JP2001274016A - Rare-earth alloy film magnet - Google Patents
Rare-earth alloy film magnetInfo
- Publication number
- JP2001274016A JP2001274016A JP2000084215A JP2000084215A JP2001274016A JP 2001274016 A JP2001274016 A JP 2001274016A JP 2000084215 A JP2000084215 A JP 2000084215A JP 2000084215 A JP2000084215 A JP 2000084215A JP 2001274016 A JP2001274016 A JP 2001274016A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- phase
- concentration
- film
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/126—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は電気および電子機
器用の希土類合金膜磁石、特に、小型モータ、マイクロ
波発振器、マイクロマシン等の小型デバイスあるいは磁
気記録デバイスに用いる希土類合金膜磁石に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth alloy film magnet for electric and electronic equipment, and more particularly to a rare earth alloy film magnet used for a small device such as a small motor, a microwave oscillator, a micromachine or a magnetic recording device.
【0002】[0002]
【従来の技術】近年、デバイスの小型化に伴い微小磁石
の需要が増しており、高出力を得るために、磁石として
は磁力の強いNd−Fe−B系異方性磁石を用いること
が不可欠となっているが、焼結磁石の機械加工による製
法では、年を追うごとに磁石の微小化への対応が難しく
なってきており、機械加工の限界が近づいている。この
ため、将来技術として、スパッタなどの成膜法により基
板上に直接Nd−Fe−B系異方性磁石を形成して最終
形状を得る手法が検討されている。2. Description of the Related Art In recent years, the demand for micro magnets has been increasing with the miniaturization of devices, and in order to obtain high output, it is essential to use Nd-Fe-B based anisotropic magnets having strong magnetic force as magnets. However, in the manufacturing method by the machining of the sintered magnet, it becomes difficult to cope with the miniaturization of the magnet with each passing year, and the limit of the machining is approaching. Therefore, as a future technology, a method of forming an Nd—Fe—B-based anisotropic magnet directly on a substrate by a film forming method such as sputtering to obtain a final shape is being studied.
【0003】[0003]
【発明が解決しようとする課題】成膜法によるNd−F
e−B系異方性磁石の作製に際し、膜厚を増大させると
結晶粒粗大化による結晶の相互干渉が生じて結晶配向性
が低下する問題がある。結晶軸の方位の乱れは磁化方向
のばらつきや磁力低下を生み、モータではトルクの変動
が大きくなったり、トルク値が低下する等の症状を引き
起こす。SUMMARY OF THE INVENTION Nd-F by film forming method
When producing an e-B anisotropic magnet, when the film thickness is increased, there is a problem that crystal mutual interference occurs due to coarsening of crystal grains and crystal orientation is reduced. Disturbance in the orientation of the crystal axis causes variations in the magnetization direction and a decrease in the magnetic force, and causes a motor to exhibit large fluctuations in torque and a decrease in torque value.
【0004】このような結晶粒粗大化に関する問題の解
決策としては、たとえば、特開平6−151226号公
報に記載されたものがある。この解決策は、図6に示す
ように、基板3の表面に形成された薄膜磁石であって、
薄膜磁石の内部構成は、膜厚方向に5μm未満のR−F
e−B(RはYを含む希土類元素)磁石層2と厚さ約1
0〜400オングストロームの金属層1とが交互に積層
されたものであって、金属層1により結晶粒粗大化を防
止することを試みている。さらに、この解決策では、成
膜休止時間をとりながら間欠的にスパッタしており、こ
れによって成膜時のプラズマによる温度上昇を緩和し、
結晶粒粗大化の防止を図っている。[0004] As a solution to such a problem relating to the coarsening of crystal grains, there is, for example, one described in Japanese Patent Application Laid-Open No. 6-151226. This solution is a thin film magnet formed on the surface of the substrate 3 as shown in FIG.
The internal structure of the thin-film magnet has an R-F of less than 5 μm in the film thickness direction.
eB (R is a rare earth element containing Y) magnet layer 2 and a thickness of about 1
A metal layer 1 of 0 to 400 angstroms is alternately laminated, and an attempt is made to prevent the crystal grain from being coarsened by the metal layer 1. Furthermore, in this solution, intermittent sputtering is performed while taking a pause in film formation, thereby mitigating a rise in temperature due to plasma during film formation,
The crystal grain coarsening is prevented.
【0005】しかし、従来技術におけるこのような多層
化の手法は、結晶粒粗大化を比較的簡単に抑制すること
ができる点では優れているが、異種構造を有する金属層
1が間に入るため、応力の発生等、Nd−Fe−B磁石
層2の磁気特性に対して少なからず悪影響を及ぼす。ま
た、従来技術における上記間欠スパッタによる方法で
は、基板3が数百度まで加熱されているため、成膜休止
中に起こる表面酸化の問題が生じる。However, such a multi-layering technique in the prior art is excellent in that crystal grain coarsening can be suppressed relatively easily, but because the metal layer 1 having a heterogeneous structure is interposed therebetween. , The generation of stress, etc., has a considerable adverse effect on the magnetic properties of the Nd—Fe—B magnet layer 2. Further, in the above-described conventional intermittent sputtering method, since the substrate 3 is heated to several hundred degrees, there arises a problem of surface oxidation that occurs during the suspension of film formation.
【0006】本発明は、このような従来の技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、磁気特性の劣化を引き起こすことなく結晶
粒の粗大化を抑制した希土類合金膜磁石を提供すること
にある。The present invention has been made by paying attention to such problems existing in the prior art. An object of the present invention is to provide a rare earth alloy film magnet in which crystal grains are prevented from being coarsened without causing deterioration of magnetic properties.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明では、膜厚方向に結晶のc軸が配向したNd
2Fe14B型結晶相と非結晶相との混合組織を有すると
ともに、膜中にIn、Ga、Al、Siのうちの少なく
とも1つの元素を添加し、その元素濃度を基板に接する
部分で高くし、かつ、膜厚方向に周期的に変化させたこ
とを特徴とする。In order to achieve the above-mentioned object, according to the present invention, Nd in which the c-axis of the crystal is oriented in the film thickness direction is provided.
It has a mixed structure of 2Fe 14 B-type crystal phase and amorphous phase, and at least one element of In, Ga, Al, and Si is added to the film, and the element concentration is increased at a portion in contact with the substrate. And periodically changed in the film thickness direction.
【0008】また、前記元素濃度の変化周期を1〜10
μmとし、その平均濃度を5原子パーセント(at%)
以下とし、さらに、非結晶相を強磁性相とする。[0008] Further, the changing cycle of the element concentration is 1 to 10
μm, and the average concentration is 5 atomic percent (at%)
Hereinafter, the amorphous phase is referred to as a ferromagnetic phase.
【0009】したがって、上記のように構成された希土
類合金膜磁石においては、Nd2Fe14B型結晶相間に
非結晶相が存在するので、基本的にNd2Fe14B型結
晶相同士の干渉を防いで、一方向への結晶成長を可能に
し、高い結晶配向性を実現している。さらに、膜中に添
加されたIn、Ga、Al、Siの元素が非結晶化を促
進するので、結晶粒粗大化が強制的に抑制される。ま
た、万一膜形成過程の初期に結晶干渉の状態が形成され
てしまうと、以後の結晶配向性に重大な悪影響を及ぼす
が、本発明では、まず基板に接する部分において添加し
た元素濃度を高くし、非結晶母相中に孤立分散したNd
2Fe14B型結晶相を形成するように成膜している。そ
して、その後、元素濃度を下げて引き続き成膜して、N
d2Fe14B型結晶相の成長を促進し、この結晶相の占
積率を増加している。一方、結晶粒は、その成長機構が
主に膜表面で起こる原子再配列に起因しており、膜表面
での成長速度が最も速くなる。このため、結晶粗大化に
よる相互干渉は最初に膜最上部において生じる。このよ
うなことから、本発明では、結晶干渉が生じる膜厚に達
した段階で該元素濃度を意図的に増加し、再び非結晶相
の母相を形成してNd 2Fe14B型結晶相を孤立分散さ
せている。本発明は、以上の手順を繰り返すことによ
り、結晶干渉を防止しつつ非常に大きな膜厚を持つ膜磁
石を得ることが可能とするものである。Therefore, the rare earth constructed as described above
In the case of similar alloy film magnets, NdTwoFe14Between B-type crystal phases
Since there is an amorphous phase, basically NdTwoFe14Type B
Prevents interference between crystal phases, enabling crystal growth in one direction
Thus, high crystal orientation is realized. In addition,
The added In, Ga, Al, and Si elements promote non-crystallization.
Therefore, coarsening of crystal grains is forcibly suppressed. Ma
In the unlikely event that crystal interference occurs in the early stage of the film formation process,
Would have a serious adverse effect on subsequent crystal orientation
However, in the present invention, the additive is first added at a portion in contact with the substrate.
Nd isolated and dispersed in an amorphous matrix
TwoFe14The film is formed so as to form a B-type crystal phase. So
Thereafter, the film is continuously formed with the element concentration lowered,
dTwoFe14It promotes the growth of the B-type crystal phase and occupies this crystal phase.
The moment is increasing. On the other hand, crystal grains have a growth mechanism.
It is mainly due to atomic rearrangement that occurs on the film surface.
Growth rate is the fastest. For this reason, crystal coarsening
Mutual interference initially occurs at the top of the film. This
For this reason, in the present invention, the film thickness at which crystal interference occurs is reached.
At that stage, the concentration of the element is intentionally increased,
To form Nd TwoFe14B-type crystal phase is isolated and dispersed
I'm making it. The present invention is based on repeating the above procedure.
And a very large film thickness while preventing crystal interference
It is possible to obtain a stone.
【0010】換言すれば、本発明は、In、Ga、A
l、Siのうちの少なくとも1つの元素の濃度を、基板
表面付近において高くし、膜厚方向に周期的に変化させ
ることにより、不要な結晶粒粗大化を防止している。そ
して、該元素の濃度変化の周期を1〜10μm、その平
均濃度を5原子パーセント(at%)以下とすすること
により、効果的に結晶の相互干渉を抑制し、高い結晶配
向性を実現している。さらに、非結晶相を強磁性相とす
ることにより、より高い磁力を得るようにしている。In other words, the present invention relates to In, Ga, A
Unnecessary coarsening of crystal grains is prevented by increasing the concentration of at least one element of l and Si near the substrate surface and periodically changing the concentration in the film thickness direction. By setting the period of the concentration change of the element to 1 to 10 μm and the average concentration to 5 atomic percent (at%) or less, it is possible to effectively suppress the mutual interference of crystals and realize a high crystal orientation. ing. Furthermore, a higher magnetic force is obtained by making the amorphous phase a ferromagnetic phase.
【0011】[0011]
【発明の実施の形態】実施の形態1.図1に実施の形態
1に係る希土類金属膜磁石の例を示す。図1において、
3は基板、4はネオジウム鉄ボロン非磁性相からなる非
結晶相、5はNd2Fe14B型結晶相であり、図示のご
とく膜磁石の内部はNd2Fe14B型結晶相5と非結晶
相4との混合組織となっており、In、Ga、Al、S
iの各元素が図1中に示されたAの分布で添加されてい
るものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 shows an example of the rare earth metal film magnet according to the first embodiment. In FIG.
Reference numeral 3 denotes a substrate, 4 denotes an amorphous phase composed of a neodymium iron boron non-magnetic phase, 5 denotes an Nd 2 Fe 14 B type crystal phase, and the inside of the film magnet is Nd 2 Fe 14 B type It has a mixed structure with the crystal phase 4, and is composed of In, Ga, Al, S
Each element of i is added in the distribution of A shown in FIG.
【0012】次に、特性試験を行うために作製した実施
の形態1のサンプルについて述べる。まず、本実施の形
態1のサンプルは、In、Ga、Al、Siそれぞれの
元素につき4種類作製し、いずれも図1に記載した分布
Aの元素濃度プロファイルを持つように調製した。具体
的には、例えば、In添加のサンプルを作製する場合、
スパッタのターゲットとしてNd−Fe−BとNd−F
e−B−Inの2種類を用意し、各ターゲットへの投入
電力を調節しながら2元同時スパッタを行うことによ
り、膜磁石の内部にInの分布Aを付与した。Arガス
圧は4Pa、基板温度は560℃とした。また、膜磁石
は、マスクを併用して直径0.5mmの鉄製の円柱基板
の外側面に幅1mm、膜厚100μmで均一にスパッタ
作製した。Next, a description will be given of a sample of the first embodiment manufactured for performing a characteristic test. First, four samples were prepared for each of the elements of In, Ga, Al, and Si in the first embodiment, and all were prepared so as to have the element concentration profile of distribution A shown in FIG. Specifically, for example, when preparing a sample to which In is added,
Nd-Fe-B and Nd-F as sputtering targets
Two types of eB-In were prepared, and the distribution A of In was imparted to the inside of the film magnet by performing binary simultaneous sputtering while adjusting the input power to each target. The Ar gas pressure was 4 Pa and the substrate temperature was 560 ° C. Further, the film magnet was uniformly sputtered with a width of 1 mm and a film thickness of 100 μm on the outer surface of an iron cylindrical substrate having a diameter of 0.5 mm using a mask in combination.
【0013】さらに、実施の形態1を従来のものとの比
較を行うために、従来例のサンプルとして次の従来例1
および従来例2を用意した。従来例1は、Nd−Fe−
B層5μmごとに約100ÅのTi層を挟んで総厚10
0μmをスパッタ成膜したものであり、従来例2は、元
素添加を行わずにNd−Fe−Bの成膜(100μm)
を行ったものである。Further, in order to compare the first embodiment with the conventional example, the following conventional example 1 was used as a sample of the conventional example.
And Conventional Example 2 were prepared. Conventional example 1 is Nd-Fe-
A total thickness of 10 with a Ti layer of about 100 ° interposed every 5 μm of the B layer
In the conventional example 2, Nd—Fe—B was deposited without adding any element (100 μm).
It was done.
【0014】[0014]
【表1】 [Table 1]
【0015】このようにして得られた本実施の形態1の
サンプルおよび従来例のサンプルをそれぞれ4極着磁
し、これを磁石回転子としてモータに組み込み、モータ
を運転してトルク測定を行った。表1はこの測定結果を
示す。なお、表1におけるトルク変動率とは、測定時モ
ータトルクは常に変動しているが、この変動するトルク
の平均値と変動するトルクの変動幅との割合を意味す
る。The thus-obtained sample of the first embodiment and the sample of the conventional example were respectively magnetized in four poles, assembled into a motor as a magnet rotor, and the motor was operated to measure torque. . Table 1 shows the measurement results. The torque fluctuation rate in Table 1 means the ratio between the average value of the fluctuating torque and the fluctuation width of the fluctuating torque, although the motor torque at the time of measurement fluctuates constantly.
【0016】この測定結果より、いずれの元素を添加し
た実施の形態1のサンプルも、従来例1、2よりトルク
変動が小さくなることから、結晶粒の抑制が効果的に行
われており、磁化のばらつきの少ないことがわかった。
また、いずれの元素を添加した本実施の形態1のサンプ
ルも、従来例1、2より平均トルクの値が大きくなるこ
とから、結晶配向性が良好で磁力が強いことがわかっ
た。From the measurement results, it can be seen that the sample of Embodiment 1 to which any of the elements is added has a smaller torque fluctuation than that of Conventional Examples 1 and 2, so that the suppression of crystal grains is effectively performed. Was found to be small.
Also, the sample of Embodiment 1 to which any of the elements was added had a larger average torque value than those of Conventional Examples 1 and 2, indicating that the crystal orientation was good and the magnetic force was strong.
【0017】なお、実施の形態1の磁石において、Nd
2Fe14B型結晶相5は、Nd2Fe 14Bのほかにも、N
d以外の希土類元素やFe以外の遷移金属元素を1種類
以上含むものとしても良い。たとえば、(Nd、Tb)
2(Fe、Co)14B相、(Nd、Tb)2(Fe、N
i)14B相、(Nd、Tb)2(Fe、Co、Ni)14
B相、(Nd、Tb、Ho)2(Fe、Co、Ni)14
B相などであっても良い。また、非結晶相4は、ネオジ
ウム鉄ボロン相の他、ネオジウム酸化物相、ネオジウム
鉄相、ネオジウムボロン相などであっても良い。また、
基板3は、鉄のほか、コバルトやニッケル、チタンなど
の純金属や鉄コバルト、鉄ニッケルなどの合金、石英ガ
ラスやアルミナなどの酸化物、窒化チタンなどの窒化物
などを広く用いることができる。In the magnet of the first embodiment, Nd
TwoFe14The B-type crystal phase 5 contains NdTwoFe 14In addition to B, N
One kind of rare earth elements other than d and transition metal elements other than Fe
The above may be included. For example, (Nd, Tb)
Two(Fe, Co)14Phase B, (Nd, Tb)Two(Fe, N
i)14Phase B, (Nd, Tb)Two(Fe, Co, Ni)14
Phase B, (Nd, Tb, Ho)Two(Fe, Co, Ni)14
The phase B may be used. Also, the amorphous phase 4 is neodymium.
Phase, neodymium oxide phase, neodymium
It may be an iron phase, a neodymium boron phase, or the like. Also,
The substrate 3 is made of iron, cobalt, nickel, titanium, etc.
Pure metals and alloys such as iron cobalt and iron nickel, quartz gas
Oxides such as glass and alumina, nitrides such as titanium nitride
Can be widely used.
【0018】実施の形態2.図2に実施の形態2に係る
希土類金属膜磁石の例を示す。この構造は、図3に示さ
れるように、基板3、ネオジウム鉄ボロン非磁性相から
なる非結晶相4、Nd2Fe14B型結晶相5を有し、膜
磁石の内部はNd2Fe14B型結晶相5と非結晶相4と
の混合組織となっている点において実施の形態1の場合
と同様であるが、In、Ga、Al、Siの少なくとも
1つの元素の分布が、図2中に示されているBの分布で
添加されている点で実施の形態1とは相違する。Embodiment 2 FIG. FIG. 2 shows an example of the rare earth metal film magnet according to the second embodiment. As shown in FIG. 3, this structure has a substrate 3, an amorphous phase 4 composed of a neodymium iron boron non-magnetic phase, and a Nd 2 Fe 14 B type crystal phase 5, and the inside of the film magnet is Nd 2 Fe 14 Embodiment 2 is similar to Embodiment 1 in that it has a mixed structure of B-type crystal phase 5 and amorphous phase 4, but the distribution of at least one element of In, Ga, Al, and Si is shown in FIG. Embodiment 2 is different from Embodiment 1 in that it is added in the distribution of B shown in FIG.
【0019】次に、特性試験を行うために作製した実施
の形態2のサンプルについて述べる。実施の形態2のサ
ンプルは、In、Ga、Al、Siそれぞれの添加元素
につき4種類作製し、いずれも図2に記載した分布Bの
元素濃度プロファイルを持つように作製した。なお、こ
の作製方法は、上記元素濃度プロファイルを除いては実
施の形態1の場合と同様である。また、このようにして
得られた実施の形態2のサンプルおよび前記実施の形態
1の説明のところに記載した従来例1、2と同一のもの
について、実施の形態1の場合と同様に、4極着磁して
磁石回転子とし、これをモータに組み込んで運転してト
ルク測定を行った。Next, a description will be given of a sample according to the second embodiment prepared for performing a characteristic test. Four samples of Embodiment 2 were prepared for each of the added elements of In, Ga, Al, and Si, and all were prepared so as to have the element concentration profile of distribution B shown in FIG. This manufacturing method is the same as that of the first embodiment except for the element concentration profile. The samples obtained in this manner in the second embodiment and the same ones as in the conventional examples 1 and 2 described in the description of the first embodiment are similar to those in the first embodiment. The magnet rotor was pole-magnetized, and this was assembled into a motor and operated to measure torque.
【0020】[0020]
【表2】 [Table 2]
【0021】表2はその測定結果を示す。いずれの元素
を添加した実施の形態2の各サンプルも、従来例1、2
よりトルク変動が小さくなることから、結晶粒の抑制が
効果的に行われており磁化のばらつきが少ないことがわ
かった。また、いずれの元素を添加した実施の形態2の
各サンプルも、従来例1、2より平均トルクの値が大き
くなることから、結晶配向性が良好で磁力が強いことが
わかった。Table 2 shows the measurement results. Each sample of Embodiment 2 to which any of the elements was added was the same as that of Conventional Examples 1 and 2.
Since the torque fluctuation becomes smaller, it was found that crystal grains were effectively suppressed and the variation in magnetization was small. In addition, each sample of Embodiment 2 to which any of the elements was added had a larger average torque value than those of Conventional Examples 1 and 2, indicating that the crystal orientation was good and the magnetic force was strong.
【0022】実施の形態3.実施の形態3は、基板がT
i平板であり、In、Ga、Al、Siの各添加元素の
濃度分布を半価幅0.15μm、ピーク濃度5at%の
ガウス分布とし、これを一定の周期で繰り返しながらス
パッタ成膜し、総厚100μmとしたものである。な
お、この実施の形態3は、上記の点を除いては、実施の
形態1と同一である。Embodiment 3 FIG. In the third embodiment, the substrate is T
It is an i-plate, and the concentration distribution of each additive element of In, Ga, Al, and Si is a Gaussian distribution having a half-value width of 0.15 μm and a peak concentration of 5 at%. The thickness was 100 μm. The third embodiment is the same as the first embodiment except for the above points.
【0023】次に、この実施の形態3につき、保磁力を
測定するために作製したサンプルにつき述べる。この実
施の形態3に係るサンプルとしては、In、Ga、A
l、Siの各元素を添加したものそれぞれについて、濃
度周期の異なるもの8種類を多元同時スパッタ法で作製
した。なお、この作製方法は、基板材料と添加する元素
濃度プロファイルの点を除いては実施の形態1の場合と
同様である。Next, a sample manufactured for measuring the coercive force according to the third embodiment will be described. Samples according to the third embodiment include In, Ga, A
Eight types with different concentration cycles were prepared by multi-source simultaneous sputtering for each of the elements to which l and Si were added. This manufacturing method is the same as that in Embodiment 1 except for the substrate material and the concentration profile of the element to be added.
【0024】図3はこれら各サンプルについて保磁力を
測定した結果を示す。この図3から、実施の形態3の各
サンプルは、添加元素についての濃度分布の周期が1μ
m以上で400KA/m以上の大きな保磁力が得られる
ことがわかった。次に、図4は、各サンプルの結晶配向
性について評価した結果を示す。この図4は、X線回折
装置におけるスキャン軸をθ/2θとし、サンプルのセ
ッティングのオフセット角ψを変化させながらX線回折
パターンの測定を行って、得られた(006)面の回折
ピークの積分強度Iの依存性からI(ψ)/I(0)=
0.5となるψ値(=ψ50)を求めた結果であって、ψ
50の値が小さいほど結晶配向性が高いことを意味する。
この図4から、実施の形態3に係るいずれのサンプル
も、周期が1〜10μmの範囲でψ50が比較的低い値と
なっており、これにより結晶配向性が良好であることが
わかった。FIG. 3 shows the results of measuring the coercive force of each of these samples. From FIG. 3, each sample of the third embodiment has a concentration distribution cycle of 1 μm for the added element.
It was found that a large coercive force of 400 KA / m or more was obtained at m or more. Next, FIG. 4 shows the results of evaluating the crystal orientation of each sample. FIG. 4 shows that the scan axis of the X-ray diffractometer was set to θ / 2θ, and the X-ray diffraction pattern was measured while changing the offset angle の of the sample setting. From the dependence of the integral intensity I, I (ψ) / I (0) =
0.5 and consisting [psi value (= ψ 50) a result of obtaining, [psi
The smaller the value of 50, the higher the crystal orientation.
From this Figure 4, none of the samples according to the third embodiment, the period has a relatively low value [psi 50 in the range of 1 to 10 [mu] m, thereby it was found that crystal orientation is good.
【0025】実施の形態4.実施の形態4は、基板がT
i平板であり、In、Ga、Al、Siの各添加元素の
濃度分布を半価幅1.5μmで一定のピーク濃度を持つ
のガウス分布とし、これを5μmの周期で繰り返しなが
らスパッタ成膜し、総厚100μmとしたもので、これ
らの点を除いては、構造は実施の形態1と同一である。Embodiment 4 In the fourth embodiment, the substrate is T
It is an i-plate, and the concentration distribution of each of the additional elements of In, Ga, Al, and Si is a Gaussian distribution having a half-peak width of 1.5 μm and a constant peak concentration. , And a total thickness of 100 μm. Except for these points, the structure is the same as that of the first embodiment.
【0026】次に、この実施の形態4につきIn、G
a、Al、Siの各元素を添加したサンプルについて、
ピーク濃度の異なるもの6種類のサンプルを多元同時ス
パッタ法で作製した。なお、実施の形態4の作製方法
は、基板と元素濃度プロファイルの点を除いては実施の
形態1の場合と同様である。Next, according to the fourth embodiment, In, G
For the sample to which each element of a, Al and Si was added,
Six kinds of samples having different peak concentrations were produced by the multiple simultaneous sputtering method. Note that the manufacturing method of Embodiment 4 is the same as that of Embodiment 1 except for the substrate and the element concentration profile.
【0027】図5にこれら各サンプルについて保磁力を
測定した結果を示す。図中、元素濃度は、膜中の平均濃
度を示している。この図から、実施の形態4に係るいず
れのサンプルも、平均濃度が5at%以下で保磁力40
0KA/m以上の良好な特性を得られることがわかっ
た。FIG. 5 shows the results of measuring the coercive force of each of these samples. In the figure, the element concentration indicates the average concentration in the film. From this figure, it can be seen that all samples according to the fourth embodiment have a coercive force of 40
It was found that good characteristics of 0 KA / m or more could be obtained.
【0028】実施の形態5.実施の形態1に係る膜磁石
の内部構成において、Nd−Fe−Bターゲットの組成
を調整することにより、非結晶相4をネオジウム鉄ボロ
ン強磁性相としたものである。次に、この実施の形態5
により作製された回転子を用いたモータについてのトル
クを測定するために作製した実施の形態5に係るサンプ
ルについて述べる。作製した実施の形態5に係るサンプ
ルは、添加元素をSiとしたもので、このSiの濃度分
布を図1に記載されたAの分布曲線とした。また、この
サンプルの作製方法は、元素濃度プロファイルおよび非
結晶相4がネオジウム鉄ボロン強磁性相である点を除い
ては実施の形態1の場合と同様である。Embodiment 5 In the internal configuration of the film magnet according to the first embodiment, the amorphous phase 4 is changed to a neodymium iron boron ferromagnetic phase by adjusting the composition of the Nd—Fe—B target. Next, the fifth embodiment
A sample according to the fifth embodiment manufactured to measure the torque of the motor using the rotor manufactured by the method will be described. The manufactured sample according to the fifth embodiment uses Si as an additive element, and the Si concentration distribution is represented by the distribution curve of A shown in FIG. The method of manufacturing this sample is the same as that of the first embodiment except that the element concentration profile and the amorphous phase 4 are a neodymium iron boron ferromagnetic phase.
【0029】[0029]
【表3】 [Table 3]
【0030】このようにして得られた実施の形態5の各
サンプルを4極着磁して磁石回転子としてモータに組み
込み、このモータを運転してトルク測定を行った。表3
はこの結果を示す。なお、同表には比較のため、実施の
形態1における添加元素Siのものについての結果をも
合わせて示している。この表3から、本実施形態5は、
非結晶相4を強磁性相としているため、実施の形態1よ
りも大きな平均トルクを得ることができるがわかった。Each of the samples of the fifth embodiment thus obtained was magnetized in four poles, incorporated into a motor as a magnet rotor, and the motor was operated to measure the torque. Table 3
Shows this result. For comparison, the same table also shows the results for the additive element Si in the first embodiment. From Table 3, this Embodiment 5 is
Since the amorphous phase 4 is a ferromagnetic phase, it has been found that a larger average torque can be obtained than in the first embodiment.
【0031】[0031]
【発明の効果】本発明は、以上のように構成されている
ため、次のような効果を奏する。請求項1〜4記載の発
明によれば、膜厚方向に結晶のc軸が配向したNd2F
e14B型結晶相と非結晶相との混合組織を有するととも
に、膜中にIn、Ga、Al、Siのうちの少なくとも
1つの元素を添加し、この元素濃度を、基板に接する部
分で高くし、かつ、膜厚方向に周期的に変化させたの
で、結晶粒の粗大化が防止され、結晶配向性が高く磁化
のばらつきが少ない特性を実現することができる。した
がって、本発明の希土類合金膜磁石をモータに用いれ
ば、モータのトルク変動を小さくすることができる。Since the present invention is configured as described above, it has the following effects. According to the first to fourth aspects of the present invention, Nd 2 F in which the c-axis of the crystal is oriented in the film thickness direction.
It has a mixed structure of e 14 B-type crystal phase and amorphous phase, and at least one element of In, Ga, Al, and Si is added to the film, and the concentration of this element is increased in a portion in contact with the substrate. In addition, since the thickness is periodically changed in the film thickness direction, coarsening of crystal grains is prevented, and characteristics with high crystal orientation and small variations in magnetization can be realized. Therefore, when the rare earth alloy film magnet of the present invention is used for a motor, torque fluctuation of the motor can be reduced.
【0032】また、請求項2記載の発明によれば、前記
元素濃度の変化周期は1〜10μmであるので、前記効
果に加え、効果的に結晶の相互干渉を抑制して高い結晶
配向性を実現することができる。According to the second aspect of the present invention, since the change period of the element concentration is 1 to 10 μm, in addition to the above-mentioned effects, the mutual interference of crystals is effectively suppressed, and high crystal orientation is obtained. Can be realized.
【0033】また、請求項3記載の発明によれば、前記
元素の平均濃度は5at%以下であるので、前記効果に
加え、効果的に結晶の相互干渉を抑制して高い結晶配向
性を実現することができる。According to the third aspect of the present invention, since the average concentration of the element is 5 at% or less, in addition to the above-mentioned effects, the mutual interference of crystals is effectively suppressed to realize high crystal orientation. can do.
【0034】また、請求項4記載の発明によれば、非結
晶相が強磁性であるので、前記効果に加え、より高い磁
力を得ることができる。According to the fourth aspect of the present invention, since the amorphous phase is ferromagnetic, a higher magnetic force can be obtained in addition to the above-mentioned effects.
【図1】本発明の実施の形態1に係る膜磁石を説明する
ための断面図である。FIG. 1 is a cross-sectional view for explaining a membrane magnet according to a first embodiment of the present invention.
【図2】本発明の実施の形態2に係る膜磁石を説明する
ための断面図である。FIG. 2 is a cross-sectional view for explaining a film magnet according to a second embodiment of the present invention.
【図3】本発明の実施の形態3に係る膜磁石についての
保磁力の特性図である。FIG. 3 is a characteristic diagram of coercive force of a film magnet according to Embodiment 3 of the present invention.
【図4】本発明の実施の形態3に係る膜磁石についての
結晶配向性の特性図である。FIG. 4 is a characteristic diagram of crystal orientation of a film magnet according to Embodiment 3 of the present invention.
【図5】本発明の実施の形態4に係る膜磁石についての
保磁力の特性図である。FIG. 5 is a characteristic diagram of a coercive force of a film magnet according to Embodiment 4 of the present invention.
【図6】従来の膜磁石を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining a conventional membrane magnet.
1 金属層、2 R−Fe−B磁石層、3 基板、4
非結晶相、5 Nd−Fe−B型結晶相。Reference Signs List 1 metal layer, 2 R-Fe-B magnet layer, 3 substrate, 4
Non-crystalline phase, 5 Nd-Fe-B type crystalline phase.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅村 敏夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5E049 AA01 AA09 AC01 BA01 BA29 DB02 GC01 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Toshio Umemura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) in Mitsubishi Electric Corporation 5E049 AA01 AA09 AC01 BA01 BA29 DB02 GC01
Claims (4)
Fe14B型結晶相と非結晶相との混合組織を有するとと
もに、膜中にIn、Ga、Al、Siのうちの少なくと
も1つの元素を添加し、この元素濃度を、基板に接する
部分で高くし、かつ、膜厚方向に周期的に変化させたこ
とを特徴とする希土類合金膜磁石。1. Nd 2 having a crystal c-axis oriented in a film thickness direction.
It has a mixed structure of an Fe 14 B-type crystal phase and an amorphous phase, and at least one element of In, Ga, Al, and Si is added to the film, and the concentration of this element is increased in a portion in contact with the substrate. And a periodic change in the film thickness direction.
であることを特徴とする請求項1記載の希土類合金膜磁
石。2. The change period of the element concentration is 1 to 10 μm.
The rare earth alloy film magnet according to claim 1, wherein
ることを特徴とする請求項1または2記載の希土類合金
膜磁石。3. The rare earth alloy film magnet according to claim 1, wherein the average concentration of the element is 5 at% or less.
とする請求項1、2または3記載の希土類合金膜磁石。4. The rare earth alloy film magnet according to claim 1, wherein the amorphous phase is ferromagnetic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000084215A JP2001274016A (en) | 2000-03-24 | 2000-03-24 | Rare-earth alloy film magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000084215A JP2001274016A (en) | 2000-03-24 | 2000-03-24 | Rare-earth alloy film magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001274016A true JP2001274016A (en) | 2001-10-05 |
Family
ID=18600723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000084215A Pending JP2001274016A (en) | 2000-03-24 | 2000-03-24 | Rare-earth alloy film magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001274016A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790300B2 (en) | 2004-03-23 | 2010-09-07 | Japan Science And Technology Agency | R-Fe-B based thin film magnet and method for preparation thereof |
US9129731B2 (en) | 2011-09-21 | 2015-09-08 | Hitachi, Ltd. | Sintered magnet |
-
2000
- 2000-03-24 JP JP2000084215A patent/JP2001274016A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790300B2 (en) | 2004-03-23 | 2010-09-07 | Japan Science And Technology Agency | R-Fe-B based thin film magnet and method for preparation thereof |
US9129731B2 (en) | 2011-09-21 | 2015-09-08 | Hitachi, Ltd. | Sintered magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4988713B2 (en) | Thin film rare earth magnet and method for manufacturing the same | |
JP4698581B2 (en) | R-Fe-B thin film magnet and method for producing the same | |
US20070034299A1 (en) | Rare earth - iron - bron based magnet and method for production thereof | |
JP3057448B2 (en) | Rare earth permanent magnet | |
JPS6274048A (en) | Permanent magnet material and its production | |
KR20130009942A (en) | Rare-earth permanent magnetic powder,bonded magnet,and device comprising the bonded magnet | |
JPH0742553B2 (en) | Permanent magnet material and manufacturing method thereof | |
WO2003062487A1 (en) | Target of high-purity nickel or nickel alloy and its producing method | |
US6805980B2 (en) | Thin permanent-magnet film and process for producing the same | |
US6329894B1 (en) | Thin plate magnet having microcrystalline structure | |
US4836867A (en) | Anisotropic rare earth magnet material | |
JP2893265B2 (en) | Rare earth permanent magnet alloy and its manufacturing method | |
JPH10125518A (en) | Thin sheet magnet with fine crystal structure | |
JPH0616445B2 (en) | Permanent magnet material and manufacturing method thereof | |
JP2001274016A (en) | Rare-earth alloy film magnet | |
JPWO2006109615A1 (en) | Multilayer permanent magnet | |
JPH07272929A (en) | Rare earth element-fe-b-thin film permanent magnet | |
CN112992456A (en) | Mn-Bi-Sb based magnetic substance and method for producing same | |
US20050247376A1 (en) | Magnetic materials containing praseodymium | |
KR100826661B1 (en) | R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF | |
JP2004265907A (en) | Hard magnetic composition | |
JPH10130796A (en) | Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder | |
JPH1064710A (en) | Isotropic permanent magnet having high magnetic flux density and manufacture thereof | |
JP3969125B2 (en) | Fe-Pt magnet and method for producing the same | |
WO2020110893A1 (en) | Magnetic alloy material |