JP2001279323A - Method for producing rolled fire resistant shape steel excellent in material uniformity - Google Patents

Method for producing rolled fire resistant shape steel excellent in material uniformity

Info

Publication number
JP2001279323A
JP2001279323A JP2000094180A JP2000094180A JP2001279323A JP 2001279323 A JP2001279323 A JP 2001279323A JP 2000094180 A JP2000094180 A JP 2000094180A JP 2000094180 A JP2000094180 A JP 2000094180A JP 2001279323 A JP2001279323 A JP 2001279323A
Authority
JP
Japan
Prior art keywords
flange
steel
temperature
cooling
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000094180A
Other languages
Japanese (ja)
Inventor
Sadahiro Yamamoto
定弘 山本
Hiroyasu Yokoyama
泰康 横山
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000094180A priority Critical patent/JP2001279323A/en
Publication of JP2001279323A publication Critical patent/JP2001279323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fire resistant rolled shape steel in which the difference in the material of each part in a flange is small and excellent in cross-sectional shape. SOLUTION: A steel having a composition containing, by mass, 0.02 to 0.20% C, 0.05 to 0.7% Si, 0.8 to 1.8% Mn, 0.3 to 0.7% Mo (wherein, in the case one or more kinds selected from Nb, V and Ti are contained, and further, Mo+8.0Nb+2.4V+3.0Ti>=0.3 is satisfied, Mo: 0.1 to 0.7%) and 0.01 to 0.1% Al and moreover containing one or more kinds selected from Cu, Ni, Cr and B, and the balance substantially Fe with inevitable impurities is rolled, subsequently, both sides of a flange are subjected to primary cooling from the temperature range of >=Ar3 point to the surface temperature of (Ar3)-200 deg.C at the average cooling rate of >=2.0 deg.C/s in the flange part, after the temporary interruption of the cooling, the surface temperature is recuperated to >=600 deg.C, and subsequently, both sides of the flange are subjected to secondary cooling to 400 to 600 deg.C by the average temperature of the flange part at the average cooling rate of >=2.0 deg.C/s in the flange part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高層建築物等に
用いられる耐火性に優れた圧延形鋼に関し、特にフラン
ジ各部位の材質差が小さいものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled steel excellent in fire resistance used for high-rise buildings and the like, and more particularly to a rolled steel having a small difference in material at various parts of a flange.

【0002】[0002]

【従来の技術】構造用鋼の材質に関しては、建築用途等
において、1987年4月に制定された新耐火設計法等
により、従来の常温での強度、低温靭性に加え、高温で
の高強度化が要求されるようになってきている。建築物
の柱材として用いられる耐火性極厚圧延H形鋼の場合、
高温強度の向上に有効とされているMoが添加されるた
め、熱間圧延時の変形抵抗が高くなり、その圧延におい
ては形状の確保が重要となる。
2. Description of the Related Art As for the material of structural steel, in addition to the conventional strength at normal temperature, low temperature toughness, and high strength at high temperature, in building applications, etc., according to the new refractory design method established in April 1987. Is required. In the case of refractory extra thick rolled H-beams used as building pillars,
Since Mo, which is considered to be effective in improving high-temperature strength, is added, deformation resistance during hot rolling increases, and in rolling, it is important to secure a shape.

【0003】そのため、厚鋼板と比較して圧延前の加熱
温度が高く、オーステナイトの低温域での累積圧下率が
不十分で、粗大オーステナイト域から制御冷却されるこ
とになり、低温加熱、低温での圧下が十分にとれる厚鋼
板に比べ、冷却速度が同じであっても、板厚方向の材質
差が増大し易い。
[0003] Therefore, the heating temperature before rolling is higher than that of a thick steel plate, the austenite has an insufficient cumulative rolling reduction in a low temperature region, and is controlled and cooled from a coarse austenite region. As compared with a thick steel plate capable of sufficiently reducing the thickness, even if the cooling rate is the same, the material difference in the thickness direction tends to increase.

【0004】図1は、極厚H形鋼を1250℃に加熱
し、熱間圧延後、500〜800℃における平均冷却速
度を4.8℃/sでフランジの両面から冷却した場合の
冷却時間に伴うフランジ1/4F、1/2Fにおける外
面表面温度、中心温度の変化を示すもので、表面温度に
ついては、フランジ1/4F,1/2Fで著しい差がな
く、同一線で表示した。1/4Fに比べ1/2Fでは、
表面と中心部の温度差が大きく、厚さ方向(板厚方向)
の材質差が大きく成りやすい傾向を示している。更に、
厚鋼板に比べ複雑な形状をしているため、制御冷却時に
曲がり等の変形が生じ易く、材質確保のためにのみ冷却
条件を調整することが難しい。
FIG. 1 shows a cooling time when an extremely thick H-section steel is heated to 1250.degree. C., and after hot rolling, the average cooling rate at 500 to 800.degree. This shows changes in the outer surface temperature and the center temperature at the flanges 1 / 4F and 1 / 2F, and the surface temperatures are indicated by the same line without significant difference between the flanges 1 / 4F and 1 / 2F. At 1 / 2F compared to 1 / 4F,
Large temperature difference between surface and center, thickness direction (board thickness direction)
Shows a tendency that the difference in material tends to be large. Furthermore,
Since it has a more complicated shape than a thick steel plate, deformation such as bending is likely to occur at the time of controlled cooling, and it is difficult to adjust cooling conditions only for securing the material.

【0005】板厚方向の材質差を抑制する製造技術とし
て、例えば、特開平3−188216号公報等が開示さ
れ、冷却を一旦中断して、表面に生成した硬質のベイナ
イト相を、特定の温度範囲に復熱させ、軟化させた後、
再び冷却を行う表面硬度の上昇抑制技術が記載されてい
る。しかし、本技術は、厚鋼板を対象にするものであ
り、圧延形鋼の場合と、圧延の加熱温度、冷却速度が全
く相違し、低温加熱、高冷却速度における材質の最適化
を目的とするものである。
As a manufacturing technique for suppressing the difference in the material in the thickness direction, for example, Japanese Patent Laid-Open Publication No. Hei 3-188216 is disclosed. After recuperating and softening the area,
A technique for suppressing an increase in surface hardness for performing cooling again is described. However, the present technology is intended for thick steel plates, and in the case of rolled section steel, the heating temperature and cooling rate of rolling are completely different, and the aim is to optimize the material at low temperature heating and high cooling rate Things.

【0006】建築用の耐火性圧延形鋼については、例え
ば特開平2−77525号公報、特開平2−16334
1号公報、特開平3−27134号公報などがあるがこ
れらは、低降伏比と耐火性の観点からの出願であり、圧
延形鋼を対象に、直接フランジ各部位の材質均一性およ
び耐火性を検討したものではない。
[0006] Refractory rolled section steel for construction is disclosed in, for example, JP-A-2-77525 and JP-A-2-16334.
No. 1 and Japanese Unexamined Patent Publication No. 3-27134, which are applications from the viewpoints of low yield ratio and fire resistance. Is not considered.

【0007】[0007]

【発明が解決しようとする課題】上述したように、耐火
性に優れた圧延形鋼では、耐火性を確保するためMoの
添加が必要で、圧延では形状の確保が主眼となり、その
後の冷却と組み合わせて材質を確保する観点からその条
件を選定することが困難である。そのため、圧延後の冷
却により、フランジ各部位の材質変動が生じ易く、特に
圧延形鋼の板厚が厚い場合、その傾向は強くなる。
As described above, in a rolled section steel having excellent fire resistance, it is necessary to add Mo in order to ensure fire resistance. It is difficult to select the conditions from the viewpoint of securing the material in combination. Therefore, the cooling after rolling tends to cause a change in the material of each part of the flange, and the tendency is particularly strong when the thickness of the rolled section steel is large.

【0008】本発明は、圧延後、冷却される耐火性に優
れた圧延形鋼の製造において、フランジ各部位の材質均
一性と断面形状に優れた製造方法を提供することを目的
とする。
An object of the present invention is to provide a method for producing a rolled steel bar having excellent fire resistance, which is cooled after rolling, and which is excellent in material uniformity and cross-sectional shape of each part of the flange.

【0009】[0009]

【課題を解決するための手段】本発明者らは、耐火性に
優れた圧延形鋼のフランジを両面から冷却する場合にお
いて、フィレット部も含めフランジ各部位の材質が均一
になるような冷却条件について検討を行った。その結
果、圧延形鋼のフランジ表層に生成したベイナイト相
は、フェライト相に逆変態しない場合であっても、復熱
によるテンパー効果により十分軟化すること及び冷却の
最終停止温度の調整により更に軟化が進むことを見出し
た。
SUMMARY OF THE INVENTION The present inventors have found that when cooling a flange of a rolled section steel excellent in fire resistance from both sides, cooling conditions such that the material of each part of the flange including the fillet portion becomes uniform. Was examined. As a result, the bainite phase formed on the surface of the flange of the rolled section steel can be sufficiently softened by the tempering effect due to recuperation, and can be further softened by adjusting the final stop temperature of cooling, even when the bainite phase is not reversely transformed into a ferrite phase. I've found it to go.

【0010】そして、冷却方法を圧延後に行う一次冷却
と、復熱後の二次冷却の2段冷却とした場合、上述した
効果及び優れた断面形状の得られることを見出し、本発
明を完成させたものである。すなわち本発明は、 1. 質量%で、C:0.02〜0.20%、Si:
0.05〜0.7%、Mn:0.8〜1.8%、Mo:
0.3〜0.7%、Al:0.01〜0.1%を含有
し、残部が実質的にFeおよび不可避不純物からなる鋼
を、1200℃超え、1350℃以下に加熱し圧延後、
Ar3点以上の温度域から表面温度がAr3−200℃以
下までフランジ部の平均冷却速度2.0℃/s以上でフ
ランジ両面を一次冷却し、一旦冷却を中断後、表面温度
を600℃以上に復熱させた後、フランジ部の平均温度
が400〜600℃までフランジ部の平均冷却速度2.
0℃/s以上でフランジ両面を二次冷却することを特徴
とする材質均一性に優れた圧延耐火形鋼の製造方法。
It has been found that when the cooling method is a two-stage cooling of primary cooling after rolling and secondary cooling after recuperation, the above-described effects and excellent cross-sectional shape can be obtained, and the present invention has been completed. It is a thing. That is, the present invention provides: In mass%, C: 0.02 to 0.20%, Si:
0.05-0.7%, Mn: 0.8-1.8%, Mo:
A steel containing 0.3 to 0.7%, Al: 0.01 to 0.1%, and the balance substantially consisting of Fe and unavoidable impurities is heated to more than 1200 ° C and rolled by heating to 1350 ° C or less.
From the temperature range of Ar3 point or more, the surface temperature is Ar3-200 ° C or less. The flange surfaces are primarily cooled at an average cooling rate of 2.0 ° C / s or more at the flange portion, and once cooled, the surface temperature is raised to 600 ° C or more. After reheating, the average temperature of the flange is 400 to 600 ° C. and the average cooling rate of the flange is 2.
A method for producing a rolled refractory section steel excellent in material uniformity, characterized in that both surfaces of a flange are secondarily cooled at 0 ° C / s or more.

【0011】2. 鋼成分として、更にCu:0.02
〜1.5%,Ni:0.02〜1.5%,Cr:0.0
5〜1.0%の一種又は二種以上を添加することを特徴
とする1記載の材質均一性に優れた圧延耐火形鋼の製造
方法。
2. Further, as a steel component, Cu: 0.02
-1.5%, Ni: 0.02-1.5%, Cr: 0.0
5. The method for producing a rolled refractory section steel having excellent material uniformity according to 1, wherein one or more kinds of 5 to 1.0% are added.

【0012】3. 鋼成分として、更にNb:0.00
5〜0.1%,V:0.005〜0.3%,Ti:0.
005〜0.1%の一種又は二種以上を添加することを
特徴とする1又は2に記載の材質均一性に優れた圧延耐
火形鋼の製造方法。
3. As a steel component, Nb: 0.00
5 to 0.1%, V: 0.005 to 0.3%, Ti: 0.
3. The method for producing a rolled refractory section steel having excellent material uniformity according to 1 or 2, wherein one or more kinds of 005 to 0.1% are added.

【0013】4. 鋼成分として、更にB:0.000
5〜0.003%を添加することを特徴とする1乃至3
の何れかに記載の材質均一性に優れた圧延耐火形鋼の製
造方法。
4. B: 0.000 as a steel component
1 to 3 characterized by adding 5 to 0.003%
4. The method for producing a rolled refractory section steel having excellent material uniformity according to any one of the above.

【0014】5. 質量%で、C:0.02〜0.20
%、Si:0.05〜0.7%、Mn:0.8〜1.8
%、Mo:0.1〜0.7%、Al:0.01〜0.1
%、Nb:0.005〜0.1%、V:0.005〜
0.3%、Ti:0.005〜0.1%の一種または二
種以上を含有し、更にMo+8.0Nb+2.4V+
3.0Ti≧0.3を満足し、残部が実質的にFeおよ
び不可避不純物からなる鋼を、1200℃超え、135
0℃以下に加熱し圧延後、Ar3点以上の温度域から表
面温度がAr3−200℃以下までフランジ部の平均冷
却速度2.0℃/s以上でフランジ両面を一次冷却し、
一旦冷却を中断後、表面温度を600℃以上に復熱させ
た後、フランジ部の平均温度が400〜600℃までフ
ランジ部の平均冷却速度2.0℃/s以上でフランジ両
面を二次冷却することを特徴とする材質均一性に優れた
圧延耐火形鋼の製造方法。
5. In mass%, C: 0.02 to 0.20
%, Si: 0.05 to 0.7%, Mn: 0.8 to 1.8
%, Mo: 0.1 to 0.7%, Al: 0.01 to 0.1
%, Nb: 0.005 to 0.1%, V: 0.005 to
0.3%, one or two or more of Ti: 0.005 to 0.1%, and Mo + 8.0Nb + 2.4V +
A steel which satisfies 3.0 Ti ≧ 0.3 and whose balance substantially consists of Fe and unavoidable impurities exceeds 1200 ° C. and 135
After heating and rolling to 0 ° C or less, the surface of the flange is primarily cooled at an average cooling rate of 2.0 ° C / s or more from the temperature range of Ar3 or more to the surface temperature of Ar3-200 ° C or less,
Once the cooling is interrupted, the surface temperature is re-heated to 600 ° C or higher, and then the secondary cooling of both sides of the flange is performed at an average flange cooling rate of 2.0 ° C / s or more from 400 to 600 ° C. A method for producing a rolled refractory section steel having excellent material uniformity.

【0015】6. 鋼成分として、更にCu:0.02
〜1.5%,Ni:0.02〜1.5%,Cr:0.0
5〜1.0%の一種又は二種以上を添加することを特徴
とする5記載の材質均一性に優れた圧延耐火形鋼の製造
方法。
6. Further, as a steel component, Cu: 0.02
-1.5%, Ni: 0.02-1.5%, Cr: 0.0
5. The method for producing a rolled refractory section steel having excellent material uniformity according to 5, wherein one or more kinds of 5 to 1.0% are added.

【0016】7. 鋼成分として、更にB:0.000
5〜0.003%を添加することを特徴とする5又は6
に記載の材質均一性に優れた圧延耐火形鋼の製造方法。
[7] B: 0.000 as a steel component
5 or 6 characterized by adding 5 to 0.003%
4. A method for producing a rolled refractory section steel having excellent material uniformity according to item 1.

【0017】[0017]

【発明の実施の形態】1.成分組成 C Cは、鋼の強度を確保するために0.02%以上添加す
るが、0.20%を超えて多量に含有した場合、靭性あ
るいは溶接性が劣化するため、0.02%以上、0.2
0%以下(0.02〜0.20%)とする。
BEST MODE FOR CARRYING OUT THE INVENTION Component composition C C is added in an amount of 0.02% or more in order to secure the strength of steel. However, if contained in a large amount exceeding 0.20%, toughness or weldability deteriorates. , 0.2
0% or less (0.02 to 0.20%).

【0018】Si Siは、脱酸のため必然的に含まれるが、強度を確保す
るため本発明では含有量を0.05%以上とする。0.
7%を超えるとHAZ靭性及び溶接性が劣化するので、
0.05〜0.7%とする。
Si Si is inevitably contained for deoxidation. However, in order to secure strength, the content of Si is set to 0.05% or more in the present invention. 0.
If it exceeds 7%, HAZ toughness and weldability deteriorate, so
0.05 to 0.7%.

【0019】Mn Mnは、鋼材の強度・靭性を向上させ、赤熱脆性の原因
となるFeSの生成抑制のため、0.8%以上添加する
が、1.8%を超えると焼入れ性を増加させ、溶接時に
硬化相を生じ、割れ感受性が高くなるため、0.8〜
1.8%とする。
Mn Mn is added in an amount of 0.8% or more to improve the strength and toughness of the steel material and suppress the generation of FeS which causes red hot embrittlement. However, if it exceeds 1.8%, the hardenability increases. , A hardening phase occurs during welding and cracking sensitivity increases,
1.8%.

【0020】Mo Moは、焼入れ性、焼戻し軟化抵抗を高め、強度上昇、
特に中・高温強度の上昇に有効であり、添加する。添加
量は、Moと同様に中・高温強度の上昇に有効なNb,
V,Tiの添加の有無によって増減し、これらの元素の
一種または二種以上を添加する場合は、Moの下限を
0.1%とする。一方、Nb,V,Tiの何れも添加し
ない場合は、その下限を0.3%とする。いずれの場合
も0.7%を超えるとコストが上昇し、溶接性が劣化す
るので上限を0.7%とする。
Mo Mo enhances hardenability, temper softening resistance, increases strength,
It is particularly effective in increasing the strength at medium and high temperatures, and is added. As with Mo, the amount of Nb, which is effective for increasing the strength at medium and high temperatures, is
It increases or decreases depending on whether V or Ti is added, and when one or more of these elements are added, the lower limit of Mo is set to 0.1%. On the other hand, when none of Nb, V, and Ti is added, the lower limit is set to 0.3%. In any case, if it exceeds 0.7%, the cost increases and the weldability deteriorates, so the upper limit is made 0.7%.

【0021】Al Alは、脱酸のため添加する。0.01%未満ではその
効果が得られず、0.1%を超えて添加すると鋼の清浄
度が低下し、溶接部の靭性が劣化するので、0.01〜
0.1%以下とする。
Al Al is added for deoxidation. If the content is less than 0.01%, the effect cannot be obtained. If the content exceeds 0.1%, the cleanliness of the steel decreases and the toughness of the welded portion deteriorates.
0.1% or less.

【0022】本発明は以上の基本成分組成で、十分その
作用効果が得られるが、更にその特性を向上させる場
合、Cu,Ni,Cr,Nb,V,Ti、Bの一種また
は二種以上を添加することができる。
In the present invention, the above-mentioned basic component composition can sufficiently obtain the function and effect. However, when the characteristics are further improved, one or more of Cu, Ni, Cr, Nb, V, Ti, and B are used. Can be added.

【0023】Cu Cuは、強度及び靭性向上に非常に有効であり、その効
果を期待する場合、0.02%以上添加する。1.5%
を超えると析出硬化が著しく、鋼材表面に割れを生じ易
くなるため1.5%以下とする。
Cu Cu is very effective in improving the strength and toughness. If the effects are expected, Cu is added in an amount of 0.02% or more. 1.5%
If more than 1.5%, precipitation hardening is remarkable and cracks easily occur on the surface of the steel material.

【0024】Ni Niは、強度および靭性向上に有効であり、その効果を
期待する場合、0.02%以上添加する。1.5%を超
えるとコストが上昇するため、1.5%以下とする。
Ni Ni is effective in improving the strength and toughness. If the effects are expected, Ni is added in an amount of 0.02% or more. If it exceeds 1.5%, the cost increases, so it is set to 1.5% or less.

【0025】Cr Crは、焼入れ性向上に有効であり、その効果を期待す
る場合、0.05%以上添加する。1.0%を超えると
溶接性やHAZ靭性を劣化させるため、1.0%以下と
する。
Cr Cr is effective in improving hardenability, and if that effect is expected, 0.05% or more is added. If it exceeds 1.0%, the weldability and the HAZ toughness deteriorate, so the content is made 1.0% or less.

【0026】Nb Nbは、微細炭窒化物の析出効果により、常温及び高温
強度、更に靭性向上に有効であり、その効果を期待する
場合、0.005%以上添加する。0.1%を超えて添
加すると過度の析出硬化により降伏比の低下が困難とな
るため、0.1%以下とする。
Nb Nb is effective for improving the strength at room temperature and high temperature and further improving the toughness due to the precipitation effect of fine carbonitrides. If the effect is expected, Nb is added in an amount of 0.005% or more. If it is added in excess of 0.1%, it is difficult to lower the yield ratio due to excessive precipitation hardening.

【0027】V Vは、少量で焼入れ性の向上、焼戻し軟化抵抗を高め、
常温、高温強度の上昇に有効であり、その効果を期待す
る場合、0.005%以上添加する。0.3%を超えて
添加すると溶接性を劣化させるため、0.3%以下とす
る。
V V is a small amount that improves hardenability and temper softening resistance.
It is effective in increasing the strength at room temperature and high temperature, and when that effect is expected, 0.005% or more is added. If added over 0.3%, the weldability is degraded, so the content is made 0.3% or less.

【0028】Ti Tiは、TiCによる析出強化により少量で常温、高温
強度の上昇に有効であり、また、TiNがHAZ部の結
晶粒粗大化を抑制し、HAZ靭性を向上させる。その効
果を期待する場合、0.005%以上添加する。0.1
%を超えて添加すると溶接の冷却過程でTiCが析出
し、HAZ靭性が劣化するので、0.1%以下とする。
Ti Ti is effective in raising the strength at room temperature and high temperature in a small amount due to precipitation strengthening by TiC. In addition, TiN suppresses the coarsening of the crystal grains in the HAZ portion and improves the HAZ toughness. When the effect is expected, 0.005% or more is added. 0.1
%, TiC precipitates during the cooling process of welding and deteriorates the HAZ toughness.

【0029】B Bは、焼入れ性を向上させ、組織をベイナイト化し、強
度を上昇させるため、0.0005%以上添加する。
0.003%を超えて添加すると靭性、溶接性を劣化さ
せるため、0.003%以下とする。
BB is added in an amount of 0.0005% or more in order to improve hardenability, turn the structure into bainite, and increase the strength.
If added in excess of 0.003%, the toughness and weldability deteriorate, so the content is made 0.003% or less.

【0030】Mo+8.0Nb+2.4V+3.0Ti 本パラメータは、前記基本成分系に更に選択元素として
Nb,V,Tiの一種または二種以上を添加した成分組
成の場合に規定するもので、優れた耐火性を得るため、
本パラメータを0.30以上とする。(本パラメータに
おいて、含有しない元素は0として扱う。) 図3は、フランジ各部位の材質が均一な極厚圧延H形鋼
1/4Fのフランジ厚さ中心部での600℃におけるY
Sと常温におけるYSの比に及ぼす成分組成の影響をM
o量及びMo+8.0Nb+2.4V+3.0Tiによ
り整理した結果を示す。
Mo + 8.0Nb + 2.4V + 3.0Ti This parameter is defined in the case of a component composition in which one or more of Nb, V, and Ti are added as selective elements to the basic component system. To gain sex
This parameter is set to 0.30 or more. (In this parameter, elements that are not contained are treated as 0.) FIG. 3 shows Y at 600 ° C. at the center of the flange thickness of an extremely thick rolled H-section steel 1 / 4F in which the material of each part of the flange is uniform.
The effect of the component composition on the ratio of S to YS at room temperature
The results are summarized by o content and Mo + 8.0Nb + 2.4V + 3.0Ti.

【0031】Mo+8.0Nb+2.4V+3.0Ti
≧0.30で、600℃におけるYSが常温におけるY
Sの0.5倍以上となり、Nb,V,Tiの何れも添加
しないMo単独添加系(Mo≧0.30)と同等の優れ
た耐火性が得られる。
Mo + 8.0Nb + 2.4V + 3.0Ti
≧ 0.30, YS at 600 ° C. becomes Y at room temperature
S is 0.5 or more times that of S, and excellent fire resistance equivalent to that of Mo alone (Mo ≧ 0.30) containing no Nb, V, or Ti is obtained.

【0032】但し、上述したように、Nb,V,Tiの
一種または二種以上を添加した場合、Mo量の下限は
0.10%とする。Moが0.10%未満の場合、Mo
+8.0Nb+2.4V+3.0Ti≧0.30であっ
ても耐火性に劣る。
However, as described above, when one or more of Nb, V, and Ti are added, the lower limit of the Mo content is 0.10%. When Mo is less than 0.10%, Mo
Even if + 8.0Nb + 2.4V + 3.0Ti ≧ 0.30, the fire resistance is poor.

【0033】2.製造条件 本発明では熱間圧延条件、冷却条件を以下のように規定
する。これらの規定は少なくともフランジの製造におい
て満足されていれば良く、ウエブについては特にその製
造条件は規定しない。
2. Manufacturing Conditions In the present invention, hot rolling conditions and cooling conditions are defined as follows. These rules need only be satisfied at least in the production of the flange, and the production conditions for the web are not particularly defined.

【0034】スラブ加熱温度 極厚H形鋼の製造では、寸法精度の観点から比較的高い
温度域で圧延を終了するパススケジュールが用いられ、
スラブ加熱温度を高温にする必要がある。
Slab heating temperature In the production of an extremely thick H-section steel, a pass schedule for finishing rolling at a relatively high temperature range is used from the viewpoint of dimensional accuracy.
It is necessary to increase the slab heating temperature.

【0035】スラブ加熱温度が1200℃以下の場合、
圧延中の温度低下により所定の形状に圧延することが困
難で、一方、1350℃超えでは圧延、冷却後の組織が
著しく粗大化し、靭性が大幅に劣化するため、1200
℃超え、1350℃以下とする。
When the slab heating temperature is 1200 ° C. or less,
It is difficult to roll into a predetermined shape due to a decrease in temperature during rolling. On the other hand, if the temperature exceeds 1350 ° C., the structure after rolling and cooling is significantly coarsened, and the toughness is significantly deteriorated.
Over 1300C and below 1350C.

【0036】冷却条件 本発明では、フランジ表面の硬化を抑制しつつ、制御冷
却による高強度化のため、2段冷却とし、一次冷却停止
温度、復熱温度、および二次冷却停止温度を規定する。
Cooling Conditions In the present invention, in order to increase the strength by controlled cooling while suppressing the hardening of the flange surface, two-stage cooling is used, and the primary cooling stop temperature, recuperation temperature, and secondary cooling stop temperature are defined. .

【0037】一次冷却停止温度 一次冷却停止温度は、復熱後の鋼板表面の硬度低下が得
られ、且つ、冷却効果を十分なものとするように、(A
r3−200)℃以下とする。一次冷却停止温度が(A
r3−200)℃超えの場合、二次冷却速度を高冷却速
度としても高強度化が達成できない。
Primary cooling stop temperature The primary cooling stop temperature is set so that the hardness of the steel sheet surface after reheating is reduced and the cooling effect is sufficient.
(r3-200) C or lower. The primary cooling stop temperature is (A
If the temperature exceeds (r3 -200) ° C, high strength cannot be achieved even if the secondary cooling rate is set to a high cooling rate.

【0038】復熱温度 復熱温度は表面に生成したベイナイト相をテンパー効果
により軟化させるため、600℃以上とする。極厚H形
鋼のフランジ部の場合、復熱温度が600℃未満では軟
化しない。
Reheating temperature The reheating temperature is set to 600 ° C. or higher in order to soften the bainite phase formed on the surface by the tempering effect. In the case of a flange portion of an extremely thick H-section steel, it does not soften if the reheat temperature is less than 600 ° C.

【0039】図2は、本発明範囲内の0.12C−1.
5Mn−0.45Mo系鋼を1250℃に加熱し、40
0×400×45×65(mm)の耐火性極厚形鋼を圧
延後、フランジ部を内外面から平均冷却速度3.5℃/
sで水冷し、所定の温度で一旦冷却を中断し、その後の
保持時間を変化させることにより復熱温度を変え、再び
平均冷却速度3.5℃/sで550℃まで冷却した場合
のフランジ1/2Fの厚さ方向の硬度差と一回目の冷却
停止温度および復熱温度の関係を示す。一次冷却停止温
度をフランジ表面でAr3−200℃以下、復熱温度を
600℃以上とした場合、フランジ厚さ方向の硬度差は
Hv40以下で良好な均一性が得られている。
FIG. 2 shows 0.12C-1.
The 5Mn-0.45Mo steel is heated to 1250 ° C.
After rolling a 0 x 400 x 45 x 65 (mm) refractory extremely thick section steel, the average cooling rate of the flange portion from the inner and outer surfaces was 3.5 ° C /
s, water cooling at a predetermined temperature, temporarily suspending the cooling at a predetermined temperature, changing the recuperation temperature by changing the subsequent holding time, and re-cooling to 550 ° C. at an average cooling rate of 3.5 ° C./s again. 3 shows the relationship between the hardness difference in the thickness direction of / 2F and the first cooling stop temperature and recuperation temperature. When the primary cooling stop temperature is Ar3-200 ° C. or less and the recuperation temperature is 600 ° C. or more on the flange surface, the hardness difference in the flange thickness direction is Hv40 or less, and good uniformity is obtained.

【0040】二次冷却停止温度 二次冷却停止温度は、冷却による強度上昇効果を得るた
め、鋼板平均温度で600℃以下とする。一方、冷却停
止温度が低くなると、強度確保は容易となるが、表面硬
度が上昇し、400℃未満では著しくなるため、400
℃以上とする。
Secondary Cooling Stop Temperature The secondary cooling stop temperature is set to 600 ° C. or less in terms of the average temperature of the steel sheet in order to obtain an effect of increasing strength by cooling. On the other hand, when the cooling stop temperature is lowered, the strength can be easily ensured, but the surface hardness increases and becomes significant below 400 ° C.
C or higher.

【0041】[0041]

【実施例】(実施例1)表1に示す成分組成の鋼を、種
々の製造条件により圧延H形鋼とし、機械的特性および
耐火性を評価した。表1に示す鋼1は50キロ級、鋼2
は60キロ級を念頭においた成分である。表2に、圧延
サイズ、製造条件およびフランジ部の特性を示す。いず
れの鋼も本発明の耐火性の条件を満足しているため、6
00℃のYSは常温YSの0.5倍以上を有し、その絶
対値も鋼1は50キロ級耐火鋼の目安である600℃の
YSが217MPa以上、また鋼2は同様の考え方に従
い、60キロ級耐火鋼相当鋼の目安である600℃のY
Sが293MPa以上となっている。
EXAMPLES (Example 1) Steels having the component compositions shown in Table 1 were rolled into H-shaped steels under various production conditions, and mechanical properties and fire resistance were evaluated. Steel 1 shown in Table 1 is 50 kg class, steel 2
Is an ingredient with a 60 kilo class in mind. Table 2 shows the rolling size, manufacturing conditions, and characteristics of the flange portion. Since all steels satisfy the fire resistance condition of the present invention, 6
YS at 00 ° C has 0.5 times or more of room temperature YS, and the absolute value of YS at 600 ° C, which is a standard of 50 kg class refractory steel, is 217 MPa or more. Y at 600 ° C, which is a guideline for steel equivalent to 60 kilo class refractory steel
S is 293 MPa or more.

【0042】表2において、実施例1,8は圧延後の冷
却が、2段冷却でなく、比較例であり、フランジ1/4
F,1/2Fのいずれの位置においても、フランジ厚さ
方向の硬度差が大きい。
In Table 2, Examples 1 and 8 are comparative examples in which the cooling after rolling is not a two-stage cooling.
The hardness difference in the flange thickness direction is large at both positions F and 1 / 2F.

【0043】実施例2,3、9,10,15は2段冷却
を実施しているが、実施例2,9は中断温度、実施例
3,10は復熱温度、実施例15は冷却停止温度が本発
明の範囲外で比較例となっており、フランジ厚さ方向の
硬度差が大きい。また、実施例15は靭性が著しく劣化
している。
In Examples 2, 3, 9, 10, and 15, two-stage cooling was performed. In Examples 2, 9, the interruption temperature, in Examples 3, 10, the recuperation temperature, and in Example 15, the cooling was stopped. The temperature is outside the range of the present invention and is a comparative example, and the hardness difference in the flange thickness direction is large. In Example 15, the toughness was remarkably deteriorated.

【0044】一方、実施例4,5,6,7、11,1
2,13,14は本発明例であり、フランジ厚さ方向の
硬度差が小さく均一性に優れている。
On the other hand, Examples 4, 5, 6, 7, 11, 1
Nos. 2, 13, and 14 are examples of the present invention, and have a small difference in hardness in the flange thickness direction and excellent uniformity.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】(実施例2)表3に示す成分組成の鋼を用
い、圧延後、2段冷却により、形鋼を製造した。表4に
圧延サイズ、製造条件およびフランジ部の特性を示す。
供試鋼3〜6,8は50キロ級鋼、供試鋼7は60キロ
級鋼を目標とする成分組成である。表4の実施例16〜
18、20、22〜24,26はいずれも本発明の実施
例であり、フランジ1/4F,1/2Fのいずれの位置
においてもフランジ厚さ方向の硬度差は小さく、それぞ
れ目標とする強度および耐火特性および優れた靭性を有
している。一方、実施例19,21,25,27は、供
試鋼の化学組成が本発明範囲外で耐火性に劣り、600
℃と常温のYSの比が0.5未満と低い。
(Example 2) A steel having the composition shown in Table 3 was rolled, and after rolling, a shaped steel was produced by two-stage cooling. Table 4 shows the rolling size, manufacturing conditions and characteristics of the flange portion.
The test steels 3 to 6 and 8 have a composition of 50 kg steel, and the test steel 7 has a composition of 60 kg steel. Examples 16 to of Table 4
18, 20, 22 to 24 and 26 are all examples of the present invention, and the hardness difference in the flange thickness direction is small at any of the positions of the flanges 1 / 4F and 1 / 2F. Has fire resistance and excellent toughness. On the other hand, in Examples 19, 21, 25 and 27, the chemical composition of the test steel was out of the range of the present invention and was inferior in fire resistance.
The ratio of YS between ° C and room temperature is as low as less than 0.5.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
圧延後、一次冷却を行った後、復熱させ、さらに二次冷
却を行うので、フランジ厚によらず、フランジ各部位の
材質が均一で、断面形状の劣化のない耐火性に優れた圧
延形鋼が複雑な熱処理や精整作業を要せず製造が可能で
産業上極めて有益である。
As described above, according to the present invention,
After rolling, after primary cooling, recuperate and then secondary cooling, regardless of the flange thickness, the material of each part of the flange is uniform, excellent in fire resistance without deterioration of cross-sectional shape Steel can be manufactured without complicated heat treatment and refining work, and is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧延後の冷却におけるフランジ外面表面温度と
中心部温度の変化を示す図。
FIG. 1 is a diagram showing changes in a flange outer surface temperature and a central part temperature during cooling after rolling.

【図2】2段冷却における一次冷却停止温度と復熱温度
が、フランジ1/2Fにおける厚さ方向硬度差に及ぼす
影響を示す図。
FIG. 2 is a diagram showing the influence of a primary cooling stop temperature and a recuperation temperature in a two-stage cooling on a difference in hardness in a thickness direction in a flange 1 / 2F.

【図3】耐火性(YS600℃/YSRT)に及ぼすM
o,NbV,Tiの影響を示す図。
FIG. 3 shows the effect of M on fire resistance (YS600 ° C./YSRT).
The figure which shows the influence of o, NbV, Ti.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諏訪 稔 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 BA00 CA03 CC03 CC04 CD02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Minoru Suwa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 4K032 AA01 AA02 AA04 AA05 AA11 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 BA00 CA03 CC03 CC04 CD02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.02〜0.20%、
Si:0.05〜0.7%、Mn:0.8〜1.8%、
Mo:0.3〜0.7%、Al:0.01〜0.1%を
含有し、残部が実質的にFeおよび不可避不純物からな
る鋼を、1200℃超え、1350℃以下に加熱し圧延
後、Ar3点以上の温度域から表面温度がAr3−200
℃以下までフランジ部の平均冷却速度2.0℃/s以上
でフランジ両面を一次冷却し、一旦冷却を中断後、表面
温度を600℃以上に復熱させた後、フランジ部の平均
温度が400〜600℃までフランジ部の平均冷却速度
2.0℃/s以上でフランジ両面を二次冷却することを
特徴とする材質均一性に優れた圧延耐火形鋼の製造方
法。
1. A mass% of C: 0.02 to 0.20%,
Si: 0.05 to 0.7%, Mn: 0.8 to 1.8%,
Rolling a steel containing Mo: 0.3-0.7%, Al: 0.01-0.1%, and the balance substantially consisting of Fe and unavoidable impurities is heated to more than 1200 ° C and 1350 ° C or less. Then, from the temperature range of Ar3 point or more, the surface temperature becomes Ar3-200.
Primary cooling of both sides of the flange at an average cooling rate of 2.0 ° C./s or more to below 100 ° C. is performed. After cooling is once suspended, the surface temperature is returned to 600 ° C. or more, and the average temperature of the flange is 400 ° C. A method for producing a rolled refractory section steel excellent in material uniformity, characterized in that both sides of a flange are secondarily cooled at an average cooling rate of the flange portion of 2.0 ° C / s or more to 600 ° C or more.
【請求項2】 鋼成分として、更にCu:0.02〜
1.5%,Ni:0.02〜1.5%,Cr:0.05
〜1.0%の一種又は二種以上を添加することを特徴と
する請求項1記載の材質均一性に優れた圧延耐火形鋼の
製造方法。
2. The steel component further comprises Cu: 0.02 to
1.5%, Ni: 0.02 to 1.5%, Cr: 0.05
The method for producing a rolled refractory section steel having excellent material uniformity according to claim 1, wherein one or more kinds of -1.0% are added.
【請求項3】 鋼成分として、更にNb:0.005〜
0.1%,V:0.005〜0.3%,Ti:0.00
5〜0.1%の一種又は二種以上を添加することを特徴
とする請求項1又は2に記載の材質均一性に優れた圧延
耐火形鋼の製造方法。
3. The steel component further comprises Nb: 0.005 to 0.005.
0.1%, V: 0.005 to 0.3%, Ti: 0.00
3. The method for producing a rolled refractory section steel having excellent material uniformity according to claim 1, wherein one or two or more of 5 to 0.1% are added.
【請求項4】 鋼成分として、更にB:0.0005〜
0.003%を添加することを特徴とする請求項1乃至
3の何れかに記載の材質均一性に優れた圧延耐火形鋼の
製造方法。
4. B: 0.0005 to steel component
4. The method according to claim 1, wherein 0.003% is added.
【請求項5】 質量%で、C:0.02〜0.20%、
Si:0.05〜0.7%、Mn:0.8〜1.8%、
Mo:0.1〜0.7%、Al:0.01〜0.1%、
Nb:0.005〜0.1%、V:0.005〜0.3
%、Ti:0.005〜0.1%の一種または二種以上
を含有し、更にMo+8.0Nb+2.4V+3.0T
i≧0.3を満足し、残部が実質的にFeおよび不可避
不純物からなる鋼を、1200℃超え、1350℃以下
に加熱し圧延後、Ar3点以上の温度域から表面温度が
Ar3−200℃以下までフランジ部の平均冷却速度
2.0℃/s以上でフランジ両面を一次冷却し、一旦冷
却を中断後、表面温度を600℃以上に復熱させた後、
フランジ部の平均温度が400〜600℃までフランジ
部の平均冷却速度2.0℃/s以上でフランジ両面を二
次冷却することを特徴とする材質均一性に優れた圧延耐
火形鋼の製造方法。
5% by mass, C: 0.02 to 0.20%,
Si: 0.05 to 0.7%, Mn: 0.8 to 1.8%,
Mo: 0.1 to 0.7%, Al: 0.01 to 0.1%,
Nb: 0.005 to 0.1%, V: 0.005 to 0.3
%, Ti: one or more of 0.005 to 0.1%, and further Mo + 8.0Nb + 2.4V + 3.0T.
After the steel satisfying i ≧ 0.3 and the balance substantially consisting of Fe and unavoidable impurities is heated to more than 1200 ° C. and 1350 ° C. or less, the surface temperature is Ar 3 −200 ° C. from the temperature range of Ar 3 point or more. Primary cooling of both sides of the flange at an average cooling rate of 2.0 ° C./s or more to the flange below, after temporarily interrupting the cooling, and returning the surface temperature to 600 ° C. or more,
A method for producing a rolled refractory section steel having excellent material uniformity, characterized in that both surfaces of the flange are secondarily cooled at an average cooling rate of the flange portion of 2.0 ° C./s or more to an average temperature of the flange portion of 400 to 600 ° C. .
【請求項6】 鋼成分として、更にCu:0.02〜
1.5%,Ni:0.02〜1.5%,Cr:0.05
〜1.0%の一種又は二種以上を添加することを特徴と
する請求項5記載の材質均一性に優れた圧延耐火形鋼の
製造方法。
6. The steel component further contains Cu: 0.02 to
1.5%, Ni: 0.02 to 1.5%, Cr: 0.05
The method for producing a rolled refractory section steel having excellent material uniformity according to claim 5, characterized in that one or two or more of 1.0% or more are added.
【請求項7】 鋼成分として、更にB:0.0005〜
0.003%を添加することを特徴とする請求項5又は
6に記載の材質均一性に優れた圧延耐火形鋼の製造方
法。
7. As a steel component, B: 0.0005 to
The method for producing a rolled refractory section steel having excellent material uniformity according to claim 5 or 6, wherein 0.003% is added.
JP2000094180A 2000-03-30 2000-03-30 Method for producing rolled fire resistant shape steel excellent in material uniformity Pending JP2001279323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094180A JP2001279323A (en) 2000-03-30 2000-03-30 Method for producing rolled fire resistant shape steel excellent in material uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094180A JP2001279323A (en) 2000-03-30 2000-03-30 Method for producing rolled fire resistant shape steel excellent in material uniformity

Publications (1)

Publication Number Publication Date
JP2001279323A true JP2001279323A (en) 2001-10-10

Family

ID=18609266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094180A Pending JP2001279323A (en) 2000-03-30 2000-03-30 Method for producing rolled fire resistant shape steel excellent in material uniformity

Country Status (1)

Country Link
JP (1) JP2001279323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792761B1 (en) 2011-12-15 2017-07-05 Nippon Steel & Sumitomo Metal Corporation High-strength extra-thick steel h-beam
CN111575607A (en) * 2020-06-29 2020-08-25 张家港联峰钢铁研究所有限公司 Preparation method of refractory steel bar for reinforced concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792761B1 (en) 2011-12-15 2017-07-05 Nippon Steel & Sumitomo Metal Corporation High-strength extra-thick steel h-beam
CN111575607A (en) * 2020-06-29 2020-08-25 张家港联峰钢铁研究所有限公司 Preparation method of refractory steel bar for reinforced concrete

Similar Documents

Publication Publication Date Title
JP5865516B2 (en) Ultra-high-strength cold-rolled steel sheet excellent in weldability and bending workability and manufacturing method thereof
JP5764498B2 (en) High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP2001200334A (en) 60 kilo class high tensile strength steel excellent in weldability and toughness
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
KR102020511B1 (en) Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
KR101543857B1 (en) Composite structure steel sheet with superior workability, and its manufacturing method
KR101505262B1 (en) High strength steel plate and method for manufacturing the same
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2001303128A (en) Method for producing rolled weather resistant shape steel
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP2000282167A (en) Low yield ratio type steel product and steel pipe, excellent in toughness, and their manufacture
JP2001279323A (en) Method for producing rolled fire resistant shape steel excellent in material uniformity
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
KR101449137B1 (en) High strength hot-rolled steel having excellent weldability and hydroforming workability and method for manufacturing thereof
JP4461589B2 (en) Manufacturing method of high yield strength steel with low yield ratio 780N / mm2 excellent in weld crack sensitivity
JP2000054061A (en) Low yield ratio type refractory steel material and steel tube and their manufacture
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JP2001262225A (en) Method for producing exra-thick wide flange shape
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP6756088B2 (en) Hot-rolled steel sheet with excellent cold workability and its manufacturing method
KR20230166683A (en) Ultra high strength cold rolled steel sheet treated by softening heat process and method of manufacturing the same
KR20220125755A (en) Ultra high strength cold rolled steel sheet having high elongation and local formality and method of manufacturing the same
KR20240106697A (en) Ultra-high strength cold rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808