremely important for stabilizing operations. When titanium oxide and manganese oxide are already contained in the aluminum raw material and the iron oxide raw material, it is sufficient to newly add a shortage of titanium oxide and manganese oxide. Titanium oxide and manganese oxide may be added by adding titanium oxide and manganese oxide itself,
Alternatively, those containing titanium oxide and manganese oxide components may be added. Most preferably, waste containing titanium oxide and manganese oxide is used.

【0007】酸化チタン含有量が下限値未満では溶融生
成物の粘性が高くなって溶流性が悪くなり焼却炉の連続
操業できなくなるので好ましくない。また、上限を超え
て含有させてもそれ以上の溶流性の改善効果は見こめな
い。これら組成物の混合方法については、たとえば、フ
レットミルや高速混合機、ミキサーなど通常の撹拌混合
機を用いて混合すればよく、酸化チタン、酸化マンガン
などの添加、混合方法についても特別な限定があるわけ
ではない。
[0007] If the titanium oxide content is less than the lower limit, the viscosity of the molten product increases, the meltability deteriorates, and continuous operation of the incinerator is not preferable. Further, even if the content exceeds the upper limit, no further improvement effect of the meltability can be expected. For the method of mixing these compositions, for example, it is only necessary to mix using a normal stirring mixer such as a fret mill, a high-speed mixer, a mixer, and the addition of titanium oxide, manganese oxide, etc., and the mixing method are also specially limited. Not necessarily.

【0008】これらの組成物の形状は粉粒体のままでも
実用に際しての問題はないが、2〜30mmの大きさの
顆粒状あるいは造粒物に成形したほうがより好ましい。
顆粒、造粒成形すると粉粒体に比べて密度が高いため
に、燃焼熱の伝播速度が速く、より高い発熱効果が得ら
れる。顆粒あるいは造粒成形の方法は、組成物を構成し
ているアルミニウム成分が水分と反応しやすいので、乾
式成形の方が好ましい。
Although there is no problem in practical use even if the shape of these compositions is in the form of powder, it is more preferable to form them into granules or granules having a size of 2 to 30 mm.
When granules and granules are formed, the density of the granules is higher than that of the granules, so that the propagation speed of combustion heat is high and a higher heat generation effect can be obtained. As the method of granulation or granulation, dry molding is preferable because the aluminum component constituting the composition easily reacts with moisture.

【0009】本発明骨材の成分組成は、アルミナ6〜3
5%,残留アルミニウム量は0.2%以下、最も好まし
くは0.0%以下に規定することが好ましい。骨材中の
残留アルミニウム量が0.2%以下では実使用に際して
水素を発生して骨材が崩壊するトラブルは発生しないの
で、0.2%までは許される。0.2%を越えると、水
素発生、骨材崩壊のトラブルが発生してくるので、好ま
しくない。最も好ましくは、0.0%以下が良い。
The component composition of the aggregate of the present invention is as follows.
It is preferable to set the content to 5% and the residual aluminum content to 0.2% or less, most preferably 0.0% or less. If the amount of residual aluminum in the aggregate is 0.2% or less, no trouble occurs in which hydrogen is generated during actual use and the aggregate collapses. Therefore, up to 0.2% is permissible. If it exceeds 0.2%, troubles of hydrogen generation and aggregate collapse occur, which is not preferable. Most preferably, it is 0.0% or less.

【0010】本発明骨材は、骨材中のアルミナ量が増え
ると高強度、高耐磨耗性になるが、アルミナ量が下限値
未満では建設道路骨材として必要な強度と耐磨耗性が得
られない。通常の焼却灰には、既に10%前後のアルミ
ナが含まれており、これにテルミット剤を添加して溶融
すると、溶融物のアルミナ量は10%を超えてくる。道
路骨材としては最低6%のアルミナが含有されておれば
必要最小限の特性は満たすことができるので、焼却灰に
アルミナ成分の低いほかのものを混ぜて希釈して使用で
きる。希釈材としてはフライアッシュ(石炭灰)、廃陶
石等のアルミナ分の低い廃棄物が有効に利用できる。
The aggregate of the present invention has high strength and high abrasion resistance when the amount of alumina in the aggregate increases, but when the amount of alumina is less than the lower limit, the strength and abrasion resistance required for the construction road aggregate. Can not be obtained. Ordinary incineration ash already contains about 10% of alumina, and if a thermite is added and melted, the amount of alumina in the melt exceeds 10%. If the road aggregate contains at least 6% alumina, the required minimum characteristics can be satisfied, so that the incinerated ash can be mixed with other materials having a low alumina component and diluted for use. As the diluent, waste materials having low alumina content such as fly ash (coal ash) and waste pottery stone can be effectively used.

【0011】本発明ではテルミット剤の混合比率を高く
すると、結果として生成されるアルミナ量が増えて骨材
のアルミナ含有量が高くなる。骨材中のアルミナ量が3
5%を越える量、テルミット剤を添加すると、溶融生成
物の流動性が悪くなり、連続操業が困難になる。従って
骨材中のアルミナ量は上限値(35%)以下に抑える必
要がある。上記テルミット発熱反応剤の混合比率は、焼
却灰と混合した時の全体の5〜40重量%の割合、最も
好ましくは10〜25重量%の割合で混合するのが好適
である。上記したように上限を越える添加は溶融物の流
動性が悪くなり、連続操業が困難になるので好ましくな
い。又下限値未満では、骨材中の残留アルミニウムが
0.2%を越えるので好ましくない。なお因みに、15
%以上添加すると残留アルミニウムは0.0%以下にな
る。
In the present invention, when the mixing ratio of the thermite agent is increased, the amount of alumina formed as a result increases, and the alumina content of the aggregate increases. The amount of alumina in the aggregate is 3
If the thermit agent is added in an amount exceeding 5%, the flowability of the molten product becomes poor and continuous operation becomes difficult. Therefore, the amount of alumina in the aggregate needs to be suppressed to the upper limit (35%) or less. The mixing ratio of the thermite exothermic reactant is preferably 5 to 40% by weight, and most preferably 10 to 25% by weight of the total when mixed with the incineration ash. As described above, the addition exceeding the upper limit is not preferable because the fluidity of the melt becomes poor and continuous operation becomes difficult. On the other hand, if it is less than the lower limit, the residual aluminum in the aggregate exceeds 0.2%, which is not preferable. By the way, 15
% Or more, the residual aluminum becomes 0.0% or less.

【0012】テルミット反応剤は、アルミニウム、酸化
鉄の形で添加してもよいし、あるいはこれらの成分を含
む粉粒体の形で添加しても良い。好ましくはこれらの成
分を含む廃棄物の粉粒体を使用するのが良い。
The thermite reactant may be added in the form of aluminum or iron oxide, or may be added in the form of a powder containing these components. It is preferable to use a waste powder containing these components.

【0013】アルミニウム成分を含む粉粒体には、飲料
用の廃アルミ缶やアルミ地金の再溶解時に発生するアル
ミ残灰等のアルミニウムを含む廃棄物の粉粒体等が最も
好ましいが、これのみに限定されるものではない。酸化
鉄成分を含む粉粒体には、鉄くず、鉄錆、などの一般的
な金属廃材や製鉄工業で発生する転炉ダストや高炉ダス
トなどの集塵灰、更には磁性酸化鉄製造時に副産物とし
て発生する酸化鉄汚泥や、ボーキサイトから水酸化アル
ミニウムを製造する際の赤泥などが有効であるが、何ら
これのみに限定されるものではない。これらの粉粒体原
料は単一種類のまま使用してもよいし、あるいは出発原
料の異なる二種以上を適宜混ぜ合わせて使用してもよ
い。
The powder containing aluminum component is most preferably a waste aluminum can for drinks or a powder of aluminum waste such as aluminum ash generated when aluminum metal is redissolved. It is not limited to only. Powders containing iron oxide components include general metal waste such as iron scrap, iron rust, dust collected from converter furnace and blast furnace dust generated in the steelmaking industry, and by-products during the production of magnetic iron oxide. However, the present invention is not limited to iron oxide sludge, which is generated as such, and red mud when producing aluminum hydroxide from bauxite. These powdery and granular raw materials may be used alone or as a mixture of two or more different starting raw materials.

【0014】これらの廃棄物原料の純度、形状、粒度、
含有水分などは出発原料の種類、履歴によって異なり、
原料の混合、成分調整に先立ちそれぞれの原料事情に応
じて乾燥処理、破砕、粉砕、分級処理等の前処理を適宜
行う。前処理方法は、使用する廃棄物原料の純度、形
状、含有水分などは多岐にわたるのでその都度最も効率
的でかつ経済的な手段を適宜選択すれば良い。たとえ
ば、アルミニウム含有原料として廃アルミ缶を使用する
場合には、裁断機によって5〜10mm程度の小片に破
砕した後、更に1〜3mm以下に二次粉砕すれば、十分
に目的は達成される。また、酸化鉄含有原料として含水
率の高いものを使用する場合には、天日乾燥等で含有水
分量を5〜1%程度に乾燥すれば良い。また更にアルミ
ニウム原料との混合を良くするために、塊状物を細かく
粉砕しておくことが好ましい。
[0014] The purity, shape, particle size,
The water content varies depending on the type and history of the starting materials,
Prior to the mixing of the raw materials and the adjustment of the components, pretreatments such as drying, crushing, crushing, and classification are appropriately performed according to the circumstances of each raw material. In the pretreatment method, since the purity, shape, moisture content, etc. of the waste material used vary widely, the most efficient and economic means may be appropriately selected in each case. For example, when a waste aluminum can is used as an aluminum-containing raw material, the purpose can be sufficiently achieved by crushing into small pieces of about 5 to 10 mm by a cutter and then secondary grinding to 1 to 3 mm or less. In addition, when a material having a high water content is used as the iron oxide-containing raw material, the content of water may be dried to about 5 to 1% by solar drying or the like. In order to further improve the mixing with the aluminum raw material, the lump is preferably finely pulverized.

【0015】上記アルミニウム成分を含む粉粒体と酸化
鉄成分を含む粉粒体の混合物と焼却灰の混合体は、溶融
炉に投入する前にあらかじめ圧縮成形すると溶融効率が
高くなる。最大40%程度圧縮出来るが、これにより溶
融効率は1.5〜2倍高くなる。
[0015] The compression efficiency of the mixture of the powder containing the aluminum component and the powder containing the iron oxide component and the mixture of the incineration ash is increased if they are compression-formed before being put into a melting furnace. It can be compressed by up to about 40%, which increases the melting efficiency by 1.5 to 2 times.

【0016】溶融生成物は大気中で放冷して徐冷凝固さ
せることが好ましい。徐例により、高強度で耐磨耗性に
優れた無機質ガラス組成物が得られる。得られたガラス
組成物は道路骨材として好適に使用できる。アスファル
ト道路の表層部の骨材に使用すると、通常使用されてい
る自然骨材に比べて耐磨耗性が概ね2〜5倍程度向上す
る。また焼却灰のみを溶融、水冷したものを骨材として
使用した場合に比べて、耐磨耗性は20〜30倍程度向
上する。
It is preferable that the molten product is allowed to cool in the air to be slowly cooled and solidified. As a result, an inorganic glass composition having high strength and excellent abrasion resistance can be obtained. The obtained glass composition can be suitably used as a road aggregate. When used for the aggregate of the surface layer of an asphalt road, the abrasion resistance is improved by about 2 to 5 times as compared with the commonly used natural aggregate. Also, the abrasion resistance is improved by about 20 to 30 times as compared with a case where only incinerated ash is melted and water-cooled is used as an aggregate.

【0017】本発明に使用する溶融炉は、バーナー式の
溶融炉、電気炉、コークス炉等、溶融を目的とした既存
の炉全てを使用できる。
As the melting furnace used in the present invention, all existing furnaces for melting, such as a burner type melting furnace, an electric furnace and a coke oven, can be used.

【0018】[0018]

【実施例】実施例によって本発明を説明する。 実施例1 テルミット発熱反応剤 アルミニウム成分:アルミ缶を3mm以下に粉砕した
ものを使用 酸化鉄成分 :磁性酸化鉄製造時に副生する酸化
鉄汚泥を使用 補助原料 :酸化チタン、酸化マンガンの廃棄
物を粉砕したもの 上記アルミ成分、酸化鉄成分、補助原料を混合
し、下記の組成(重量%)に混合して、テルミット発熱
反応剤を調合した。 アルミニウム成分:15% 酸化鉄成分 :35% 酸化チタン :5% 酸化マンガン :2% 顆粒成形 上記テルミット発熱反応剤に無機質のバインダーを混ぜ
て2〜30mmの大きさの玉状に成形して固めた後、ゴ
ミ焼却炉の焼却灰と混合して全体の10%,20
%,30重量%添加、混合して図1の構造の重油バー
ナー焚きの溶融炉に装入し、1300℃で溶融し、溶融
後、大気中で放冷して徐冷凝固させた。溶融スラグは、
いずれの組成も溶流性に優れ、焼却炉を止めるまで途切
れることなく連続して流れた。溶融炉のスラグ溜りの底
には溶融した鉄がスラグから分離されて溜まっていた。
使用した焼却灰の中のアルミナ量は24%、アルミニウ
ム量は、0.89%であったが、溶融固化物質の残留ア
ルミナ量は、 配合組成 : 0.15% 配合組成 : 0.00% 配合組成 : 0.00% であった。一方、溶融固化物のアルミナ量は、下記の表
1の通りであった。 またいずれの組成も、溶融物のナトリウム、カリウム等
のアルカリ金属の酸化物の量は減少した。また溶融固化
物をアルカリ性、酸性の水に浸漬したが水素の発生は無
かった。次に上記溶融物を破砕してアスファルト表層部
の骨材として使用して道路骨材としての耐磨耗性をしら
べた。結果は表2のとおりである。
The present invention will be described by way of examples. Example 1 Thermite exothermic reactant Aluminum component: Use of aluminum can pulverized to 3 mm or less Iron oxide component: Use iron oxide sludge by-produced during the production of magnetic iron oxide Auxiliary raw material: Waste titanium oxide and manganese oxide Pulverized The above aluminum component, iron oxide component and auxiliary raw materials were mixed and mixed to the following composition (% by weight) to prepare a thermite exothermic reactant. Aluminum component: 15% Iron oxide component: 35% Titanium oxide: 5% Manganese oxide: 2% Granule molding The above-mentioned thermite exothermic reactant was mixed with an inorganic binder and molded into a ball having a size of 2 to 30 mm and solidified. After that, it is mixed with incineration ash from a garbage incinerator to make 10%
%, And 30% by weight, mixed and charged into a melting furnace of the structure shown in FIG. 1, which was fired by a heavy oil burner, melted at 1300 ° C., melted, and then allowed to cool in the air to be slowly cooled and solidified. The molten slag is
Each of the compositions had excellent meltability, and flowed continuously without interruption until the incinerator was stopped. At the bottom of the slag chamber of the melting furnace, molten iron was separated from the slag and accumulated.
The amount of alumina in the incinerated ash used was 24% and the amount of aluminum was 0.89%, but the amount of residual alumina in the molten and solidified material was as follows: Composition: 0.15% Composition: 0.00% Composition: 0.00%. On the other hand, the amount of alumina in the molten and solidified product was as shown in Table 1 below. In each case, the amount of oxides of alkali metals such as sodium and potassium in the melt was reduced. The molten solid was immersed in alkaline or acidic water, but no hydrogen was generated. Next, the melt was crushed and used as an aggregate of the asphalt surface layer, and the wear resistance as a road aggregate was examined. The results are as shown in Table 2.

【0019】実施例2 テルミット発熱反応剤 アルミ原料:アルミ地金の再溶解時に発生したアルミ
残灰を粉砕したものを使用 酸化鉄原料:ボーキサイトから水酸化アルミニウムを
製造する際の赤泥を使用 補助原料 :酸化チタン、酸化マンガンの廃棄物を粉
砕したものを使用 上記アルミ原料、酸化鉄原料、補助原料を混合
し、下記の組成に調合した。 アルミニウム成分:18% 酸化鉄成分 :40% 酸化チタン :5% 酸化マンガン :2% 造粒成形 上記混合物に水ガラスを混ぜて10〜30mmの大きさ
の丸い玉に成形、乾燥して、固めた後、これをゴミ焼却
炉の焼却灰に混合し、全体の20重量%添加、混合し
て、プレスで40%圧縮して電気炉に装入し、1350
℃で溶融し、溶融後、大気中で放冷して徐冷凝固させ
た。溶融スラグは溶流性に優れ、炉を停止するまで24
時間連続して操業できた。 溶融前の焼却灰の残留アルミニウム量は、0.6% 溶融後の残留アルミニウム量は、0.0%であった。溶
融焼却灰を酸性水に浸漬したが水素の発生は皆無であっ
た。上記溶融物を破砕して道路の骨材として使用した。
自然骨材を同量使用した場合に比べてあ3倍の耐磨耗性
があった。
Example 2 Thermite exothermic reactant Aluminum raw material: A material obtained by pulverizing aluminum residual ash generated when aluminum metal was redissolved Iron oxide raw material: Red mud used in the production of aluminum hydroxide from bauxite Raw materials: Titanium oxide and manganese oxide wastes were crushed and used. The above aluminum raw materials, iron oxide raw materials, and auxiliary raw materials were mixed and prepared into the following composition. Aluminum component: 18% Iron oxide component: 40% Titanium oxide: 5% Manganese oxide: 2% Granulation molding The above mixture was mixed with water glass to form a round ball of 10 to 30 mm, dried, and hardened. Thereafter, this was mixed with the incineration ash of a garbage incinerator, added and mixed at 20% by weight of the whole, compressed by 40% with a press, and charged into an electric furnace.
After melting at room temperature, the mixture was allowed to cool in air to be slowly cooled and solidified. Molten slag has excellent flowability, and it takes 24 hours to shut down the furnace.
It was able to operate continuously for hours. The residual aluminum content of the incinerated ash before melting was 0.6%. The residual aluminum content after the melting was 0.0%. The molten incineration ash was immersed in acidic water, but no hydrogen was generated. The melt was crushed and used as road aggregate.
The abrasion resistance was three times that of the case where the same amount of natural aggregate was used.

【0020】[0020]

【発明の効果】以上詳記した様に、本発明はゴミ焼却炉
焼却灰やアルミ残灰、酸化鉄汚泥等、処理に困る厄介物
の廃棄物を耐磨耗性に優れた土木建設用骨材に再生でき
るものであり、資源のリサイクルに多大の貢献をなすも
のである。
As described above in detail, the present invention is intended to reduce the troublesome waste such as incinerator ash, aluminum ash, iron oxide sludge and the like for civil engineering construction which has excellent abrasion resistance. It can be recycled into materials and makes a great contribution to resource recycling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明実施例に使用する溶解炉の説明
図である。
FIG. 1 is an explanatory view of a melting furnace used in an embodiment of the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ゴミ焼却炉の焼却灰とテルミット発熱反応
剤を必須成分とする出発原料を溶融固化した物質からな
り、該固化物質が、アルミナ成分を6〜35%含有し、
かつ残留アルミニウム量が0.2%以下であることを特
徴とする耐磨耗性骨材。
An incinerated ash from a refuse incinerator and a starting material having a thermite exothermic reactant as essential components are melted and solidified, and the solidified material contains 6 to 35% of an alumina component,
A wear-resistant aggregate having a residual aluminum content of 0.2% or less.
【請求項2】テルミット発熱反応剤をゴミ焼却炉の焼却
灰に混合、溶融してガラス状無機質組成物を溶造し、該
溶融物を徐冷固化させることを特徴とする耐磨耗性骨材
の製造方法。
2. An abrasion resistant bone characterized in that a thermite exothermic reactant is mixed and melted into incineration ash of a refuse incinerator to forge a glassy inorganic composition, and the melt is gradually cooled and solidified. The method of manufacturing the material.
【請求項3】上記テルミット発熱反応剤がアルミニウム
成分を含む粉粒体と酸化鉄成分を含む粉粒体の混合物か
らなり、該混合物のアルミ含有量が5%以上、アルミ成
分と酸化鉄成分の比率が、1:(2.0〜5.0)であ
ることを特徴とする耐磨耗性骨材の製造方法。
3. The thermite exothermic reactant comprises a mixture of a granular material containing an aluminum component and a granular material containing an iron oxide component, wherein the mixture has an aluminum content of 5% or more and an aluminum component and an iron oxide component. A method for producing a wear-resistant aggregate, wherein the ratio is 1: (2.0 to 5.0).
【請求項4】上記粉粒体の混合物のアルミ含有量が5%
上、アルミ成分と酸化鉄成分の比率が、1:(2.0〜
5.0)、かつ該混合物の中に、チタン酸化物3〜12
重量%、マンガン酸化物1〜5重量%含有してなること
を特徴とする耐磨耗性骨材の製造方法。
4. An aluminum content of the mixture of the powder and granules is 5%.
Above, the ratio of the aluminum component to the iron oxide component is 1: (2.0 to
5.0) and in the mixture, titanium oxides 3 to 12
A method for producing an abrasion-resistant aggregate, comprising 1% to 5% by weight of manganese oxide.
【請求項5】上記アルミニウム成分を含有する粉粒体が
廃アルミ缶の粉砕物である請求項2〜4のいずれかに記
載の耐磨耗性骨材の製造方法。
5. The method for producing an abrasion-resistant aggregate according to claim 2, wherein the powder containing the aluminum component is a crushed product of a waste aluminum can.
【請求項6】上記アルミニウム成分を含有する粉粒体が
アルミ残灰である請求項2〜4のいずれかに記載の耐磨
耗性骨材の製造方法。
6. The method for producing an abrasion-resistant aggregate according to claim 2, wherein the powder containing the aluminum component is aluminum residual ash.
【請求項7】上記酸化鉄成分を含有する粉粒体が磁性酸
化鉄汚泥である請求項2〜6のいずれかに記載の耐磨耗
性骨材の製造方法。
7. The method for producing an abrasion-resistant aggregate according to claim 2, wherein the granular material containing the iron oxide component is a magnetic iron oxide sludge.
【請求項8】上記酸化鉄成分を含有する粉粒体がが水酸
化アルミナ製造時の赤泥である請求項2〜6のいずれか
に記載の耐磨耗性骨材の製造方法。
8. The method for producing an abrasion-resistant aggregate according to claim 2, wherein the powder containing the iron oxide component is red mud from alumina hydroxide.
【請求項9】上記粉粒体の混合物とゴミ焼却炉の焼却灰
が圧縮成形されてなることを特徴とする請求項2〜8の
いずれかに記載の耐磨耗性骨材の製造方法。
9. The method for producing an abrasion-resistant aggregate according to claim 2, wherein the mixture of the granules and the incineration ash of a garbage incinerator are compression-molded.
【請求項10】上記粉粒体の混合物は、ゴミ焼却炉の焼
却灰と混合した時の全体の10〜40%混合することを
特徴とする請求項2〜9のいずれかに記載の耐磨耗性骨
材の製造方法。
10. Abrasion resistant according to any one of claims 2 to 9, wherein said mixture of powder and granules is mixed in an amount of 10 to 40% of the whole when mixed with incineration ash of a garbage incinerator. Method for producing wearable aggregate.
JP2000136445A 2000-03-31 2000-03-31 Abrasion resistant aggregate and method for producing the same Pending JP2001287991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136445A JP2001287991A (en) 2000-03-31 2000-03-31 Abrasion resistant aggregate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136445A JP2001287991A (en) 2000-03-31 2000-03-31 Abrasion resistant aggregate and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001287991A true JP2001287991A (en) 2001-10-16

Family

ID=18644382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136445A Pending JP2001287991A (en) 2000-03-31 2000-03-31 Abrasion resistant aggregate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001287991A (en)

Similar Documents

Publication Publication Date Title
US8206504B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
CN104805250B (en) The process that a kind of high-temperature slag is continuously modified
JP2006255609A (en) Method for manufacturing sintered product and sintered product
CA2062637A1 (en) Method and apparatus for recovering useful products from waste streams
JP2000119050A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
GB2330138A (en) Aggregates from fly ash
CN115679097B (en) Method for recycling ironmaking gas ash by using converter slag and refining dust
JP2002293574A (en) Method of manufacturing inorganic fiber
JP2007275868A (en) Calcined product manufacturing method
CN215162199U (en) System for producing building aggregate by utilizing overhaul residues and waste incineration fly ash
CN102816923A (en) Agglomeration method for industrial solid waste
JP4963553B2 (en) Method for producing fired product
JP2001287991A (en) Abrasion resistant aggregate and method for producing the same
JP2005306707A (en) Method for manufacturing sintered body and sintered body
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP4515214B2 (en) Method for processing molten slag.
JP4405225B2 (en) Manufacturing method of artificial aggregate
JPH08301641A (en) Production of artificial lightweight aggregate
US6416251B1 (en) Process for the stabilization of soluble chromium contaminated solid by down draft sintering
JP2002220744A (en) Inorganic fiber and method for producing the same
JP2001354459A (en) Process for utilizing metal in waste
JP2000312871A (en) Dealuminizing agent for molten incineration ash and method for dealuminization
JP4099900B2 (en) Incineration ash melting aid
JP2005007220A (en) Material production method by using incineration ash