JP2001281432A - Diffraction grating for two wavelengths and optical head device - Google Patents

Diffraction grating for two wavelengths and optical head device

Info

Publication number
JP2001281432A
JP2001281432A JP2000096595A JP2000096595A JP2001281432A JP 2001281432 A JP2001281432 A JP 2001281432A JP 2000096595 A JP2000096595 A JP 2000096595A JP 2000096595 A JP2000096595 A JP 2000096595A JP 2001281432 A JP2001281432 A JP 2001281432A
Authority
JP
Japan
Prior art keywords
wavelength
light
diffraction grating
wavelengths
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000096595A
Other languages
Japanese (ja)
Other versions
JP4378832B2 (en
Inventor
Shinko Murakawa
真弘 村川
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000096595A priority Critical patent/JP4378832B2/en
Publication of JP2001281432A publication Critical patent/JP2001281432A/en
Application granted granted Critical
Publication of JP4378832B2 publication Critical patent/JP4378832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a diffraction grating for two wavelengths capable of keeping the O-order diffraction efficiency of one out of two kinds of wavelengths of incident light maximum and constant and keeping the O-order diffraction efficiency of the other variable. SOLUTION: The diffraction grating for the two wavelengths comprises a diffraction grating 11B with a projecting and recessing sectional shape formed on a transmissive substrate 11A, of which the ratio of the width to the period of the projecting parts of the grating has a value other than 0.5, the phase difference of the transmitted light between the projecting part and the recessing part is 2π with respect to the light with one out of the two wavelengths and the 0-order diffraction efficiency is adjusted to a specified value with respect to the light with the other wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2波長用回折格子
および光ヘッド装置に関する。
The present invention relates to a two-wavelength diffraction grating and an optical head device.

【0002】[0002]

【従来の技術】近年CDやDVDのような光ディスク、
または光磁気ディスクなどの光記録媒体(以下、これら
をまとめて光ディスクと呼ぶ)の情報記録面上への情報
の記録・再生を行う光ヘッド装置が各種用いられてい
る。通常、この光ヘッド装置では、レーザ光を使用して
光学的に情報記録面上に情報の記録・再生を行っている
が、そのレーザ光を(情報記録面のトラック上に集光さ
せた状態で)光ディスクの回転に追随させながらトラッ
ク上をトレースさせるために、3ビーム法、差動プッシ
ュプル法などのトラッキング方法が開発されている。
2. Description of the Related Art In recent years, optical disks such as CDs and DVDs,
Alternatively, various optical head devices for recording and reproducing information on an information recording surface of an optical recording medium such as a magneto-optical disk (hereinafter collectively referred to as an optical disk) have been used. Normally, in this optical head device, information is optically recorded / reproduced on an information recording surface using a laser beam, but the laser beam is focused on a track on the information recording surface. In order to trace on a track while following the rotation of an optical disk, tracking methods such as a three-beam method and a differential push-pull method have been developed.

【0003】ここで、790nm波長帯の半導体レーザ
と650nm波長帯の半導体レーザとが分離した状態で
配置された従来の光ヘッド装置について、図7の構成例
を参照しながら説明する。
Here, a conventional optical head device in which a semiconductor laser of a 790 nm wavelength band and a semiconductor laser of a 650 nm wavelength band are arranged in a separated state will be described with reference to a configuration example of FIG.

【0004】この光ヘッド装置では、半導体レーザ3A
(650nm波長帯)、3B(790nm波長帯)から
の出射光は、波長合成プリズム9により同一光軸上で合
成され、ビームスプリッタ4を透過した後に、コリメー
トレンズ5で平行光とされ、対物レンズ6に入射する。
対物レンズ6を透過し、光ディスク7の情報記録面に集
光されたビームが、その情報記録面で反射され、反射さ
れた光(以下、信号光という)は、元の往路と同じ光路
を逆行していく。
In this optical head device, a semiconductor laser 3A
Light emitted from the (650 nm wavelength band) and 3B (790 nm wavelength band) is synthesized on the same optical axis by the wavelength synthesizing prism 9, passes through the beam splitter 4, is converted into parallel light by the collimating lens 5, and is converted into an objective lens. 6 is incident.
The beam transmitted through the objective lens 6 and condensed on the information recording surface of the optical disk 7 is reflected on the information recording surface, and the reflected light (hereinafter, referred to as signal light) travels in the same optical path as the original outward path. I will do it.

【0005】すなわち、この信号光は、再び、対物レン
ズ6によって平行光となり、コリメートレンズ5とビー
ムスプリッタ4を介し、光検出器8の受光面に集光す
る。そして、この光検出器8で電気信号に変換される。
10は3ビーム発生用の回折格子である。
That is, this signal light is again converted into parallel light by the objective lens 6 and is condensed on the light receiving surface of the photodetector 8 via the collimator lens 5 and the beam splitter 4. Then, the light is converted into an electric signal by the photodetector 8.
Reference numeral 10 denotes a diffraction grating for generating three beams.

【0006】また、2つの波長の光を発光する半導体レ
ーザとして、例えば790nm波長帯の半導体レーザと
650nm波長帯の半導体レーザとを1チップ内に形成
したモノリシックな2波長用半導体レーザや、各波長帯
のレーザチップを発光点間が100〜300μm程度の
間隔となるように配置した複数チップからなる2波長用
半導体レーザも提案されている。これらの2波長用半導
体レーザを用いれば、図7に示したような2つの半導体
レーザが別ユニットで構成された従来の光ヘッド装置に
比べ、部品点数が低減し、小型化および低コスト化が図
れる。
As a semiconductor laser that emits light of two wavelengths, for example, a monolithic two-wavelength semiconductor laser in which a semiconductor laser having a wavelength band of 790 nm and a semiconductor laser having a wavelength band of 650 nm are formed in one chip, A two-wavelength semiconductor laser comprising a plurality of chips in which laser chips in a band are arranged so that the distance between light emitting points is about 100 to 300 μm has also been proposed. When these two-wavelength semiconductor lasers are used, the number of parts is reduced, and the size and cost are reduced as compared with the conventional optical head device in which the two semiconductor lasers shown in FIG. I can do it.

【0007】[0007]

【発明が解決しようとする課題】しかし、前述したよう
な光ヘッド装置において、3ビーム法や差動プッシュプ
ル法での3ビーム発生に用いる回折格子を2波長用半導
体レーザと組み合わせて使用すると、CD再生用の79
0nm波長帯またはDVD再生用の650nm波長帯の
いずれの光が回折格子に入射しても回折光が形成される
ので、余分な回折光が迷光となって光検出器に混入する
ことがあり、情報の記録・再生ができなくなる問題が生
じる。
However, in the above-described optical head device, when a diffraction grating used for generating three beams by a three-beam method or a differential push-pull method is used in combination with a two-wavelength semiconductor laser, 79 for CD playback
Even if light in either the 0 nm wavelength band or the 650 nm wavelength band for DVD reproduction is incident on the diffraction grating, the diffracted light is formed. Therefore, extra diffracted light may become stray light and enter the photodetector. There is a problem that information cannot be recorded / reproduced.

【0008】また、3ビーム法や差動プッシュプル法
を、CD再生用またはDVD再生用のみに利用する場合
には、回折格子より生成された回折光が、他方の波長光
に対しては光量損失をもたらし、信号光が低下する問題
が生じる。さらに、3ビーム法や差動プッシュプル法に
用いる回折格子と、半導体レーザへの戻り光の低減対策
用の位相板とが個別に配置された場合には、個々の光学
素子の波面収差値が合算されるため、全体の波面収差値
が増大する問題が生じる。
When the three-beam method or the differential push-pull method is used only for reproducing a CD or a DVD, the diffracted light generated by the diffraction grating emits light of the other wavelength. There is a problem that loss occurs and the signal light decreases. Further, when the diffraction grating used for the three-beam method or the differential push-pull method and the phase plate for reducing the return light to the semiconductor laser are separately arranged, the wavefront aberration value of each optical element is reduced. Since the addition is performed, a problem arises that the total wavefront aberration value increases.

【0009】本発明の目的は、2波長用半導体レーザを
光源として2つの波長帯の光によりCD系光ディスクお
よびDVD系光ディスクなどのような異種の光記録媒体
への情報の記録・再生を行う際に、安定した信号検出が
できる2波長用回折格子および光ヘッド装置を提供する
ことである。
An object of the present invention is to record / reproduce information on / from different optical recording media such as a CD optical disk and a DVD optical disk by using light of two wavelength bands by using a semiconductor laser for two wavelengths as a light source. Another object of the present invention is to provide a two-wavelength diffraction grating and an optical head device that can perform stable signal detection.

【0010】[0010]

【課題を解決するための手段】本発明は、波長λ1およ
び波長λ2(λ1≠λ2)の少なくとも一方の波長の光が
入射する2波長用回折格子において、2波長用回折格子
は断面形状が周期的な凹凸部からなる回折格子であり、
凸部の幅wと周期Pの比w/Pが0.5以外の値を有
し、一方の波長λ1の入射光を透過させるとともに、他
方の波長λ2の入射光を回折させ、凸部と凹部との透過
光の位相差が波長λ1の透過光に対して2πであり、波
長λ2の光に対する回折効率が所定の値に調整されてい
ることを特徴とする2波長用回折格子を提供する。
According to the present invention, there is provided a two-wavelength diffraction grating in which light of at least one of the wavelengths λ 1 and λ 21 ≠ λ 2 ) is incident. A diffraction grating whose cross-sectional shape is composed of periodic irregularities,
The ratio w / P of the width w of the convex portion and the period P has a value other than 0.5, and transmits the incident light of one wavelength λ 1 and diffracts the incident light of the other wavelength λ 2 , The two- wavelength diffraction device, wherein the phase difference of the transmitted light between the portion and the concave portion is 2π with respect to the transmitted light having the wavelength λ 1 , and the diffraction efficiency for the light having the wavelength λ 2 is adjusted to a predetermined value. Provide a grid.

【0011】また、波長λ1および波長λ2の光を出射す
る光源と、波長λ1および波長λ2の光を光記録媒体に集
光する対物レンズとを備え、光記録媒体に情報の記録・
再生を行う光ヘッド装置であって、前記光源と前記対物
レンズとの間の光路中に、上記の2波長用回折格子が設
置されている光ヘッド装置を提供する。
[0011] comprising a light source for emitting light having a wavelength lambda 1 and wavelength lambda 2, and an objective lens for condensing the light of the wavelength lambda 1 and wavelength lambda 2 to the optical recording medium, the recording of information on an optical recording medium・
An optical head device for performing reproduction, wherein the two-wavelength diffraction grating is provided in an optical path between the light source and the objective lens.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】「2波長用回折格子の第1実施態様」図1
の2波長用回折格子1は、光学的に等方である透光性基
板11Aからなっており、一方の表面に周期的な凹凸か
らなる均一屈折率の回折格子11Bを形成してある。こ
の回折格子11Bの凹凸部分の格子深さ(厚さ)d1
よび凸部の屈折率n1は、波長λ1および波長λ2の入射
光に対して、以下の式1および式2を満たすように形成
されている。
"First Embodiment of Two-Wavelength Diffraction Grating" FIG. 1
The two-wavelength diffraction grating 1 is composed of a light-transmitting substrate 11A that is optically isotropic, and has a diffraction grating 11B having a uniform refractive index formed of periodic irregularities on one surface. The grating depth (thickness) d 1 of the concavo-convex portion of the diffraction grating 11B and the refractive index n 1 of the convex portion satisfy the following formulas 1 and 2 with respect to the incident light having the wavelengths λ 1 and λ 2. It is formed as follows.

【0014】波長λ1の入射光が空気との屈折率差によ
り形成される位相差は、式1で表わされる。同様に、波
長λ2の入射光が空気との屈折率差により形成される位
相差は、式2で表わされる。このように形成された回折
格子11Bによって回折される光の効率は、スカラ理論
によると以下の式3および式4を満たす。波長λ1の入
射光に対する0次光回折効率η1(0)および±1次光
回折効率η1(±1)は、それぞれ、式3および式4で
表わされる。
The phase difference formed by the difference in the refractive index between the incident light of wavelength λ 1 and air is expressed by the following equation (1). Similarly, the phase difference formed by the difference in the refractive index between the incident light having the wavelength λ 2 and the air is expressed by Expression 2. According to the scalar theory, the efficiency of light diffracted by the diffraction grating 11B thus formed satisfies the following Expressions 3 and 4. The zero-order light diffraction efficiency η 1 (0) and the ± first-order light diffraction efficiency η 1 (± 1) with respect to the incident light having the wavelength λ 1 are expressed by Expressions 3 and 4, respectively.

【0015】一方、波長λ2の入射光に対する0次光回
折効率η2(0)および±1次光回折効率η2(±1)
は、それぞれ式5および式6で表わされる。
On the other hand, the 0th-order light diffraction efficiency η 2 (0) and ± 1st-order light diffraction efficiency η 2 (± 1) for incident light of wavelength λ 2
Is represented by Equations 5 and 6, respectively.

【0016】[0016]

【数1】 (Equation 1)

【0017】ここで、aは回折格子のピッチPと回折格
子の凸部の幅wの比で、式7によって定義する(以下、
デューティと呼ぶ)。式5と式6は、デューティaを調
整することにより、波長λ2の入射光に対して、所望の
回折効率を得ることができることを示唆している。波長
λ2に対する所望の回折効率とは、例えば0次回折効率
の値が70〜80%程度であり、直進する光のパワーの
必要に応じて変化させればよい。
Here, a is a ratio between the pitch P of the diffraction grating and the width w of the convex portion of the diffraction grating, and is defined by Expression 7 (hereinafter, referred to as “a”).
Duty). Equations 5 and 6 suggest that by adjusting the duty a, a desired diffraction efficiency can be obtained for incident light of wavelength λ 2 . The desired diffraction efficiency with respect to the wavelength λ 2 is, for example, a value of the zero-order diffraction efficiency of about 70 to 80%, and may be changed according to the power of the light traveling straight.

【0018】また、波長λ1の入射光に対しは、式3よ
りη1(0)=1すなわちデューティaに依らず100
%、式4よりη1(±1)=0すなわちデューティaに
依らず0%である(図2を参照)。
For incident light of wavelength λ 1 , η 1 (0) = 1, that is, 100
From Equation 4, η 1 (± 1) = 0, that is, 0% regardless of the duty a (see FIG. 2).

【0019】従来の単一波長の3ビーム用回折格子はデ
ューティaをa=0.5に固定し、0次光回折効率η2
(0)と±1次光回折効率η2(±1)は、格子深さを
変えることにより調整していた。しかし、2波長用回折
格子の場合、その格子深さは一方の波長光を透過する制
約から一義的に定まり、他方の波長光の0次光回折効率
η2(0)および±1次光回折効率η2(±1)は、式5
および式6において、a=0.5に対する値に固定され
た。本発明の構成によれば、デューティaの値を調整す
ることにより0次光回折効率η2(0)は大きな値に、
±1次回折効率η2(±1)は小さな値に調整できる。
In the conventional single-wavelength three-beam diffraction grating, the duty a is fixed to a = 0.5, and the zero-order light diffraction efficiency η 2
(0) and ± 1st order light diffraction efficiency η 2 (± 1) were adjusted by changing the grating depth. However, in the case of a two-wavelength diffraction grating, the depth of the grating is uniquely determined by the constraint of transmitting one wavelength light, and the 0th-order light diffraction efficiency η 2 (0) and ± 1st-order light diffraction of the other wavelength light. The efficiency η 2 (± 1) is given by
And in equation 6, fixed at a value for a = 0.5. According to the configuration of the present invention, by adjusting the value of the duty a, the zero-order light diffraction efficiency η 2 (0) becomes a large value,
The ± first-order diffraction efficiency η 2 (± 1) can be adjusted to a small value.

【0020】図2に示すように、デューティaを0.5
以外の値にすることにより、790nmの波長光の0次
回折効率をより大きくできる。0.5より大きいほどま
たは0.5より小さいほど0次回折効率は大きくなる。
すなわち、このように形成された2波長用回折格子1に
波長λ1と波長λ2の異なる波長の2つの光を入射する
と、図1(A)に示すように、一方の波長λ1の入射光
は式3と式4で表わされるように回折されることなく2
波長用回折格子を透過するが、図1(B)に示すよう
に、他方の波長λ2の入射光は式5と式6で与えられる
所望の効率で回折されて2波長用回折格子を透過する。
つまり、一方の波長の光に対しては所望の回折効率を得
るように調整された回折格子として作用するが、他方の
波長の光に対しては回折格子として作用しない波長選択
性の回折格子が実現できる。
As shown in FIG. 2, the duty a is 0.5
By setting the value to a value other than the above, the zero-order diffraction efficiency of the 790 nm wavelength light can be further increased. The 0th-order diffraction efficiency increases as the value is larger than 0.5 or smaller than 0.5.
That is, when incident thus formed 2-wavelength diffraction grating wavelength lambda 1 and wavelength lambda 2 different two wavelengths, as shown in FIG. 1 (A), one of the incident wavelength lambda 1 Light is not diffracted as shown in Equations 3 and 4,
1B, the incident light of the other wavelength λ 2 is diffracted at a desired efficiency given by Equations 5 and 6, and passes through the two-wavelength diffraction grating. I do.
In other words, a wavelength-selective diffraction grating that acts as a diffraction grating adjusted to obtain a desired diffraction efficiency for light of one wavelength, but does not act as a diffraction grating for light of the other wavelength. realizable.

【0021】「2波長用回折格子の第2実施態様」図3
の第2実施態様は、前述した第1の実施態様の変形例で
ある。本実施態様の2波長用回折格子1では、透光性基
板11Aの一方の表面に回折格子11Bを形成するだけ
でなく、図3(A)に示すように、他方の表面にも、周
期的な凹凸からなる均一屈折率の回折格子11Cを形成
する。この場合、回折格子11Cの凹凸部分の格子深さ
(厚さ)d2および凸部の屈折率n2は、波長λ 1および
波長λ2の入射光に対して、以下の関係式を満足するよ
うに形成されている。
"Second embodiment of two-wavelength diffraction grating" FIG. 3
The second embodiment is a modification of the first embodiment described above.
is there. In the two-wavelength diffraction grating 1 of the present embodiment, the light-transmitting group
Just forming diffraction grating 11B on one surface of plate 11A
However, as shown in FIG.
Form diffraction grating 11C with periodic unevenness and uniform refractive index
I do. In this case, the grating depth of the uneven portion of the diffraction grating 11C
(Thickness) dTwoAnd the refractive index n of the convex partTwoIs the wavelength λ 1and
Wavelength λTwoSatisfies the following relational expression for the incident light of
It is formed as follows.

【0022】波長λ1の入射光が空気との屈折率差によ
り形成される位相差は、式8で表わされる。同様に、波
長λ2の入射光が空気との屈折率差により形成される位
相差は、式9で表わされる。
The phase difference formed by the difference in the refractive index between the incident light having the wavelength λ 1 and air is expressed by the following equation (8). Similarly, the phase difference formed by the difference in refractive index between the incident light having the wavelength λ 2 and air is represented by Expression 9.

【0023】[0023]

【数2】 (Equation 2)

【0024】この回折格子11Cも、回折格子11Bと
同様に、デューティaを調整することにより波長λ1
入射光に対し所望の回折効率を得ることができる。ここ
で、格子深さd1は図1におけるものと同じである。図
4は、デューティaを0.5以外の値にすることが、6
50nmの波長光の0次回折効率をより大きくできるこ
とを示している。
In this diffraction grating 11C, similarly to the diffraction grating 11B, a desired diffraction efficiency can be obtained with respect to the incident light having the wavelength λ 1 by adjusting the duty a. Here, the lattice depth d 1 is the same as that in FIG. FIG. 4 shows that when the duty a is set to a value other than 0.5,
This shows that the 0th-order diffraction efficiency of light having a wavelength of 50 nm can be further increased.

【0025】上記のことより、異なる波長光に対しそれ
ぞれ所望の回折効率を得るように調整された波長選択性
の回折格子を実現できる。すなわち、図3(A)に示す
ように、波長λ1の入射光に対しては、回折格子11C
が回折作用を及ぼし、0次光および±1次光を生成でき
る。一方、図3(B)に示すように、波長λ2の入射光
に対しては、回折格子Bが回折作用を及ぼし、0次光お
よび±1次光を生成できる。
As described above, it is possible to realize a wavelength-selective diffraction grating adjusted so as to obtain desired diffraction efficiencies for lights of different wavelengths. That is, as shown in FIG. 3 (A), to the wavelength lambda 1 of the incident light, the diffraction grating 11C
Exerts a diffractive action, and can generate zero-order light and ± first-order light. On the other hand, as shown in FIG. 3B, the diffraction grating B exerts a diffractive action on the incident light of the wavelength λ 2 , and can generate the zero-order light and the ± first-order light.

【0026】なお、本実施態様の2波長用回折格子1の
光入射面と光出射面の両面に、それぞれ波長λ1の光お
よび波長λ2の光のみに各々回折格子として機能する周
期的な凹凸形状を形成して、CD系およびDVD系の光
ディスクに対応させて使用の異なる3ビームを生成する
ようにしてもよい。
The two-wavelength diffraction grating 1 according to the present embodiment has a periodic grating functioning as a diffraction grating on only the light of wavelength λ 1 and the light of wavelength λ 2 on both surfaces of the light incidence surface and the light emission surface. The uneven shape may be formed to generate three differently used beams corresponding to CD-type and DVD-type optical disks.

【0027】「2波長用回折格子の第3実施態様」図5
の第3実施態様の2波長用回折格子2は、所望の回折効
率が得るように調整された回折格子が形成された透光性
基板21Aと、透光性基板21Dの間に位相板21Cを
挿入して、接着剤21Eで固定した構成となっている。
このように、一体化することにより、素子の小型化がで
きて好ましい。
"Third Embodiment of Two-Wavelength Diffraction Grating" FIG. 5
In the two-wavelength diffraction grating 2 of the third embodiment, a phase plate 21C is provided between a light-transmitting substrate 21A on which a diffraction grating adjusted to obtain a desired diffraction efficiency is formed and a light-transmitting substrate 21D. It is configured to be inserted and fixed with the adhesive 21E.
As described above, the integration is preferable because the element can be downsized.

【0028】位相板21Cは、有機薄膜からなり、例え
ば、ポリカーボネート膜を延伸させることにより延伸方
向に光軸のそろった複屈折性膜を形成させて位相差を発
生させている。この場合、波長λ1の直線偏光の入射光
が有機薄膜を透過するとき、略円偏光となる位相差が発
生するように位相板21Cのリタデーション値と進相軸
(複屈折軸)方向と入射光の直線偏光方向とが調整され
ている。回折格子21Bは、図1におけるものと同じで
ある。
The phase plate 21C is made of an organic thin film. For example, a polycarbonate film is stretched to form a birefringent film whose optical axes are aligned in the stretching direction to generate a phase difference. In this case, when the linearly polarized light of the incident light of wavelength lambda 1 is transmitted through the organic thin film, the retardation value of the phase plate 21C such that the phase difference becomes substantially circularly polarized light is generated and the fast axis (birefringence axis) direction incident The direction of linear polarization of light is adjusted. The diffraction grating 21B is the same as that in FIG.

【0029】また、位相板21Cとして、位相差発生機
能を有する有機薄膜を透光性基板21Aまたは21Dに
直接成膜してもよい。例えば、具体的には透明性基板上
に配向膜を塗布し配向処理を施した後、複屈折材料であ
る液晶モノマーの溶液を塗布することにより、配向膜の
配向方向に液晶分子の光軸をそろえる。さらに、液晶モ
ノマーの溶液にあらかじめ光重合硬化剤を含有させてお
き、光重合用の光源光を照射することでモノマーを高分
子化し、高分子液晶層とすることによって、接着剤を用
いないで位相板を形成できる。
As the phase plate 21C, an organic thin film having a phase difference generating function may be formed directly on the translucent substrate 21A or 21D. For example, specifically, after an alignment film is applied on a transparent substrate and subjected to an alignment treatment, a solution of a liquid crystal monomer which is a birefringent material is applied so that the optical axis of the liquid crystal molecules is aligned in the alignment direction of the alignment film. Align Furthermore, a photopolymerization curing agent is previously contained in the liquid crystal monomer solution, and the monomer is polymerized by irradiating a light source for photopolymerization to form a polymer liquid crystal layer. A phase plate can be formed.

【0030】次に、上述した第1から第3実施態様の2
波長用回折格子を搭載した光ヘッド装置について説明す
る。ここで、例えば、DVD系光ディスク用の波長λ1
を650nm、CD系光ディスク用の波長λ2を790
nmの各波長帯とする。
Next, the second embodiment of the first to third embodiments will be described.
An optical head device equipped with a wavelength diffraction grating will be described. Here, for example, a wavelength λ 1 for a DVD-based optical disc is used.
Is 650 nm, and the wavelength λ 2 for CD optical discs is 790.
nm.

【0031】図6の光ヘッド装置において、2波長用半
導体レーザ3から出射した波長λ1の光は、2波長用回
折格子1または2で回折されることなく光軸上を直進透
過し、さらにビームスプリッタ4を透過し、コリメート
レンズ5により平行光にされる。その後、この平行光
は、対物レンズ6により光ディスク7(DVD系)の情
報記録面の情報記録トラック上に集光される。
In the optical head device shown in FIG. 6, the light of wavelength λ 1 emitted from the two-wavelength semiconductor laser 3 is transmitted straight on the optical axis without being diffracted by the two-wavelength diffraction grating 1 or 2, and The light passes through the beam splitter 4 and is converted into parallel light by a collimating lens 5. Thereafter, the parallel light is converged by the objective lens 6 on an information recording track on an information recording surface of the optical disk 7 (DVD system).

【0032】そして、情報記録面で反射された光は、再
び対物レンズ6およびコリメートレンズ5を透過し、ビ
ームスプリッタ4により反射して、光検出器8の受光面
に集光される。ここで、2波長用回折格子1は図1また
は図3の回折格子そのものを表わし、2波長用回折格子
1は位相板と回折格子一体化したものを意味する。
The light reflected on the information recording surface again passes through the objective lens 6 and the collimator lens 5, is reflected by the beam splitter 4, and is condensed on the light receiving surface of the photodetector 8. Here, the two-wavelength diffraction grating 1 represents the diffraction grating itself shown in FIG. 1 or FIG. 3, and the two-wavelength diffraction grating 1 means an integrated phase plate and diffraction grating.

【0033】一方、2波長用半導体レーザ3から出射し
た波長λ2の光は、2波長用回折格子1または2で入射
光の一部が所望の回折効率(例えば、10%から40%
まで)で、±1次光として回折し、さらにビームスプリ
ッタ4を透過し、コリメートレンズ5により平行光にさ
れる。その後、この平行光は、対物レンズ6により光デ
ィスク7(CD系)の情報記録面の情報記録トラック上
に、0次光および±1次光が3ビームとなって集光され
る。そして、情報記録面で反射された光は、再び対物レ
ンズ6およびコリメートレンズ5を透過し、ビームスプ
リッタ4により反射されて光検出器8の受光面に集光さ
れる。
On the other hand, the light of wavelength λ 2 emitted from the two-wavelength semiconductor laser 3 has a desired diffraction efficiency (for example, 10% to 40%) at the two-wavelength diffraction grating 1 or 2.
), The light is diffracted as ± first-order light, further passes through the beam splitter 4, and is made parallel by the collimator lens 5. Thereafter, the parallel light is converged by the objective lens 6 on the information recording track of the information recording surface of the optical disk 7 (CD system) as three beams of zero-order light and ± first-order light. The light reflected on the information recording surface again passes through the objective lens 6 and the collimating lens 5, is reflected by the beam splitter 4, and is collected on the light receiving surface of the photodetector 8.

【0034】このように、2波長用回折格子1または2
を搭載した光ヘッド装置の場合、波長λ1の光は、2波
長用回折格子1または2により回折されることなく直進
透過するため、効率低下をもたらさず、迷光も生じな
い。したがって、DVD系の光ディスクにおける光検出
法として一般的な4分割の受光面で構成される光検出器
を用いて、ヘテロダイン検波法や位相差法によるトラッ
キング誤差信号検出、非点収差法による光ディスク情報
記録面へのフォーカス信号検出、および記録情報である
ピット信号検出が安定して行える。
Thus, the two-wavelength diffraction grating 1 or 2
In the case of an optical head device equipped with a λ 1 , the light of wavelength λ 1 is transmitted straight without being diffracted by the two-wavelength diffraction grating 1 or 2, so that there is no reduction in efficiency and no stray light. Therefore, as an optical detection method for a DVD-based optical disk, a tracking error signal is detected by a heterodyne detection method or a phase difference method, and an optical disk information is detected by an astigmatism method using a general photodetector composed of four divided light receiving surfaces. Detection of a focus signal on a recording surface and detection of a pit signal as recording information can be stably performed.

【0035】一方、CD系の光ディスクでは、DVD系
と同一の4分割受光面の光検出器を用いて、非点収差法
による光ディスク情報記録面へのフォーカス信号検出お
よびピット信号検出が行われ、また光検出器の4分割以
外にさらに分割した2つの受光面で±1次光を受光する
ことにより、3ビーム法によるトラッキング誤差信号の
検出が行われる。なお、2波長用回折格子1または2の
格子ピッチは、それが搭載される光ヘッド装置の光学系
および光記録媒体のトラッキング法に応じて適宜定めら
れる。
On the other hand, in the case of the optical disk of the CD system, the detection of the focus signal and the detection of the pit signal on the information recording surface of the optical disk by the astigmatism method are performed by using the photodetector having the same four-divided light receiving surface as that of the DVD system. In addition, by detecting ± primary light on two light receiving surfaces that are further divided in addition to the four divisions of the photodetector, a tracking error signal is detected by a three-beam method. The grating pitch of the two-wavelength diffraction grating 1 or 2 is appropriately determined according to the optical system of the optical head device on which it is mounted and the tracking method of the optical recording medium.

【0036】また、図6に示した光ヘッド装置の例で
は、ビームスプリッタ4が用いられ、2波長用半導体レ
ーザ3のユニットと光検出器8とが分離された構成とし
たが、ビームスプリッタ4の代わりにホログラムビーム
スプリッタを用いて、情報記録面で反射された光を回折
させることにより分離し、2波長用半導体レーザユニッ
ト内の半導体レーザ近傍に配置された光検出器に集光す
るように構成してもよい。この場合、半導体レーザと光
検出器とが同一のユニット内に配置されるため、光ヘッ
ド装置を小型化できる。
In the example of the optical head device shown in FIG. 6, the beam splitter 4 is used, and the unit of the two-wavelength semiconductor laser 3 and the photodetector 8 are separated from each other. Instead of using a hologram beam splitter, the light reflected on the information recording surface is diffracted and separated, and focused on a photodetector located near the semiconductor laser in the two-wavelength semiconductor laser unit. You may comprise. In this case, since the semiconductor laser and the photodetector are arranged in the same unit, the size of the optical head device can be reduced.

【0037】なお、本発明の2波長用回折格子における
回折格子の凸部の幅と周期の比を変えることにより、回
折効率を調整した2波長用回折格子を構成する技術は、
異なる2つの波長が、650nm波長帯と790nm波
長帯の組み合わせだけに限定されず、405nm波長帯
と650nm波長帯の組み合わせ、または405nm波
長帯と790nm波長帯の組み合わせにおいても適用で
きる。
The technique of forming a two-wavelength diffraction grating of which diffraction efficiency is adjusted by changing the ratio of the width and the period of the convex portion of the diffraction grating in the two-wavelength diffraction grating of the present invention is as follows.
The two different wavelengths are not limited to the combination of the 650 nm wavelength band and the 790 nm wavelength band, and can be applied to the combination of the 405 nm wavelength band and the 650 nm wavelength band, or the combination of the 405 nm wavelength band and the 790 nm wavelength band.

【0038】[0038]

【実施例】「例1」例1は図1に示した第1実施態様の
具体例である。第1の透光性基板11Aを屈折率n1
1.5の均一屈折率材料で構成し、凹凸形状に加工して
空気と界面をなす回折格子11Bを形成した。そして、
この凹凸部分の格子深さd1を、(n1−1)・d1がλ1
となるよう、すなわちd1=1.3μmとした。このよ
うな構成とすると、DVD系の光ディスクに使用する波
長λ1=650nmの入射光では、生じる位相差が2π
となり、一方、CD系の光ディスクに使用する波長λ 2
=790nmの入射光では、生じる位相差が2πになら
ない。これにより、図1(B)に示すように、波長λ2
の光に対しては回折格子として作用し、図1(A)に示
すように、波長λ1の光に対しては回折格子として作用
しない波長選択性回折格子が得られた。
EXAMPLE 1 Example 1 is a modification of the first embodiment shown in FIG.
This is a specific example. The first light-transmitting substrate 11A has a refractive index n1But
Constructed with 1.5 uniform refractive index material, processed into uneven shape
A diffraction grating 11B that forms an interface with air was formed. And
Lattice depth d of this uneven part1To (n1-1) · d1Is λ1
So that d1= 1.3 μm. This
With such a configuration, the wave used for DVD
Long λ1= 650 nm incident light has a phase difference of 2π
On the other hand, the wavelength λ used for a CD optical disk Two
= 790nm incident light, if the resulting phase difference is 2π
Absent. As a result, as shown in FIG.Two
1A acts as a diffraction grating for the light of FIG.
The wavelength λ1Acts as a diffraction grating for light
An unselective wavelength-selective diffraction grating was obtained.

【0039】ここで、上述の回折格子のピッチは12μ
mであり、デューティaを0.2とし、波長λ2の入射
光に対する、0次光の回折効率を略80%および±1次
光の回折効率を略5%に設定した。なお、透光性基板1
1Aには、空気との界面における反射損失を1%以下に
抑えるために、反射防止膜が成膜されている。
Here, the pitch of the diffraction grating is 12 μm.
m, the duty a was set to 0.2, and the diffraction efficiency of the zero-order light with respect to the incident light of wavelength λ 2 was set to approximately 80% and the diffraction efficiency of the ± first-order light was set to approximately 5%. The translucent substrate 1
1A, an anti-reflection film is formed to suppress the reflection loss at the interface with air to 1% or less.

【0040】このような構成の2波長用回折格子を光ヘ
ッド装置に搭載することにより、CD系の光ディスクに
使用する波長の光に対して、所望の回折効率が得られる
ため、従来用いられてきた受光系を流用できた。
By mounting the two-wavelength diffraction grating having such a structure on an optical head device, a desired diffraction efficiency can be obtained with respect to light having a wavelength used for a CD-type optical disk. Could be used.

【0041】「例2」例2は図5に示した第3実施態様
の具体例である。デューティaが0.2かつ格子深さが
1.3μmの回折格子21Bが形成された第1の透光性
基板21A(屈折率1.5)と、第2の透光性基板21
Dとの間に、位相板21Cを挟んで接着剤21Eで固定
した。
Example 2 Example 2 is a specific example of the third embodiment shown in FIG. A first light-transmitting substrate 21A (refractive index 1.5) on which a diffraction grating 21B having a duty a of 0.2 and a grating depth of 1.3 μm is formed, and a second light-transmitting substrate 21
D was fixed with an adhesive 21E with the phase plate 21C interposed therebetween.

【0042】位相板21Cは、ポリカーボネート膜を延
伸して複屈折性を誘起したものである。ここで、延伸条
件を調整することにより、波長λ1に対する4分の1波
長板に相当するリタデーション値を持たせた。具体的に
は、位相板21Cの進相軸を波長λ1の直線偏光方向に
対して45°傾斜した配置とすることにより、入射直線
偏光が位相板21Cを透過すると、円偏光となって出射
した。
The phase plate 21C is obtained by stretching a polycarbonate film to induce birefringence. Here, by adjusting the stretching conditions, it gave a retardation value equivalent to a quarter-wave plate for the wavelength lambda 1. Specifically, by a fast axis inclined by 45 ° disposed with respect to the linear polarization direction of the wavelength lambda 1 of the phase plate 21C, when the incident linearly polarized light passes through the phase plate 21C, becomes circularly polarized light emitted did.

【0043】したがって、このような構成の2波長用回
折格子1に、位相板21Cの光軸に対して直線偏光方向
が+45°または−45°傾いた波長λ1および波長λ2
の異なる波長の直線偏光が入射すると、一方の波長λ1
の直線偏光入射光は回折されることなく円偏光となって
直進透過するが、他方の波長λ2の直線偏光入射光は、
略80%が0次光として、略5%は±1次光として回折
され、楕円偏光となって出射した。つまり、一方の波長
の光に対しては回折格子として作用するが、他方の波長
の光に対しては回折格子として作用しなかった。
Therefore, the wavelength λ 1 and the wavelength λ 2 whose linear polarization directions are inclined by + 45 ° or −45 ° with respect to the optical axis of the phase plate 21C are added to the two-wavelength diffraction grating 1 having such a configuration.
When the linearly polarized light of different wavelengths are incident, one wavelength lambda 1
Is linearly polarized without being diffracted and transmitted straight through, while the other linearly polarized incident light of wavelength λ 2 is
Approximately 80% was diffracted as 0th-order light and approximately 5% was diffracted as ± 1st-order light, and emitted as elliptically polarized light. In other words, it acted as a diffraction grating for light of one wavelength, but did not act as a diffraction grating for light of the other wavelength.

【0044】[0044]

【発明の効果】以上説明したように本発明の2波長用回
折格子によれば、入射する2種の波長の光の一方に対し
ては0次回折効率を最大で一定に保ちながら、他方に対
しては0次回折効率を変化させることができる。
As described above, according to the two-wavelength diffraction grating of the present invention, the zero-order diffraction efficiency is kept constant at the maximum with respect to one of the incident two wavelengths of light while the other is incident on the other. On the other hand, the zero-order diffraction efficiency can be changed.

【0045】この、2波長用回折格子を2波長用半導体
レーザを有する光ヘッド装置に搭載することにより、C
D系光ディスクおよびDVD系光ディスクなどのような
異種の光記録媒体への情報の記録・再生を行う際に、安
定した信号検出を行える。
By mounting the two-wavelength diffraction grating on an optical head device having a two-wavelength semiconductor laser,
When recording / reproducing information on / from different types of optical recording media such as a D-type optical disk and a DVD-type optical disk, stable signal detection can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2波長用回折格子の第1実施態様の構
成図で、(A)は一方の波長光の光路の進行様子を示す
図、(B)は他方の波長光の光路の進行様子を示す図。
1A and 1B are configuration diagrams of a first embodiment of a two-wavelength diffraction grating according to the present invention, in which FIG. 1A shows the progress of the optical path of one wavelength light, and FIG. 1B shows the optical path of the other wavelength light. FIG.

【図2】本発明の2波長用回折格子による、790nm
の波長光に対する回折効率のデューティ依存性の1例を
示すグラフで、(A)は0次回折効率のグラフ、(B)
は±1次回折効率のグラフ。
FIG. 2 shows 790 nm by the two-wavelength diffraction grating of the present invention.
(A) is a graph of the 0th-order diffraction efficiency, and (B) is a graph showing an example of the duty dependence of the diffraction efficiency with respect to the light having the wavelength of (a).
Is a graph of ± 1st-order diffraction efficiency.

【図3】本発明の2波長用回折格子の第2実施態様の構
成図で、(A)は一方の波長光の光路の進行様子を示す
図、(B)は他方の波長光の光路の進行様子を示す図。
3A and 3B are configuration diagrams of a second embodiment of a two-wavelength diffraction grating according to the present invention, in which FIG. 3A shows the progress of the optical path of one wavelength light, and FIG. 3B shows the optical path of the other wavelength light. FIG.

【図4】本発明の2波長用回折格子による、650nm
の波長光に対する回折効率のデューティ依存性の1例を
示すグラフで、(A)は0次回折効率のグラフ、(B)
は±1次回折効率のグラフ。
FIG. 4 shows 650 nm by the two-wavelength diffraction grating of the present invention.
(A) is a graph of the 0th-order diffraction efficiency, and (B) is a graph showing an example of the duty dependence of the diffraction efficiency with respect to the light having the wavelength of (a).
Is a graph of ± 1st-order diffraction efficiency.

【図5】本発明の2波長用回折格子の第3実施態様の構
成図で、(A)は一方の波長光の光路の進行様子を示す
図、(B)は他方の波長光の光路の進行様子を示す図。
5A and 5B are configuration diagrams of a three-wavelength diffraction grating according to a third embodiment of the present invention, in which FIG. 5A shows the progress of the optical path of one wavelength light, and FIG. 5B shows the optical path of the other wavelength light. FIG.

【図6】本発明の光ヘッド装置の1例を示す概略構成
図。
FIG. 6 is a schematic diagram illustrating an example of an optical head device according to the invention.

【図7】従来の光ヘッド装置の構成例を示す概略構成
図。
FIG. 7 is a schematic configuration diagram showing a configuration example of a conventional optical head device.

【符号の説明】 1:2波長用回折格子 11A:透光性基板 11B、11C:回折格子 2:2波長用回折格子 21A、21D:透光性基板 21B:回折格子 21C:位相板 21E:接着剤 3:2波長用半導体レーザ 3A、3B:半導体レーザ 4:ビームスプリッタ 5:コリメートレンズ 6:対物レンズ 7:光ディスク 8:光検出器 9:波長合成プリズム[Description of Symbols] 1: Diffraction grating for two wavelengths 11A: Transparent substrate 11B, 11C: Diffraction grating 2: Diffraction grating for two wavelengths 21A, 21D: Transparent substrate 21B: Diffraction grating 21C: Phase plate 21E: Adhesion Agent 3: 2 wavelength semiconductor laser 3A, 3B: semiconductor laser 4: beam splitter 5: collimating lens 6: objective lens 7: optical disk 8: photodetector 9: wavelength combining prism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波長λ1および波長λ2(λ1≠λ2)の少な
くとも一方の波長の光が入射する2波長用回折格子にお
いて、2波長用回折格子は断面形状が周期的な凹凸部か
らなる回折格子であり、凸部の幅wと周期Pの比w/P
が0.5以外の値を有し、一方の波長λ1の入射光を透
過させるとともに、他方の波長λ2の入射光を回折さ
せ、凸部と凹部との透過光の位相差が波長λ1の透過光
に対して2πであり、波長λ2の光に対する回折効率が
所定の値に調整されていることを特徴とする2波長用回
折格子。
1. A two-wavelength diffraction grating on which light of at least one of the wavelengths λ 1 and λ 21 ≠ λ 2 ) is incident. And a ratio w / P of the width w of the protrusion to the period P.
Has a value other than 0.5, transmits the incident light of one wavelength λ 1 , diffracts the incident light of the other wavelength λ 2 , and the phase difference of the transmitted light between the convex portion and the concave portion is the wavelength λ. 1 is 2π to transmitted light, the two-wavelength diffraction grating, wherein the diffraction efficiency for the wavelength lambda 2 of light is adjusted to a predetermined value.
【請求項2】前記2波長用回折格子が、波長λ1および
波長λ2の少なくとも一方の波長の透過光の偏光状態を
変化させる有機薄膜を備えた位相板と一体化されている
請求項1に記載の2波長用回折格子。
2. The two-wavelength diffraction grating is integrated with a phase plate having an organic thin film for changing a polarization state of transmitted light having at least one of the wavelengths λ 1 and λ 2. 2. The two-wavelength diffraction grating according to item 1.
【請求項3】波長λ1および波長λ2の光を出射する光源
と、波長λ1および波長λ2の光を光記録媒体に集光する
対物レンズとを備え、光記録媒体に情報の記録・再生を
行う光ヘッド装置であって、前記光源と前記対物レンズ
との間の光路中に、請求項1または2に記載の2波長用
回折格子が設置されている光ヘッド装置。
Comprising a light source for emitting wherein the wavelength lambda 1 and wavelength lambda 2 light, and an objective lens for condensing the light of the wavelength lambda 1 and wavelength lambda 2 to the optical recording medium, the recording of information on an optical recording medium An optical head device for performing reproduction, wherein the two-wavelength diffraction grating according to claim 1 or 2 is provided in an optical path between the light source and the objective lens.
JP2000096595A 2000-03-31 2000-03-31 Optical head device Expired - Fee Related JP4378832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096595A JP4378832B2 (en) 2000-03-31 2000-03-31 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096595A JP4378832B2 (en) 2000-03-31 2000-03-31 Optical head device

Publications (2)

Publication Number Publication Date
JP2001281432A true JP2001281432A (en) 2001-10-10
JP4378832B2 JP4378832B2 (en) 2009-12-09

Family

ID=18611338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096595A Expired - Fee Related JP4378832B2 (en) 2000-03-31 2000-03-31 Optical head device

Country Status (1)

Country Link
JP (1) JP4378832B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466667B1 (en) * 2001-04-18 2005-01-15 알프스 덴키 가부시키가이샤 Optical material and optical pickup using this
US7088513B2 (en) * 2003-04-15 2006-08-08 Matsushita Electric Industrial Co., Ltd. Diffraction element, optical head device including the diffraction element, optical information apparatus including the optical head device, system including the optical information apparatus and method of designing diffraction grating of the diffraction element
US7110180B2 (en) 2002-10-09 2006-09-19 Ricoh Company, Ltd. Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive
WO2007049481A1 (en) * 2005-10-28 2007-05-03 Mitsubishi Electric Corporation Diffractive optical element and optical head apparatus
JP2007164962A (en) * 2005-11-21 2007-06-28 Sanyo Electric Co Ltd Optical pickup device
JP2008084663A (en) * 2006-09-27 2008-04-10 Toppan Printing Co Ltd Optical component, and organic el display element using it
JP2008107838A (en) * 2007-11-16 2008-05-08 Asahi Glass Co Ltd Optical head device
US7502301B2 (en) 2003-05-28 2009-03-10 Funai Electric Co., Ltd. Diffraction grating for plural wavelengths, optical pickup apparatus and optical disk apparatus using diffraction grating for plural wavelengths
US7616548B2 (en) 2004-06-22 2009-11-10 Sony Corporation Optical pickup apparatus and optical disc apparatus
US7672201B2 (en) 2005-02-02 2010-03-02 Tdk Corporation Diffraction grating, light-receiving element, and optical head and optical recording/reproducing apparatus utilizing them
US8000208B2 (en) 2007-10-10 2011-08-16 Epson Toyocom Corporation Laminated wave plate and optical pickup device using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466667B1 (en) * 2001-04-18 2005-01-15 알프스 덴키 가부시키가이샤 Optical material and optical pickup using this
US7110180B2 (en) 2002-10-09 2006-09-19 Ricoh Company, Ltd. Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive
US7511887B2 (en) 2002-10-09 2009-03-31 Ricoh Company, Ltd. Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive
US7088513B2 (en) * 2003-04-15 2006-08-08 Matsushita Electric Industrial Co., Ltd. Diffraction element, optical head device including the diffraction element, optical information apparatus including the optical head device, system including the optical information apparatus and method of designing diffraction grating of the diffraction element
US7502301B2 (en) 2003-05-28 2009-03-10 Funai Electric Co., Ltd. Diffraction grating for plural wavelengths, optical pickup apparatus and optical disk apparatus using diffraction grating for plural wavelengths
US7616548B2 (en) 2004-06-22 2009-11-10 Sony Corporation Optical pickup apparatus and optical disc apparatus
US7672201B2 (en) 2005-02-02 2010-03-02 Tdk Corporation Diffraction grating, light-receiving element, and optical head and optical recording/reproducing apparatus utilizing them
KR100924876B1 (en) 2005-10-28 2009-11-02 미쓰비시덴키 가부시키가이샤 Diffractive optical element and optical head apparatus
WO2007049481A1 (en) * 2005-10-28 2007-05-03 Mitsubishi Electric Corporation Diffractive optical element and optical head apparatus
US7848206B2 (en) 2005-10-28 2010-12-07 Mitsubishi Electric Corporation Diffractive optical element and optical head
JP2007164962A (en) * 2005-11-21 2007-06-28 Sanyo Electric Co Ltd Optical pickup device
JP2008084663A (en) * 2006-09-27 2008-04-10 Toppan Printing Co Ltd Optical component, and organic el display element using it
US8000208B2 (en) 2007-10-10 2011-08-16 Epson Toyocom Corporation Laminated wave plate and optical pickup device using the same
JP2008107838A (en) * 2007-11-16 2008-05-08 Asahi Glass Co Ltd Optical head device

Also Published As

Publication number Publication date
JP4378832B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US7110180B2 (en) Diffraction grating, method of fabricating diffraction optical element, optical pickup device, and optical disk drive
JP3047314B2 (en) Light head
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
JP2000076689A (en) Optical pickup device
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JP4560906B2 (en) Optical head device
JP4378832B2 (en) Optical head device
JP2003294926A (en) Wavelength coupling element and optical pickup device having the same
JP2004326858A (en) Optical pickup device and optical system for the same
JPWO2004097819A1 (en) Optical diffraction element and optical information processing apparatus
JP2006216142A (en) Optical pickup device
JP2002245660A (en) Optical pickup device and optical information reproducing device using it
JP4296662B2 (en) Optical head device
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
KR100985422B1 (en) Double-wavelength light source unit and optical head device
US8493831B2 (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
JP3851253B2 (en) Diffraction grating and optical pickup
JP4337510B2 (en) Diffraction element and optical head device
JP2002341125A (en) Diffraction element and optical head device
JP3970254B2 (en) Optical pickup device
JP2001028145A (en) Optical head device and disk recording/reproducing device
JP4432255B2 (en) Optical head device
JP4735749B2 (en) Optical head device
JP3963904B2 (en) Optical pickup device
JP2004212553A (en) Polarizing diffractive optical element, optical pickup device, and optical disk drive system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees