JP2001284154A - Method of manufacturing cobalt-iron-nickel magnetic film - Google Patents

Method of manufacturing cobalt-iron-nickel magnetic film

Info

Publication number
JP2001284154A
JP2001284154A JP2001035712A JP2001035712A JP2001284154A JP 2001284154 A JP2001284154 A JP 2001284154A JP 2001035712 A JP2001035712 A JP 2001035712A JP 2001035712 A JP2001035712 A JP 2001035712A JP 2001284154 A JP2001284154 A JP 2001284154A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
iron
film
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001035712A
Other languages
Japanese (ja)
Inventor
Fumitake Suzuki
文武 鈴木
Kazumasa Hosono
和真 細野
Shinichi Tanaka
真一 田中
Mitsumasa Oshiki
満雅 押木
Kunio Iijima
国雄 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2001035712A priority Critical patent/JP2001284154A/en
Publication of JP2001284154A publication Critical patent/JP2001284154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Magnetic Heads (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a cobalt-iron-nickel magnetic film having high magnetic permeability. SOLUTION: The cobalt-iron-nickel magnetic film 10 is formed through magnetic field-applied plating and magnetic field-applied heat-treated by rotating the film 10, while a magnetic field is applied in the in-plane direction of the film 10. Alternatively, the film 10 is formed by magnetic field-applied plating and magnetic field-applied heat-treated by impressing a magnetic field from the direction, in which the anisotropy of the film 10 becomes an axis of hard magnetization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータの外
部記憶装置の一つである磁気ディスク装置の磁気ヘッ
ド,磁気記録媒体の磁性材料に関し、更に詳しくは、組
成がコバルト-鉄-ニッケルである磁性膜の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head of a magnetic disk drive which is one of external storage devices of a computer, and a magnetic material of a magnetic recording medium. The present invention relates to a method for producing a film.

【0002】近年、鉄-コバルト系の磁性膜は、高飽和
磁束密度(Bs)が得られることより、記録密度の高密度化
が図れる高保磁力(Hc)媒体用の薄膜磁気ヘッドの磁極材
料として、研究,開発が進められている。
[0002] In recent years, iron-cobalt based magnetic films have a high saturation magnetic flux density (Bs) and can be used as a magnetic pole material for a thin-film magnetic head for a high coercive force (Hc) medium capable of increasing the recording density. , Research and development are underway.

【0003】又、媒体側では、媒体の膜厚方向に残留磁
化を形成し、信号の記録を行う垂直記録層とその下側に
磁束のリターンとして用いられる裏打ち磁性層との二層
構造をもつ垂直二層膜媒体の裏打ち磁性層としての利用
も報告されている。
On the medium side, the medium has a two-layer structure of a perpendicular recording layer for recording signals by forming residual magnetization in the thickness direction of the medium and a backing magnetic layer below the layer for returning magnetic flux. The use of a perpendicular double-layered medium as a backing magnetic layer has also been reported.

【0004】[0004]

【従来の技術】鉄-コバルト磁性膜の成膜手段として
は、めっき法,スパッタリング法等がある。めっき法に
おいては、鉄:コバルトのイオン比を1:5〜1:30の浴組成
にすることより、飽和磁束密度(Bs)が15000Gauss以上、
表面粗さの小さい面(光沢面)が得られることが報告され
ている(特願平2-081809号)。
2. Description of the Related Art As a means for forming an iron-cobalt magnetic film, there are a plating method, a sputtering method and the like. In the plating method, the iron: cobalt ion ratio is 1: 5 to 1:30 by making the bath composition, saturation magnetic flux density (Bs) is 15000Gauss or more,
It has been reported that a surface with low surface roughness (glossy surface) can be obtained (Japanese Patent Application No. 2-081809).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記構成の鉄
-コバルト磁性膜においては、耐食性が悪いという問題
点がある。すなわち、自然分極測定法(膜の自然電極電
位から+側に電位を上げて行き、アノード分極曲線を測
定する)から得たピッティングポテンシャル(ピットが発
生する電位)の値は、-190〜-260mVと低く、このため、
鉄-コバルト系磁性膜をヘッドの磁極に用いると腐食
し、特性の劣化等が生じるという問題点がある。
However, the iron having the above structure
-Cobalt magnetic films have a problem of poor corrosion resistance. That is, the value of the pitting potential (potential at which pits are generated) obtained from the spontaneous polarization measurement method (the potential is raised to the + side from the natural electrode potential of the membrane and the anode polarization curve is measured) is -190 to -190. As low as 260mV,
When an iron-cobalt based magnetic film is used for the magnetic pole of the head, there is a problem that corrosion and deterioration of characteristics are caused.

【0006】本発明は、上記問題点に鑑みてなされたも
ので、その目的は、透磁率が高いコバルト-鉄-ニッケル
磁性膜の製造方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a cobalt-iron-nickel magnetic film having high magnetic permeability.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する請求
項1記載の発明は、コバルト-鉄-ニッケル磁性膜を磁場
中めっき法にて成膜し、次に、膜面内方向に磁場を印加
しながら回転し、磁場中熱処理を施すものである。請求
項2記載の発明は、請求項1における印加磁場は200Oe
以上、回転速度は30〜80rpm、熱処理温度は200〜300℃
であることを特徴とするものである。
According to a first aspect of the present invention, a cobalt-iron-nickel magnetic film is formed by plating in a magnetic field, and then a magnetic field is applied in the in-plane direction of the film. It rotates while applying heat and performs heat treatment in a magnetic field. According to a second aspect of the present invention, the applied magnetic field of the first aspect is 200 Oe
As above, the rotation speed is 30 to 80 rpm, the heat treatment temperature is 200 to 300 ° C
It is characterized by being.

【0008】この発明では、膜面内方向に磁場を印加し
ながら回転し、磁場中熱処理を施すことにより、磁気異
方性を乱し、透磁率が1300以上の磁性膜を得ることがで
きる。
According to the present invention, by rotating while applying a magnetic field in the in-plane direction of the film and performing heat treatment in the magnetic field, the magnetic anisotropy is disturbed and a magnetic film having a magnetic permeability of 1300 or more can be obtained.

【0009】又、請求項3記載の発明は、コバルト-鉄-
ニッケル磁性膜を磁場中めっき法にて成膜し、前記磁性
膜の異方性が困難軸となる方向から磁場を印加しなが
ら、磁場中熱処理を施すものである。請求項4記載の発
明は、請求項3における熱処理温度は200〜300℃、熱処
理時間は1時間以上であることを特徴とするものであ
る。
The invention according to claim 3 is characterized in that cobalt-iron-
A nickel magnetic film is formed by plating in a magnetic field, and heat treatment is performed in a magnetic field while applying a magnetic field from a direction in which the anisotropy of the magnetic film is a difficult axis. The invention according to claim 4 is characterized in that the heat treatment temperature in claim 3 is 200 to 300 ° C. and the heat treatment time is 1 hour or more.

【0010】この発明では、磁性膜の磁気異方性が困難
軸となる方向から磁場を印加して、熱処理を施すことに
より、磁気異方性を乱し、透磁率が1300以上の磁性膜を
得ることができる。
According to the present invention, a magnetic field is applied from a direction in which the magnetic anisotropy of the magnetic film becomes a hard axis, and heat treatment is performed to disturb the magnetic anisotropy and form a magnetic film having a magnetic permeability of 1300 or more. Obtainable.

【0011】[0011]

【実施の形態】図面を用いて本発明の実施の形態例を説
明する。先ず、図1から図4を用いてコバルト-鉄-ニッ
ケル磁性膜について説明する。図1はサンプル10の膜
組成を示す図で、このサンプル10において、1はガラ
ス基板、2はガラス基板1上に形成されたチタン(Ti)
層、3はチタン層2上に形成されたニッケル(Ni)-鉄(F
e)層、4はニッケル-鉄層3上にめっき浴中で成膜され
るコバルト(Co)-鉄(Fe)-ニッケル(Ni)層である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. First, a cobalt-iron-nickel magnetic film will be described with reference to FIGS. FIG. 1 is a view showing the film composition of a sample 10. In this sample 10, 1 is a glass substrate, and 2 is titanium (Ti) formed on the glass substrate 1.
Layer 3 is nickel (Ni) -iron (F) formed on titanium layer 2.
e) Layer 4 is a cobalt (Co) -iron (Fe) -nickel (Ni) layer formed on the nickel-iron layer 3 in a plating bath.

【0012】図2に示すめっき浴組成で、且つ、図3に
示すようなめっき条件でコバルト-鉄-ニッケル層4を一
方向磁場中で成膜したところ、図4に示すような結果を
得た。ここで、図4は、膜組成の各重量%時における飽
和磁束密度とピッティングポテンシャルを示す図であ
る。この図4において、ピッティングポテンシャルは0m
V以上であれば、耐蝕性は確保できる。又、飽和磁束密
度(Bs)は、14KGauss以上確保できれば、良い。
When the cobalt-iron-nickel layer 4 was formed in a unidirectional magnetic field under the plating bath composition shown in FIG. 2 and the plating conditions shown in FIG. 3, the results shown in FIG. 4 were obtained. Was. Here, FIG. 4 is a diagram showing the saturation magnetic flux density and the pitting potential at each weight% of the film composition. In FIG. 4, the pitting potential is 0 m
If it is V or more, corrosion resistance can be secured. In addition, it is sufficient that the saturation magnetic flux density (Bs) can be secured to 14 kgauss or more.

【0013】このような条件で、本願発明者は実験を行
った結果、下記のような条件であれば、上述のピッティ
ングポテンシャルと、飽和磁束密度を満足することが判
明した。
The inventors of the present invention have conducted experiments under these conditions, and as a result, it has been found that under the following conditions, the above-mentioned pitting potential and saturation magnetic flux density are satisfied.

【0014】 めっき浴のイオン比 コバルト:鉄:ニッケル=4〜13:1〜4:24〜42 めっき膜の重量% コバルト含有量:38〜65重量%、鉄含有量:10〜31重量
% このような組成にすることによって、飽和磁束密度を犠
牲にすることなく、耐蝕性の良好なコバルト-鉄-ニッケ
ル磁性膜を得ることができる。
Ion ratio of plating bath Cobalt: iron: nickel = 4 to 13: 1 to 4:24 to 42% by weight of plating film Cobalt content: 38 to 65% by weight, iron content: 10 to 31% by weight With such a composition, a cobalt-iron-nickel magnetic film having good corrosion resistance can be obtained without sacrificing the saturation magnetic flux density.

【0015】次に、図5乃至図13を用いて、請求項1
乃至4記載の発明に係る形態例を説明する。ここで、図
5は請求項1及び2記載の発明の形態例の説明図、図6
は請求項3及び4記載の発明の形態例の説明図である。
Next, referring to FIG. 5 to FIG.
Embodiments according to the inventions described in 4 to 4 will be described. Here, FIG. 5 is an explanatory view of an embodiment of the first and second aspects of the present invention, and FIG.
FIG. 4 is an explanatory view of an embodiment of the invention described in claims 3 and 4.

【0016】図7に示すような組成のめっき浴を用いて
成膜したサンプル10に下記のような条件で、磁場中熱
処理を行った。 加熱温度:200℃ 加熱時間:1時間 印加磁場:200Oe,800Oe この時、印加磁場の方向を以下のパラメータとした。
A sample 10 formed using a plating bath having a composition as shown in FIG. 7 was subjected to a heat treatment in a magnetic field under the following conditions. Heating temperature: 200 ° C Heating time: 1 hour Applied magnetic field: 200 Oe, 800 Oe At this time, the direction of the applied magnetic field was set as the following parameters.

【0017】 図5に示すように、面内方向に磁場を
印加してサンプルを回転させる。 図6に示すように、面内磁気異方性の容易軸方向に
磁場を印加する。 図6に示すように、面内磁気異方性の困難軸方向に
磁場を印加する。
As shown in FIG. 5, the sample is rotated by applying a magnetic field in an in-plane direction. As shown in FIG. 6, a magnetic field is applied in the easy axis direction of the in-plane magnetic anisotropy. As shown in FIG. 6, a magnetic field is applied in the hard axis direction of in-plane magnetic anisotropy.

【0018】ここで、容易軸、困難軸について説明す
る。図9はサンプル10の図8におけるA方向の磁化特
性を示す図で、この場合では、磁場(磁界の強さ)を増加
させて行った時に、ある磁場以上印加すると、磁化の向
きが反転する。このような特性を示す方向を磁気容易方
向(容易軸)と呼ぶ。
Here, the easy axis and the difficult axis will be described. FIG. 9 is a diagram showing the magnetization characteristics of the sample 10 in the A direction in FIG. 8. In this case, when the magnetic field (magnetic field strength) is increased and applied above a certain magnetic field, the direction of the magnetization is reversed. . A direction exhibiting such characteristics is called an easy magnetic direction (easy axis).

【0019】これに対して、図10はサンプル10の図
8におけるB方向の磁化特性を示す図で、この場合で
は、磁場(磁界の強さ)を増加させて行くと、それに伴い
磁化の向きが徐々に反転して行く。これを磁化困難方向
(困難軸)と呼ぶ。
On the other hand, FIG. 10 is a diagram showing the magnetization characteristics of the sample 10 in the direction B in FIG. 8. In this case, as the magnetic field (magnetic field strength) is increased, the magnetization direction is Gradually reverses. This is the direction of hard magnetization
(Difficult axis).

【0020】図11,図12は、それぞれ印加磁場2000
e,8000eにおける熱処理の印加方向による透磁率と飽和
磁束密度との関係を示している。図11及び図12から
わかるように、成膜時の透磁率は、800程度であるが、
回転磁場熱処理()を施すことにより、透磁率を1300程
度まで上げることができる。
FIGS. 11 and 12 show an applied magnetic field of 2000, respectively.
7 shows the relationship between the magnetic permeability and the saturation magnetic flux density depending on the application direction of the heat treatment at e and 8000 e. As can be seen from FIGS. 11 and 12, the magnetic permeability during film formation is about 800,
By performing the rotating magnetic field heat treatment (), the magnetic permeability can be increased to about 1300.

【0021】又、困難軸から印加し熱処理()を施す
と、異方性の向きは反転するが、透磁率を1300程度ま
で、上げることができる。しかし、容易軸から印加し、
熱処理()を施した場合は、逆に、透磁率を600に低下
させてしまう。
When the heat treatment is applied from the hard axis, the direction of anisotropy is reversed, but the magnetic permeability can be increased to about 1300. However, when applied from the easy axis,
When the heat treatment () is performed, on the contrary, the magnetic permeability decreases to 600.

【0022】尚、図11,図12からわかるように、印
加磁場200Oeと800Oeとでは、差が見られなかった。又、
飽和磁束密度は熱処理を施しても、ほとんど変化は無か
った(Bs≒17000Gauss)。
As can be seen from FIGS. 11 and 12, no difference was observed between the applied magnetic field of 200 Oe and 800 Oe. or,
The saturation magnetic flux density hardly changed even after the heat treatment (Bs ≒ 17000 Gauss).

【0023】図13は熱処理時間による透磁率と飽和磁
束密度との関係を示すもので、回転磁場中熱処理につい
て、熱処理時間を種々変化させて(0〜6時間)熱処理を行
った場合を示している。ここで、他の熱処理条件は、図
11及び図12の場合と同じである。
FIG. 13 shows the relationship between the magnetic permeability and the saturation magnetic flux density depending on the heat treatment time. In the case of heat treatment in a rotating magnetic field, the heat treatment was performed with various heat treatment times (0 to 6 hours). I have. Here, other heat treatment conditions are the same as those in FIGS.

【0024】透磁率の目標値を1300と置くと、熱処理を
1時間行うことで、透磁率≒1300を得ることができる。
更に、時間を増やしていくと、透磁率は徐々に高くなる
傾向がある。例えば、6時間行った場合、透磁率は1500
程度になる。飽和磁束密度は、図11及び図12の場合
とほとんど変らない。
When the target value of the magnetic permeability is set to 1300, the heat treatment is performed.
By performing the treatment for one hour, a magnetic permeability of ≒ 1300 can be obtained.
Further, as the time is increased, the magnetic permeability tends to gradually increase. For example, when performed for 6 hours, the magnetic permeability is 1500
About. The saturation magnetic flux density is almost the same as in FIGS. 11 and 12.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、下
記の様な効果を得ることができる。 膜面内方向に磁場を印加しながら回転し、磁場中熱
処理を施すことにより、磁気異方性を乱し、透磁率が13
00以上の磁性膜を得ることができる。
As described above, according to the present invention, the following effects can be obtained. By rotating while applying a magnetic field in the in-plane direction of the film, and performing a heat treatment in a magnetic field, the magnetic anisotropy is disturbed, and the magnetic permeability becomes 13
More than 00 magnetic films can be obtained.

【0026】 磁性膜の磁気異方性が困難軸となる方
向から磁場を印加して、熱処理を施すことにより、磁気
異方性を乱し、透磁率が1300以上の磁性膜を得ることが
できる。
By applying a magnetic field from a direction in which the magnetic anisotropy of the magnetic film is a difficult axis and performing a heat treatment, the magnetic anisotropy is disturbed and a magnetic film having a magnetic permeability of 1300 or more can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】コバルト-鉄-ニッケル磁性膜のサンプルの膜組
成を示す断面構成図である。
FIG. 1 is a cross-sectional configuration diagram showing a film composition of a sample of a cobalt-iron-nickel magnetic film.

【図2】めっき浴の組成を説明する図である。FIG. 2 is a diagram illustrating the composition of a plating bath.

【図3】めっき条件を説明する図である。FIG. 3 is a diagram illustrating plating conditions.

【図4】膜組成の各重量%時における飽和磁束密度とピ
ッティングポテンシャルを示す図である。
FIG. 4 is a diagram showing a saturation magnetic flux density and a pitting potential at each weight% of a film composition.

【図5】請求項1及び2記載の発明の形態例の説明図で
ある。
FIG. 5 is an explanatory diagram of an embodiment of the invention described in claims 1 and 2;

【図6】請求項3及び4記載の発明の形態例の説明図で
ある。
FIG. 6 is an explanatory view of an embodiment according to the third and fourth aspects of the present invention.

【図7】請求項1乃至4記載の発明の形態例のめっき浴
の組成を説明する図である。
FIG. 7 is a diagram illustrating the composition of a plating bath according to an embodiment of the present invention.

【図8】請求項1乃至4記載の発明の形態例で成膜され
た磁性膜の異方性を説明する図である。
FIG. 8 is a view for explaining the anisotropy of a magnetic film formed according to the embodiment of the present invention.

【図9】図8におけるA方向の磁化特性を説明する図で
ある。
FIG. 9 is a diagram illustrating magnetization characteristics in an A direction in FIG. 8;

【図10】図8におけるB方向の磁化特性を説明する図
である。
FIG. 10 is a diagram illustrating magnetization characteristics in a B direction in FIG. 8;

【図11】印加磁場200Oeの場合における熱処理の印加
方向による透磁率と飽和磁束密度との関係を説明する図
である。
FIG. 11 is a diagram illustrating the relationship between magnetic permeability and saturation magnetic flux density depending on the application direction of heat treatment in the case of an applied magnetic field of 200 Oe.

【図12】印加磁場800Oeの場合における熱処理の印加
方向による透磁率と飽和磁束密度との関係を説明する図
である。
FIG. 12 is a diagram illustrating the relationship between the magnetic permeability and the saturation magnetic flux density depending on the application direction of the heat treatment in the case of an applied magnetic field of 800 Oe.

【図13】熱処理時間による透磁率と飽和磁束密度との
関係を説明する図である。
FIG. 13 is a diagram illustrating the relationship between magnetic permeability and saturation magnetic flux density depending on heat treatment time.

【符号の説明】 1 ガラス基板 2 チタン層 3 ニッケル-鉄層 4 コバルト-鉄-ニッケル層 10 サンプル[Description of Signs] 1 glass substrate 2 titanium layer 3 nickel-iron layer 4 cobalt-iron-nickel layer 10 samples

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 真一 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 押木 満雅 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 飯島 国雄 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Shinichi Tanaka, Inventor 4-1-1 Kamikadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Mitsumasa Oshiki 4-1-1 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa No. 1 Inside Fujitsu Limited (72) Inventor Kunio Iijima 4-1-1 Kamikadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コバルト-鉄-ニッケル磁性膜を磁場中め
っき法にて成膜し、 次に、膜面内方向に磁場を印加しながら回転し、磁場中
熱処理を施す、 ことを特徴とするコバルト-鉄-ニッケル磁性膜の製造方
法。
1. A cobalt-iron-nickel magnetic film is formed by a plating method in a magnetic field, and is then rotated while applying a magnetic field in an in-plane direction to perform a heat treatment in a magnetic field. A method for producing a cobalt-iron-nickel magnetic film.
【請求項2】 前記印加磁場は200Oe以上、 前記回転速度は30〜80rpm、 前記熱処理温度は200〜300℃、 としたことを特徴とする請求項1記載のコバルト-鉄-ニ
ッケル磁性膜の製造方法。
2. The manufacturing method according to claim 1, wherein the applied magnetic field is 200 Oe or more, the rotation speed is 30 to 80 rpm, and the heat treatment temperature is 200 to 300 ° C. Method.
【請求項3】 コバルト-鉄-ニッケル磁性膜を磁場中め
っき法にて成膜し、 前記磁性膜の異方性が困難軸となる方向から磁場を印加
しながら、磁場中熱処理を施す、ことを特徴とするコバ
ルト-鉄-ニッケル磁性膜の製造方法。
3. A method of forming a cobalt-iron-nickel magnetic film by a plating method in a magnetic field, and performing a heat treatment in a magnetic field while applying a magnetic field from a direction in which the anisotropy of the magnetic film is a difficult axis. A method for producing a cobalt-iron-nickel magnetic film, comprising:
【請求項4】 前記熱処理温度は200〜300℃、 前記熱処理時間は1時間以上、 としたことを特徴とする請求項3記載のコバルト-鉄-ニ
ッケル磁性膜の製造方法。
4. The method for producing a cobalt-iron-nickel magnetic film according to claim 3, wherein the heat treatment temperature is 200 to 300 ° C., and the heat treatment time is 1 hour or more.
JP2001035712A 2001-02-13 2001-02-13 Method of manufacturing cobalt-iron-nickel magnetic film Pending JP2001284154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035712A JP2001284154A (en) 2001-02-13 2001-02-13 Method of manufacturing cobalt-iron-nickel magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035712A JP2001284154A (en) 2001-02-13 2001-02-13 Method of manufacturing cobalt-iron-nickel magnetic film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23951092A Division JPH0689422A (en) 1992-09-08 1992-09-08 Production of cobalt-iron-nickel magnetic film

Publications (1)

Publication Number Publication Date
JP2001284154A true JP2001284154A (en) 2001-10-12

Family

ID=18899123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035712A Pending JP2001284154A (en) 2001-02-13 2001-02-13 Method of manufacturing cobalt-iron-nickel magnetic film

Country Status (1)

Country Link
JP (1) JP2001284154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164963A (en) * 2005-11-16 2007-06-28 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, fabrication method thereof and magnetic recording medium
JP2008205472A (en) * 2007-02-16 2008-09-04 Headway Technologies Inc Method of forming soft magnetic layer, and method of softening the magnetic layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164963A (en) * 2005-11-16 2007-06-28 Shin Etsu Chem Co Ltd Substrate for magnetic recording medium, fabrication method thereof and magnetic recording medium
JP2008205472A (en) * 2007-02-16 2008-09-04 Headway Technologies Inc Method of forming soft magnetic layer, and method of softening the magnetic layer

Similar Documents

Publication Publication Date Title
JPH10199726A (en) Soft magnetic thin-film based on co-ni-fe, manufacturing the same, and magnetic head and magnetic memory using the same
JPH0268906A (en) Highly saturated flux density soft magnetic film and magnetic head
JPH04129009A (en) Thin-film magnetic reading-writing head
JPH0689422A (en) Production of cobalt-iron-nickel magnetic film
Chen Fabrication and characterization of thin films with perpendicular magnetic anisotropy for high-density magnetic recording: Part II a review
JP2001284154A (en) Method of manufacturing cobalt-iron-nickel magnetic film
JP3230223B2 (en) Magnetic recording media
JPH0323972B2 (en)
US20020192503A1 (en) Thin film magnetic head and method of fabricating the head
JPS59125607A (en) High saturation magnetization and high permeability magnetic film
JPH0817032A (en) Magnetic recording medium and its production
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JPS6356609B2 (en)
JP4490720B2 (en) Soft magnetic thin film, manufacturing method thereof, and magnetic head
JP3035265B2 (en) Magnetic recording media
JPS59139138A (en) Magnetic recording medium and its production
JP2008172067A (en) Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium
JP2002092838A (en) Magnetic recording medium
JPS5996518A (en) Magnetic head for vertical magnetic recording
JPH0816975B2 (en) Magnetic recording media
JP2002367138A (en) Magnetic information recording medium
JP3087265B2 (en) Magnetic alloy
JP3964844B2 (en) Exchange coupling film having antiferromagnetic Mn—Ir alloy film and method for manufacturing the same, and perpendicular magnetic recording medium and method for manufacturing the same
Kong et al. [Fe-Co/Si]/sub n/multilayers with high saturation magnetization for backlayer of perpendicular magnetic recording media
JPS6022721A (en) Thin film magnetic head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127