JP2008172067A - Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium - Google Patents

Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium Download PDF

Info

Publication number
JP2008172067A
JP2008172067A JP2007004515A JP2007004515A JP2008172067A JP 2008172067 A JP2008172067 A JP 2008172067A JP 2007004515 A JP2007004515 A JP 2007004515A JP 2007004515 A JP2007004515 A JP 2007004515A JP 2008172067 A JP2008172067 A JP 2008172067A
Authority
JP
Japan
Prior art keywords
film
magnetic
thin film
soft magnetic
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007004515A
Other languages
Japanese (ja)
Inventor
Naoto Hayashi
直人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2007004515A priority Critical patent/JP2008172067A/en
Publication of JP2008172067A publication Critical patent/JP2008172067A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a soft magnetic thin film, the soft magnetic thin film itself, a magnetic head, and a vertical magnetic recording medium wherein its characteristics of a saturated magnetic flux density B<SB>s</SB>not smaller than 24.5 kG and an anisotropic magnetic field H<SB>k</SB>not smaller than 15.50e can be realized even when adding no third element to it. <P>SOLUTION: The manufacturing method of the soft magnetic thin film includes a backing film manufacturing step for film-manufacturing a non-magnetic backing film 12 on a non-magnetic substrate 11 and a magnetic film manufacturing step for film-manufacturing an Fe-Co magnetic film 13 on the non-magnetic backing film 12. Hereupon, the magnetic film manufacturing step includes an ion-irradiation-based film manufacturing step for film-manufacturing the Fe-Co magnetic film 13 while irradiating an assist-ion beam IBa on the non-magnetic backing film 12 and a heat treating step for heat-treating the Fe-Co magnetic film 13 after ion-irradiation-based film manufacturing while applying a magnetic field to it. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟磁性薄膜の製造方法および軟磁性薄膜、磁気ヘッド、垂直磁気記録媒体に関する。   The present invention relates to a soft magnetic thin film manufacturing method, a soft magnetic thin film, a magnetic head, and a perpendicular magnetic recording medium.

近年、記録装置の小型化、大容量化、またそれらに伴う高転送レート化のために、記録媒体の高保磁力化、高密度化および磁気ヘッドの動作周波数の広帯域化が進められている。   In recent years, in order to reduce the size and capacity of a recording apparatus, and to increase the transfer rate associated therewith, the coercive force and density of a recording medium have been increased and the operating frequency of a magnetic head has been increased.

高保磁力媒体を飽和記録するためには、磁気ヘッドの記録磁極に高い飽和磁束密度Bsを持つ軟磁性薄膜を適用することが必要である。また、記録媒体として二層垂直磁気記録媒体を採用し、その軟磁性層に高い飽和磁束密度Bsを持つ軟磁性薄膜を適用することにより、磁気記録の高密度化が可能となる。 In order to perform saturation recording on a high coercive force medium, it is necessary to apply a soft magnetic thin film having a high saturation magnetic flux density B s to the recording magnetic pole of the magnetic head. Further, by adopting a two-layer perpendicular magnetic recording medium as a recording medium and applying a soft magnetic thin film having a high saturation magnetic flux density B s to the soft magnetic layer, it is possible to increase the magnetic recording density.

磁気ヘッドの動作周波数の広帯域化に関しては、記録磁極の軟磁性層の強磁性共鳴周波数frを大きくすることが必要である。面内一軸異方性を有する軟磁性薄膜の強磁性共鳴周波数frは、飽和磁束密度Bsおよび異方性磁界Hkを用いて[数1]のように表される。したがって、飽和磁束密度Bsと異方性磁界Hkを大きくすることによって、磁気ヘッドの強磁性共鳴周波数frを大きくし、磁気ヘッドの動作周波数を広帯域化することができる。

Figure 2008172067
For the bandwidth of the operating frequency of the magnetic head, it is necessary to increase the ferromagnetic resonance frequency f r of the soft magnetic layer of the recording magnetic pole. Ferromagnetic resonance frequency f r of the soft magnetic thin film having in-plane uniaxial anisotropy is represented as the Equation 1 using the saturation flux density B s and anisotropy field H k. Therefore, by increasing the saturation magnetic flux density B s and the anisotropic magnetic field H k , the ferromagnetic resonance frequency fr of the magnetic head can be increased and the operating frequency of the magnetic head can be broadened.
Figure 2008172067

軟磁性薄膜として一般的なFe−Co磁性膜は、Coの組成比が25〜35%のときに24.5kGという高い飽和磁束密度Bsを持つが、磁歪が3〜8×10-5と大きいため、軟磁性薄膜に求められる保磁力Hcが小さく異方性磁界Hkが大きいという特性を実現することが容易ではない。 A general Fe—Co magnetic film as a soft magnetic thin film has a high saturation magnetic flux density B s of 24.5 kG when the Co composition ratio is 25 to 35%, but the magnetostriction is 3 to 8 × 10 −5 . Since it is large, it is not easy to realize the characteristic that the coercive force H c required for the soft magnetic thin film is small and the anisotropic magnetic field H k is large.

スタンフォード大学のS.X.Wangらは、Ni−Fe薄膜を下地膜とし、かつFe−Co製膜中に窒素を添加することによって、飽和磁束密度Bs=24.5kG、強磁性共鳴周波数fr=1.5GHzが実現できることを報告している(例えば、非特許文献1参照)。 Stanford University X. Wang et al. Realized a saturation magnetic flux density B s = 24.5 kG and a ferromagnetic resonance frequency f r = 1.5 GHz by using a Ni—Fe thin film as a base film and adding nitrogen to the Fe—Co film. It is reported that it can be done (for example, see Non-Patent Document 1).

この報告を契機として、Ni−Fe薄膜を下地膜とした高い飽和磁束密度Bsを持つFe−Co軟磁性薄膜材料の研究が精力的に行われてきた。 With this report as an opportunity, research on Fe—Co soft magnetic thin film materials having a high saturation magnetic flux density B s using a Ni—Fe thin film as an underlayer has been vigorously conducted.

秋田県高度技術研究所の新宅らは、Fe−Coに微量のAl23を添加し、Ni−Fe薄膜あるいはCo−Zr−Nb薄膜からなる軟磁性下地膜を用いることによって、飽和磁束密度Bsが24kGと大きく保磁力Hcが1Oe以下の軟磁性薄膜を開発することに成功している(例えば、非特許文献2参照)。 Shinya et al. Of Akita Advanced Technology Research Institute added a small amount of Al 2 O 3 to Fe-Co and used a soft magnetic underlayer consisting of a Ni-Fe thin film or a Co-Zr-Nb thin film. A soft magnetic thin film having a large B s of 24 kG and a coercive force H c of 1 Oe or less has been successfully developed (for example, see Non-Patent Document 2).

また、Fe70Co30(at%)合金にAl23を1%追加した母材を用いてイオンビームスパッタ法で堆積したFe−Co−Al−O膜においては、Cu、Au、Ag、AlあるいはRuなどの非磁性下地膜を用いても、飽和磁束密度Bsが23kG以上、強磁性共鳴周波数frが1GHz以上の特性を実現することが可能な軟磁性膜が得られることも報告されている(例えば、非特許文献3参照)。
S. X. Wang, N. X. Sun, M. Yamaguchi and S. Yabukami, Nature, Vol.407, p.150-151, 2000 新宅、山川、大内著、電子情報通信学会技術研究報告、2002年、MR2002−20 N. Hayashi, Y. Miyamoto, K. Machida, and T. Tamaki, Journal of Magnetism and Magnetic Materials, 287, pp.387-391, 2005
Further, in an Fe—Co—Al—O film deposited by ion beam sputtering using a base material obtained by adding 1% Al 2 O 3 to an Fe 70 Co 30 (at%) alloy, Cu, Au, Ag, even using a non-magnetic base film such as Al or Ru, saturation magnetic flux density B s is more than 23 kg, also soft magnetic film capable of ferromagnetic resonance frequency f r is realize the above characteristics 1GHz is obtained reported (For example, see Non-Patent Document 3).
SX Wang, NX Sun, M. Yamaguchi and S. Yabukami, Nature, Vol.407, p.150-151, 2000 Shintaku, Yamakawa, Ouchi, IEICE technical report, 2002, MR2002-20 N. Hayashi, Y. Miyamoto, K. Machida, and T. Tamaki, Journal of Magnetism and Magnetic Materials, 287, pp.387-391, 2005

しかしながら、このような従来の軟磁性薄膜の製造技術では、第三元素を添加せずに高い飽和磁束密度Bsと高い強磁性共鳴周波数frを有するFe−Co磁性膜を実現することはできなかった。 However, such a manufacturing technique of a conventional soft magnetic thin film, can be realized Fe-Co magnetic film having a high saturation magnetic flux density B s and a high ferromagnetic resonance frequency f r without adding a third element There wasn't.

本発明は上記の従来の課題を解決するためになされたものであって、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上の特性を実現することが可能な軟磁性薄膜の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described conventional problems. Even when no third element is added, the saturation magnetic flux density B s is 24.5 kG or more, and the anisotropy magnetic field H k is 15.5 Oe or more. An object of the present invention is to provide a method for producing a soft magnetic thin film capable of realizing the above characteristics.

[第1の発明]
本発明の軟磁性薄膜の製造方法は、非磁性基板上に非磁性下地膜を製膜する下地膜製膜段階と、前記非磁性下地膜上に鉄コバルト(Fe−Co)磁性膜を製膜する磁性膜製膜段階とを含む軟磁性薄膜の製造方法であって、前記磁性膜製膜段階が、前記非磁性下地膜上にアシストイオンビームを照射しながら前記Fe−Co磁性膜を製膜するイオン照射製膜段階と、イオン照射製膜後の前記Fe−Co磁性膜に磁界を印加しながら熱処理する熱処理段階を含むことを特徴とするものである。
[First invention]
The method for producing a soft magnetic thin film of the present invention comprises a base film forming step of forming a nonmagnetic base film on a nonmagnetic substrate, and an iron cobalt (Fe—Co) magnetic film is formed on the nonmagnetic base film. A method for producing a soft magnetic thin film including a magnetic film forming step, wherein the magnetic film forming step forms the Fe—Co magnetic film while irradiating an assist ion beam on the nonmagnetic underlayer. An ion irradiation film forming step, and a heat treatment step in which heat treatment is performed while applying a magnetic field to the Fe-Co magnetic film after ion irradiation film formation.

この製造方法により、第三元素を添加しない場合でも高い飽和磁束密度Bsと高い異方性磁界Hkを有する軟磁性薄膜を製造できることとなる。 This manufacturing method makes it possible to manufacture a soft magnetic thin film having a high saturation magnetic flux density B s and a high anisotropic magnetic field H k even when no third element is added.

[第2の発明]
本発明の軟磁性薄膜の製造方法は、前記アシストイオンビームのビーム電圧が50〜250ボルトであるものである。
[Second invention]
In the method for producing a soft magnetic thin film according to the present invention, the assist ion beam has a beam voltage of 50 to 250 volts.

この製造方法により、体心立方構造を有し、(110)面間隔が2.028〜2.031オングストロームのFe−Co磁性膜を製造できることとなる。   With this manufacturing method, an Fe—Co magnetic film having a body-centered cubic structure and having a (110) plane spacing of 2.028 to 2.031 angstroms can be manufactured.

[第3の発明]
本発明の軟磁性薄膜の製造方法は、前記下地膜製膜段階が、前記非磁性下地膜として銅(Cu)膜を製膜するものである。
[Third invention]
In the soft magnetic thin film manufacturing method of the present invention, the base film forming step forms a copper (Cu) film as the nonmagnetic base film.

この製造方法により、体心立方構造を有し、(110)面間隔が2.028〜2.031オングストロームのFe−Co磁性膜を製造できることとなる。   With this manufacturing method, an Fe—Co magnetic film having a body-centered cubic structure and having a (110) plane spacing of 2.028 to 2.031 angstroms can be manufactured.

[第4の発明]
本発明の軟磁性薄膜は、非磁性基板上に製膜される非磁性下地膜と、前記非磁性下地膜上に製膜され、体心立方構造を有して、(110)面間隔が2.028〜2.031オングストロームの範囲にあるFe−Co磁性膜とを含む構成を有している。
[Fourth Invention]
The soft magnetic thin film of the present invention has a nonmagnetic underlayer formed on a nonmagnetic substrate, a nonmagnetic underlayer formed on the nonmagnetic underlayer, has a body-centered cubic structure, and has a (110) spacing of 2 And a Fe—Co magnetic film in the range of 0.028 to 2.031 angstroms.

この構成により、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上となる特性を実現することができることとなる。 With this configuration, even when the third element is not added, it is possible to realize the characteristics that the saturation magnetic flux density B s is 24.5 kG or more and the anisotropic magnetic field H k is 15.5 Oe or more.

[第5の発明]
本発明の磁気ヘッドは、第4の発明に記載の軟磁性薄膜を含む構成を有している。
[Fifth Invention]
The magnetic head of the present invention has a configuration including the soft magnetic thin film described in the fourth invention.

この構成により、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上となる特性を実現することができることとなる。 With this configuration, even when the third element is not added, it is possible to realize the characteristics that the saturation magnetic flux density B s is 24.5 kG or more and the anisotropic magnetic field H k is 15.5 Oe or more.

[第6の発明]
本発明の垂直磁気記録媒体は、第4の発明に記載の軟磁性薄膜を含む構成を有している。
[Sixth Invention]
The perpendicular magnetic recording medium of the present invention has a configuration including the soft magnetic thin film described in the fourth invention.

この構成により、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上の特性を実現することができることとなる。 With this configuration, even when the third element is not added, it is possible to realize the characteristics that the saturation magnetic flux density B s is 24.5 kG or more and the anisotropic magnetic field H k is 15.5 Oe or more.

本発明は、非磁性下地膜上にビーム電圧50〜250ボルトのアシストイオンビームを照射しながらFe−Co磁性膜を製膜することにより、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上の特性を実現することが可能な軟磁性薄膜の製造方法を提供することができるものである。 In the present invention, by forming an Fe—Co magnetic film while irradiating an assist ion beam with a beam voltage of 50 to 250 volts on a nonmagnetic undercoat film, the saturation magnetic flux density B s can be obtained even when no third element is added. It is possible to provide a method for producing a soft magnetic thin film capable of realizing characteristics of 24.5 kG or more and an anisotropic magnetic field H k of 15.5 Oe or more.

以下に、本発明に係る軟磁性薄膜の製造方法によって製造される軟磁性薄膜1について、図面を用いて説明する。図1は、軟磁性薄膜1の構造を示すブロック図である。   Below, the soft-magnetic thin film 1 manufactured by the manufacturing method of the soft-magnetic thin film which concerns on this invention is demonstrated using drawing. FIG. 1 is a block diagram showing the structure of the soft magnetic thin film 1.

本発明に係る軟磁性薄膜の製造方法は、非磁性基板11上に非磁性下地膜12を製膜する下地膜製膜段階と、非磁性下地膜12上にFe−Co磁性膜13を製膜する磁性膜製膜段階とを含む軟磁性薄膜の製造方法であって、磁性膜製膜段階が、非磁性下地膜12上にアシストイオンビームIBaを照射しながらFe−Co磁性膜13を製膜するイオン照射製膜段階と、イオン照射製膜後のFe−Co磁性膜13に磁界を印加しながら熱処理する熱処理段階を含むことを特徴とするものである。   The method for producing a soft magnetic thin film according to the present invention includes a base film forming step of forming a nonmagnetic base film 12 on a nonmagnetic substrate 11, and a Fe—Co magnetic film 13 formed on the nonmagnetic base film 12. A method for producing a soft magnetic thin film, comprising: forming a Fe—Co magnetic film 13 while irradiating an assist ion beam IBa on a nonmagnetic underlayer 12. An ion irradiation film forming step, and a heat treatment step in which a heat treatment is performed while applying a magnetic field to the Fe—Co magnetic film 13 after the ion irradiation film formation.

そして、アシストイオンビームIBaのビーム電圧は50〜250ボルトである。また、下地膜製膜段階は、非磁性下地膜12としてCu膜を製膜する段階である。   The beam voltage of the assist ion beam IBa is 50 to 250 volts. The base film forming step is a step of forming a Cu film as the nonmagnetic base film 12.

即ち、本発明に係る製造方法で製造した軟磁性薄膜1は、非磁性基板11上に製膜される非磁性下地膜12と、非磁性下地膜12上に製膜され、体心立方構造を有して、(110)面間隔が2.028〜2.031オングストローム(Å)の範囲にあるFe−Co磁性膜13とを含む。   That is, the soft magnetic thin film 1 manufactured by the manufacturing method according to the present invention is formed on the nonmagnetic base film 12 and the nonmagnetic base film 12, and has a body-centered cubic structure. And an Fe—Co magnetic film 13 having a (110) spacing of 2.028 to 2.031 angstroms (Å).

図2は、本発明に係る軟磁性薄膜1の製膜装置2の構成を示す模式図である。   FIG. 2 is a schematic diagram showing the configuration of the film forming apparatus 2 for the soft magnetic thin film 1 according to the present invention.

即ち、製膜装置2は、製膜イオンビームIBを放射する製膜用イオンソース21と、製膜イオンビームIBによりスパッタ粒子Sが叩き出されるターゲットを保持する回転可能なターゲット回転機構22と、マグネット231を有し、非磁性基板11を保持する回転可能な基板回転機構23と、アシストイオンビームIBaを放射するアシスト用イオンソース24と、粗引き用のロータリーポンプ(不図示)と、超高真空用のクライオポンプ(不図示)とを含む。   That is, the film forming apparatus 2 includes a film forming ion source 21 that emits a film forming ion beam IB, a rotatable target rotating mechanism 22 that holds a target from which the sputtered particles S are knocked out by the film forming ion beam IB, A rotatable substrate rotation mechanism 23 having a magnet 231 and holding the non-magnetic substrate 11, an assist ion source 24 that emits an assist ion beam IBa, a roughing rotary pump (not shown), And a cryopump for vacuum (not shown).

製膜用イオンソース21およびアシスト用イオンソース24として、ホローカソード型イオンソースを用いた。なお、製膜イオンビームIBおよびアシストイオンビームIBaのイオンガスとしてクリプトンガスを用いた。   A hollow cathode type ion source was used as the ion source 21 for film formation and the ion source 24 for assist. Note that krypton gas was used as an ion gas for the film forming ion beam IB and the assist ion beam IBa.

ターゲット回転機構22は、4面に異なる4種類の材料を保持することができるものであり、非磁性下地膜12用の材料としてCu、Au、Al、Ag、TiあるいはTa、Fe−Co磁性膜13用の材料として純度99.99%のFe70Co30を備えている。ターゲット回転機構22を回転することにより、製膜に用いる材料を適宜選択することができる。 The target rotating mechanism 22 can hold four different materials on four surfaces, and Cu, Au, Al, Ag, Ti or Ta, Fe—Co magnetic film as a material for the nonmagnetic underlayer film 12. As a material for No. 13, Fe 70 Co 30 having a purity of 99.99% is provided. By rotating the target rotation mechanism 22, a material used for film formation can be selected as appropriate.

製膜に用いる非磁性基板11をターゲットと平行に設置し、基板回転機構23により毎分5回転で回転させた。非磁性基板11としては、表面酸化膜付きのシリコンウェハーとバリウム硼珪酸ガラス(コーニング7059(商標))あるいはアルミナチタンカーバイトなどを用いた。   The nonmagnetic substrate 11 used for film formation was placed in parallel with the target, and rotated at 5 rotations per minute by the substrate rotation mechanism 23. As the nonmagnetic substrate 11, a silicon wafer with a surface oxide film and barium borosilicate glass (Corning 7059 (trademark)), alumina titanium carbide, or the like was used.

非磁性下地膜12については、ロータリーポンプおよびクライオポンプを使用して製膜装置内を2×10-8Torr以下まで真空排気した後、製膜用イオンソース21のビーム電圧を850V、ビーム電流を100mA(電流密度50A/m2、ただし電流密度とは、アノードとグランド間に流れるビーム電流をイオンソースから放出される面積で除したものである。)に設定し、クリプトンガス圧2×10-4Torrで製膜し、膜厚を5nmとした。 For the non-magnetic underlayer 12, the inside of the film forming apparatus is evacuated to 2 × 10 −8 Torr or less using a rotary pump and a cryopump, and then the beam voltage of the ion source 21 for film forming is set to 850 V, and the beam current is set to 100 mA (current density 50 A / m 2 , where the current density is the beam current flowing between the anode and ground divided by the area emitted from the ion source), and the krypton gas pressure 2 × 10 − The film was formed at 4 Torr, and the film thickness was 5 nm.

Fe−Co磁性膜13については、ロータリーポンプおよびクライオポンプを使用して製膜装置内を2×10-8Torr以下まで真空排気した後、製膜用イオンソース21のビーム電圧を1200V、ビーム電流を100mA(電流密度50A/m2)に設定した。マグネット231によって150Oeの磁界を非磁性基板11に印加しながらクリプトンガス圧2×10-4Torrで製膜し、膜厚を100nmとした。 For the Fe—Co magnetic film 13, the inside of the film forming apparatus is evacuated to 2 × 10 −8 Torr or less using a rotary pump and a cryopump, and then the beam voltage of the film forming ion source 21 is 1200 V, the beam current. Was set to 100 mA (current density 50 A / m 2 ). While applying a magnetic field of 150 Oe to the nonmagnetic substrate 11 by the magnet 231, the film was formed at a krypton gas pressure of 2 × 10 −4 Torr, and the film thickness was set to 100 nm.

なお、Fe−Co磁性膜13の製膜時にアシスト用イオンソース24からビーム電圧50〜300V、ビーム電流10〜40mA(電流密度5〜20A/m2)でクリプトンガスによりアシストイオンビームIBaを発生し、アシストイオンビームIBaを入射角度45度で非磁性基板11上に形成された非磁性下地膜12に照射した。 When the Fe—Co magnetic film 13 is formed, an assist ion beam IBa is generated from the assist ion source 24 with krypton gas at a beam voltage of 50 to 300 V and a beam current of 10 to 40 mA (current density of 5 to 20 A / m 2 ). The assist ion beam IBa was applied to the nonmagnetic underlayer film 12 formed on the nonmagnetic substrate 11 at an incident angle of 45 degrees.

製膜後、5×10-7Torr以下の真空中において1kOeの磁界を印加しながらFe−Co磁性膜13を325℃で1時間熱処理した。上記の熱処理を行うことにより、軟磁気特性が改善される。また、軟磁性薄膜1を磁気ヘッドに適用する場合には、磁気ヘッド作製プロセス時の処理温度(例えば280℃)に対する耐熱性を有することとなる。 After film formation, the Fe—Co magnetic film 13 was heat-treated at 325 ° C. for 1 hour while applying a magnetic field of 1 kOe in a vacuum of 5 × 10 −7 Torr or less. By performing the above heat treatment, the soft magnetic properties are improved. In addition, when the soft magnetic thin film 1 is applied to a magnetic head, it has heat resistance against a processing temperature (for example, 280 ° C.) during the magnetic head manufacturing process.

作製した軟磁性薄膜1の飽和磁束密度Bs、保磁力Hc、異方性磁界Hkとを振動試料型磁力計を使用して測定した磁化特性から決定した。なお、本実施形態では飽和磁束密度Bsを100Oeの磁界における磁束密度B100で評価した。 The saturation magnetic flux density B s , coercive force H c , and anisotropic magnetic field H k of the produced soft magnetic thin film 1 were determined from the magnetization characteristics measured using a vibrating sample magnetometer. In this embodiment, the saturation magnetic flux density B s is evaluated by the magnetic flux density B 100 in a magnetic field of 100 Oe.

図3は、本発明に係る軟磁性薄膜1の磁化特性の一例を示すグラフである。試料は後述する実施例3で用いているものである。図3中、HA(実線)およびEA(点線)はそれぞれ磁化困難軸方向および磁化容易軸方向の磁化特性を示す。図3から磁化困難軸方向についてはHc=2.5Oe、Hk=18.3Oe、B100=24.5kGであり、磁化容易軸方向についてはHc=9.5Oe、B100=24.5kGであることがわかる。 FIG. 3 is a graph showing an example of the magnetization characteristics of the soft magnetic thin film 1 according to the present invention. The sample is used in Example 3 described later. In FIG. 3, HA (solid line) and EA (dotted line) indicate magnetization characteristics in the hard axis direction and the easy axis direction, respectively. From FIG. 3, H c = 2.5 Oe, H k = 18.3 Oe, B 100 = 24.5 kG in the hard axis direction, and H c = 9.5 Oe, B 100 = 24. It turns out that it is 5kG.

図4および図5は、本発明に係る軟磁性薄膜1の実施例1〜10および比較例11〜28の製造条件およびその諸特性を示す表である。なお、図5中の「熱処理温度」の欄における記号「−」は、熱処理を行っていないことを示す。また、図4から図9に示すHc、Hk、Bsの値は全て磁化困難軸方向の磁化特性から決定したものである。 4 and 5 are tables showing the manufacturing conditions and various characteristics of Examples 1 to 10 and Comparative Examples 11 to 28 of the soft magnetic thin film 1 according to the present invention. Note that the symbol “-” in the “heat treatment temperature” column in FIG. 5 indicates that heat treatment is not performed. The values of H c , H k , and B s shown in FIGS. 4 to 9 are all determined from the magnetization characteristics in the hard axis direction.

図5の比較例13〜16より、アシストイオンビームIBaのビーム電圧(以下、アシスト電圧と記す)Vaが0で、Cu、Ag、Au、Alを非磁性下地膜12に用い、325℃の熱処理を行った場合にはHc≦4.4Oeの特性が得られるが、Hk≦8.2Oeであることがわかる。また、図4および図5から第三元素を添加しなくても、B100=24.5kGは達成可能であることがわかる。 Comparative Example 13 to 16 in FIG. 5, the assist ion beam IBa the beam voltage (hereinafter, referred to as an assist voltage) in V a is 0, Cu, Ag, Au, Al is used non-magnetic undercoat layer 12, the 325 ° C. When heat treatment is performed, the characteristics of H c ≦ 4.4 Oe are obtained, but it can be seen that H k ≦ 8.2 Oe. 4 and 5 that B 100 = 24.5 kG can be achieved without adding the third element.

図6は、本発明に係る軟磁性薄膜1の保磁力Hcと(110)面間隔d(110)の関係を示すグラフであり、実施例1〜10および比較例11〜28の全ての試料についてプロットしたものである。このグラフから、(110)面間隔d(110)が2.028〜2.031Åの範囲にある実施例1〜10および比較例13〜16、18の試料が、Hc≦5.2Oeの特性を示すことがわかる。 FIG. 6 is a graph showing the relationship between the coercive force H c of the soft magnetic thin film 1 according to the present invention and the (110) plane distance d (110) , and all the samples of Examples 1 to 10 and Comparative Examples 11 to 28 are shown. Is plotted for. From this graph, the samples of Examples 1 to 10 and Comparative Examples 13 to 16 and 18 in which the (110) plane distance d (110) is in the range of 2.028 to 2.031 mm are characteristics of H c ≦ 5.2 Oe. It can be seen that

図7は、本発明に係る軟磁性薄膜1の異方性磁界Hkと(110)面間隔d(110)の関係を示すグラフであり、実施例1〜10および比較例11〜28の全ての試料についてプロットしたものである。このグラフから、(110)面間隔d(110)が2.028〜2.031Åの範囲にある実施例1〜10の試料が、Hk≧15.5Oeの特性を示すことがわかる。 FIG. 7 is a graph showing the relationship between the anisotropic magnetic field H k and the (110) spacing d (110) of the soft magnetic thin film 1 according to the present invention, and all of Examples 1 to 10 and Comparative Examples 11 to 28. It is what plotted about the sample of this. From this graph, it can be seen that the samples of Examples 1 to 10 in which the (110) plane distance d (110) is in the range of 2.028 to 2.031 mm exhibit characteristics of H k ≧ 15.5 Oe.

図8は、本発明に係る軟磁性薄膜1の保磁力Hcとアシスト電圧Vaの関係を示すグラフであり、図6および図7においてHc≦5.2OeかつHk≧15.5Oeとなる実施例1〜10の試料(熱処理温度が325℃、非磁性下地膜12がCu膜)に加えて、熱処理温度が325℃、非磁性下地膜12がCu膜である比較例13および18の試料のデータをプロットしたものである。このグラフから、熱処理温度が325℃、非磁性下地膜12がCu膜であり、アシスト電圧Vaが50〜250Vの範囲のとき(実施例1〜10)、Hc≦2.5Oeの特性が得られることがわかる。 FIG. 8 is a graph showing the relationship between the coercive force H c and the assist voltage V a of the soft magnetic thin film 1 according to the present invention. In FIGS. 6 and 7, H c ≦ 5.2 Oe and H k ≧ 15.5 Oe. In addition to the samples of Examples 1 to 10 (the heat treatment temperature is 325 ° C. and the nonmagnetic underlayer film 12 is a Cu film), the heat treatment temperature is 325 ° C. and the nonmagnetic underlayer film 12 is a Cu film. It is a plot of sample data. From this graph, the heat treatment temperature is 325 ° C., the non-magnetic undercoat layer 12 is a Cu film, when the assist voltage V a is in the range of 50~250V (Examples 1 to 10), the characteristics of H c ≦ 2.5Oe It turns out that it is obtained.

図9は、本発明に係る軟磁性薄膜1の異方性磁界Hkとアシスト電圧Vaの関係を示すグラフであり、図8と同様に図4および図5において、熱処理温度が325℃、非磁性下地膜12がCu膜である試料(実施例1〜10、比較例13、18)についてプロットしたものである。このグラフから、熱処理温度が325℃、非磁性下地膜12がCu膜であり、アシスト電圧Vaが50〜250Vの範囲のとき(実施例1〜10)、Hk≧15.5Oeの特性が得られることがわかる。 FIG. 9 is a graph showing the relationship between the anisotropic magnetic field H k and the assist voltage V a of the soft magnetic thin film 1 according to the present invention. As in FIG. 8, the heat treatment temperature is 325 ° C. in FIGS. It plots about the sample (Examples 1-10, Comparative Examples 13 and 18) whose nonmagnetic base film 12 is Cu film | membrane. From this graph, the heat treatment temperature is 325 ° C., the non-magnetic undercoat layer 12 is a Cu film, when the assist voltage V a is in the range of 50~250V (Examples 1 to 10), the characteristics of H k ≧ 15.5Oe It turns out that it is obtained.

したがって、製膜中にアシスト電圧Vaが50〜250Vの範囲であるアシストイオンビームIBaを照射することにより、非磁性下地膜12がCu膜である軟磁性薄膜1は、(110)面間隔d(110)が2.030Å程度、B100=24.5kG、Hc≦2.5Oe、Hk≧15.5Oeとなる特性を有することがわかる。なお、このときの強磁性共鳴周波数frの値は1.8GHz程度である。 Therefore, by assisting voltage V a during film formation to irradiation an assist ion beam IBa ranges 50~250V, soft magnetic thin film 1 non-magnetic undercoat film 12 is a Cu film (110) face spacing d It can be seen that (110) has characteristics of about 2.030 mm, B 100 = 24.5 kG, H c ≦ 2.5 Oe, and H k ≧ 15.5 Oe. The value of the ferromagnetic resonance frequency f r at this time is approximately 1.8GHz.

軟磁性薄膜1の磁化容易軸方向は、製膜時の磁界印加方向あるいは熱処理時の磁界印加方向となるため、所望の方向に磁化容易軸方向を設定することができる。この特徴は磁気ヘッドあるいは垂直磁気記録媒体へ適用する際に有用なものである。   Since the easy magnetization axis direction of the soft magnetic thin film 1 is the magnetic field application direction during film formation or the magnetic field application direction during heat treatment, the easy magnetization axis direction can be set in a desired direction. This feature is useful when applied to a magnetic head or a perpendicular magnetic recording medium.

図10に示す磁気ヘッド3は、リターンヨーク31と、本発明に係る軟磁性薄膜1で構成された記録磁極32とを備えている。そして、リターンヨーク31と、記録磁極32と、垂直磁気記録媒体Dとから磁気回路が構成され、垂直磁気記録媒体Dを磁化することによりデータが記録されるようになっている。なお、図10および以降に示す図11では再生ヘッドの記載を省略している。   The magnetic head 3 shown in FIG. 10 includes a return yoke 31 and a recording magnetic pole 32 made of the soft magnetic thin film 1 according to the present invention. A magnetic circuit is constituted by the return yoke 31, the recording magnetic pole 32, and the perpendicular magnetic recording medium D, and data is recorded by magnetizing the perpendicular magnetic recording medium D. In FIG. 10 and FIG. 11 shown later, the description of the reproducing head is omitted.

ここで、図10においてWで示されたトラック幅方向と軟磁性薄膜の磁化容易軸を平行とすることによって、記録磁極32からの磁界強度を大きくでき、垂直磁気記録媒体Dへの記録感度を向上することが可能となる。   Here, by making the track width direction indicated by W in FIG. 10 parallel to the easy magnetization axis of the soft magnetic thin film, the magnetic field intensity from the recording magnetic pole 32 can be increased, and the recording sensitivity to the perpendicular magnetic recording medium D can be increased. It becomes possible to improve.

図11は本発明に係る軟磁性薄膜1が磁気ヘッド3に適用される例を示す断面図である。図11(a)、(b)、(c)に示すように、リターンヨーク31および記録磁極32の一部あるいは全部に本発明の軟磁性薄膜1を適用することが可能である。   FIG. 11 is a cross-sectional view showing an example in which the soft magnetic thin film 1 according to the present invention is applied to the magnetic head 3. As shown in FIGS. 11A, 11B, and 11C, the soft magnetic thin film 1 of the present invention can be applied to part or all of the return yoke 31 and the recording magnetic pole 32. FIG.

また、図12に示す垂直磁気記録媒体である二層垂直磁気ディスク4は、非磁性基板41と、本発明に係る軟磁性薄膜1と、中間層42と、垂直磁気記録層43と、保護膜層44とを含んでおり、軟磁性薄膜1のFe−Co磁性膜13の磁化容易軸45の方向を半径方向とすることにより、Fe−Co磁性膜の磁壁移動に伴うノイズを抑圧することができる。さらに、二層垂直磁気ディスク4は、軟磁性薄膜1が高い飽和磁束密度Bsを有するため、高密度の磁気記録を行うことが可能である。 12 includes a nonmagnetic substrate 41, the soft magnetic thin film 1 according to the present invention, an intermediate layer 42, a perpendicular magnetic recording layer 43, and a protective film. The layer 44 is included, and by setting the direction of the easy axis 45 of the Fe—Co magnetic film 13 of the soft magnetic thin film 1 to the radial direction, it is possible to suppress noise accompanying the domain wall movement of the Fe—Co magnetic film. it can. Furthermore, since the soft magnetic thin film 1 has a high saturation magnetic flux density B s , the double-layer perpendicular magnetic disk 4 can perform high-density magnetic recording.

以上説明したように、本発明の実施形態の軟磁性薄膜の製造方法によれば、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上の特性を有する軟磁性薄膜を実現することが可能であり、磁気ヘッドおよび垂直磁気記録媒体に適用することが可能である。 As described above, according to the method for manufacturing a soft magnetic thin film of the embodiment of the present invention, the saturation magnetic flux density B s is 24.5 kG or more and the anisotropic magnetic field H k is 15.4 even when no third element is added. A soft magnetic thin film having a characteristic of 5 Oe or more can be realized, and can be applied to a magnetic head and a perpendicular magnetic recording medium.

以上のように、本発明に係る軟磁性薄膜の製造方法は、非磁性下地膜上にビーム電圧50〜250ボルトのアシストイオンビームを照射しながらFe−Co磁性膜を製膜することにより、第三元素を添加しない場合でも飽和磁束密度Bsが24.5kG以上、異方性磁界Hkが15.5Oe以上の特性を実現することができるという効果を有し、軟磁性薄膜を有する磁気ヘッド、垂直磁気記録媒体等に有効である。 As described above, the method for producing a soft magnetic thin film according to the present invention includes forming a Fe—Co magnetic film on a nonmagnetic underlayer while irradiating an assist ion beam with a beam voltage of 50 to 250 volts. Even when three elements are not added, the magnetic head has the effect that the saturation magnetic flux density B s is 24.5 kG or more and the anisotropic magnetic field H k is 15.5 Oe or more, and has a soft magnetic thin film. It is effective for a perpendicular magnetic recording medium.

本発明に係る軟磁性薄膜の構造を示すブロック図The block diagram which shows the structure of the soft-magnetic thin film based on this invention 本発明に係る軟磁性薄膜の製膜装置の構成を示す模式図The schematic diagram which shows the structure of the film-forming apparatus of the soft-magnetic thin film based on this invention 本発明に係る軟磁性薄膜の磁化特性の一例を示すグラフThe graph which shows an example of the magnetization characteristic of the soft-magnetic thin film based on this invention 本発明に係る軟磁性薄膜の実施例1〜10の製造情報およびその諸特性を示す表Table showing manufacturing information and various characteristics of Examples 1 to 10 of the soft magnetic thin film according to the present invention. 本発明に係る軟磁性薄膜の比較例11〜28の製造情報およびその諸特性を示す表Table showing manufacturing information and various characteristics of Comparative Examples 11 to 28 of the soft magnetic thin film according to the present invention. 本発明に係る軟磁性薄膜の保磁力と(110)面間隔の関係を示すグラフThe graph which shows the relationship between the coercive force of the soft-magnetic thin film based on this invention, and a (110) plane space | interval. 本発明に係る軟磁性薄膜の異方性磁界と(110)面間隔の関係を示すグラフThe graph which shows the relationship between the anisotropic magnetic field of the soft-magnetic thin film which concerns on this invention, and a (110) plane space | interval 本発明に係る軟磁性薄膜の保磁力とアシスト電圧の関係を示すグラフThe graph which shows the relationship between the coercive force and assist voltage of the soft-magnetic thin film which concerns on this invention 本発明に係る軟磁性薄膜の異方性磁界とアシスト電圧の関係を示すグラフThe graph which shows the relationship between the anisotropic magnetic field and assist voltage of the soft-magnetic thin film which concerns on this invention 本発明に係る軟磁性薄膜を適用した磁気ヘッドの構成を示す模式図Schematic diagram showing the configuration of a magnetic head to which a soft magnetic thin film according to the present invention is applied. 本発明に係る軟磁性薄膜が磁気ヘッドに適用される例を示す断面図Sectional drawing which shows the example by which the soft-magnetic thin film based on this invention is applied to a magnetic head 本発明に係る軟磁性薄膜を適用した二層垂直磁気ディスクの構成を示す模式図Schematic diagram showing the configuration of a double-layered perpendicular magnetic disk to which a soft magnetic thin film according to the present invention is applied.

符号の説明Explanation of symbols

1 軟磁性薄膜
3 磁気ヘッド
4 二層垂直磁気ディスク
11 非磁性基板
12 非磁性下地膜
13 Fe−Co磁性膜
DESCRIPTION OF SYMBOLS 1 Soft magnetic thin film 3 Magnetic head 4 Double layer perpendicular magnetic disk 11 Nonmagnetic board | substrate 12 Nonmagnetic base film 13 Fe-Co magnetic film

Claims (6)

非磁性基板上に非磁性下地膜を製膜する下地膜製膜段階と、
前記非磁性下地膜上に鉄コバルト(Fe−Co)磁性膜を製膜する磁性膜製膜段階とを含む軟磁性薄膜の製造方法であって、
前記磁性膜製膜段階が、前記非磁性下地膜上にアシストイオンビームを照射しながら前記Fe−Co磁性膜を製膜するイオン照射製膜段階と、
イオン照射製膜後の前記Fe−Co磁性膜に磁界を印加しながら熱処理する熱処理段階を含むことを特徴とする軟磁性薄膜の製造方法。
A base film forming step of forming a nonmagnetic base film on a nonmagnetic substrate;
A method for producing a soft magnetic thin film, comprising: a magnetic film forming step of forming an iron cobalt (Fe—Co) magnetic film on the nonmagnetic underlayer,
The magnetic film forming step includes ion irradiation film forming step of forming the Fe-Co magnetic film while irradiating an assist ion beam on the nonmagnetic underlayer.
A method for producing a soft magnetic thin film, comprising: a heat treatment step of performing heat treatment while applying a magnetic field to the Fe—Co magnetic film after ion irradiation film formation.
前記アシストイオンビームのビーム電圧が50〜250ボルトである請求項1に記載の軟磁性薄膜の製造方法。 The method of manufacturing a soft magnetic thin film according to claim 1, wherein a beam voltage of the assist ion beam is 50 to 250 volts. 前記下地膜製膜段階が、前記非磁性下地膜として銅(Cu)膜を製膜する段階である請求項1または請求項2に記載の軟磁性薄膜の製造方法。 3. The method of manufacturing a soft magnetic thin film according to claim 1, wherein the base film forming step is a step of forming a copper (Cu) film as the nonmagnetic base film. 非磁性基板上に製膜される非磁性下地膜と、
前記非磁性下地膜上に製膜され、体心立方構造を有して、(110)面間隔が2.028〜2.031オングストロームの範囲にあるFe−Co磁性膜とを含む軟磁性薄膜。
A nonmagnetic underlayer film formed on a nonmagnetic substrate;
A soft magnetic thin film comprising an Fe—Co magnetic film formed on the nonmagnetic underlayer, having a body-centered cubic structure and having a (110) plane spacing in the range of 2.028 to 2.031 angstroms.
請求項4に記載の軟磁性薄膜を含む磁気ヘッド。 A magnetic head comprising the soft magnetic thin film according to claim 4. 請求項4に記載の軟磁性薄膜を含む垂直磁気記録媒体。 A perpendicular magnetic recording medium comprising the soft magnetic thin film according to claim 4.
JP2007004515A 2007-01-12 2007-01-12 Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium Pending JP2008172067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004515A JP2008172067A (en) 2007-01-12 2007-01-12 Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004515A JP2008172067A (en) 2007-01-12 2007-01-12 Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2008172067A true JP2008172067A (en) 2008-07-24

Family

ID=39699872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004515A Pending JP2008172067A (en) 2007-01-12 2007-01-12 Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2008172067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004152A (en) * 2011-06-20 2013-01-07 Tdk Corp Magnetic recording head for microwave assist

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321930A (en) * 1997-03-14 1998-12-04 Toshiba Corp Magneto-resistive effect element, magnetic head using the same, and magnetic recorder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321930A (en) * 1997-03-14 1998-12-04 Toshiba Corp Magneto-resistive effect element, magnetic head using the same, and magnetic recorder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004152A (en) * 2011-06-20 2013-01-07 Tdk Corp Magnetic recording head for microwave assist

Similar Documents

Publication Publication Date Title
US20100188773A1 (en) Multiferroic Storage Medium
JP6284126B2 (en) Vertical recording medium, vertical recording / reproducing apparatus
WO2015111384A1 (en) Perpendicular magnetic recording medium
JP4523460B2 (en) Magnetic film, manufacturing method thereof, thin film magnetic head and magnetic disk apparatus using the same
JP2007164941A (en) Perpendicular magnetic recording medium
JP2001167420A (en) Magnetic recording medium and its manufacturing method
JP2009238287A (en) Manufacturing method of magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
JP2004272997A (en) Magnetic recording medium and its manufacturing method
JP2007335788A (en) Magnetic shield and manufacturing method thereof, and thin-film magnetic head
JP2004152454A (en) Magnetic head and its manufacturing method
JP2008172067A (en) Manufacturing method of soft magnetic thin film, same soft magnetic thin film, magnetic head, and vertical magnetic recording medium
JPH11238221A (en) Magnetic record medium and magnetic disk device
JP3549429B2 (en) Magnetic recording medium and method for manufacturing the same
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JP2009238273A (en) Manufacturing method of magnetic recording medium, magnetic recording medium and magnetic recording and reproducing device
JP2006179133A (en) Magnetic recording medium and magnetic storage device using the same
JP2001256619A (en) Magnetoresistive head and magnetic recording and reproducing device using the same
WO2009139477A1 (en) Process for producing magnetic recording medium, magnetic recording medium, and apparatus for magnetic recording/reproducing
JP2002133635A (en) Information recording medium and information recording device
JP2007102833A (en) Perpendicular magnetic recording medium
JPH07235034A (en) Perpendicular magnetic recording medium and magnetic recording-reproducing device
JP4490720B2 (en) Soft magnetic thin film, manufacturing method thereof, and magnetic head
JP4865078B1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JPH10261520A (en) Magnetic recording medium and its manufacture
JP2004227666A (en) Magnetic recording medium and and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A02 Decision of refusal

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A02