JP2001287018A - Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD - Google Patents

Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD

Info

Publication number
JP2001287018A
JP2001287018A JP2000095955A JP2000095955A JP2001287018A JP 2001287018 A JP2001287018 A JP 2001287018A JP 2000095955 A JP2000095955 A JP 2000095955A JP 2000095955 A JP2000095955 A JP 2000095955A JP 2001287018 A JP2001287018 A JP 2001287018A
Authority
JP
Japan
Prior art keywords
molten metal
alloy
temperature
weight
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000095955A
Other languages
Japanese (ja)
Inventor
Yasushi Ueda
泰 上田
Katsutoshi Miyamoto
勝利 宮元
Ichizo Sakurai
市蔵 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2000095955A priority Critical patent/JP2001287018A/en
Publication of JP2001287018A publication Critical patent/JP2001287018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Braking Arrangements (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To economically manufacture a brake disk satisfying both of the improvement of wear resistance and the maintenance of heat shock resistance by intensively and dispersively strengthening SiC limited to suitable grain size only on a sliding surface. SOLUTION: The Al-Si alloy-made brake disk is fully integrated by melt- sticking the sliding surface 1 which strengthens the wear resistance by dispersing 5-30 wt.% SiC having 3-50 μm grain diameter, and a heat radiation surface 2 composed of only Al-Si alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉄道用車輌などに使
用するAl系合金製のブレーキディスクに係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brake disk made of an Al-based alloy for use in railway vehicles and the like.

【0002】[0002]

【従来の技術】鉄道用の車輌のブレーキディスクとして
は、新幹線の操業当初から鋳鉄材が使用され、析出した
黒鉛がブレーキ制御時の急熱、急冷に伴う熱衝撃を緩和
させ、潤滑油的な作用による耐磨耗性も高く評価されて
きた。しかし車輌の高速化とともにブレーキディスクに
求められる特性、特に耐熱衝撃性は一段と高いレベルに
引き上げられる一方、車体の高速化に必須の前提として
部材個々の軽量化がますます重視されるに至り、Al系
合金によるブレーキディスクの製品化が開発、研究され
るようになる。
2. Description of the Related Art As a brake disk for railway vehicles, cast iron material is used from the beginning of the operation of the Shinkansen, and the precipitated graphite reduces the thermal shock caused by rapid heating and quenching during brake control. Abrasion resistance due to action has also been highly evaluated. However, as the speed of the vehicle increases, the characteristics required for brake discs, especially the thermal shock resistance, can be raised to a higher level.On the other hand, as the prerequisite for speeding up the vehicle body, weight reduction of individual components has become increasingly important. The commercialization of brake discs based on alloys has been developed and studied.

【0003】Al−Mg合金へAl23、SiCなどセ
ラミックスを分散強化した特開平2−25538号、特
開平3−47945号などの従来技術の後、本願出願人
は先に特開平5−2797770号において、SiCを
均等に分散強化したブレーキディスクを提案した。この
先願はSi:6〜13重量%を含むAl−Si合金に、
粒径が3〜50μmのSiCを母相合金に対し5〜30
重量%の範囲で均等に分散強化した材料を鋳造したブレ
ーキディスクを要旨とする。
[0003] After the prior art such as JP-A-2-25538 and JP-A-3-47945, in which ceramics such as Al 2 O 3 and SiC are dispersed and strengthened in an Al-Mg alloy, the applicant of the present invention has previously published the Japanese Patent Application Laid-Open No. No. 2,797,770 has proposed a brake disk in which SiC is uniformly dispersed and strengthened. This prior application relates to an Al—Si alloy containing 6 to 13% by weight of Si,
SiC having a particle size of 3 to 50 μm is added to the matrix alloy in an amount of 5 to 30 μm.
The gist of the present invention is a brake disc formed by casting a material uniformly dispersed and strengthened in the range of weight%.

【0004】従来、溶湯がAl−Mg系を母相とすると
きは、添加したSiCがCとSiに分解反応し、発生し
たCと溶融Alによって炭化Alを作って溶湯の流動性
を著しく損ね、複雑な放熱ファンを多数具えた複雑な形
状の鋳造をより困難にしていたのであるが、この先願は
前記炭化Alの発生を阻止し、湯流れの失速を食い止め
たと謳っている。
Conventionally, when the molten metal has an Al-Mg base phase, the added SiC undergoes a decomposition reaction to C and Si, and the generated C and molten Al form Al carbide to significantly impair the fluidity of the molten metal. This makes it more difficult to cast a complicated shape having a large number of complicated heat dissipation fans, but this earlier application claims that the generation of the Al carbide was prevented and the stall of the molten metal flow was prevented.

【0005】[0005]

【発明が解決しようとする課題】SiC 粒子の分散配
合は言うまでもなく摺動面の耐磨耗性を改善することが
最大の目的である。したがって耐磨耗性だけを考えるな
らばSiC粒子の添加量を増加すれば耐磨耗性は向上す
るが、摺動面には耐磨耗性の他にブレーキ制御時の急
熱、急冷によって生じる熱衝撃の直撃が避けられないか
ら、いたずらにSiCを増加するだけでは伸びが失われ
耐熱衝撃を劣化させることに繋がる。また、本来Al系
合金製のブレーキディスクが着目されたのは、車輌全体
の軽量化という絶対的な命題に応える一翼を狙ってお
り、比重の大きいSiCを大量に配合することはこの大
前提に逆行することとなる。
The greatest object of the present invention is to improve the abrasion resistance of the sliding surface, not to mention the dispersion and mixing of SiC particles. Therefore, if only the wear resistance is considered, the wear resistance is improved by increasing the addition amount of the SiC particles, but the sliding surface is caused by rapid heat and rapid cooling during brake control in addition to the wear resistance. Since direct impact of thermal shock is unavoidable, simply increasing the amount of SiC unnecessarily causes loss of elongation, leading to deterioration of thermal shock. Also, the focus of the Al-based alloy brake discs was originally aimed at one blade that responded to the absolute proposition of reducing the weight of the entire vehicle, and it was based on this premise that a large amount of SiC with a large specific gravity was blended. It will go backwards.

【0006】SiCを分散して耐磨耗性を強化するため
には、対象となる摺動面だけにSiCを集中的に配合さ
せれば目的に叶うと考えられる。事実、SiCの粒度を
大きく選んで溶湯に添加し、摺動面を下型とした鋳型に
注湯すれば、確かに鋳型内で凝固中に比重の大きいSi
Cが自然に沈降してSiCの密度が濃い摺動面が得られ
るが、注湯前の取鍋内で既にSiCの沈降が激しく、取
鍋内で既に溶湯中のSiCの偏在が起こって円滑な鋳込
みができなくなるし、このような結果を生むほど大きな
SiC粒子を母相に介在させれば、強度の低下や耐熱衝
撃性、機械加工性などの劣化が著しく、ブレーキディス
ク本来の使命を維持する上で重大な欠陥となり兼ねな
い。
In order to enhance the wear resistance by dispersing SiC, it is considered that the purpose can be achieved by intensively mixing SiC only on the target sliding surface. In fact, if the grain size of SiC is selected to be large and added to the molten metal and poured into a mold having a lower sliding surface, it is certain that Si having a large specific gravity during solidification in the mold.
Although C naturally sediments and a sliding surface with a high density of SiC is obtained, the sedimentation of SiC is already severe in the ladle before pouring, and the uneven distribution of SiC in the molten metal already occurs in the ladle and smooth. Casting becomes impossible, and if SiC particles large enough to produce such a result are interposed in the matrix, the strength, the thermal shock resistance, the machinability and the like are significantly reduced, and the original mission of the brake disk is maintained. Can be a serious flaw in the above.

【0007】特開平5−196071号は、軽負荷の自
動車などを対象とするAlまたはAl系合金製のディス
クロータの摺動面における耐磨耗性と、摺動面以外の部
分における高温強度の向上を同時に果たすことを目的と
する従来技術である。Al系合金粉末に粗粒の強化粒子
(例えば鉄粉、SiCなど金属またはセラミックス)を
混合して加圧成形した予備成形体を作ると共に、別にデ
ィスクロータ形状の粗形材をAl系合金で鋳造する。異
なるディスクロータの各部位に求められる特性に適応で
きるように、異なった粒度の強化粒子を異なった混合比
率で数種類の予備成形体を製作し、前記粗形材の所定の
個所へそれぞれ予備成形体を嵌め込んでAl系合金の半
溶融温度となるまで加熱し、予熱しておいた金型にこの
高熱の粗形材をセットしてさらに加圧形成する手順を踏
むものである。
Japanese Patent Application Laid-Open No. Hei 5-196071 discloses that the wear resistance of the sliding surface of a disk rotor made of Al or an Al-based alloy for light-load automobiles and the like and the high-temperature strength of parts other than the sliding surface are high. This is a conventional technique that aims to achieve improvement at the same time. Al-alloy powder is mixed with coarse-grained reinforcing particles (for example, iron powder, metal such as SiC or ceramics) to form a preformed body that is pressure-formed, and a disk rotor-shaped rough material is separately cast with the Al-alloy. I do. In order to adapt to the characteristics required for each part of a different disk rotor, several types of preforms are produced with different mixing ratios of reinforcing particles of different particle sizes, and the preforms are respectively formed at predetermined locations of the coarse material. Is heated until the temperature reaches the half-melting temperature of the Al-based alloy, the high-heated rough material is set in a preheated mold, and a step of further press-forming is performed.

【0008】しかし、この従来技術は製作工程が多く、
組み立てるべき素材(予備形成体)の個数や種類も多く
て極めて煩瑣に亘る上、高温で酸化反応が活発化する中
での固相接合であるから雰囲気調整が不可欠であり、た
とえば真空中の加圧成形など設備コスト、作業能率、日
常のメンテナンスなど大きな負担を強いられるのではあ
るまいか。
However, this conventional technique has many manufacturing steps,
The number and types of materials (preforms) to be assembled are large and extremely complicated. In addition, since the solid-state bonding is performed while the oxidation reaction is activated at a high temperature, atmosphere adjustment is indispensable. Isn't it necessary to impose a heavy burden on equipment costs such as pressing, work efficiency, and daily maintenance?

【0009】本発明は以上の課題を解決するため、適切
な粒度に限定したSiCを摺動面のみに集中的に分散強
化して耐磨耗性の向上と耐熱衝撃性の維持を両立させた
ブレーキディスクを経済的に製造する技術を提供するこ
とを目的とする。
In order to solve the above problems, the present invention intensively disperses and strengthens SiC having an appropriate grain size only on the sliding surface to achieve both improvement of abrasion resistance and maintenance of thermal shock resistance. An object of the present invention is to provide a technology for economically manufacturing a brake disc.

【0010】[0010]

【課題を解決するための手段】本発明に係るAl−Si
合金製のブレーキディスクは、Siを6〜13重量%含
むAl−Si合金に粒径が3〜50μmのSiCを5〜
30重量%分散して耐磨耗性を強化した摺動面1と、前
記Al−Si合金のみよりなる放熱面2とが溶着して完
全に一体化したことを特徴とする。
The Al-Si according to the present invention
An alloy brake disk is made of an Al-Si alloy containing 6 to 13% by weight of Si and containing 5 to 50 μm of SiC having a particle size of 3 to 50 μm.
The sliding surface 1 in which abrasion resistance is enhanced by dispersing 30% by weight and the heat radiating surface 2 made of only the Al-Si alloy are welded and completely integrated.

【0011】またその製造方法としては、Siを6〜1
3重量%含むAl−Si合金の溶融金属へ5〜30重量
%のSiC粒子を均等に分散させた溶湯Aと、Siを6
〜13重量%を含むAl−Si合金よりのみなる溶湯B
とを個別に溶製し、ブレーキディスクの鋳型10の湯口
11へ、まず取鍋に受けた溶湯Aを鋳込んで鋳型10内
の摺動面部12へ所望の厚さの溶融層を形成すると共
に、該湯口11に前記溶湯Aが滞留している間に別の取
鍋で受けた溶湯Bを続けて鋳込んで残余の鋳型内を充填
し、前記溶融層を摺動面部12へほぼ留めたまま溶融層
の上面で相互に液相接合して一体的に凝固に至る手順を
特徴とする。また、より具体的には、溶湯Aの鋳込温度
はSiC粒子とAl−Si合金が反応を始める温度より
は低く、かつ、凝固温度よりは50℃以上高く調整し、
溶湯Bの鋳込温度は前記溶湯Aの鋳込温度と同じか、5
0℃以内の範囲で高く調整することが望ましい実施形態
であり、さらに、溶湯Aの容量比率は溶湯Bの20%を
超え50%以内であることも望ましい形態である。
[0011] As a method of manufacturing the Si, 6-1 to Si
A molten metal A in which 5 to 30% by weight of SiC particles are uniformly dispersed in a molten metal of an Al-Si alloy containing 3% by weight;
Melt B consisting of Al-Si alloy containing up to 13% by weight
Are individually melted, and the molten metal A received in the ladle is first cast into the gate 11 of the mold 10 of the brake disk to form a molten layer having a desired thickness on the sliding surface portion 12 in the mold 10. The molten metal B received in another ladle while the molten metal A stayed in the gate 11 was continuously cast to fill the remaining mold, and the molten layer was almost fixed to the sliding surface portion 12. It is characterized by a procedure in which liquid phase bonding is performed on the upper surface of the molten layer and solidification is integrally performed. More specifically, the casting temperature of the molten metal A is adjusted to be lower than the temperature at which the SiC particles and the Al-Si alloy start reacting, and to be higher than the solidification temperature by 50 ° C. or more,
The casting temperature of the melt B is the same as the casting temperature of the melt A,
It is a desirable embodiment to adjust the temperature higher than 0 ° C., and it is also desirable that the volume ratio of the molten metal A is more than 20% and less than 50% of the molten metal B.

【0012】[0012]

【発明の実施の形態】図1(A)〜(C)は本発明の実
施形態に係る複合ブレキディスクの平面図(A)、正面
図(B)、背面図(C)である。図において摺動面1は
制御がかけられると回転中の車輪の両側面に圧着して急
速に回転を制止する作動面に相当し、裏側の放熱面2に
は放射状に多数の放熱フィン21を設けて摺動によって
生じた摩擦熱を大気中へ迅速に放散させ、ブレーキディ
スクおよび車輪の過熱を抑え熱衝撃を緩和する構造とし
ている。図の摺動面1は所望の厚さのSiCを配合した
Al−Si合金層よりなり、この摺動面1以外の部分は
通常のAl−Si合金のみで構成し、摺動面1と放熱面
2との境界3は鋳造後の凝固の段階で一体的に溶着した
複合体を形成している。この図の実施例では摺動面1側
の層厚は20mm、全体の厚さは50mmに設定する。
層厚を20mmとしたのは、ブレーキディスク全体の軽
量化との兼ね合い、および熱衝撃の進行に伴う使用限界
と摩耗進行による使用限界などの耐用期間を定める要因
を総合して設定した数値であるから、使用条件が変われ
ば適宜最適の割合に改める。層厚20mmとした場合
は、ブレーキディスク全体に占める摺動面側と放熱面側
との容積比率はほぼ4:6となるが、摺動面側の層厚が
過小に失すると摺動面での粒子分散が不均一となって強
化効果が著しく削減される恐れがあるので、少なくとも
20%は必要である。
1 (A) to 1 (C) are a plan view (A), a front view (B), and a rear view (C) of a composite brake disc according to an embodiment of the present invention. In the figure, a sliding surface 1 corresponds to an operating surface which, when controlled, is pressed against both sides of a rotating wheel to rapidly stop rotation, and a large number of radiating fins 21 are radially provided on a heat radiating surface 2 on the back side. The frictional heat generated by the sliding is rapidly dissipated into the atmosphere to suppress overheating of the brake disk and the wheels, thereby reducing thermal shock. The sliding surface 1 shown in the figure is made of an Al-Si alloy layer containing a desired thickness of SiC, and the portion other than the sliding surface 1 is made of only a normal Al-Si alloy. The boundary 3 with the surface 2 forms a composite which is integrally welded during the solidification stage after casting. In the embodiment of this figure, the layer thickness on the sliding surface 1 side is set to 20 mm, and the overall thickness is set to 50 mm.
The reason why the layer thickness is set to 20 mm is a value which is set in consideration of factors which determine a service life such as a use limit due to progress of thermal shock and a use limit due to progress of wear, in consideration of weight reduction of the entire brake disc. Therefore, if the conditions of use change, the ratio is appropriately changed to the optimum ratio. When the layer thickness is 20 mm, the volume ratio between the sliding surface side and the heat radiating surface side in the entire brake disk is approximately 4: 6. At least 20% is required because the particle dispersion of the particles may become non-uniform and the strengthening effect may be significantly reduced.

【0013】図2は本発明を実施するための鋳型10を
示す半截平面図(A)と縦断正面図(B)である。鋳型
10は摺動面部12で上下型に分割され、上型に放熱面
部13と湯口11が造型される。Al系合金は酸素との
親和力が極めて高いから、注湯時に生じる酸化物(Al
23)を巻き込む恐れが大きく、巻き込めば必ず鋳巣な
どの欠陥となるので特に留意しなければならない。この
図の例では環状板であるブレーキディスク鋳型の中央に
湯口11を立て、湯口底面近くをセラミックフィルタ1
4が横断する。セラミックフィルタ14は溶湯を濾過し
て内部に混在する酸化物などの異物をせき止め清浄な溶
湯だけを通過させる。セラミックフィルタ14の下方に
バリぜき15を設けて溶湯を絞りつつ全円周から鋳型本
体へ万遍なく送り込む。なお、その他、湯口シュート1
6で取鍋(図示せず)からの溶湯を湯口11へ誘導し、
湯口11の外周を断熱スリーブ17で囲んで鋳込んだ溶
湯の温度低下を防止するなどの配慮も望ましい態様であ
る。
FIG. 2 is a half sectional plan view (A) and a vertical sectional front view (B) showing a mold 10 for carrying out the present invention. The mold 10 is divided into an upper mold and a lower mold at a sliding surface portion 12, and a heat radiation surface portion 13 and a gate 11 are formed on the upper mold. Since the Al-based alloy has an extremely high affinity for oxygen, the oxide (Al
Special attention must be paid to the possibility that 2 O 3 ) may be entrained, and if entrained, defects such as voids will occur. In the example of this figure, a gate 11 is set up at the center of a brake disk mold which is an annular plate, and a ceramic filter 1 is provided near the bottom of the gate.
4 crosses. The ceramic filter 14 filters the molten metal, blocks foreign substances such as oxides mixed therein, and passes only the clean molten metal. A burr 15 is provided below the ceramic filter 14 to squeeze the molten metal and uniformly feed the molten metal from the entire circumference to the mold body. In addition, other gate shoot 1
At 6, the molten metal from the ladle (not shown) is guided to the gate 11,
It is also a desirable embodiment to take measures such as preventing the temperature of the cast molten metal from being lowered by surrounding the outer periphery of the gate 11 with the heat insulating sleeve 17.

【0014】溶湯Aと溶融Bとは別個に溶解炉で溶製さ
れる。実施例では溶湯BはSi:9重量%を含むAl−
Si合金であり、溶湯Aは同じAl−Si合金に粒径1
0〜15μmのSiC粒子を20重量%添加し、炉内で
均等になるように分散させた合金からなる。SiCの粒
径については5〜30μmの範囲が望ましく、この範囲
以外の粒径では、均等に分散されることが困難となる
か、鋳造後の摺動面の機械的性質が劣化し、耐熱衝撃性
が著しく低下する原因となり易いので好ましくない。ま
た溶湯A中におけるSiC粒子の配合比率は5〜30%
が望ましく、5%以下であると摩擦係数も耐磨耗性も落
ちて非常制動のような高速からの急激な摺動摩擦に耐え
きれず、また30%以上になると鋳造性が悪く機械加工
が困難となり、脆性が増大するなど、何れもブレーキデ
ィスク材料として不適当である。
The molten metal A and the molten B are separately melted in a melting furnace. In the embodiment, the melt B is made of Al— containing 9% by weight of Si.
Melt A is the same Al-Si alloy as particle size 1
It is made of an alloy to which 20% by weight of SiC particles having a size of 0 to 15 μm is added and uniformly dispersed in a furnace. The particle size of SiC is desirably in the range of 5 to 30 μm. If the particle size is out of this range, it is difficult to uniformly disperse or the mechanical properties of the sliding surface after casting deteriorate, This is not preferred because it is likely to cause the property to be significantly reduced. The mixing ratio of SiC particles in the melt A is 5 to 30%.
If it is less than 5%, the coefficient of friction and the abrasion resistance decrease, so that it cannot withstand sudden sliding friction from a high speed such as emergency braking, and if it exceeds 30%, castability is poor and machining is difficult. All are unsuitable as brake disc materials, for example, the brittleness increases.

【0015】注湯はまず溶湯Aから始める。溶融Aの鋳
込み温度はSiC粒子とAl−Si合金とが溶融状態で
反応を開始する750℃以下であって、かつ凝固温度よ
り50℃以上高い650℃以上が適当であり、望ましく
は700℃前後となる。後から注湯する溶湯Bはこの温
度と同じか、約50℃までの範囲で高い温度が望まし
く、700〜750℃の範囲が適当である。この鋳込み
温度はSiC粒子の配合比率、粒子の粒径、鋳造するブ
レーキディスクの大きさ、特に摺動面の表面積などによ
って適宜選択することは言うまでもない。
The pouring begins with the melt A first. The casting temperature of the melt A is preferably 750 ° C. or less, at which the SiC particles and the Al—Si alloy start reacting in a molten state, and 650 ° C. or more, which is 50 ° C. or more higher than the solidification temperature, and preferably around 700 ° C. Becomes The temperature of the molten metal B to be poured later is preferably the same as this temperature or a high temperature in the range up to about 50 ° C., and the temperature in the range of 700 to 750 ° C. is appropriate. It goes without saying that the casting temperature is appropriately selected depending on the compounding ratio of the SiC particles, the particle size of the particles, the size of the brake disk to be cast, particularly the surface area of the sliding surface.

【0016】溶融例と溶融Bの容積割合は、先に述べた
ように全体の軽量化の要請と、耐熱衝撃性低下を防止す
る関点から決められるが、少なくとも溶湯Aの容積比率
が20%を切っては十分な摺動面の強化機能は果たせ
ず、目的を達成する上で適当ではない。
As described above, the volume ratio of the molten example and the molten B is determined in view of the demand for reducing the overall weight and preventing the heat shock resistance from being reduced. If it is cut off, the function of strengthening the sliding surface cannot be sufficiently achieved, which is not appropriate for achieving the purpose.

【0017】鋳造において最も注意を払うべき要件は、
湯口11における溶湯が途切れることなく滞留を続け、
常に湯留まり状態を保って鋳造を連続する点にある。す
なわち先に湯口11内へ注湯した溶湯Aが湯口内に溜ま
っている間に別の取鍋から溶湯Bを注ぎ足して溶湯の流
れを途切れることなく連続して鋳型内へ送り込むことが
必要である。この鋳型の方案は中央の湯口11の全周か
ら均等にバリぜき15を通って主型内へ進入するように
形成しているから、最初に進入した溶湯Aによってほぼ
均等な層厚の溶融層で摺動面側を充填し、続けて注湯し
た溶湯Bがその溶解層の上の残された中空内へ均等に全
周から送り込まれる。溶湯Bの比重は2.3であるか
ら、先に入った比重2.5の溶湯Aを押し上げて混ざり
合うことはほとんどなく、重い摺動面側の溶融層の上へ
放熱面側の軽い溶融層が自然に重なって別々の層として
凝固を始める。しかし両溶融層の境界面においては相互
に活発な交流が行われつつ一体的に接合して凝固してい
くから強固に結びついた複合鋳造体となる。なお、この
場合、摺動面を形成する下型表面に冷し金を当てて冷却
を局部的に促進すると、母材の結晶粒がさらに微細化し
て材料強度も向上し、SiC粒子の分散もよく熱衝撃割
れの防止に良い影響を与えることが認められる。
The most important requirements in casting are:
The molten metal at the gate 11 continues to stay without interruption,
The point is that casting is continuously performed while always keeping the stagnant state. That is, it is necessary to add the molten metal B from another ladle while the molten metal A previously poured into the gate 11 is accumulated in the molten metal gate and continuously feed the molten metal into the mold without interruption. is there. Since this mold solution is formed so as to uniformly enter the main mold through the burr 15 from the entire periphery of the central gate 11, the molten metal A that has entered first has a substantially uniform layer thickness. The molten surface B filled on the sliding surface side with the layer and subsequently poured is evenly fed from the entire circumference into the remaining hollow above the molten layer. Since the specific gravity of the molten metal B is 2.3, the molten metal A having a specific gravity of 2.5 is hardly mixed by being pushed up, and the molten metal on the heavy sliding surface side is slightly melted on the heavy sliding surface side. The layers spontaneously overlap and begin to solidify as separate layers. However, at the boundary surface between the two molten layers, active exchange is performed with each other and solidified together by solidification, so that a composite casting is firmly connected. In this case, when the cooling is locally promoted by applying a cooling metal to the lower mold surface forming the sliding surface, the crystal grains of the base material are further refined, the material strength is improved, and the dispersion of SiC particles is also reduced. It is well recognized that this has a good effect on prevention of thermal shock cracking.

【0018】図3は本発明の実施例を縦断した倍率10
0倍の顕微鏡組織であり、下方がSiCで分散強化した
Al−Si合金よりなる摺動面側、上方がAl−Si合
金のみよりなる放熱面側であり、ほぼ中央を横切る境界
部には異物の噛み込みやピンホール、ブローホールなど
気泡の介在もなく、また、割れや剥離面もなく一体的に
完全に溶着した健全な液相接合を裏付けている。
FIG. 3 shows a magnification of 10 in the embodiment of the present invention.
Microscopic structure of 0x, the lower part is the sliding surface side made of Al-Si alloy dispersion-strengthened with SiC, and the upper part is the heat radiation surface side made of only Al-Si alloy. No sound bubbles, no pinholes, no blowholes, and no cracks or peeled surfaces.

【0019】本発明の実施形態の断面から摺動面1と放
熱面2のそれぞれの試験片を切り出し、単独の機械的性
質を検査してみると、摺動面1側の引張り強さは230
N/mm2、伸びは0.7%であったのに対し、放熱面2
側の引張り強さは220N/mm2、伸びは4%であっ
た。
From the cross section of the embodiment of the present invention, test pieces of the sliding surface 1 and the heat radiating surface 2 were cut out, and their mechanical properties were examined.
N / mm 2 , elongation was 0.7%, whereas heat dissipation surface 2
The tensile strength on the side was 220 N / mm 2 and the elongation was 4%.

【0020】また、本発明の実施例とは別に、同じ条件
でSiC粒子を配合したAl−Si合金のみで鋳型全部
を注湯した比較例を製作して両者を比較してみたとこ
ろ、比較例のブレーキディスク重量は50kgであった
のに対し、本発明実施例では49kgと計量され、当然
のことながら、ブレーキディスク全体へ同じ割合でSi
C粒子を分散強化した場合に比べ、双方の比重差に相当
する2%の重量軽減が認められた。両ブレーキディスク
の摺動面は同一と見られるから同等の耐磨耗性が予測さ
れるものの、前記の材料試験の結果からも比較例の放熱
面側は摺動面側と同一と見られるから、伸びが格段に低
下し耐熱衝撃性を大幅に失うという予見が成立する。
Further, apart from the embodiment of the present invention, a comparative example in which the entire mold was poured using only an Al—Si alloy containing SiC particles under the same conditions was manufactured and the two were compared. The weight of the brake disc was 50 kg, whereas the weight of the brake disc was 49 kg in the embodiment of the present invention.
A weight reduction of 2% corresponding to the difference in specific gravity between the two was observed, as compared with the case where the C particles were dispersed and strengthened. Since the sliding surfaces of both brake discs are considered to be the same, the same abrasion resistance is expected, but from the result of the material test, the heat dissipating surface side of the comparative example is considered to be the same as the sliding surface side. Thus, the prediction that the elongation is significantly reduced and the thermal shock resistance is largely lost is established.

【0021】[0021]

【発明の効果】本発明は以上のようにAl系合金をベー
スとしたブレーキディスクにおいて、制動力が作用する
摺動面の耐磨耗性を大幅に向上させると共に、この耐磨
耗性向上を得るために避け難い重量増加を最低限に抑制
し、摺動面以外のブレーキディスク自体の機械的性質を
同等に保持して耐熱衝撃性を確保するなど、従来技術を
超えるブレーキディスク特性を堅持する複合効果があ
る。しかもこの複合ブレーキディスクの製造は、鋳造技
術を駆使すればさほど複雑な工程や高価な設備を必要と
せず、比較的低いコストで高度な品質を量産可能とする
利点は従来技術をはるかに優越する効果である。
As described above, according to the present invention, in a brake disk based on an Al-based alloy, the wear resistance of a sliding surface on which a braking force acts is greatly improved, and the improvement of the wear resistance is achieved. Maintain brake disc characteristics exceeding conventional technologies, such as minimizing the inevitable increase in weight to obtain and maintaining the same mechanical properties of the brake disc itself except for the sliding surface to ensure thermal shock resistance. There is a combined effect. Moreover, the production of this composite brake disc does not require much complicated processes and expensive equipment if casting technology is used, and the advantage of mass production of high quality at relatively low cost is far superior to the conventional technology. The effect is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態の平面図(A)、正面図
(B)、背面図(C)である。
FIG. 1 is a plan view (A), a front view (B), and a rear view (C) of an embodiment of the present invention.

【図2】本発明実施に使用する鋳型の半截平面図(A)
と縦断正面図(B)である。
FIG. 2 is a half plan view (A) of a mold used for carrying out the present invention.
And a vertical sectional front view (B).

【図3】本発明実施形態の金属顕微鏡組織(倍率10
0)である。
FIG. 3 shows a metallographic structure (magnification: 10) of the embodiment of the present invention.
0).

【符号の説明】[Explanation of symbols]

1 摺動面 2 放熱面 10 鋳型 11 湯口 12 摺動面部 13 放熱面部 DESCRIPTION OF SYMBOLS 1 Sliding surface 2 Heat radiating surface 10 Mold 11 Gate 12 Sliding surface 13 Heat radiating surface

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16D 65/12 F16D 65/12 M (72)発明者 桜井 市蔵 大阪市西区北堀江1丁目12番19号 株式会 社栗本鐵工所内 Fターム(参考) 3J058 AA41 AA48 AA58 BA32 BA41 BA44 BA61 BA68 CA44 CA47 DD11 DD26 EA08 EA12 FA21 GA22 GA49 GA62 GA63 GA82 GA92 GA95 4E014 NA08 4K020 AA22 AC01 BA08 BB22 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) F16D 65/12 F16D 65/12 M (72) Inventor Ichizo Sakurai 1-112-19 Kitahorie, Nishi-ku, Osaka Co., Ltd. F-term in Kurimoto Works (reference) 3J058 AA41 AA48 AA58 BA32 BA41 BA44 BA61 BA68 CA44 CA47 DD11 DD26 EA08 EA12 FA21 GA22 GA49 GA62 GA63 GA82 GA92 GA95 4E014 NA08 4K020 AA22 AC01 BA08 BB22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Siを6〜13重量%含むAl−Si合
金に、粒径が3〜50μmのSiCを5〜30重量%分
散して耐磨耗性を強化した摺動面1と、前記Al−Si
合金のみよりなる放熱面2とが溶着して完全に一体化し
たことを特徴とするAl系合金製の複合ブレーキディス
ク。
1. A sliding surface 1 having abrasion resistance enhanced by dispersing 5 to 30% by weight of SiC having a particle size of 3 to 50 μm in an Al—Si alloy containing 6 to 13% by weight of Si; Al-Si
A composite brake disc made of an Al-based alloy, wherein the heat-dissipating surface 2 made of only an alloy is welded and completely integrated.
【請求項2】 Siを6〜13重量%含むAl−Si合
金の溶融金属へ5〜30重量%のSiC粒子を均等に分
散させた溶湯Aと、Siを6〜13重量%を含むAl−
Si合金よりのみなる溶湯Bとを個別に溶製し、ブレー
キディスクの鋳型10の湯口11へまず取鍋に受けた溶
湯Aを鋳込んで鋳型10内の摺動面部12へ所望の厚さ
の溶融層を形成すると共に、該湯口11に前記溶湯Aが
滞留している間に別の取鍋で受けた溶湯Bを続けて鋳込
んで残余の鋳型内を充填し、前記溶融層を摺動面部12
へほぼ留めたまま該溶融層の上面で相互に液相接合して
一体的に凝固に至ることを特徴とするAl系合金製複合
ブレーキディスクの製造方法。
2. A molten metal A in which 5 to 30% by weight of SiC particles are uniformly dispersed in a molten metal of an Al—Si alloy containing 6 to 13% by weight of Si, and an Al— containing 6 to 13% by weight of Si.
The molten metal B made of only Si alloy is individually melted, and the molten metal A received in the ladle is first cast into the gate 11 of the mold 10 of the brake disc, and the molten metal A having a desired thickness is formed on the sliding surface 12 in the mold 10. While forming the molten layer, the molten metal A received in another ladle is continuously cast while the molten metal A is staying in the sprue 11 to fill the remaining mold and slide the molten layer. Face part 12
A method of manufacturing a composite brake disc made of an Al-based alloy, wherein the two layers are liquid-phase bonded to each other on the upper surface of the molten layer and solidified integrally.
【請求項3】 請求項2において、溶湯Aの鋳込温度は
SiC粒子とAl−Si合金が反応を始める温度よりは
低く、かつ、凝固温度よりは50℃以上高く調整し、溶
湯Bの鋳込温度は前記溶湯Aの鋳込温度と同じか、50
℃以内の範囲で高く調整することを特徴とするAl系合
金製複合ブレーキディスクの製造方法。
3. The casting of the molten metal B according to claim 2, wherein the casting temperature of the molten metal A is adjusted to be lower than the temperature at which the SiC particles and the Al—Si alloy start to react and higher than the solidification temperature by 50 ° C. or more. The pouring temperature is the same as the pouring temperature of the molten metal A, or 50
A method of manufacturing a composite brake disc made of an Al-based alloy, characterized in that the temperature is adjusted to a high temperature within the range of ° C.
【請求項4】 請求項2または3において、溶湯Aの容
量比率は溶湯Bの20%を超え50%以内であることを
特徴とするAl系合金製複合ブレーキディスクの製造方
法。
4. The method for manufacturing a composite brake disc made of an Al-based alloy according to claim 2, wherein the volume ratio of the molten metal A is more than 20% and less than 50% of the molten metal B.
JP2000095955A 2000-03-30 2000-03-30 Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD Pending JP2001287018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095955A JP2001287018A (en) 2000-03-30 2000-03-30 Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095955A JP2001287018A (en) 2000-03-30 2000-03-30 Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2001287018A true JP2001287018A (en) 2001-10-16

Family

ID=18610783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095955A Pending JP2001287018A (en) 2000-03-30 2000-03-30 Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2001287018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561845A (en) * 2014-12-22 2015-04-29 青岛麦特瑞欧新材料技术有限公司 Aluminum matrix composite for preparing automobile brake disc
CN111133216A (en) * 2017-09-26 2020-05-08 法格霭德兰公司 Disc brake
CN111250698A (en) * 2020-02-19 2020-06-09 湖南金天铝业高科技股份有限公司 Light wear-resistant aluminum-based powder metallurgy composite material rail transit brake disc and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561845A (en) * 2014-12-22 2015-04-29 青岛麦特瑞欧新材料技术有限公司 Aluminum matrix composite for preparing automobile brake disc
CN111133216A (en) * 2017-09-26 2020-05-08 法格霭德兰公司 Disc brake
CN111250698A (en) * 2020-02-19 2020-06-09 湖南金天铝业高科技股份有限公司 Light wear-resistant aluminum-based powder metallurgy composite material rail transit brake disc and preparation method thereof
CN111250698B (en) * 2020-02-19 2021-01-29 湖南金天铝业高科技股份有限公司 Light wear-resistant aluminum-based powder metallurgy composite material rail transit brake disc and preparation method thereof
WO2021164516A1 (en) * 2020-02-19 2021-08-26 湖南金天铝业高科技股份有限公司 Lightweight wear-resistant aluminum-based powder metallurgy composite material rail transit brake disc and preparation method therefor

Similar Documents

Publication Publication Date Title
CN106521252B (en) Train brake disk enhancing aluminum-base composite material by silicon carbide particles and preparation method
CN108331863B (en) Hybrid lightweight brake disc and method of making same
CN112143921B (en) Preparation method for preparing aluminum matrix composite brake disc
EP0733421A1 (en) Die casting method
CN112413012B (en) Composite brake disc
CN116348234A (en) Composite brake disc, preparation method thereof and friction stir tool
WO2023070739A1 (en) High-strength heat-resistant aluminum-based composite material and preparation method therefor
JP2001287018A (en) Al-BASED ALLOY-MADE COMPLEX BRAKE DISK AND ITS MANUFACTURING METHOD
EP1017866A1 (en) Cast metal-matrix composite material and its use
CN112157403A (en) Preparation method for preparing aluminum matrix composite brake disc
JP4214352B2 (en) Al-based composite material for brake disc and manufacturing method thereof
JPS6089558A (en) Aluminum base brake member and manufacture
JPH10137920A (en) Production of brake disk composite material for railway vehicle
JP3435936B2 (en) Lightweight composite brake disc and method of manufacturing the same
EP2473750A1 (en) Brake drum with a friction liner
JP3316831B2 (en) Brake discs for railway vehicles
CN113814377B (en) Production method of high-strength guide plate
JPH1089389A (en) Manufacture of light compound brake disc
JPH10140275A (en) Composite material for brake disk for railway car
JP3180150B2 (en) Method for manufacturing brake disk made of particle-dispersed aluminum alloy
JPH07278713A (en) Aluminum powder alloy and its production
JP3196991B2 (en) Aluminum-based composite disk rotor
JPH0718462B2 (en) Disc brake rotor and manufacturing method
CN117359157A (en) Solder and preparation method thereof
JP2004162758A (en) Brake disc

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061213

A621 Written request for application examination

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02