JP2001276614A - Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase - Google Patents

Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase

Info

Publication number
JP2001276614A
JP2001276614A JP2000097171A JP2000097171A JP2001276614A JP 2001276614 A JP2001276614 A JP 2001276614A JP 2000097171 A JP2000097171 A JP 2000097171A JP 2000097171 A JP2000097171 A JP 2000097171A JP 2001276614 A JP2001276614 A JP 2001276614A
Authority
JP
Japan
Prior art keywords
water
active material
photocatalyst layer
photocatalytic
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000097171A
Other languages
Japanese (ja)
Inventor
Shinichi Ogawa
信一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2000097171A priority Critical patent/JP2001276614A/en
Publication of JP2001276614A publication Critical patent/JP2001276614A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a photocatalytic active material for gas phase excellent in photocatalytic activity and capable of decomposing a harmful material in gas in a short time and to provide the photocatalytic active material for gas phase. SOLUTION: The photocatalytic active material for gas phase is manufactured by forming a photocatalyst layer containing the photocatalytic active material and bringing the photocatalyst layer into contact with the liquid containing water or forming the photocatalyst layer containing the photocatalytic active material and a water-retaining material and bringing the photocatalyst layer into contact with the liquid containing the water or putting the photocatalyst layer in an atmosphere containing moisture. In the photocatalytic active material for gas phase, the water content R expressed by formula (I) (Aw is the weight of the moisture in the photocatalyst layer, Ap is the weight of the photocatalytic active material) is >=1 wt.%. R(%)=[Aw/(Aw+Ap)]×100... (I).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気相用光触媒活性
材料の製造方法および気相用光触媒活性材料に関する。
さらに詳しくは、本発明は、光触媒活性能に優れ、例え
ばガス中の有害物質を短時間で処理し得る気相用光触媒
活性材料を効率よく製造する方法、および上記の優れた
機能を有する気相用光触媒活性材料に関するものであ
る。
The present invention relates to a method for producing a photocatalytic active material for a gas phase and a photocatalytic active material for a gas phase.
More specifically, the present invention provides a method for efficiently producing a photocatalytically active material having excellent photocatalytic activity, for example, capable of treating harmful substances in a gas in a short time, and a gaseous phase having the above-mentioned excellent functions. The present invention relates to a photocatalytic active material for use.

【0002】[0002]

【従来の技術】近年、環境問題に対する関心の高まりに
伴い、人体に悪影響を及ぼす有害物質や、悪臭などの日
常生活における有害物質の除去に対する要求が増えてき
ている。有害物質の処理方法としては、例えば(1)吸
着剤に吸着させて、後で吸着剤を処理する方法、(2)
希釈して環境中に放出する方法、(3)汚染されている
もの(例えば、土壌など)を交換する方法、などが知ら
れており、そして、環境を回復する際、実際にこれらの
手段が講ぜられている。しかしながら、これらの方法は
有害物質を無害化している訳ではなく、とりあえず取り
除いただけであり、根本的な解決方法とはいえない。
2. Description of the Related Art In recent years, with increasing interest in environmental problems, there has been an increasing demand for the removal of harmful substances that have an adverse effect on the human body and harmful substances such as odors in daily life. As a method for treating harmful substances, for example, (1) a method of adsorbing on an adsorbent and treating the adsorbent later, (2)
Methods of diluting and releasing into the environment, (3) methods of replacing contaminated substances (for example, soil, etc.) are known, and when recovering the environment, these means are actually used. Has been taken. However, these methods do not render harmful substances harmless, but only remove them for the time being, and cannot be said to be fundamental solutions.

【0003】ところで、ある種の金属化合物は光触媒作
用を有することが知られている。この光触媒作用は、光
エネルギーを吸収することで、スーパーオキサイドアニ
オン(・O2 -)、ヒドロキシラジカル(・OH)などの
反応活性種を発生させ、その結果有機物を酸化分解する
ので、近年、この光触媒作用を利用して防汚、防臭、抗
菌、殺菌、空気浄化、水浄化、環境浄化などに応用しよ
うとする試みが積極的になされている。
Incidentally, it is known that certain metal compounds have a photocatalytic action. This photocatalytic action absorbs light energy to generate reactive species such as superoxide anion (.O 2 ) and hydroxyl radical (.OH), and as a result, oxidatively decomposes organic substances. Attempts are being actively made to apply antifouling, deodorization, antibacterial, sterilization, air purification, water purification, environmental purification, and the like using photocatalysis.

【0004】光触媒作用を有する金属化合物(以下、光
触媒と称すことがある)としては、例えば二酸化チタ
ン、チタン酸バリウム(BaTi49)、チタン酸スト
ロンチウム(SrTiO3)、チタン酸ナトリウム(N
2Ti613)、二酸化ジルコニウム、硫化カドミウ
ム、α−Fe23などが知られているが、これらの中で
二酸化チタンが代表的である。
Examples of metal compounds having a photocatalytic action (hereinafter sometimes referred to as photocatalysts) include, for example, titanium dioxide, barium titanate (BaTi 4 O 9 ), strontium titanate (SrTiO 3 ), and sodium titanate (N
a 2 Ti 6 O 13 ), zirconium dioxide, cadmium sulfide, α-Fe 2 O 3 and the like are known, and among these, titanium dioxide is typical.

【0005】このような光触媒が光を吸収すると、極め
て強い分解力が生じ、この作用によって有機物が二酸化
炭素(CO2)と水(H2O)にまで分解されていること
が知られている。分解対象物質が有害有機物の場合、二
酸化炭素、水にまで分解されると言うことは、有害物質
が無害化されることを意味しており、穏和な条件(光を
照射するだけ)で無害化できることから、有害有機物の
処理方法として、気相系、液相系に限らず、光触媒によ
る有害有機物の処理方法が大きな注目を集め、実用化さ
れつつある。
It is known that when such a photocatalyst absorbs light, an extremely strong decomposing power is generated, and an organic substance is decomposed into carbon dioxide (CO 2 ) and water (H 2 O) by this action. . If the substance to be decomposed is a harmful organic substance, decomposing it into carbon dioxide and water means that the harmful substance is made harmless, and it is made harmless under mild conditions (only by irradiating light). For this reason, as a method for treating harmful organic substances, not only a gas phase system and a liquid phase system, but also a method for treating harmful organic substances using a photocatalyst attracts great attention and is being put to practical use.

【0006】有害物質を処理する場合、より短時間で処
理できることが好ましいことは言うまでもない。光触媒
を用いた分解では、処理速度を上げようとする場合、例
えば(1)照射光量を上げる、(2)光触媒量を増や
す、(3)反応面積を増やす、(4)加熱する、(5)
酸素濃度を増やす、(5)貴金属微粒子を添加する、な
どの方法が用いられることが多い。しかしながら、これ
らの方法は、処理速度をある程度上げることはできるも
のの限界があり、設置、稼働の費用増に繋がり、コスト
的に現実的な方法とは言えなかった。
When treating harmful substances, it is needless to say that the treatment can be performed in a shorter time. In the decomposition using a photocatalyst, in order to increase the processing speed, for example, (1) increase the irradiation light amount, (2) increase the amount of photocatalyst, (3) increase the reaction area, (4) heat, (5)
A method of increasing the oxygen concentration, (5) adding noble metal fine particles, and the like are often used. However, these methods can increase the processing speed to some extent, but have a limit, which leads to an increase in installation and operation costs, and cannot be said to be realistic in terms of cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、光触媒活性能に優れ、例えばガス中の有
害物質を短時間で分解処理し得る気相用光触媒活性材料
を効率よく製造する方法、および上記の優れた機能を有
する気相用光触媒活性材料を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a photocatalytic active material for a gaseous phase which has excellent photocatalytic activity and can decompose harmful substances in a gas in a short time. It is an object of the present invention to provide a well-produced method and a photocatalytically active material for a gas phase having the above-mentioned excellent functions.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、光触媒活性物
質を含む光触媒層を水を含む液体に接触させることによ
り、あるいは光触媒活性物質と保水性物質とを含む光触
媒層を水を含む液体に接触させるか、または水分を含む
雰囲気中に置くことにより、所望の気相用光触媒活性材
料が得られること、そして、光触媒層の含水率が1重量
%以上の光触媒活性材料が、気相用光触媒活性材料とし
て、優れた光触媒活性能を有することを見出した。本発
明は、かかる知見に基づいて完成したものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, contacting a photocatalytic layer containing a photocatalytic active substance with a liquid containing water, or By contacting the photocatalyst layer containing the substance and the water-retentive substance with a liquid containing water or placing it in an atmosphere containing moisture, a desired photocatalytic active material for a gas phase can be obtained. It has been found that a photocatalytic active material having a ratio of 1% by weight or more has excellent photocatalytic activity as a gas phase photocatalytic active material. The present invention has been completed based on such findings.

【0009】すなわち、本発明は、(1)光触媒活性物
質を含む光触媒層を有し、気相中で該光触媒活性物質に
よる分解作用を奏させる気相用光触媒活性材料の製造方
法であって、上記光触媒活性物質を含む光触媒層を形成
したのち、該光触媒層を水を含む液体に接触させる工程
を行うことを特徴とする気相用光触媒活性材料の製造方
法、(2)光触媒活性物質を含む光触媒層を有し、気相
中で該光触媒活性物質による分解作用を奏させる気相用
光触媒活性材料の製造方法であって、上記光触媒活性物
質と保水性物質とを含む光触媒層を形成したのち、該光
触媒層を水を含む液体に接触させるか、または水分を含
む雰囲気中に置く工程を行うことを特徴とする気相用光
触媒活性材料の製造方法、および(3)光触媒活性物質
を含む光触媒層を有し、気相中で該光触媒活性物質によ
る分解作用を奏させる気相用光触媒活性材料であって、
該光触媒層において、式(I) R(%)=[Aw/(Aw+Ap)]×100 …(I) (ただし、Awは光触媒層中の水分重量、Apは光触媒
層中の光触媒活性物質重量を示す。)で表される含水率
Rが1重量%以上であることを特徴とする気相用光触媒
活性材料、を提供するものである。
That is, the present invention provides (1) a method for producing a photocatalytic active material for a gas phase, which has a photocatalytic layer containing a photocatalytic active substance, and exhibits a decomposition action by the photocatalytic active substance in a gas phase. After forming the photocatalytic layer containing the photocatalytic active substance, a step of contacting the photocatalytic layer with a liquid containing water is performed. A method for producing a gas phase photocatalytic active material having a photocatalytic layer and exhibiting a decomposition action of the photocatalytic active material in a gas phase, comprising forming a photocatalytic layer containing the photocatalytic active material and a water retention material. Contacting the photocatalyst layer with a liquid containing water or placing the photocatalyst layer in an atmosphere containing water, and (3) a photocatalyst containing a photocatalytic active substance. Layers And, a decomposition action of the photocatalyst active substance in the gas phase photocatalytic activity material that exhibited in the gas phase,
In the photocatalyst layer, the formula (I) R (%) = [Aw / (Aw + Ap)] × 100 (I) (where, Aw is the weight of water in the photocatalyst layer, and Ap is the weight of the photocatalytic active substance in the photocatalyst layer) Wherein the water content R is 1% by weight or more.

【0010】[0010]

【発明の実施の形態】本発明の気相用光触媒活性材料の
製造方法は、光触媒活性物質を含む光触媒層を有し、気
相中で該光触媒活性物質による分解作用を奏させる気相
用光触媒活性材料の製造方法であって、2つの態様、す
なわち(1)上記光触媒活性物質を含む光触媒層を形成
したのち、該光触媒層を水を含む液体に接触させる工程
を行う方法(製造方法I)と、(2)上記光触媒活性物
質と保水性物質とを含む光触媒層を形成したのち、該光
触媒層を水を含む液体に接触させるか、または水分を含
む雰囲気中に置く工程を行う方法(製造方法II)があ
り、これらによって、光触媒層中に積極的に水分が含有
される。
BEST MODE FOR CARRYING OUT THE INVENTION The process for producing a photocatalytically active material for a gas phase according to the present invention has a photocatalyst layer containing a photocatalytically active substance, and the photocatalyst for a gaseous phase exhibits a decomposition action by the photocatalytically active substance in the gas phase. A method for producing an active material, comprising two steps: (1) forming a photocatalyst layer containing the photocatalytically active substance and then contacting the photocatalyst layer with a liquid containing water (production method I) And (2) a method of forming a photocatalyst layer containing the photocatalytically active substance and the water-retaining substance, and then contacting the photocatalyst layer with a liquid containing water or placing it in an atmosphere containing water (manufacturing) There is a method II), whereby water is positively contained in the photocatalytic layer.

【0011】本発明の製造方法IおよびIIにおいて、光
触媒層が形成される基材としては、その材質については
特に制限はなく、例えば有機高分子化合物、紙、セラミ
ック、ガラス、金属などからなる基材を用いることがで
きる。また、その形状についても特に制限はなく、例え
ば板状、シート状、繊維状、ハニカム状、円筒状、ファ
イバー状、ロッド状、球状、粒状など、任意の形状のも
のを用いることができる。
In the production methods I and II of the present invention, the substrate on which the photocatalytic layer is formed is not particularly limited in its material, and may be, for example, an organic polymer compound, paper, ceramic, glass, metal or the like. Materials can be used. The shape is not particularly limited, and any shape such as a plate, a sheet, a fiber, a honeycomb, a cylinder, a fiber, a rod, a sphere, and a particle can be used.

【0012】本発明の製造方法IおよびIIにおいて、光
触媒層に用いられる光触媒活性物質としては、各種の半
導体、例えばTiO2、ZnO、SnO2、WO3、V2
5、CdO、Fe23、In23、ZrO2、KTa
3、SrTiO3、Nb25などの酸化物系半導体、C
dS、ZnS、PbS、WS3、In23、ZnxCd(1
-x)S、CdSxSe(1-x)などの硫化物系半導体、Cd
Se、ZnSe、CdTe、ZnTe、PbSe、WS
3などのカルコゲナイド系半導体、あるいはSi、S
e、GaAs、Gaなどの上記以外の半導体を挙げるこ
とができる。
In the production methods I and II of the present invention,
Various types of photocatalytic active materials used in the catalyst layer
Conductor, eg TiOTwo, ZnO, SnOTwo, WOThree, VTwoO
Five, CdO, FeTwoOThree, InTwoOThree, ZrOTwo, KTa
OThree, SrTiOThree, NbTwoOFiveOxide semiconductors such as C
dS, ZnS, PbS, WSThree, InTwoSThree, ZnxCd(1
-x)S, CdSxSe(1-x)Such as sulfide semiconductors, Cd
Se, ZnSe, CdTe, ZnTe, PbSe, WS
eThreeChalcogenide semiconductors such as Si, S
Other semiconductors such as e, GaAs, Ga, etc.
Can be.

【0013】これらの光触媒活性物質は、単独で用いて
もよいし、2種以上を組み合わせて用いてもよい。これ
らの光触媒活性物質の中では、酸化物系半導体と硫化物
系半導体が好ましく、特に酸化物系半導体が好適であ
る。また、これら半導体の結晶構造は特に制限されな
い。例えば、TiO2の場合には、アナターゼ型、ルチ
ル型、ブルッカイト型、アモルファス型があるが、いず
れであってもよいし、単独または2種以上の組み合わせ
でもよい。
[0013] These photocatalytically active substances may be used alone or in combination of two or more. Among these photocatalytically active substances, oxide-based semiconductors and sulfide-based semiconductors are preferred, and oxide-based semiconductors are particularly preferred. The crystal structures of these semiconductors are not particularly limited. For example, in the case of TiO 2 , there are anatase type, rutile type, brookite type and amorphous type, but any of them may be used, or a single type or a combination of two or more types may be used.

【0014】このような光触媒活性物質の形態として
は、例えば粉末状(粉末状の光触媒)、スラリー/分散
タイプ(光触媒粉末を溶媒に懸濁若しくは分散させた液
状のもの)、バインダータイプ(光触媒粉末をバインダ
ー成分に分散若しくは懸濁させた液状のもの)、および
熱処理タイプ(所望の半導体の金属成分を含む有機金属
化合物を溶媒に溶解した液状のもの)、などを挙げるこ
とができる。
Examples of the form of the photocatalytically active substance include powdery (powder-like photocatalyst), slurry / dispersion type (liquid form in which the photocatalyst powder is suspended or dispersed in a solvent), and binder type (photocatalyst powder). And a heat treatment type (a liquid in which an organometallic compound containing a desired semiconductor metal component is dissolved in a solvent), and the like.

【0015】本発明の製造方法Iにおいては、基材上
に、上記光触媒活性物質を含む光触媒層を常法に従って
形成したのち、該光触媒層を水分を含む液体に接触させ
て、光触媒層中に水分を積極的に含有させる。
In the production method I of the present invention, a photocatalyst layer containing the photocatalytically active substance is formed on a substrate according to a conventional method, and then the photocatalyst layer is brought into contact with a liquid containing water to form the photocatalyst layer in the photocatalyst layer. Actively contain moisture.

【0016】一方、製造方法IIにおいて、前記光触媒活
性物質と併用される保水性物質としては、例えばシリ
カ、アルミナ、酸化鉄、ゼオライトなどの金属酸化物が
使用できる。保水量を多くするために、これらは多孔質
状、微粒子状、層状であることが好ましい。また、モン
モリロナイト、バイデライト、サポナイト、ノントロナ
イト、ヘクトライト、ソーコナイト、スチブンサイト等
の粘土鉱物や、層状ポリケイ酸塩、層状ペロブスカイト
等を使用することができる。これらは、単独で用いても
よいし、2種以上を組み合わせて用いてもよい。また、
光触媒活性物質との間に無機質の保水性物質などを介在
させることにより、吸水性ポリマーなどを用いることも
可能である。
On the other hand, in the production method II, metal oxides such as silica, alumina, iron oxide and zeolite can be used as the water retentive substance used in combination with the photocatalytically active substance. In order to increase the water holding capacity, these are preferably porous, fine particles, or layered. Further, clay minerals such as montmorillonite, beidellite, saponite, nontronite, hectorite, sauconite, and stevensite, layered polysilicate, layered perovskite, and the like can be used. These may be used alone or in combination of two or more. Also,
It is also possible to use a water-absorbing polymer or the like by interposing an inorganic water-retaining substance or the like between the photocatalytically active substance and the like.

【0017】この保水性物質を、光触媒活性物質と共
に、光触媒層に含有させる場合、その使用量は、所望の
含水率、光触媒活性物質の種類、形態などに応じて適宜
選定することができる。例えば、光触媒活性物質と保水
性物質との合計量に対し、保水性物質の量が、通常0.
01〜50重量%、好ましくは0.05〜25重量%、
さらに好ましくは0.1〜20重量%になるように選定
される。
When the water-retaining substance is contained in the photocatalyst layer together with the photocatalytic active substance, the amount used can be appropriately selected according to the desired water content, the type and form of the photocatalytic active substance, and the like. For example, the amount of the water-retaining substance is usually 0.1 to the total amount of the photocatalytically active substance and the water-retaining substance.
01 to 50% by weight, preferably 0.05 to 25% by weight,
More preferably, it is selected to be 0.1 to 20% by weight.

【0018】本発明の製造方法IIにおいては、基材上
に、前記の光触媒活性物質と保水性物質とを含む光触媒
層を常法に従って形成したのち、該光触媒層を水を含む
液体に接触させるか、または水分を含む雰囲気中に置く
ことにより、光触媒層中に水分を積極的に含有させる。
このようにして、光触媒活性能に優れる気相用光触媒活
性材料を効率よく製造することができる。
In the production method II of the present invention, a photocatalyst layer containing the photocatalytically active substance and the water-retaining substance is formed on a substrate according to a conventional method, and the photocatalyst layer is brought into contact with a liquid containing water. Alternatively, by placing the photocatalyst layer in an atmosphere containing moisture, moisture is positively contained in the photocatalyst layer.
In this way, a photocatalytically active material for a gas phase having excellent photocatalytic activity can be efficiently produced.

【0019】次に、本発明の気相用光触媒活性材料につ
いて説明する。本発明の気相用光触媒活性材料は、前述
の基材上に、前述の光触媒活性物質を含む光触媒層を有
し、気相中で該光触媒活性物質による分解作用を奏させ
る材料であって、上記光触媒層は、光触媒活性物質のみ
を含む光触媒層を光触媒活性材料が使用される環境の温
度、湿度で放置させた際の光触媒層中の吸着平衡に達し
た水分量よりも多く水分を保有することが必要である。
Next, the photocatalytically active material for a gas phase of the present invention will be described. The photocatalytic active material for a gas phase of the present invention has a photocatalytic layer containing the aforementioned photocatalytically active substance on the aforementioned base material, and is a material that exhibits a decomposition action by the photocatalytically active substance in the gas phase. The photocatalyst layer contains more water than the amount of water that has reached the adsorption equilibrium in the photocatalytic layer when the photocatalytic layer containing only the photocatalytic active substance is left at the temperature and humidity of the environment where the photocatalytic active material is used. It is necessary.

【0020】光触媒の分解力は、下記の式で示す活性酸
素種が、表面に吸着した有機物を酸化または還元するこ
とによって生じているといわれている。
It is said that the decomposing power of the photocatalyst is generated by the oxidation or reduction of organic substances adsorbed on the surface by active oxygen species represented by the following formula.

【0021】[0021]

【化1】 Embedded image

【0022】これらの反応式から明らかなように、光以
外に、水(H2O)と酸素(O2)が重要な役割を担って
いることが判る。すなわち、反応をより進行させて反応
速度を上げるためには、より多くの光、水分、酸素と共
に、より多くの被分解物を関与させてやればよい。ここ
で、水分量に着目したときに、当該反応時に該光触媒活
性材料の表面を水で覆った状態が最も水分が潤沢な状態
と考えられるが、これではむしろ酸素、被分解物の関与
を妨げる結果となる。そこで考え出されたのが、光触媒
層の含水率を後で説明するようにある値以上にしておく
ことを特徴とする本発明の気相用光触媒活性材料であ
る。したがって、本発明においては、該光触媒層に前記
したような量の水分を保有させる。また、この際の光触
媒層中の含水率は、式(I) R(%)=[Aw/(Aw+Ap)]×100 …(I) (ただし、Awは光触媒層中の水分重量、Apは光触媒
層中の光触媒活性物質重量を示す。)で表されるRが少
なくとも1重量%以上、好ましくは5重量%以上、さら
に好ましくは8重量%以上である。また、上限は、通常
多くとも40重量%である。
As apparent from these reaction formulas, it is understood that water (H 2 O) and oxygen (O 2 ) play important roles in addition to light. That is, in order to make the reaction proceed further and increase the reaction rate, it is sufficient to involve more decomposed substances together with more light, moisture and oxygen. Here, when attention is paid to the amount of water, the state in which the surface of the photocatalytically active material is covered with water during the reaction is considered to be the state where the water is the most abundant, but this rather prevents the participation of oxygen and decomposed substances. Results. What has been devised is a photocatalytic active material for a gas phase according to the present invention, characterized in that the water content of the photocatalyst layer is set to a certain value or more as described later. Therefore, in the present invention, the photocatalyst layer has the above-mentioned amount of water. The water content in the photocatalyst layer at this time is represented by the formula (I) R (%) = [Aw / (Aw + Ap)] × 100 (I) (where Aw is the weight of water in the photocatalyst layer, and Ap is the photocatalyst) R represents at least 1% by weight, preferably at least 5% by weight, more preferably at least 8% by weight. The upper limit is usually at most 40% by weight.

【0023】このRが40重量%よりも多くなるように
水分を含有させることは、実際には困難である上、Rが
40重量%を超えるとその量の割には光触媒活性能の向
上効果があまり認められない場合がある。好ましくは3
0重量%以下、さらに好ましくは20重量%以下であ
る。Rの下限は1重量%である。含水率Rが1重量%未
満である場合には、必ずしも反応速度の向上という効果
は得られない。ここで、光触媒層を単に高湿度の雰囲気
中に放置することだけによっては含水率Rは1重量%を
超えることはなく、光触媒層の含水率Rを1重量%以上
にするためには、前記の気相用光触媒活性材料の製造方
法I、IIで説明したように、光触媒層に積極的に水分を
含有させる手段を講じなければならない。
It is actually difficult to make the water content so that R is more than 40% by weight. In addition, when R exceeds 40% by weight, the effect of improving the photocatalytic activity is not so good for the amount. May not be recognized very much. Preferably 3
0% by weight or less, more preferably 20% by weight or less. The lower limit of R is 1% by weight. When the water content R is less than 1% by weight, the effect of improving the reaction rate cannot always be obtained. Here, the water content R does not exceed 1% by weight merely by leaving the photocatalyst layer in an atmosphere of high humidity, and in order to make the water content R of the photocatalyst layer 1% by weight or more, As described in the methods I and II for producing the photocatalytically active material for a gas phase, means must be taken to make the photocatalytic layer actively contain moisture.

【0024】本発明の気相用光触媒活性材料において
は、光触媒層に積極的にこのような量の水分を含有させ
る方法としては特に制限はなく、様々な方法を用いるこ
とができるが、以下に示す方法に従えば、極めて効率よ
く、光触媒層に水分を含有させることができる。
In the photocatalytic active material for gas phase of the present invention, there is no particular limitation on the method for positively containing such an amount of water in the photocatalyst layer, and various methods can be used. According to the method shown, moisture can be contained in the photocatalyst layer extremely efficiently.

【0025】本発明においては、(1)光触媒層に光触
媒活性物質と共に、保水性物質を含有させ、水分を含む
気相中に放置させるか、または水を含む液体と接触させ
る方法(本発明の製造方法II)、(2)光触媒層の上又
は下に、多孔質保水性物質層を設け、水分を含む気相中
に放置させるか、または水を含む液体と接触させる方
法、あるいは(3)光触媒活性物質を含む光触媒層を水
を含む液体と接触させる方法(本発明の製造方法I)が
用いられる。
In the present invention, (1) a method in which a water-retentive substance is contained in a photocatalyst layer together with a photocatalytically active substance, and the photocatalytic layer is allowed to stand in a gas phase containing water or is brought into contact with a liquid containing water (the method of the present invention). Production method II), (2) a method in which a porous water-retaining material layer is provided above or below the photocatalyst layer and left in a water-containing gas phase or brought into contact with a water-containing liquid, or (3) A method in which a photocatalytic layer containing a photocatalytically active substance is brought into contact with a liquid containing water (the production method I of the present invention) is used.

【0026】また、これらの方法においては、基材とし
て、保水性物質からなる多孔質基材を用いることができ
る。この多孔質基材を用い、該基材に水を含む液体と接
触させることにより、光触媒層に効率よく水分を連続的
に補給することができる。
In these methods, a porous substrate made of a water retention material can be used as the substrate. By using this porous substrate and bringing the substrate into contact with a liquid containing water, water can be continuously and efficiently supplied to the photocatalyst layer.

【0027】また、前記(3)の場合には、光触媒活性
物質自体が多孔質であることが好ましい。このため、本
発明においては、特に(3)の方法で用いる光触媒活性
物質は、単結晶よりも、粉体の焼付け法、ゾルゲル法、
スパッタ法、蒸着法などの方法で光触媒層化されたもの
が好ましい。なお、光触媒活性物質が多孔質でない場合
でも、水を含んだ液体との接触時間を長くすることによ
って、所望の含水率にすることは可能である。
In the case of the above (3), the photocatalytically active substance itself is preferably porous. Therefore, in the present invention, in particular, the photocatalytic active substance used in the method (3) is preferably a powder baking method, a sol-gel method,
Those formed into a photocatalytic layer by a method such as a sputtering method and a vapor deposition method are preferable. In addition, even when the photocatalytically active substance is not porous, it is possible to obtain a desired water content by extending the contact time with a liquid containing water.

【0028】(3)の方法としては、具体的には、次の
方法を用いることができる。 (イ)光触媒層を水に浸漬する。 (ロ)超音波霧化器などによって作られた水を含む微粒
子と光触媒を接触させる。 (ハ)水を含む液体を加熱して発生した水蒸気と光触媒
を接触させる。 (ニ)水分を含んだ空気を冷却した光触媒に接触させ
る。
As the method (3), specifically, the following method can be used. (A) Immerse the photocatalyst layer in water. (B) The photocatalyst is brought into contact with fine particles containing water produced by an ultrasonic atomizer or the like. (C) Contacting water vapor generated by heating a liquid containing water with a photocatalyst. (D) bringing air containing water into contact with the cooled photocatalyst;

【0029】さらに、保水性物質からなる多孔質基材、
あるいは光触媒層の上または下に設けられる多孔質保水
性物質層の厚みは、通常0.01μm〜1cm、好まし
くは0.05μm〜1mm、さらに好ましくは0.1μ
m〜100μmの範囲である。なお、保水性物質からな
る多孔質基材、あるいは光触媒層の上または下に保水性
物質層を形成する場合、保水性物質の種類によっては、
保水性物質のみを用いて形成してもよいし、バインダー
を用いて形成してもよい。
Further, a porous substrate comprising a water-retentive substance,
Alternatively, the thickness of the porous water-retaining material layer provided above or below the photocatalyst layer is usually 0.01 μm to 1 cm, preferably 0.05 μm to 1 mm, and more preferably 0.1 μm.
m to 100 μm. In addition, when forming a water retention material layer above or below a porous substrate made of a water retention material, or a photocatalytic layer, depending on the type of water retention material,
It may be formed using only a water retention material, or may be formed using a binder.

【0030】このようにして得られた本発明の気相用光
触媒活性材料は、光触媒活性能に優れており、大気中の
有機有害物質を短時間で二酸化炭素と水に分解し、無害
化することができ、環境浄化などに好適に用いられる。
また、保水性物質を用いた場合には、保水性物質が雰囲
気中の水分を取り込み、光触媒層中の水分を一定量以上
に保っておくことも可能である。
The thus-obtained photocatalytically active material for a gas phase of the present invention is excellent in photocatalytic activity and decomposes organic harmful substances in the atmosphere into carbon dioxide and water in a short time to render them harmless. It can be suitably used for environmental purification and the like.
When a water-retentive substance is used, the water-retentive substance can take in moisture in the atmosphere and keep the moisture in the photocatalyst layer at a certain level or more.

【0031】本発明の気相用光触媒活性材料は、基材と
して導光体(ガラス)を用いてその表面に光触媒層を設
け、該導光体に光(光触媒活性物質を活性化する波長の
光)を導入して、上記光触媒層に漏れ出さすことで、そ
の光触媒層表面の被分解物を分解する光触媒フィルター
にも適用することができる。この場合、光触媒層に積極
的に水分を含有させる手段としては、保水性物質を用い
ない前記(3)の方法によるか、または光触媒活性物質
を活性化するために用いる光を吸収しない保水性物質を
用いることが好ましい。
The photocatalytic active material for a gas phase according to the present invention comprises a light guide (glass) as a base material, a photocatalyst layer provided on the surface thereof, and a light (a wavelength for activating the photocatalytic active substance) on the light guide. The light can be applied to a photocatalyst filter that decomposes decomposed substances on the surface of the photocatalyst layer by introducing the light and leaking the photocatalyst layer. In this case, as a means for positively containing water in the photocatalyst layer, the method of the above (3) not using a water retention material, or a water retention material not absorbing light used for activating the photocatalytic active material is used. It is preferable to use

【0032】該光を吸収しない保水性物質としては、純
粋なシリカゲルなどが挙げられる。また、このような光
を吸収しない保水性物質を用いれば、この保水性物質を
上記光触媒層の下層に設けて、該光触媒層の表面積を広
くすることができるため、好ましい。
Examples of the water-retaining material that does not absorb light include pure silica gel. It is preferable to use such a water-retentive substance which does not absorb light, since the water-retentive substance can be provided below the photocatalyst layer to increase the surface area of the photocatalyst layer.

【0033】本発明の気相用光触媒活性材料を装着して
なる光触媒装置は、ガス中の有機物質の気体や微粒子の
分解、除去に好適に用いられる。ガス中の有機物質の微
粒子を分解、除去するには、上記のようなフィルター形
式が好適である。
The photocatalytic device equipped with the photocatalytic active material for a gas phase according to the present invention is suitably used for decomposing and removing gas and fine particles of an organic substance in a gas. In order to decompose and remove the fine particles of the organic substance in the gas, the above-mentioned filter type is suitable.

【0034】すなわち、本発明の気相用光触媒活性材料
を用いた光触媒フィルターにおいては、その表面で光触
媒反応を起こし、強い酸化力と還元力を生じ、フィルタ
ーに捕集された物質を分解して除去する。分解除去しう
るガス中の捕集可能な物質としては、例えばフューム、
ダスト、大気塵、たばこの煙、粉塵、ビールス、バクテ
リア、悪臭物質(アセトアルデヒド、メチルメルカプタ
ンなど)、有害物質(トリクロロエチレン、テトラクロ
ロエチレン、ベンゼン、トルエンなど)などが挙げられ
る。
That is, in the photocatalytic filter using the photocatalytic active material for a gas phase according to the present invention, a photocatalytic reaction is caused on the surface to generate a strong oxidizing power and a reducing power, and a substance collected by the filter is decomposed. Remove. As a trappable substance in a gas that can be decomposed and removed, for example, fume,
Examples include dust, atmospheric dust, tobacco smoke, dust, viruses, bacteria, malodorous substances (acetaldehyde, methyl mercaptan, etc.), harmful substances (trichloroethylene, tetrachloroethylene, benzene, toluene, etc.).

【0035】上記光触媒フィルターとしては、ファイバ
ー状、板状、シート状などの形状を有する基材を用いた
本発明の気相用光触媒活性材料の表面に突起を設け、こ
れを束ねることにより、作製されたものが好適である。
このような光触媒フィルターにおいては、該突起として
前記保水性物質からなる粒状物を用いることができる
が、この場合、光触媒活性物質を活性化するのに用いら
れる光を吸収しない保水性物質の粒状物を用い、突起と
保水性物質を兼ねる構造にすることもできる。
The photocatalyst filter is prepared by forming projections on the surface of a photocatalytic active material for a gas phase of the present invention using a substrate having a fiber, plate, sheet or other shape and bundling them. What was done is suitable.
In such a photocatalytic filter, granules made of the water-retaining material can be used as the projections. In this case, particles of the water-retaining material that does not absorb light used to activate the photocatalytically active material can be used. And a structure that also serves as a protrusion and a water-retaining material can be used.

【0036】この光触媒フィルターは、例えばディーゼ
ルエンジンの排気ガス中に含まれる黒煙や、未燃焼炭化
水素及び潤滑油からなる固体粒状物(パーティキュレー
ト)を除去するためのディーゼルパーティキュレートフ
ィルター(DPF)、ガス処理フィルター(例えば、ク
リーンルーム用のエアフィルター、空気清浄機)などと
して、好適に使用することができる。
This photocatalytic filter is, for example, a diesel particulate filter (DPF) for removing black smoke contained in exhaust gas of a diesel engine and solid particulate matter (particulate) composed of unburned hydrocarbons and lubricating oil. It can be suitably used as a gas treatment filter (for example, an air filter for a clean room, an air purifier) and the like.

【0037】[0037]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0038】なお、有機物質の濃度及び光触媒層中の含
水率は、以下に示す方法に従って測定した。 (1)有機物質の濃度 有機物質の濃度は、ガスクロマトグラフ分析法により測
定した。また、ガスクロマトグラフにて検出されなくな
った時点を濃度0とした。分析に使用した装置および条
件は、下記のとおりである。 装置 :ガスクロマトグラフBC−14B((株)島津製
作所) 検出器:FID カラム:SBS−120((株)島津製作所) 温度 :ディテクタ温度 200℃ 気化室温度 200℃ カラムオーブン温度 100℃ 本例における有機物質濃度がxppmとは、ガス1m3
中に有機物質ガスがxcm3含まれていることを意味す
る。
The concentration of the organic substance and the water content in the photocatalyst layer were measured according to the following methods. (1) Concentration of organic substance The concentration of the organic substance was measured by gas chromatography. In addition, the point in time when detection was no longer performed by the gas chromatograph was defined as concentration 0. The equipment and conditions used for the analysis are as follows. Apparatus: Gas chromatograph BC-14B (Shimadzu Corporation) Detector: FID Column: SBS-120 (Shimadzu Corporation) Temperature: Detector temperature 200 ° C Vaporization chamber temperature 200 ° C Column oven temperature 100 ° C Organic in this example A substance concentration of x ppm is defined as 1 m 3 of gas.
It means that an organic substance gas is contained therein in xcm 3 .

【0039】(2)光触媒層の含水率R 含水率Rは、熱重量分析装置[(株)リガク製「TG81
10」]を用い、下記のようにして算出した。サンプル
カップに入れたTiO2粉末を装置にセットし、5℃/
分の速度で100℃まで昇温し、その温度で1時間保持
した。昇温前のサンプル重量と、100℃で1時間保持
した後の重量差を水分量とし、前述の式(I)を用いて
含水率Rを算出した。
(2) Water content R of the photocatalyst layer The water content R was measured using a thermogravimetric analyzer [“TG81” manufactured by Rigaku Corporation.
10 "] and was calculated as follows. The TiO 2 powder placed in the sample cup was set on the device,
The temperature was raised to 100 ° C. at a rate of one minute and maintained at that temperature for one hour. The difference between the weight of the sample before the temperature was raised and the weight after being held at 100 ° C. for 1 hour was defined as the water content, and the water content R was calculated using the above-described formula (I).

【0040】比較例1 TiO2微粒子スラリー[多木化学(株)製タイノックH
−30]を、3000rpmで15秒間スピンコートし
てガラス基板へ塗布したのち、500℃で2時間熱処理
した。この操作をもう一度繰り返し、厚み2.5μmの
TiO2膜付き基板を得た。これをバッチ式反応器にセ
ットし、密閉容器の湿度を50RH%とした、このとき
の光触媒層の含水率Rは0.9重量%であった。
COMPARATIVE EXAMPLE 1 TiO 2 fine particle slurry [Tainok H manufactured by Taki Kagaku Co., Ltd.]
-30] was spin-coated at 3000 rpm for 15 seconds and applied to a glass substrate, and then heat-treated at 500 ° C. for 2 hours. This operation was repeated once to obtain a 2.5 μm thick substrate with a TiO 2 film. This was set in a batch-type reactor, and the humidity of the closed vessel was set to 50 RH%. At this time, the water content R of the photocatalyst layer was 0.9% by weight.

【0041】次に、容器内にベンゼンの飽和ガスを注入
し、ベンゼン濃度を25ppmとした。撹拌下、ブラッ
クライトブルーを光源として、ベンゼンを分解させた。
このときの照射光量は、1.8mW/cm2であり、中
心波長は352nmであった。結果を図1に示す。照射
開始からベンゼン濃度が0となるまでの時間(以下、T
0と称す。)は、430分であった。
Next, a saturated gas of benzene was injected into the container to adjust the benzene concentration to 25 ppm. Under stirring, benzene was decomposed using black light blue as a light source.
The irradiation light amount at this time was 1.8 mW / cm 2 , and the center wavelength was 352 nm. The results are shown in FIG. Time from the start of irradiation until the benzene concentration becomes 0 (hereinafter, T
Called 0 . ) Was 430 minutes.

【0042】実施例1 比較例1と同じ条件で作製したTiO2膜付きガラス基
板を、イオン交換水中にし、暗所で室温にて3時間放置
した後、取り出して室温で1時間放置することによって
乾燥させた。乾燥後の光触媒層の含水率Rは11.8重
量%であった。このTiO2膜付きガラス基板を使用し
て、比較例1と同様の方法により、ベンゼンの分解評価
を行った。結果を図1に示す。この条件でのT0は70
分であり、水へのを行わなかった場合に比べ、分解時間
が約1/6と、大幅に短くなった。
Example 1 A glass substrate with a TiO 2 film prepared under the same conditions as in Comparative Example 1 was placed in ion-exchanged water, left at room temperature for 3 hours in a dark place, taken out, and left at room temperature for 1 hour. Let dry. The water content R of the photocatalyst layer after drying was 11.8% by weight. Using this glass substrate with a TiO 2 film, degradation of benzene was evaluated in the same manner as in Comparative Example 1. The results are shown in FIG. T 0 under this condition is 70
Minutes, and the decomposition time was greatly shortened to about 1/6 as compared with the case where water was not used.

【0043】実施例2 TiO2微粒子スラリー[多木化学(株)製タイノックH
−30]に、TiO2微粒子との合計量に対し、10重
量%となるようにシリカゲル微粒子[(株)東海化学工業
製マイクロイドML−836]を添加し、分散させた。
このコート液を3500rpmで30秒間スピンコート
してガラス基板へ塗布したのち、500℃で2時間熱処
理を行い、厚み1.7μmのシリカゲル含有TiO2
付き基板を得た。このシリカゲル含有TiO2膜付き基
板を、室温で湿度50RH%下、一晩放置することによ
って吸水させた。このときの光触媒層の含水率Rは5.
5重量%であった。次に、比較例1と同様の方法によ
り、ベンゼンの分解特性を評価した。このもののT
0は、100分であり、シリカゲルを含まないものに比
べて、約1/4の時間でベンゼンを処理することができ
た。
Example 2 TiO 2 fine particle slurry [Tainock H manufactured by Taki Kagaku Co., Ltd.
-30], silica gel fine particles [Microid ML-836 manufactured by Tokai Chemical Industry Co., Ltd.] were added and dispersed so as to be 10% by weight with respect to the total amount of the TiO 2 fine particles.
This coating solution was spin-coated at 3500 rpm for 30 seconds and applied to a glass substrate, and then heat-treated at 500 ° C. for 2 hours to obtain a 1.7 μm-thick silica gel-containing substrate with a TiO 2 film. The silica gel-containing substrate with a TiO 2 film was allowed to absorb water by leaving it at room temperature under a humidity of 50 RH% overnight. At this time, the water content R of the photocatalyst layer was 5.
It was 5% by weight. Next, the decomposition characteristics of benzene were evaluated in the same manner as in Comparative Example 1. T of this thing
0 was 100 minutes, and benzene was able to be treated in about 1/4 of the time without silica gel.

【0044】実施例3 TiO2微粒子スラリー[多木化学(株)製タイノックH
−30]に、TiO2微粒子との合計量に対し、5重量
%となるようにモンモリロナイト[(株)豊順洋行製ベン
ゲル]を添加し、分散させた。このコート液を3500
rpmで60秒間スピンコートしてガラス基板へ塗布し
たのち、500℃で2時間熱処理を行い、厚み1.9μ
mのモンモリロナイト含有TiO2膜付き基板を得た。
このモンモリロナイト含有TiO2膜付き基板を、室温
で湿度100RH%(飽和水蒸気)下、5時間放置する
ことによって吸水させた。このときの光触媒層の含水率
Rは8.5重量%であった。次に、比較例1と同様の方
法により、ベンゼンの分解特性を評価した。このものの
0は80分であり、モンモリロナイトを含まないもの
に比べて、約1/5の時間でベンゼンを処理することが
できた。
Example 3 TiO 2 fine particle slurry [Tainock H manufactured by Taki Kagaku Co., Ltd.
−30], montmorillonite [Bengel manufactured by Toyohyun Yoko Co., Ltd.] was added and dispersed in an amount of 5% by weight with respect to the total amount of the TiO 2 fine particles. 3500 of this coating solution
After spin-coating at 60 rpm for 60 seconds and applying to a glass substrate, heat treatment was performed at 500 ° C. for 2 hours to a thickness of 1.9 μm.
m of a substrate with a montmorillonite-containing TiO 2 film was obtained.
The montmorillonite-containing TiO 2 film-coated substrate was allowed to absorb water by being left at room temperature under a humidity of 100 RH% (saturated steam) for 5 hours. At this time, the water content R of the photocatalyst layer was 8.5% by weight. Next, the decomposition characteristics of benzene were evaluated in the same manner as in Comparative Example 1. This product had a T 0 of 80 minutes, and was able to process benzene in about な い of the time without montmorillonite.

【0045】実施例4 テトラエトキシシランと0.15モル/リットル濃度の
塩酸水とイソプロパノールとポリエチレングリコール#
2000を、重量比100:35:126:29の割合
で混合してシリカゾルを作製した。このゾルをガラス基
板に塗布し、500℃で1時間熱処理して、厚み約1μ
mの多孔質シリカ膜を形成した。この多孔質シリカ膜上
に、TiO2光触媒を塗布して、厚み1.8μmの光触
媒層を形成した。これを室温で湿度100RH%(飽和
水蒸気)下、5時間放置することによって吸水させた。
このときの光触媒層の含水率Rは9.0重量%であっ
た。次に、比較例1と同様の方法により、ベンゼンの分
解特性を評価したところ、このもののT0は、90分で
あった。多孔質シリカ膜を設けないものに比べて、約1
/5の時間でベンゼンを処理することができた。
Example 4 Tetraethoxysilane, 0.15 mol / liter aqueous hydrochloric acid, isopropanol and polyethylene glycol #
2000 were mixed at a weight ratio of 100: 35: 126: 29 to prepare a silica sol. This sol is applied to a glass substrate and heat-treated at 500 ° C. for 1 hour to have a thickness of about 1 μm.
m of porous silica film was formed. On this porous silica film, a TiO 2 photocatalyst was applied to form a 1.8 μm-thick photocatalyst layer. This was allowed to stand at room temperature under a humidity of 100 RH% (saturated steam) for 5 hours to absorb water.
At this time, the water content R of the photocatalyst layer was 9.0% by weight. Next, the decomposition characteristics of benzene were evaluated in the same manner as in Comparative Example 1, and the T 0 was 90 minutes. About 1% less than that without a porous silica membrane
The benzene could be treated in a time of / 5.

【0046】実施例5 実施例2で得たシリカゲル含有TiO2膜付き基板を、
紫外線照射下、蒸留水に室温で3時間したのち、取り出
し、室温で1時間放置することによって乾燥させた。乾
燥後の光触媒層の含水率Rは12.5重量%であった。
次に、比較例1と同様の方法により、ベンゼンの分解特
性を評価したところ、このもののT0は、70分であっ
た。シリカゲルを含まないものに比べて、約1/6の時
間でベンゼンを処理することができた。
Example 5 The substrate provided with the silica gel-containing TiO 2 film obtained in Example 2 was
After irradiating with ultraviolet light for 3 hours at room temperature in distilled water, it was taken out and left to dry at room temperature for 1 hour. The water content R of the photocatalyst layer after drying was 12.5% by weight.
Next, when the decomposition characteristics of benzene were evaluated by the same method as in Comparative Example 1, the T 0 was 70 minutes. Benzene could be treated in about 1/6 of the time without silica gel.

【0047】比較例2 比較例1において、容器の湿度を0RH%とした以外
は、比較例1と同様にしてベンゼンの分解を行った。こ
のもののT0は850分であった。なお、光触媒層の含
水率Rは0.8重量%であった。
Comparative Example 2 Benzene was decomposed in the same manner as in Comparative Example 1 except that the humidity of the container was changed to 0 RH%. Its T 0 was 850 minutes. The water content R of the photocatalyst layer was 0.8% by weight.

【0048】実施例6 実施例2で得たシリカゲル含有TiO2膜付き基板を、
暗所にて蒸留水に室温で3時間したのち、取り出し、室
温で1時間放置することによって乾燥させた。乾燥後の
光触媒層の含水率Rは12.0重量%であった。次に、
ベンゼン分解特性を、比較例2と同様の条件で評価した
ところ、T0は200分であった。シリカゲルを含まな
いものに比べ、約1/4の時間で処理することができ
た。
Example 6 The substrate provided with the silica gel-containing TiO 2 film obtained in Example 2 was
After 3 hours at room temperature in distilled water in a dark place, it was taken out and allowed to dry at room temperature for 1 hour. The water content R of the photocatalyst layer after drying was 12.0% by weight. next,
When the benzene decomposition characteristics were evaluated under the same conditions as in Comparative Example 2, T 0 was 200 minutes. The treatment could be performed in about 1/4 of the time without silica gel.

【0049】比較例3 比較例1において、ベンゼン濃度25ppmからアセト
アルデヒド濃度150ppmに変更した以外は、比較例
1と同様にしてアセトアルデヒドの分解を行ったとこ
ろ、T0は60分であった。
Comparative Example 3 Decomposition of acetaldehyde was performed in the same manner as in Comparative Example 1 except that the benzene concentration was changed from 25 ppm to acetaldehyde concentration of 150 ppm, and T 0 was 60 minutes.

【0050】実施例7 実施例3において、ベンゼン濃度25ppmからアセト
アルデヒド濃度150ppmに変更した以外は、実施例
3と同様にしてアセトアルデヒドの分解を行ったとこ
ろ、T0は30分であった。モンモリロナイトを含まな
いものに比べて1/2の時間でアセトアルデヒドを処理
できた。
Example 7 Acetaldehyde was decomposed in the same manner as in Example 3 except that the benzene concentration was changed from 25 ppm to acetaldehyde concentration of 150 ppm. As a result, T 0 was 30 minutes. Acetaldehyde was able to be treated in half the time as compared with the case not containing montmorillonite.

【0051】比較例4 比較例1において、ベンゼン濃度25ppmからトルエ
ン濃度25ppmに変更した以外は、比較例1と同様に
してトルエンの分解を行ったところ、T0は460分で
あった。
[0051] In Comparative Example 4 Comparative Example 1, except for changing the concentration of toluene 25ppm benzene concentration 25ppm, was subjected to decomposition of toluene in the same manner as in Comparative Example 1, T 0 was 460 minutes.

【0052】実施例8 実施例2において、ベンゼン濃度25ppmからトルエ
ン濃度25ppmに変更した以外は、実施例2と同様に
してトルエンの分解を行ったところ、T0は70分であ
った。シリカゲルを含まないものに比べて約1/7の時
間でトルエンを処理できた。
[0052] In Example 8 Example 2, except for changing the concentration of toluene 25ppm benzene concentration 25ppm, was subjected to decomposition of toluene in the same manner as in Example 2, T 0 was 70 minutes. Toluene could be treated in about 1/7 the time without silica gel.

【0053】比較例5 比較例1において、ベンゼンの初期濃度を25ppmか
ら150ppmに変更した以外は、比較例1と同様にし
てベンゼンの分解を行ったところ、T0は47時間であ
った。
[0053] In Comparative Example 5 Comparative Example 1, except for changing the 150ppm from 25ppm initial concentration of benzene was subjected to decomposition of benzene in the same manner as in Comparative Example 1, T 0 was 47 hours.

【0054】実施例9 実施例2において、ベンゼンの初期濃度を25ppmか
ら150ppmに変更した以外は、実施例2と同様にし
てベンゼンの分解を行ったところ、T0は18時間であ
った。シリカゲルを含まないものに比べて、約2/5の
時間でベンゼンを処理することができた。以上の結果を
表1および表2にまとめて示す。
[0054] In Example 9 Example 2, except for changing the 150ppm from 25ppm initial concentration of benzene was subjected to decomposition of benzene in the same manner as in Example 2, T 0 was 18 hours. Benzene could be treated in about 2/5 of the time without silica gel. The above results are summarized in Tables 1 and 2.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】参考例 比較例1と同じ条件で作製したTiO2膜付きガラス基
板を用い、容器内の湿度を0、28、50、66、10
0RH%と変化させ、ベンゼン濃度を10ppmとし、
比較例1と同様にしてベンゼンの分解評価を行った。な
お、この際のTiO2膜の含水率は全て1重量%未満で
あった。また、上記TiO2膜付きガラス基板を実施例
1と同様にして水処理を行ったのち、湿度50RH%の
条件で、上記と同様にベンゼンの分解評価を行った。こ
の際のTiO2膜の含水率は10.5重量%であった。
照射時間とln(ベンゼン濃度)との関係を図2にグラ
フで示す。この図から、光触媒層中の含水率を上げるこ
とが、光触媒活性能の向上に有効であることが分かる。
Reference Example Using a glass substrate with a TiO 2 film produced under the same conditions as in Comparative Example 1, the humidity in the container was set to 0, 28, 50, 66, 10
0 RH%, the benzene concentration was 10 ppm,
The decomposition of benzene was evaluated in the same manner as in Comparative Example 1. In this case, the water content of the TiO 2 film was all less than 1% by weight. Further, the glass substrate provided with a TiO 2 film was subjected to water treatment in the same manner as in Example 1, and then the degradation of benzene was evaluated in the same manner as described above under the condition of a humidity of 50 RH%. At this time, the water content of the TiO 2 film was 10.5% by weight.
FIG. 2 is a graph showing the relationship between the irradiation time and In (benzene concentration). From this figure, it can be seen that increasing the water content in the photocatalyst layer is effective for improving the photocatalytic activity.

【0058】[0058]

【発明の効果】本発明の気相用光触媒活性材料は、光触
媒層に積極的に水分を含有させたものであって、光触媒
活性能に優れ、例えばガス中の有害物質を短時間で分解
し、無害化することができ、環境浄化などに好適に用い
られる。また、本発明の方法によれば、この気相用光触
媒活性材料を、効率よく、かつ安価に製造することがで
きる。
The photocatalytic active material for gas phase of the present invention is a material in which water is positively contained in the photocatalyst layer, has excellent photocatalytic activity, and is capable of decomposing harmful substances in gas in a short time. It can be detoxified and is suitably used for environmental purification and the like. Further, according to the method of the present invention, the photocatalytic active material for a gas phase can be efficiently and inexpensively produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較例1および実施例1における照射時間とl
n(ベンゼン濃度)との関係を示すグラフである。
FIG. 1 shows irradiation time and l in Comparative Example 1 and Example 1.
4 is a graph showing a relationship with n (benzene concentration).

【図2】参考例における、光触媒層中の含水率が異なる
場合の照射時間とln(ベンゼン濃度)との関係を示す
グラフである。
FIG. 2 is a graph showing a relationship between irradiation time and ln (benzene concentration) when the water content in the photocatalyst layer is different in a reference example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 21/16 F01N 3/08 C 35/02 B01D 53/36 J F01N 3/02 301 ZABG 3/08 104B Fターム(参考) 3G090 AA06 3G091 AA18 AB01 AB13 BA20 GA01 GA02 GA03 GA04 GA05 GA06 GB01X GB10W GB16X GB17X GB19X 4D048 AA11 AA14 AA18 AA19 AA21 AA22 AA23 AB01 AB02 AB03 BA06X BA07X BA09X BA41X BB03 CA01 CC38 CC40 DA20 EA01 EA04 4G069 AA03 AA08 BA02B BA04B BA10B BA48A CA02 CA03 CA07 CA08 CA10 CA15 CA17 CA18 CA19 DA05 EA07 EC27 ED04 FA03 FB02 FB23 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 21/16 F01N 3/08 C 35/02 B01D 53/36 J F01N 3/02 301 ZABG 3/08 104B F-term (for reference) 3G090 AA06 3G091 AA18 AB01 AB13 BA20 GA01 GA02 GA03 GA04 GA05 GA06 GB01X GB10W GB16X GB17X GB19X 4D048 AA11 AA14 AA18 AA19 AA21 AA22 AA23 AB01 AB02 AB03 BA06X BA07X BA09 ABA04A03 BA03 A03BA03 A03 BA04 A03 BA08 BA10B BA48A CA02 CA03 CA07 CA08 CA10 CA15 CA17 CA18 CA19 DA05 EA07 EC27 ED04 FA03 FB02 FB23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光触媒活性物質を含む光触媒層を有し、
気相中で該光触媒活性物質による分解作用を奏させる気
相用光触媒活性材料の製造方法であって、上記光触媒活
性物質を含む光触媒層を形成したのち、該光触媒層を水
を含む液体に接触させる工程を行うことを特徴とする気
相用光触媒活性材料の製造方法。
1. A photocatalyst layer containing a photocatalytically active substance,
A method for producing a photocatalytically active material for a gas phase in which a photocatalytically active substance is decomposed in a gaseous phase, comprising forming a photocatalyst layer containing the photocatalytically active substance, and then contacting the photocatalyst layer with a liquid containing water. A process for producing a photocatalytically active material for a gas phase, comprising the step of:
【請求項2】 光触媒活性物質を含む光触媒層を有し、
気相中で該光触媒活性物質による分解作用を奏させる気
相用光触媒活性材料の製造方法であって、上記光触媒活
性物質と保水性物質とを含む光触媒層を形成したのち、
該光触媒層を水を含む液体に接触させるか、または水分
を含む雰囲気中に置く工程を行うことを特徴とする気相
用光触媒活性材料の製造方法。
2. A photocatalyst layer containing a photocatalytically active substance,
A method for producing a photocatalytically active material for a gaseous phase in which the photocatalytically active substance is decomposed in a gaseous phase, comprising forming a photocatalyst layer containing the photocatalytically active substance and a water-retaining substance,
A method for producing a photocatalytically active material for a gas phase, comprising a step of bringing the photocatalyst layer into contact with a liquid containing water or placing it in an atmosphere containing moisture.
【請求項3】 光触媒活性物質を含む光触媒層を有し、
気相中で該光触媒活性物質による分解作用を奏させる気
相用光触媒活性材料であって、該光触媒層において、式
(I) R(%)=[Aw/(Aw+Ap)]×100 …(I) (ただし、Awは光触媒層中の水分重量、Apは光触媒
層中の光触媒活性物質重量を示す。)で表される含水率
Rが1重量%以上であることを特徴とする気相用光触媒
活性材料。
3. A photocatalyst layer containing a photocatalytically active substance,
A photocatalytically active material for a gaseous phase, which exhibits a decomposition action of the photocatalytically active substance in a gaseous phase, wherein R (%) = [Aw / (Aw + Ap)] × 100 (I) (Where Aw represents the weight of water in the photocatalyst layer, and Ap represents the weight of the photocatalytic active substance in the photocatalyst layer.) The water content R represented by 1% by weight or more is characterized by being not less than 1% by weight. Active material.
【請求項4】 光触媒層が、光触媒活性物質と共に、さ
らに保水性物質を含む請求項3に記載の気相用光触媒活
性材料。
4. The photocatalytic active material for a gas phase according to claim 3, wherein the photocatalytic layer further contains a water-retentive substance together with the photocatalytic active substance.
【請求項5】 含水率Rが40重量%以下である請求項
3または4に記載の気相用光触媒活性材料。
5. The photocatalytic active material for a gas phase according to claim 3, wherein the water content R is 40% by weight or less.
JP2000097171A 2000-03-31 2000-03-31 Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase Withdrawn JP2001276614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097171A JP2001276614A (en) 2000-03-31 2000-03-31 Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097171A JP2001276614A (en) 2000-03-31 2000-03-31 Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase

Publications (1)

Publication Number Publication Date
JP2001276614A true JP2001276614A (en) 2001-10-09

Family

ID=18611830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097171A Withdrawn JP2001276614A (en) 2000-03-31 2000-03-31 Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase

Country Status (1)

Country Link
JP (1) JP2001276614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143692A (en) * 2000-09-01 2002-05-21 New Industry Research Organization Photocatalytic functional body for purification of gas, method for manufacturing the same and method for purifying gas by using the same
JP2005288323A (en) * 2004-03-31 2005-10-20 Keio Gijuku Photocatalyst material and its manufacturing method
CN112023943A (en) * 2020-03-06 2020-12-04 商丘师范学院 Flower-shaped porous In2S3/In2O3Preparation method and application of composite catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143692A (en) * 2000-09-01 2002-05-21 New Industry Research Organization Photocatalytic functional body for purification of gas, method for manufacturing the same and method for purifying gas by using the same
JP2005288323A (en) * 2004-03-31 2005-10-20 Keio Gijuku Photocatalyst material and its manufacturing method
CN112023943A (en) * 2020-03-06 2020-12-04 商丘师范学院 Flower-shaped porous In2S3/In2O3Preparation method and application of composite catalyst

Similar Documents

Publication Publication Date Title
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
US7862725B2 (en) Method for mercury capture from fluid streams
JP2600103B2 (en) Photocatalytic filter and method for producing the same
KR20020083455A (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
Paz Composite titanium dioxide photocatalysts and the" adsorb & shuttle" approach: a review
JP2832342B2 (en) Photocatalyst particles and method for producing the same
JPH05309267A (en) Photocatalyst body
JP2945926B2 (en) Photocatalyst particles and method for producing the same
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
CN115279487A (en) Method for manufacturing a photocatalytic device, photocatalytic composition and gas decontamination apparatus
JP3484470B2 (en) Film material with photocatalytic function
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP4621859B2 (en) Method for producing porous photocatalyst
JP2000218161A (en) Photo-catalyst body
JP2001276614A (en) Method of manufacturing photocatalytic active material for gas phase and photocatalytic active material for gas phase
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
TW201217291A (en) Glass with photocatalytic function
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2009268943A (en) Photocatalyst, photocatalyst dispersion containing the same, and photocatalyst coating composition
CA3036953A1 (en) A process for low temperature gas cleaning with ozone and a catalytic bag filter for use in the process
JP2001096154A (en) Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP2000042366A (en) Nox and sox decomposing and removing material, and its production
KR100562476B1 (en) Photocatalytic coating solution containing the encapsulated natural fragnance and preparation method thereof
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605