JP2001276879A - 曝気槽用の散気式攪拌装置 - Google Patents

曝気槽用の散気式攪拌装置

Info

Publication number
JP2001276879A
JP2001276879A JP2000099553A JP2000099553A JP2001276879A JP 2001276879 A JP2001276879 A JP 2001276879A JP 2000099553 A JP2000099553 A JP 2000099553A JP 2000099553 A JP2000099553 A JP 2000099553A JP 2001276879 A JP2001276879 A JP 2001276879A
Authority
JP
Japan
Prior art keywords
aeration
aeration tank
tank
air
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000099553A
Other languages
English (en)
Inventor
Makoto Takatori
信 鷹取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Sanitation Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Sanitation Research Corp filed Critical Nishihara Environmental Sanitation Research Corp
Priority to JP2000099553A priority Critical patent/JP2001276879A/ja
Publication of JP2001276879A publication Critical patent/JP2001276879A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

(57)【要約】 【課題】 曝気槽内における好気性生物学的処理への曝
気量(空気供給量)を削減し、かつ曝気槽の底部への汚
泥の堆積を防止する曝気槽用の散気式攪拌装置を提供す
る。 【解決手段】 コンプレッサ10で生成された圧縮空気
は配管14を介してリザーブタンク11で一時的に貯蔵
される。ここで貯蔵されていた圧縮空気は配管15を介
して散気管12に送られる。この散気管12は各散気部
12a〜12fに分かれており、それぞれから散気され
る圧縮空気の散気量は電磁弁16、バルブ17及び18
a〜18fで適宜調整される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、廃水を生物学的に
処理する曝気槽に用いられる散気式攪拌装置に関し、特
に酵母を利用した曝気槽用の散気式攪拌装置に関するも
のである。
【0002】
【従来の技術】従来の曝気槽では、曝気槽外に設けられ
た送風機から送風された空気を曝気槽内に設けられた曝
気装置で微細な気泡にして散気していた。この散気によ
り曝気槽内の被処理水である廃水と汚泥との混合物(混
合液)を攪拌混合している。また、曝気装置で供給され
た微細な気泡に含まれる酸素の一部は混合液に溶け込
む。混合液中に存在する微生物(好気性の細菌類や酵母
類など)はこの溶解した酸素を利用して廃水中に含まれ
る汚濁物質を酸化分解して処理(好気性生物学的処理)
する。つまり、通常の曝気槽での曝気装置による散気
は、混合液中の微生物が廃水に対して好気性生物学的処
理を行う上で必要な酸素を当該微生物に供給すると共
に、供給した微細な気泡が水面に上昇する流動(例えば
旋回流)で混合液を攪拌混合するという2つの作用を有
している。
【0003】図6は従来の旋回流式曝気槽の例を示す概
略断面図である。図において1は曝気槽であり、2は曝
気槽1底部内壁寄りに設けられた曝気装置であり、3は
曝気装置2へ気体を送風する送風機であり、4は送風機
3と曝気装置2とを接続する送風管である。
【0004】次に動作について説明する。図6に示した
旋回流式の曝気槽1では、送風機3から送風されてきた
気体を曝気装置2で微細な気泡にして散気することで曝
気槽1内へ酸素が供給されると共に、曝気装置2を曝気
槽1の底部内壁寄りに配置したことで図中の矢印Aで示
すような旋回流を生じさせ、これにより曝気槽1内の廃
水と汚泥との混合液が攪拌混合される。
【0005】通常、内容量400m3 の曝気槽における
空気量(送風量)の目安は、概ね以下の通りである。 曝気槽内の混合液中の汚泥濃度(MLSS濃度)が1
500〜2000mg/Lで、汚泥に対する有機物負荷
(BOD−SS負荷)が0.2〜0.4kg/kg・日
で運転している標準的な活性汚泥処理の場合には、送風
量が10〜15m 3 /分である。 MLSS濃度が6000〜7000mg/Lで、BO
D−SS負荷が0.1〜0.2kg/kg・日で、高M
LSS濃度で運転しているし尿処理の場合には、送風量
が25〜35m3 /分である。 MLSS濃度が10000mg/L以上で、BOD−
SS負荷が1.0kg/kg・日以上という高負荷・高
MLSS濃度で運転している酵母処理の場合には、40
〜50m3 /分である。
【0006】上記の標準的な活性汚泥処理に比べてM
LSS濃度が5倍以上、BOD−SS負荷が3倍以上で
運転する酵母処理では、処理される廃水の性状等にもよ
るが、酵母処理槽内を十分に好気条件に維持すると共
に、十分に攪拌混合させることを目的に、酵母処理槽に
対して多量の空気を送風する必要があった。
【0007】
【発明が解決しようとする課題】従来の曝気槽では、上
述したように、曝気槽外に設けられた送風機から送風さ
れた空気を曝気槽内に設けられた曝気装置で散気するこ
とにより曝気槽内への酸素供給及び攪拌混合を行ってい
る。
【0008】曝気槽へは、曝気槽内の微生物が汚水を好
気的に処理(好気性生物学的処理)するのに要する酸素
を供給できるだけの空気を送風すればよいわけである。
そのため、曝気槽へ流入する汚濁負荷が少ない場合や、
曝気槽のMLSS濃度が低い場合には、空気量(曝気
量)は少なくてもよいはずである。しかし、空気量を必
要以上に低減させると、曝気槽内が十分に攪拌混合され
なくなる。この場合、曝気槽の底部に夾雑物などを含む
汚泥が堆積し、堆積した汚泥が腐敗するなどして良好で
安定した好気性生物学的処理に支障を来すことになる。
そこで、通常は、曝気槽へは酸素供給に要する以上に多
量の空気を供給して、常に曝気槽内が十分に攪拌混合さ
れるように運転されてきた。
【0009】そのため、通常の廃水処理施設では必要以
上に大型の送風機を設置しなければならず、設備費や建
設費が増大するという課題があった。また、曝気槽へ多
量に空気を供給するので、その分、電気使用量が増加
し、運転経費が増加するという課題もあった。さらに、
臭気対策のため曝気槽を覆蓋して脱臭を行っている廃水
処理施設では、曝気槽への多量の送風により脱臭ファン
の吸引容量を増加させなければならず、これにより電気
使用量や運転経費が増大すると共に、必要以上に大型の
脱臭設備を設置しなければならないので、設備費や建設
費が増大するという課題もあった。
【0010】また、酵母を利用した曝気槽(酵母処理
槽)では、高濃度廃水を効率よく処理するために、酵母
処理槽内の汚泥濃度を高く(10000mg/L以上)
維持して運転されるが、次のような問題があった。 汚泥濃度が高いと汚泥は槽底部に堆積し易い。 特に酵母汚泥は酵母の菌糸が絡まって大きな汚泥フロ
ックとなり易いため、他の生物汚泥に比べて沈降性が良
く、槽底部に堆積し易い。 酵母を用いて廃水を処理するには、常に好気条件を維
持しなければならない。
【0011】このような問題を解決するために、酵母処
理槽へはさらに多量の空気を供給しなければならない。
そのため、電気使用量等の運転経費がより増大するとい
う課題もあった。
【0012】さらに、酵母処理槽内を十分に攪拌混合さ
せるには、槽底部においてさえ30cm/秒の流速が必
要である。流入する廃水の性状(例えば含有する固形物
量)によっては、この流速を得るのに、例えば内容量4
00m3 の酵母処理槽において60m3 /分以上の空気
量が必要になるケースもある。これは通常の酵母処理槽
の空気量の約1.5倍に相当するものである。このよう
な酵母処理施設では、さらに大規模な送風及び曝気設備
を設け、長時間運転しなければならず、設備費、建設
費、電気料金、運転経費が増加するばかりでなく、煩雑
な運転管理が必要になるという課題があった。
【0013】本発明は上記課題を解決するためになされ
たもので、曝気槽内を攪拌混合する曝気槽用の散気式攪
拌装置を提供することを目的とする。
【0014】
【課題を解決するための手段】上記目的を達成するため
に、本発明は、廃水を導入して微生物の存在下で好気的
に生物学的処理を行う曝気槽に用いられる散気式攪拌装
置において、気体圧縮手段と、該気体圧縮手段で生成さ
れた圧縮気体を貯蔵する圧縮気体貯蔵手段と、曝気槽内
に配設され、前記圧縮気体を散気する散気手段と、前記
圧縮気体の流量を調節する調整弁を有すると共に、前記
散気手段と前記圧縮気体貯蔵手段とを接続する圧縮気体
移送手段とを備えたことを特徴とするものである。
【0015】
【発明の実施の形態】以下、本発明の実施の一形態を説
明する。 実施の形態1.図1は、本発明の散気式攪拌装置に係る
実施の形態1の構成を示す概略斜視図であり、図2は図
1に示した散気手段の散気部を拡大して示す正面図であ
る。この実施の形態1における構成要素のうち図6に示
した従来の散気式攪拌装置の構成要素と共通するものに
ついては同一符号を付し、その部分の説明を省略する。
図において10は曝気槽1内へ供給される圧縮空気等の
圧縮気体(以下、便宜的に圧縮空気という)を生成する
調圧機能を備えた気体圧縮手段としてのコンプレッサで
あり、11はコンプレッサ10で生成された圧縮空気を
貯蔵する圧縮気体貯蔵手段としてのリザーブタンクであ
り、12はリザーブタンク11から供給された圧縮空気
を曝気槽1内の被処理水に対し散気する圧縮気体散気手
段としての散気管であり、13は散気管12に形成され
た散気孔であり、14はコンプレッサ10とリザーブタ
ンク11とを接続する配管であり、15はリザーブタン
ク11と散気管12とを接続する圧縮気体移送手段とし
ての配管であり、16は散気管12への圧縮空気の流量
を遮断を含め調節する電磁弁であり、17及び18a〜
18fは各散気管12への圧縮空気の供給及び非供給を
切り替えたり、流量の微調整を行うバルブである。この
実施の形態1における散気管12は6つの導入管19a
〜19f上に設けられた6つのバルブ18a〜18fに
より圧縮空気の供給及び非供給がそれぞれ制御された6
つの散気部12a〜12fを有しており、第1群の散気
部12a〜12c及び第2群の散気部12d〜12fは
それぞれ曝気槽1内の互いに対向する内壁面近傍の底部
に配設されている。なお、この実施の形態1では、曝気
装置であるディフューザ20が被処理水に対し旋回流を
生じさせるべく曝気槽1の中央寄りに配置され、上記散
気管12は曝気槽1の内壁とディフューザ20との間に
配設されているが、上記散気管12の曝気槽1内の配設
位置は特に限定されるものではない。また、上記散気管
12に形成された散気孔13は、例えば直径1cm〜数
cmの範囲の大きさとされ、その間隔は数cm〜数十c
mとされており、曝気槽1の底部に向けて開口されてい
る。このような散気手段としては、曝気槽1の底部に散
気管12を配設し、この散気管12に一定の間隔で散気
孔13を設け、この散気孔13から圧縮空気を噴射させ
るものを例示することができるが、この発明における散
気手段はこれに限定されるものではなく、曝気槽1の底
部に堆積した夾雑物などを含む汚泥を圧縮空気により拡
散できる水流を発生させることができるものであれば、
如何なる構成であってもよい。その中でも、効果的な水
流を発生させる散気管12は、図2に示すように、曝気
槽1のコーナー部ではL字型の散気部12c、中央部で
は逆T字型の散気部12bが好ましく、しかも散気孔1
3を下向きに設けると特に効果的な水流を発生させるこ
とができる。なお、図1においてディフューザ20には
送風機3から送風管4及び空気管4a及び4bを経由し
て空気が供給される。
【0016】次に動作について説明する。まず、コンプ
レッサ10により生成された2〜10kgf/cm2
圧縮空気は配管14を介してリザーブタンク11に送ら
れ、そこに一時的に貯蔵される(400m3 の曝気槽に
対して0.5〜1m3 程度)。次に、数分から数時間の
間隔でバルブ17を開けると共に、電磁弁16の開度を
全閉(遮断)を含め調整することで、定期的に圧縮空気
がリザーブタンク11から配管15及び導入管19a〜
19fを経て散気管12から曝気槽1内に散気される。
また、バルブ18a〜18fの開度を調整することで各
散気部12a〜12fからの圧縮空気の散気量を微調節
することができる。なお、図1においては気体圧縮手段
であるコンプレッサ10と圧縮気体貯蔵手段であるリザ
ーブタンク11とは別個独立して設けられているが、必
要に応じてコンプレッサとリザーブタンクとが一体にな
ったものを用いてもよい。
【0017】以上説明したように、この実施の形態1に
よれば、コンプレッサ10で生成された圧縮空気を曝気
槽1内へ散気するようにしたので、圧縮空気が散気管1
2の散気孔13から曝気槽1の底部に向けて散気され、
汚泥が曝気槽1の底部に堆積するのを予防したり、堆積
した汚泥を巻き上げたりすることから曝気槽1内を十分
に攪拌混合することができる。
【0018】この実施の形態1によれば、各散気部12
a〜12fを曝気槽1の内壁面近傍の底部に配置するよ
うにしたので、曝気槽1内の底部へ散気することがで
き、これにより曝気槽1内の被処理水を攪拌混合するこ
とができる。散気管12の散気孔13が曝気槽1の底部
に向けて開口されている場合には、曝気槽1の底部に堆
積した汚泥を集中的に確実に流動化させることができる
と共に、特に流動しにくい曝気槽1の壁面付近の底部に
沈積する汚泥も併せて流動化させることができる。この
ように汚泥が曝気槽1内の底部に溜まらなくなるので、
攪拌のために過剰に供給していた曝気槽への曝気量を大
幅に削減することができ、これにより過剰な曝気により
微細な気泡が汚泥に付着して沈殿池等でこの汚泥が浮上
・流出することを防止することができる。
【0019】さらに、この実施の形態1では、特に高負
荷・高MLSS濃度で運転している酵母処理に適用する
場合に、沈降しやすい酵母汚泥の底部への堆積がなくな
るため、堆積汚泥の腐敗等による廃水処理への悪影響を
防ぐことができると共に、被処理水と酵母汚泥との接触
機会を増やすことで効率のよい酵母処理を行うことがで
きる。また、上記酵母処理とは逆に低濃度・低MLSS
濃度で運転し、曝気槽内が十分に攪拌混合されるように
曝気している活性汚泥処理に適用する場合に、曝気量を
好気性生物学的処理に要する酸素が供給できる程度にま
で削減することができる。
【0020】実施の形態2.図3は、本発明の散気式攪
拌装置に係る実施の形態2の構成を示す概略平面図であ
る。この実施の形態2における構成要素のうち実施の形
態1における構成要素と共通するものについては同一符
号を付し、その部分の説明を省略する。
【0021】この実施の形態2の特徴は、散気管12が
直線状に連続していて、これが互いに対向して曝気槽1
の内壁面近傍の底部に配置されている点にある。
【0022】この実施の形態2によれば、直線状に連続
した散気管12(12g及び12h)の散気孔13から
散気される圧縮空気の量を微調整することが難しいもの
の、分岐やバルブを多く設ける必要がないため、煩雑な
維持管理作業が軽減されると共に、実施の形態1とほぼ
同様の効果を得ることができる。
【0023】また、既存の曝気槽に本発明の散気式攪拌
装置を導入する場合に、複雑な設置作業を要せず簡便に
設置することができると共に、設備費用を低く抑え工事
期間を短縮することもできる。
【0024】実施の形態3.図4は、本発明の散気式攪
拌装置に係る実施の形態3の構成を示す概略平面図であ
る。この実施の形態3における構成要素のうち実施の形
態1における構成要素と共通するものについては同一符
号を付し、その部分の説明を省略する。
【0025】この実施の形態3の特徴は、散気管12
(12g〜12j)が直方体若しくは立方体をなす曝気
槽1の4つの内壁面近傍の底部に、それぞれに配置され
ている点にある。即ち、曝気槽では内壁面の底部周辺が
最も流動しにくいため、汚泥が沈積しやすい。そこで、
内壁面近傍の底部にそれぞれ散気管12(12g〜12
j)を配置した。なお、円形や楕円形の曝気槽において
は、内壁面近傍の底部に円周状に散気管を設けることに
より同様の効果を得ることができる。
【0026】以上のように、この実施の形態3によれ
ば、実施の形態1と同様の効果を得ることができ、また
曝気槽1の底部に汚泥が堆積するのを防止できると共に
曝気槽1に堆積してしまった汚泥を十分に拡散・流動さ
せることができる。加えて、曝気槽1内で最も流動しに
くい内壁面近傍やコーナー部の底部に沈積する汚泥を確
実に拡散させることができる。
【0027】また、この実施の形態3では、汚泥の溜ま
り易い箇所である曝気槽1の内壁面近傍の底部に散気管
12の各散気部12g〜12jを配置したので、曝気槽
1の底部に堆積した汚泥を集中的に確実に流動化させる
ことができると共に、特に流動しにくい曝気槽1の壁面
付近の底部に沈積する汚泥も併せて流動化させることが
できる。
【0028】なお、円形や楕円形の曝気槽においては、
内壁面近傍の底部に円周状に散気管12を設けることに
より、上記同様の効果を得ることができる。また、散気
管12は実施の形態1と同様に分岐させてもよいし、実
施の形態2と同様に直線状に連続させてもよい。
【0029】実施の形態4.図5は、本発明の散気式攪
拌装置に係る実施の形態4の構成を示す概略平面図で、
本発明の散気式攪拌装置が設けられた酵母を利用した酵
母処理槽の一般的な概略図である。この実施の形態4に
おける構成要素のうち実施の形態1における構成要素と
共通するものについては同一符号を付し、その部分の説
明を省略する。
【0030】この実施の形態4に係る図5には、上述の
散気管12の他に、曝気槽1に送風機3から空気が供給
される曝気装置2が図示されている。
【0031】次に動作について説明する。まず、送風機
3により曝気装置2に対し空気を送り、曝気装置2から
の曝気により酵母処理槽24へ廃水の酵母処理に必要な
酸素が供給される。次に、酵母処理槽24の底部に汚泥
が堆積しないように、また底部に堆積した汚泥を拡散さ
せるために、散気管12から圧縮空気が数分から数時間
の間隔で散気される。
【0032】以上のように、この実施の形態4によれ
ば、送風機3による酵母処理槽24への空気供給量を、
酵母による廃水の好気性生物学的処理に必要な酸素を供
給するレベルまで抑えることができるので、送風機3の
運転に要する電力使用量を低減でき、これにより廃水処
理施設のランニングコストを削減することができるとい
う経済的効果を得ることができる。特に、高負荷・高汚
泥濃度で処理して沈降しやすい酵母汚泥を用いる酵母処
理槽24では、他の曝気槽に比してこの効果が顕著とな
る。
【0033】因みに、高汚泥濃度で維持している400
3 の酵母処理槽24で高負荷をかけて処理する場合に
は、本発明の散気式攪拌装置導入前は63m3 /分の曝
気量を必要としていたが、本発明の散気式攪拌装置導入
により45m3 /分まで減らすことができた。これによ
り酵母処理槽24の底部の流速は28cm/秒から26
cm/秒まで低下したが、汚泥が堆積することはなかっ
た。この結果、1日当たり15kwの送風機2台の24
時間運転に要する電気量720kw/日を、3.7kw
のコンプレッサの7時間運転に要する電気量26kw/
日に置き換えることができた。即ち、電気量を1日当た
り649kwも削減することができた。
【0034】また、上記酵母処理槽24に廃水が流入し
ない(無負荷時)場合でも、本発明の散気式攪拌装置導
入前は攪拌混合するために、63m3 /分の送風機3の
曝気量を必要としていたが、本発明の散気式攪拌装置導
入により23m3 /分まで大幅に減らすことができた。
これにより酵母処理槽24の底部の流速は28cm/秒
から23cm/秒まで低下したが、汚泥が堆積しなかっ
た。この結果、1日当たり37kwの送風機1台の24
時間運転に要する電気量1608kw/日を、3.7k
wのコンプレッサの7時間運転に要する電気量26kw
/日に置き換えることができた。即ち、電気量を1日当
たり1582kwも大幅に削減することができた。
【0035】なお、各実施の形態における酵母処理槽2
4を屋内に設けた場合に、臭気対策のために脱臭ファン
を設ける必要があるが、本発明の散気式攪拌装置を設け
ることで、酵母処理槽24への空気供給量の削減で臭気
の発生が相対的に抑制されるため、脱臭ファンの吸引運
転や付帯設備の稼動を控えることができ、またランニン
グコストも削減することができる。因みに、上記酵母処
理槽24において本発明の散気式攪拌装置導入前は11
0m3 /分を必要としていた吹込風量を本発明の散気式
攪拌装置導入後は90m3 /分まで低下させることがで
きた。
【0036】
【発明の効果】以上説明したように、本発明によれば、
圧縮気体散気手段から酸素を含有する圧縮気体を散気さ
せることにより、曝気槽内を十分に攪拌混合でき、また
圧縮気体に含まれる酸素が曝気槽内に溶解するため、酸
素を好気性生物学的処理に用いることができ、これによ
り曝気量自体を削減することが期待できる。
【0037】本発明によれば、曝気槽では微生物による
好気性生物学的処理に必要な酸素に相当する空気量を供
給すればよいので、必要な空気供給量を把握し易く、過
剰な曝気(空気供給)を抑止できるという効果を得るこ
とができる。
【0038】本発明によれば、定期的に曝気槽の底部を
圧縮空気により散気攪拌することにより、汚泥の堆積を
防止できると共に、堆積汚泥の腐敗等を防止でき、安定
して良好な廃水の好気性生物学的処理を行うことができ
る。
【0039】本発明によれば、特に沈降しやすい酵母汚
泥を用いて高負荷・高汚泥濃度で処理している酵母処理
槽に本発明の散気式攪拌装置を適用することにより、従
来の攪拌混合を目的とした過剰な曝気(空気供給)を大
幅に削減することができ、経済的な面で大きな効果を得
ることができる。さらに、酵母処理槽における過剰な曝
気により酵母汚泥に微細な気泡が付着して沈殿池などで
酵母汚泥が浮上して流出することを防止できるという効
果が得られる。
【図面の簡単な説明】
【図1】本発明の散気式攪拌装置に係る実施の形態1の
構成を示す概略斜視図である。
【図2】図1に示した圧縮気体散気手段の散気部を拡大
して示す正面図である
【図3】本発明の散気式攪拌装置に係る実施の形態2の
構成を示す概略平面図である。
【図4】本発明の散気式攪拌装置に係る実施の形態3の
構成を示す概略平面図である。
【図5】本発明の散気式攪拌装置に係る実施の形態4の
構成を示す概略平面図で、本発明の散気式攪拌装置が設
けられた酵母処理槽の一般的な概略図である。
【図6】従来の旋回流式曝気槽の例を示す概略断面図で
ある。
【符号の説明】
1 曝気槽 2 曝気装置 3 送風機 4 送風管 10 コンプレッサ(気体圧縮手段) 11 リザーブタンク(圧縮気体貯蔵手段) 12 散気管(圧縮気体散気手段) 13 散気孔 14,15 配管(圧縮気体移送手段) 16 電磁弁(調整弁) 17,18a〜18f バルブ(調整弁) 19a〜19f 導入管 20 ディフューザ 24 酵母処理槽

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 廃水を導入して微生物の存在下で好気的
    に生物学的処理を行う曝気槽に用いられる散気式攪拌装
    置において、気体圧縮手段と、該気体圧縮手段で生成さ
    れた圧縮気体を貯蔵する圧縮気体貯蔵手段と、曝気槽内
    に配設され、前記圧縮気体を散気する散気手段と、前記
    圧縮気体の流量を調節する調整弁を有すると共に、前記
    散気手段と前記圧縮気体貯蔵手段とを接続する圧縮気体
    移送手段とを備えたことを特徴とする曝気槽用の散気式
    攪拌装置。
JP2000099553A 2000-03-31 2000-03-31 曝気槽用の散気式攪拌装置 Pending JP2001276879A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000099553A JP2001276879A (ja) 2000-03-31 2000-03-31 曝気槽用の散気式攪拌装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000099553A JP2001276879A (ja) 2000-03-31 2000-03-31 曝気槽用の散気式攪拌装置

Publications (1)

Publication Number Publication Date
JP2001276879A true JP2001276879A (ja) 2001-10-09

Family

ID=18613892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000099553A Pending JP2001276879A (ja) 2000-03-31 2000-03-31 曝気槽用の散気式攪拌装置

Country Status (1)

Country Link
JP (1) JP2001276879A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (ja) * 2006-07-05 2008-01-24 Nippon Steel Corp 下水からのりん及び窒素の除去方法並びに除去装置
WO2009014002A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Heavy Industries, Ltd. エアレーション装置
JP2010222869A (ja) * 2009-03-24 2010-10-07 Masayuki Nakaya 仮設トイレ
CN102493547A (zh) * 2011-12-01 2012-06-13 上海市城市建设设计研究总院 地下调蓄管涵的自动清淤系统
CN108658221A (zh) * 2018-05-14 2018-10-16 合肥中安清源环保科技有限公司 一种活性污泥曝气池空气补给调节装置系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012425A (ja) * 2006-07-05 2008-01-24 Nippon Steel Corp 下水からのりん及び窒素の除去方法並びに除去装置
WO2009014002A1 (ja) * 2007-07-24 2009-01-29 Mitsubishi Heavy Industries, Ltd. エアレーション装置
JP2009028572A (ja) * 2007-07-24 2009-02-12 Mitsubishi Heavy Ind Ltd エアレーション装置
JP2010222869A (ja) * 2009-03-24 2010-10-07 Masayuki Nakaya 仮設トイレ
CN102493547A (zh) * 2011-12-01 2012-06-13 上海市城市建设设计研究总院 地下调蓄管涵的自动清淤系统
CN108658221A (zh) * 2018-05-14 2018-10-16 合肥中安清源环保科技有限公司 一种活性污泥曝气池空气补给调节装置系统

Similar Documents

Publication Publication Date Title
US5480537A (en) Apparatus for waste water treatment using calcium carbonate mineral and microorganisms in combination
US7329341B2 (en) Wastewater treatment device
CN212450817U (zh) 一种移动床生物膜反应系统及其应用
US20080251451A1 (en) Method and Apparatus for the Aerobic Treatment of Waste
JP5425992B2 (ja) 水処理装置
CN106946355A (zh) 一种射流曝气式a/o一体化污水处理装置及其污水处理工艺
CN101830555A (zh) 一种射流曝气装置及其射流曝气方法
KR19990076442A (ko) 탈취, 소포, 간헐폭기 및 내부순환 기능이 구비된 하폐수처리장치 및 하폐수처리방법
CN106045206A (zh) 生物脱氮除磷工艺中启动并稳定维持丝状菌微膨胀的装置与方法
JP2001276879A (ja) 曝気槽用の散気式攪拌装置
KR100527172B1 (ko) 축산폐수 및 분뇨등 고농도의 질소를 함유하는 오폐수처리장치 및 방법
JP2972992B2 (ja) 有機質廃液の曝気槽とその曝気槽を用いた曝気処理装置
JP5167447B2 (ja) 水処理装置
CN208038266U (zh) 一种一体化医院污水处理装置
CN209468182U (zh) 一种基于mbbr的高效自养脱氮系统
JP2011025200A5 (ja)
CN109354167A (zh) 一种基于mbbr的高效自养脱氮系统的快速启动方法
CN208500513U (zh) 智能化水处理集成系统
KR200355479Y1 (ko) 심층교반 회분식 오·폐수처리시스템
CN208038118U (zh) 一种高效能曝气装置
CN113045117A (zh) 智慧型污水处理一体化设备和污水处理方法
CN207079135U (zh) 可用于农村生活污水处理的小型净化装置
US20120181233A1 (en) Wastewater treatment system and method
CN201442890U (zh) 小型污水生物处理系统
CN217600471U (zh) 一种一体化污水处理设备