JP2001273896A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2001273896A
JP2001273896A JP2000087717A JP2000087717A JP2001273896A JP 2001273896 A JP2001273896 A JP 2001273896A JP 2000087717 A JP2000087717 A JP 2000087717A JP 2000087717 A JP2000087717 A JP 2000087717A JP 2001273896 A JP2001273896 A JP 2001273896A
Authority
JP
Japan
Prior art keywords
battery
batteries
positive electrode
comparative
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000087717A
Other languages
Japanese (ja)
Other versions
JP4136260B2 (en
Inventor
Hirofumi Totsuka
裕文 戸塚
Ichiro Yoshida
一朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000087717A priority Critical patent/JP4136260B2/en
Publication of JP2001273896A publication Critical patent/JP2001273896A/en
Application granted granted Critical
Publication of JP4136260B2 publication Critical patent/JP4136260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery capable of improving safety and reducing generation of gas without impairing battery characteristics including cycle performance. SOLUTION: In a nonaqueous electrolyte battery wherein a positive electrode 5 including a positive active material, a negative electrode 6, and a nonaqueous electrolyte containing a lithium salt are put in a casing, the positive active material is a lithium-containing composite oxide represented by the formula CoxMyAlzO2 [M is at least one kind selected from among transition metal elements and the elements in groups IIA, IIIB, IVB, and VB of the periodic table (excluding Al); 0.90<=x<1 (particularly, 0.94<=x<1); 0<y<=0.05 (particularly, 0.00001<=y<=0.05); 0<z<=0.05 (particularly, 0.0001<=z<=0.05); and x+y+z=1].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質を含む
正極と、負極と、リチウム塩を含む非水電解質とが外装
体内に収納された非水電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte battery in which a positive electrode containing a positive electrode active material, a negative electrode, and a nonaqueous electrolyte containing a lithium salt are housed in a package.

【0002】[0002]

【従来の技術】近年、携帯機器用電源として、小型、軽
量で高エネルギー密度を有する電池の開発が望まれてい
るが、そのような中、電解質に非水電解液やゲル状固体
高分子を用い、リチウムの酸化、還元を利用した非水電
解質電池が用いられるようになってきた。
2. Description of the Related Art In recent years, there has been a demand for the development of a small, lightweight and high energy density battery as a power source for portable equipment. Non-aqueous electrolyte batteries utilizing lithium oxidation and reduction have come to be used.

【0003】このような電池では、主として、コバルト
酸リチウムが正極材料として用いられるのであるが、充
放電を繰り返すことによって次第に充放電容量や充放電
効率が低下し、十分なサイクル寿命が得られないという
欠点がある。この充放電容量や充放電効率が低下する原
因としては、正極活物質の結晶構造の変化に起因して、
一部に活物質の非可逆的な変化が起こること、及び、正
極の電位が基準値よりも高くなる充電や基準値よりも低
くなる充電により電解液が分解すること等が考えられ
る。このため、下記に示すように、様々な金属元素を正
極活物質中に部分置換することによって上記課題の解決
が試みられている。
[0003] In such a battery, lithium cobalt oxide is mainly used as a positive electrode material. However, charge and discharge capacity and charge and discharge efficiency gradually decrease by repeating charge and discharge, and a sufficient cycle life cannot be obtained. There is a disadvantage that. The cause of the decrease in charge / discharge capacity and charge / discharge efficiency is due to a change in the crystal structure of the positive electrode active material,
It is conceivable that the irreversible change of the active material occurs partially, and that the electrolytic solution is decomposed by charging in which the potential of the positive electrode becomes higher than the reference value or charging in which the potential becomes lower than the reference value. For this reason, as described below, attempts have been made to solve the above problem by partially substituting various metal elements in the positive electrode active material.

【0004】例えば、特開平4─329267号公報及
び特開平5─13082号公報に示されるように、チタ
ン化合物をコバルト酸リチウムに固溶させたものを正極
活物質として用い、又は、特開平4─319260号公
報に示されるように、コバルト酸リチウムにジルコニウ
ムを固溶させたものを正極活物質として用い、或いは特
開平4─253162号公報に示されるように、コバル
ト酸リチウムに鉛、ビスマス、ホウ素が固溶されたもの
等を正極活物質として用いた電池が提案されている。こ
れらの正極活物質が用いられた電池においては、他金属
元素をコバルト酸リチウムに部分元素置換することによ
ってサイクル特性は改善できる。しかしながら、発熱開
始温度が低下するために安全性が低下したり、電解質と
の反応によるガス発生が著しく増加する等の問題があっ
た。
For example, as disclosed in Japanese Patent Application Laid-Open Nos. 4-329267 and 5-13082, a solid solution of a titanium compound in lithium cobalt oxide is used as a positive electrode active material. No. 319260 discloses a solid solution of zirconium in lithium cobaltate used as a positive electrode active material. Alternatively, as disclosed in Japanese Patent Application Laid-Open No. A battery using a solid solution of boron or the like as a positive electrode active material has been proposed. In a battery using such a positive electrode active material, the cycle characteristics can be improved by substituting another metal element with lithium cobalt oxide as a partial element. However, there are problems such as a decrease in safety due to a decrease in the heat generation starting temperature and a significant increase in gas generation due to a reaction with the electrolyte.

【0005】また、近年、携帯機器の小型化に伴って電
池の薄型化とエネルギー密度の向上とが急速に進む中、
外装体としてラミネート外装体を用いたイオン電池及び
ゲル状ポリマー電池が提案されている。このような電池
においては、僅かな電池内圧の上昇によって変形するの
で、電池性能に加えて、充放電や高温保存時に大量のガ
スが発生することによる電池の膨れが大きな問題となっ
ている。そこで、この電池の膨れを防止すべく、ガス発
生を減少させる技術の開発が必要となってきた。
[0005] In recent years, as the thickness of batteries and the improvement of energy density are rapidly progressing along with the miniaturization of portable devices,
An ion battery and a gel-like polymer battery using a laminate casing as the casing have been proposed. Such a battery is deformed by a slight increase in battery internal pressure, and thus, in addition to battery performance, battery swelling due to generation of a large amount of gas during charge / discharge or high-temperature storage is a major problem. Therefore, in order to prevent the battery from swelling, it has been necessary to develop a technique for reducing gas generation.

【0006】[0006]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、サイクル特性等の電池特
性を低下させることなく、安全性の向上とガス発生の低
減とを図ることができる非水電解質電池の提供を目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and aims to improve safety and reduce gas generation without deteriorating battery characteristics such as cycle characteristics. The purpose of the present invention is to provide a non-aqueous electrolyte battery that can be used.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、正極活物質
を含む正極と、負極と、リチウム塩を含む非水電解質と
が外装体内に収納された非水電解質電池において、上記
正極活物質として、LiCox y Alz 2〔Mは遷
移金属元素及び周期律表IIA、 IIIB、IVB、 VB族の
元素(但し、Alは除く)から選択される少なくとも一
種であり、0.90≦x<1(特に、0.94≦x<
1)、0<y≦0.05(特に、0.00001≦y≦
0.05)、0<z≦0.05(特に、0.0001≦
z≦0.05)、x+y+z=1〕で示されるリチウム
含有複合酸化物が用いられることを特徴とする。
Means for Solving the Problems To achieve the above object, among the present invention, the invention according to claim 1 comprises a positive electrode containing a positive electrode active material, a negative electrode, and a nonaqueous electrolyte containing a lithium salt. the storage the nonaqueous electrolyte battery outer casing, as the positive electrode active material, LiCo x M y Al z O 2 [M is a transition metal element and the periodic table IIA, IIIB, IVB, VB group elements (However, Al At least one selected from the group consisting of 0.90 ≦ x <1 (in particular, 0.94 ≦ x <
1), 0 <y ≦ 0.05 (especially, 0.00001 ≦ y ≦
0.05), 0 <z ≦ 0.05 (especially 0.0001 ≦
z ≦ 0.05), and a lithium-containing composite oxide represented by x + y + z = 1] is used.

【0008】上記構成の如く、コバルト酸リチウムに他
の金属元素MとAlとを固溶させたものを正極活物質と
して用いると、サイクル特性等の電池特性において、コ
バルト酸リチウムに他の金属元素Mのみを固溶させたも
の(具体的には、LiCoxy 2 で表される)を正
極活物質として用いた場合と同等の特性を得ることがで
き、しかも、コバルト酸リチウムに他の金属元素Mのみ
を固溶させたものを正極活物質として用いた場合に比べ
て、安全性の向上とガス発生の低減とを図ることができ
る。特に、LiCox y Alz 2 において、0.9
4≦x<1、0.00001≦y≦0.05、0.00
01≦z≦0.05の範囲では、上記の効果が一層発揮
される。
As described above, when a solid solution of lithium metal oxide and another metal element M and Al is used as the positive electrode active material, the lithium cobalt oxide has the same characteristics as lithium metal oxide in the battery characteristics such as cycle characteristics. that a solid solution of M only (specifically, LiCo x M y O represented by 2) it can obtain the same performance as that of the positive electrode active material, moreover, other lithium cobaltate As compared to the case where a solid solution of only the metal element M is used as the positive electrode active material, safety can be improved and gas generation can be reduced. In particular, in the LiCo x M y Al z O 2 , 0.9
4 ≦ x <1, 0.00001 ≦ y ≦ 0.05, 0.00
In the range of 01 ≦ z ≦ 0.05, the above effect is further exhibited.

【0009】尚、LiCox y Alz 2 において、
0.90≦x、y≦0.05、z≦0.05に規制する
のは、M或いはAlの量が多すぎると、Coの量が相対
的に少なくなるため、電池容量が低下するためである。
一方、LiCox y Alz2 において、y及びzの
特に好ましい範囲は、0.00001≦y、0.000
1≦zであるのは、これよりもM或いはAlの量が少な
くなると、安全性の向上とガス発生の低減とが十分に発
揮されない場合があるからである。
[0009] Incidentally, in the LiCo x M y Al z O 2 ,
The reason for restricting to 0.90 ≦ x, y ≦ 0.05 and z ≦ 0.05 is that if the amount of M or Al is too large, the amount of Co becomes relatively small, and the battery capacity decreases. It is.
On the other hand, in LiCo x M y Al z O 2 , particularly preferred range of y and z, 0.00001 ≦ y, 0.000
The reason for 1 ≦ z is that if the amount of M or Al is smaller than this, improvement in safety and reduction of gas generation may not be sufficiently exhibited.

【0010】また、請求項2記載の発明は、請求項1記
載の発明において、上記LiCoxy Alz 2 のM
として、Ti、Nb、及びZrから選択される少なくと
も一種であることを特徴とする。
[0010] According to a second aspect of the invention, in the invention according to the first aspect, the LiCo x M y Al z O 2 in M
Is at least one selected from Ti, Nb, and Zr.

【0011】コバルト酸リチウムに他の金属元素Mのみ
を固溶させたものを正極活物質として用いた場合、Mが
Ti、Nb、或いはZrであると、Mがこれらの元素以
外の元素である場合に比べて、サイクル特性等の電池特
性は著しく向上するが、その反面、安全性が低下し、し
かも電解質と反応することによるガス発生の増大を招来
する。そこで、コバルト酸リチウムにTi、Nb、或い
はZrのみならず更にAlをも固溶させたものを正極活
物質として用いると、コバルト酸リチウムに他の金属元
素Mのみを固溶させたものと同等の電池特性を維持しつ
つ、安全性の向上とガス発生の低減とを図ることができ
る。
When a material obtained by dissolving only another metal element M in lithium cobalt oxide is used as a positive electrode active material, if M is Ti, Nb or Zr, M is an element other than these elements. As compared with the case, the battery characteristics such as cycle characteristics are remarkably improved, but, on the other hand, safety is reduced and moreover, gas generation due to reaction with the electrolyte is caused. Therefore, when a material obtained by dissolving not only Ti, Nb, or Zr but also Al in lithium cobalt oxide is used as the positive electrode active material, it is equivalent to a solution in which only the other metal element M is dissolved in lithium cobalt oxide. While maintaining the battery characteristics described above, safety can be improved and gas generation can be reduced.

【0012】また、請求項3記載の発明は、請求項1又
は2記載の発明において、上記電解質がゲル状の固体高
分子であることを特徴とする。
The invention according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the electrolyte is a gel-like solid polymer.

【0013】電解質としてゲル状の固体高分子が用いら
れた場合には、コバルト酸リチウムに他の金属元素Mの
みならず更にAlをも固溶させると、ゲル状の固体高分
子の耐酸化性が優れることになるので、特に、サイクル
特性等の電池特性と安全性とが向上し、しかも、電解質
との反応によるガス発生を飛躍的に抑制することが可能
となる。
In the case where a gel-like solid polymer is used as an electrolyte, if not only the other metal element M but also Al is dissolved in lithium cobaltate, the oxidation resistance of the gel-like solid polymer is increased. In particular, battery characteristics such as cycle characteristics and safety are improved, and gas generation due to reaction with the electrolyte can be significantly suppressed.

【0014】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、上記外装体として、僅か
な電池内圧の上昇によって変形する外装体が用いられる
ことを特徴とする。
[0014] The invention described in claim 4 is based on claim 1,
In the invention described in the item 2 or 3, the exterior body that is deformed by a slight increase in battery internal pressure is used as the exterior body.

【0015】このように柔らかなラミネート外装体が用
いられた電池では、電池の変形による破裂や漏液を生じ
易いが、上記の如くガスの発生量が著しく減少すれば破
裂や漏液を抑制できる。
In a battery using such a soft laminate outer package, rupture or leakage due to deformation of the battery is liable to occur, but rupture or leakage can be suppressed if the amount of generated gas is significantly reduced as described above. .

【0016】また、請求項5記載の発明は、請求項1、
2、3又は4記載の発明において、上記僅かな電池内圧
の上昇によって変形する外装体として、アルミラミネー
ト外装体が用いられることを特徴とする。
[0016] Further, the invention according to claim 5 is based on claim 1,
In the invention described in 2, 3, or 4, an aluminum laminate exterior body is used as the exterior body that is deformed by the slight increase in battery internal pressure.

【0017】[0017]

【発明の実施の形態】本発明の第1の形態及び第2の形
態を、以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First and second embodiments of the present invention will be described below.

【0018】(第1の形態)本発明の第1の形態を、図
1〜図4に基づいて、以下に説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to FIGS.

【0019】図1は第1の形態に係る非水電解質電池の
正面図、図2は図1のA−A線矢視断面図、図3は第1
の形態に係る非水電解質電池に用いるラミネート外装体
の断面図、図4は第1の形態に係る非水電解質電池に用
いる発電要素の斜視図である。
FIG. 1 is a front view of a nonaqueous electrolyte battery according to a first embodiment, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG.
FIG. 4 is a cross-sectional view of a laminate exterior body used for the nonaqueous electrolyte battery according to the first embodiment. FIG. 4 is a perspective view of a power generating element used for the nonaqueous electrolyte battery according to the first embodiment.

【0020】図2に示すように、本発明の薄型電池は発
電要素1を有しており、この発電要素1は収納空間2内
に配置されている。この収納空間2は、図1に示すよう
に、アルミラミネート外装体3の上下端と中央部とをそ
れぞれ封止部4a・4b・4cで封口することにより形
成される。また、収納空間2には、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)の等容積
混合溶媒に、6フッ化リン酸リチウム(LiPF6 )を
1モル/lの割合で溶解した電解液が注入されている。
また、図4に示すように、上記発電要素1は、LiCo
x y Alz 2 〔Mは遷移金属元素及び周期律表II
A、 IIIB、IVB、 VB族の元素(但し、Alは除く)
から選択される少なくとも一種であり、0.90≦x<
1、0<y≦0.05、0<z≦0.05、x+y+z
=1〕を活物質とする正極5と、黒鉛系炭素材料を活物
質とする負極6と、これら両電極を離間するセパレータ
(図4においては図示せず)とを偏平渦巻き状に巻回す
ることにより作製される。
As shown in FIG. 2, the thin battery of the present invention
The power generation element 1 includes a power generation element 1 inside the storage space 2.
Are located in This storage space 2 is, as shown in FIG.
Then, the upper and lower ends and the center of the aluminum laminate
By sealing with sealing parts 4a, 4b, 4c respectively
Is done. The storage space 2 contains ethylene carbonate.
(EC) and diethyl carbonate (DEC)
Lithium hexafluorophosphate (LiPF)6)
An electrolytic solution dissolved at a rate of 1 mol / l is injected.
In addition, as shown in FIG.
xMyAlzO Two[M is a transition metal element and periodic table II
A, IIIB, IVB, VB group element (excluding Al)
At least one selected from the group consisting of 0.90 ≦ x <
1, 0 <y ≦ 0.05, 0 <z ≦ 0.05, x + y + z
= 1] as an active material, and a graphite-based carbon material as an active material.
Negative electrode 6 and a separator for separating these two electrodes
(Not shown in FIG. 4) in a flat spiral shape
It is produced by doing.

【0021】また、図3に示すように、上記アルミラミ
ネート外装体3の具体的な構造は、アルミニウム層11
(厚み:30μm)の両面に、各々、変性ポリプロピレ
ンから成る接着剤層12・12(厚み:5μm)を介し
てポリプロピレンから成る樹脂層13・13(厚み:3
0μm)が接着される構造である。
As shown in FIG. 3, the specific structure of the aluminum laminate case 3 is as follows.
(Thickness: 30 μm), resin layers 13 and 13 (thickness: 3) made of polypropylene via adhesive layers 12 and 12 (thickness: 5 μm) made of modified polypropylene, respectively.
0 μm) is the structure to be bonded.

【0022】更に、上記正極5はアルミニウムから成る
正極リード7に、また上記負極6は銅から成る負極リー
ド8にそれぞれ接続され、電池内部で生じた化学エネル
ギーを電気エネルギーとして外部へ取り出し得るように
なっている。
The positive electrode 5 is connected to a positive electrode lead 7 made of aluminum, and the negative electrode 6 is connected to a negative electrode lead 8 made of copper, so that chemical energy generated inside the battery can be taken out as electric energy. Has become.

【0023】ここで、上記構造の電池を、以下のように
して作製した。
Here, the battery having the above structure was manufactured as follows.

【0024】先ず、炭酸リチウムと、酸化コバルト粉末
と、酸化アルミニウムと、M〔Mは遷移金属元素及び周
期律表IIA、 IIIB、IVB、 VB族の元素(但し、Al
は除く)〕の金属酸化物或いは水酸化物とを、所定の割
合で混合し、酸素雰囲気下で24時間焼成(850℃)
することにより、LiCox y Alz 2 (0.90
≦x<1、0<y≦0.05、0<z≦0.05)で示
されるリチウム含有複合酸化物から成る正極活物質を得
た。このようにして合成した正極活物質と、黒鉛、カー
ボンブラック及びフッ素樹脂系結着剤とを重量比で、9
0:3:2:5の割合で混合して正極合剤を作成した
後、この正極合剤をアルミ箔の両面に塗着し、乾燥後圧
延することにより、正極5を作製した。
First, lithium carbonate, cobalt oxide powder, aluminum oxide, and M [M is a transition metal element and an element of the periodic table IIA, IIIB, IVB, VB group (however, Al
) Is mixed with a metal oxide or hydroxide at a predetermined ratio, and calcined in an oxygen atmosphere for 24 hours (850 ° C.)
By, LiCo x M y Al z O 2 (0.90
≦ x <1, 0 <y ≦ 0.05, 0 <z ≦ 0.05) to obtain a positive electrode active material composed of a lithium-containing composite oxide. The positive electrode active material thus synthesized and graphite, carbon black, and a fluororesin-based binder were added in a weight ratio of 9%.
After mixing at a ratio of 0: 3: 2: 5 to prepare a positive electrode mixture, the positive electrode mixture was applied to both sides of an aluminum foil, dried, and then rolled, whereby a positive electrode 5 was prepared.

【0025】一方、黒鉛系炭素材料とフッ素樹脂系結着
剤とを重量比で90:10の割合で混合し、負極合剤を
作成した後、この負極合剤を銅箔の両面に塗着し、乾燥
後圧延することにより、負極6を作製した。
On the other hand, a graphite-based carbon material and a fluororesin-based binder were mixed at a weight ratio of 90:10 to prepare a negative electrode mixture, and this negative electrode mixture was applied to both surfaces of a copper foil. Then, after drying and rolling, the negative electrode 6 was produced.

【0026】次に、このようにして作製した正負極5・
6に、それぞれ正極リード7又は負極リード8を取り付
けた後、正負極5・6をセパレータを介して渦巻き状に
巻き取って発電要素1を作製し、更にこの発電要素1を
アルミラミネート外装体3内に挿入した。最後に、アル
ミラミネート外装体3内に電解液を注入し、更にアルミ
ラミネート外装体3を封口することにより、電池を作製
した。尚、電解液としては、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)の等容積混合溶
媒に、6フッ化リン酸リチウム(LiPF6 )を1モル
/lの割合で溶解したものを用いた。
Next, the positive and negative electrodes 5.
6, a positive electrode lead 7 or a negative electrode lead 8 is attached thereto, and the positive and negative electrodes 5 and 6 are spirally wound through a separator to produce a power generating element 1. Inserted in. Finally, an electrolytic solution was injected into the aluminum laminate exterior body 3, and the aluminum laminate exterior body 3 was further sealed to produce a battery. In addition, as an electrolytic solution, ethylene carbonate (E
A solution prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a ratio of 1 mol / l in an equal volume mixed solvent of C) and diethyl carbonate (DEC) was used.

【0027】(第2の形態)電解質としてゲル状固体高
分子を用いる他は、前記第1の形態と同様にして電池を
作製した。具体的には、以下の通りである。
(Second Embodiment) A battery was manufactured in the same manner as in the first embodiment except that a gel-like solid polymer was used as an electrolyte. Specifically, it is as follows.

【0028】先ず、上記と同様にして作製した発電要素
をアルミラミネート外装体内に挿入した後、アルミラミ
ネート外装体内に、プレポリマーとしてのポリエチレン
グリコールジアクリレート(分子量:1000)と、E
C及びDECの等容積混合溶媒にLiPF6 を1モル/
lの割合で溶解したものとを、重量比で1:10の割合
で混合し、これに重合開始剤としてのt−ヘキシルパー
オキシピバレートを5000ppm添加したものを3m
l注入した。その後、60℃で3時間加熱処理して硬化
させることにより電池を作製した。
First, after the power generating element produced in the same manner as described above is inserted into the aluminum laminate outer casing, polyethylene glycol diacrylate (molecular weight: 1000) as a prepolymer and E
1 mole of LiPF 6 in an equal volume mixed solvent of C and DEC
and a mixture obtained by adding 5,000 ppm of t-hexyl peroxypivalate as a polymerization initiator to the mixture.
1 was injected. Thereafter, the battery was prepared by heat treatment at 60 ° C. for 3 hours and curing.

【0029】尚、上記実施の形態においては、Mとして
1種類の金属のみを用いているが、これに限定するもの
ではなく、Mとして2種類以上の金属(例えば、Tiと
Nb)を用いても本発明の効果を得ることができる。
In the above embodiment, only one kind of metal is used as M. However, the present invention is not limited to this, and two or more kinds of metal (for example, Ti and Nb) are used as M. Can also obtain the effect of the present invention.

【0030】また、僅かな電池内圧の上昇によって変形
する外装体の例としてアルミラミネート外装体を例示し
ているが、本発明はこのような外装体に限定するもので
はない。
Although an aluminum laminate case is illustrated as an example of the case that is deformed by a slight increase in battery internal pressure, the present invention is not limited to such a case.

【0031】更に、本発明に用いられる負極材料として
は上記炭素材料の他、リチウム金属、リチウム合金等が
好適に用いられる。更に、電解液の溶媒としては上記の
ものに限らず、例えばエチレンカーボネートとジメチル
カーボネート、メチルエチルカーボネート、テトラヒド
ロフラン、1,2−ジメトキシエタン、1,3−ジオキ
ソラン、2−メトキシテトラヒドロフラン、ジエチルエ
ーテル等の低粘度低沸点溶媒とを適度な比率で混合した
溶媒を用いることができる。また、電解液の溶質として
は、上記LiPF6 の他、LiN(SO2
2 5 2 、LiAsF6、LiClO4 、LiB
4 、LiCF3 SO3 等を用いることができる。
Further, as the negative electrode material used in the present invention, in addition to the above-mentioned carbon materials, lithium metal, lithium alloy and the like are preferably used. Further, the solvent of the electrolytic solution is not limited to the above, and for example, ethylene carbonate and dimethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolan, 2-methoxytetrahydrofuran, diethyl ether and the like A solvent obtained by mixing a low-viscosity low-boiling solvent with an appropriate ratio can be used. As the solute of the electrolyte solution, addition of the LiPF 6, LiN (SO 2 C
2 F 5) 2, LiAsF 6 , LiClO 4, LiB
F 4 , LiCF 3 SO 3 or the like can be used.

【0032】加えて、ゲル状固体高分子としては、ポリ
エチレングリコールジアクリレートの他、ポリエーテル
系の固体高分子、ポリカーボネート系の固体高分子、ポ
リアクリロニトリル系の固体高分子、及びこれらの2種
以上からなる共重合体、もしくは架橋した高分子材料、
ポリフッ化ビニリデン等のようなフッ素系の固体高分子
と、リチウム塩、電解液とを組み合わせて用いることも
できる。
In addition, in addition to polyethylene glycol diacrylate, polyether-based solid polymers, polycarbonate-based solid polymers, polyacrylonitrile-based solid polymers, and two or more of these gel-like solid polymers can be used. Or a cross-linked polymer material,
It is also possible to use a combination of a fluorine-based solid polymer such as polyvinylidene fluoride, a lithium salt, and an electrolytic solution.

【0033】[0033]

【実施例】(第1実施例) 〔実施例1〜5〕M〔Mは遷移金属元素及び周期律表II
A、 IIIB、IVB、 VB族の元素(但し、Alは除
く)〕としてTiを用い、且つLiCox y Alz
2 におけるx、y、zを0.90≦x<1、0<y≦
0.05、0<z≦0.05の範囲で変えて、上記第1
の形態に示す方法と同様の方法で電池を作製した。
EXAMPLES (First Example) [Examples 1 to 5] M [M is a transition metal element and periodic table II.
A, IIIB, IVB, VB Group elements (except, Al is excluded)] using Ti as, and LiCo x M y Al z O
X in 2, y, z and 0.90 ≦ x <1,0 <y ≦
0.05, 0 <z ≦ 0.05
A battery was produced in the same manner as in the embodiment.

【0034】このようにして作製した電池を、以下、そ
れぞれ本発明電池A1〜A5と称する。
The batteries thus manufactured are hereinafter referred to as batteries A1 to A5 of the present invention, respectively.

【0035】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Further, a test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of a metallic lithium foil in the same electrolytic solution as the above battery.

【0036】このようにして作製した電池を、以下、そ
れぞれ本発明電池A101〜A105と称する。 〔実施例6〜10〕MとしてNbを用い、且つLiCo
x y Alz 2 におけるx、y、zを0.90≦x<
1、0<y≦0.05、0<z≦0.05の範囲で変え
て、上記第1の形態に示す方法と同様の方法で電池を作
製した。
The batteries manufactured in this manner are hereinafter referred to as batteries A101 to A105 of the present invention, respectively. [Examples 6 to 10] Using Nb as M and LiCo
x M y Al z x in O 2, y, z and 0.90 ≦ x <
A battery was manufactured in the same manner as the method described in the first embodiment, except that 1, 0 <y ≦ 0.05 and 0 <z ≦ 0.05.

【0037】このようにして作製した電池を、以下、そ
れぞれ本発明電池A6〜A10と称する。
The batteries fabricated in this manner are hereinafter referred to as Batteries A6 to A10 of the present invention, respectively.

【0038】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Also, a test battery was prepared by immersing the same positive electrode as the above-mentioned battery and a negative electrode (reference electrode) made of metallic lithium foil in the same electrolytic solution as the above-mentioned battery.

【0039】このようにして作製した電池を、以下、そ
れぞれ本発明電池A106〜A100と称する。 〔実施例11〜15〕MとしてPbを用い、且つLiC
x y Alz 2 におけるx、y、zを0.90≦x
<1、0<y≦0.05、0<z≦0.05の範囲で変
えて、上記第1の形態に示す方法と同様の方法で電池を
作製した。
The batteries fabricated in this manner are hereinafter referred to as Batteries A106 to A100 of the invention, respectively. [Examples 11 to 15] Using Pb as M and LiC
o x M y Al z x in O 2, y, z and 0.90 ≦ x
<1, 0 <y ≦ 0.05 and 0 <z ≦ 0.05 were manufactured in the same manner as in the first embodiment, except that the battery was manufactured.

【0040】このようにして作製した電池を、以下、そ
れぞれ本発明電池A11〜A15と称する。
The batteries manufactured in this manner are hereinafter referred to as batteries A11 to A15 of the present invention, respectively.

【0041】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Further, the same positive electrode as the above battery and a negative electrode (reference electrode) made of a metallic lithium foil were immersed in the same electrolytic solution as the above battery to prepare a test battery.

【0042】このようにして作製した電池を、以下、そ
れぞれ本発明電池A111〜A115と称する。 〔実施例16〜20〕MとしてZnを用い、且つLiC
x y Alz 2 におけるx、y、zを0.90≦x
<1、0<y≦0.05、0<z≦0.05の範囲で変
えて、上記第1の形態に示す方法と同様の方法で電池を
作製した。
The batteries fabricated in this manner are hereinafter referred to as Batteries A111 to A115 of the invention, respectively. [Examples 16 to 20] Zn was used as M and LiC was used.
o x M y Al z x in O 2, y, z and 0.90 ≦ x
<1, 0 <y ≦ 0.05 and 0 <z ≦ 0.05 were manufactured in the same manner as in the first embodiment, except that the battery was manufactured.

【0043】このようにして作製した電池を、以下、そ
れぞれ本発明電池A16〜A20と称する。
The batteries fabricated in this manner are hereinafter referred to as Batteries A16 to A20 of the present invention, respectively.

【0044】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Further, a test battery was prepared by immersing the same positive electrode as the above-mentioned battery and a negative electrode (reference electrode) made of metallic lithium foil in the same electrolytic solution as the above-mentioned battery.

【0045】このようにして作製した電池を、以下、そ
れぞれ本発明電池A116〜A120と称する。 〔実施例21〕MとしてZrを用い、且つLiCox
y Alz 2 におけるx、y、zをx=0.98、y=
0.01、z=0.01として、上記第1の形態に示す
方法と同様の方法で電池を作製した。
The batteries fabricated in this manner are hereinafter referred to as Batteries A116 to A120 of the invention, respectively. Example 21 Using Zr as M and LiCo x M
y Al z x in O 2, y, and z x = 0.98, y =
A battery was manufactured in the same manner as in the first embodiment, except that 0.01 and z = 0.01.

【0046】このようにして作製した電池を、以下、本
発明電池A21と称する。
The battery fabricated in this manner is hereinafter referred to as Battery A21 of the invention.

【0047】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Also, a test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of a metallic lithium foil in the same electrolytic solution as the above battery.

【0048】このようにして作製した電池を、以下、本
発明電池A121と称する。 〔比較例1、2〕LiCox y Alz 2 における
x、y、zを、それぞれx=0.8、y=0.1、z=
0.1、及びx=0.99、y=0.01、z=0とす
る他は、上記実施例1に示す方法と同様の方法で電池を
作製した。
The battery fabricated in this manner is hereinafter referred to as Battery A121 of the invention. Comparative Examples 1 and 2] LiCo x M y Al z O 2 in the x, y, and z, respectively x = 0.8, y = 0.1, z =
A battery was fabricated in the same manner as in Example 1 except that 0.1, x = 0.99, y = 0.01, and z = 0.

【0049】このようにして作製した電池を、以下、そ
れぞれ比較電池X1、X2と称する。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X1 and X2, respectively.

【0050】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
A test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of metallic lithium foil in the same electrolytic solution as the above battery.

【0051】このようにして作製した電池を、以下、そ
れぞれ比較電池X101、X102と称する。 〔比較例3、4〕LiCox y Alz 2 における
x、y、zをx=0.8、y=0.1、z=0.1、及
びx=0.99、y=0.01、z=0とする他は、上
記実施例6に示す方法と同様の方法で電池を作製した。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X101 and X102, respectively. Comparative Examples 3 and 4] LiCo x M y Al z x in O 2, y, and z x = 0.8, y = 0.1 , z = 0.1 and x = 0.99,, y = 0 A battery was fabricated in the same manner as in Example 6 except that the values were 0.01 and z = 0.

【0052】このようにして作製した電池を、以下、そ
れぞれ比較電池X3、X4と称する。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X3 and X4, respectively.

【0053】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Further, a test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of a metallic lithium foil in the same electrolytic solution as the above battery.

【0054】このようにして作製した電池を、以下、そ
れぞれ比較電池X103、X104と称する。 〔比較例5、6〕LiCox y Alz 2 における
x、y、zをx=0.8、y=0.1、z=0.1、及
びx=0.99、y=0.01、z=0とする他は、上
記実施例11に示す方法と同様の方法で電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X103 and X104, respectively. Comparative Examples 5 and 6] LiCo x M y Al z x in O 2, y, and z x = 0.8, y = 0.1 , z = 0.1 and x = 0.99,, y = 0 A battery was manufactured in the same manner as in Example 11 except that 0.01 and z = 0.

【0055】このようにして作製した電池を、以下、そ
れぞれ比較電池X5、X6と称する。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X5 and X6, respectively.

【0056】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Also, a test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of metallic lithium foil in the same electrolytic solution as the above battery.

【0057】このようにして作製した電池を、以下、そ
れぞれ比較電池X105、X106と称する。 〔比較例7、8〕LiCox y Alz 2 における
x、y、zをx=0.8、y=0.1、z=0.1、及
びx=0.99、y=0.01、z=0とする他は、上
記実施例16に示す方法と同様の方法で電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X105 and X106, respectively. Comparative Examples 7 and 8] LiCo x M y Al z x in O 2, y, and z x = 0.8, y = 0.1 , z = 0.1 and x = 0.99,, y = 0 A battery was fabricated in the same manner as in Example 16 except that 0.01 and z = 0.

【0058】このようにして作製した電池を、以下、そ
れぞれ比較電池X7、X8と称する。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X7 and X8, respectively.

【0059】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
A test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of metallic lithium foil in the same electrolytic solution as the above battery.

【0060】このようにして作製した電池を、以下、そ
れぞれ比較電池X107、X108と称する。 〔比較例9〕LiCox y Alz 2 におけるx、
y、zをx=1、y=0、z=0とする他は、上記実施
例1に示す方法と同様の方法で電池を作製した。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X107 and X108, respectively. Comparative Example 9] LiCo x M y Al z x in O 2,
A battery was fabricated in the same manner as in Example 1 except that y and z were x = 1, y = 0, and z = 0.

【0061】このようにして作製した電池を、以下、比
較電池X9と称する。
The battery fabricated in this manner is hereinafter referred to as Comparative Battery X9.

【0062】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
Further, the same positive electrode as the above-mentioned battery and a negative electrode (reference electrode) made of metallic lithium foil were immersed in the same electrolytic solution as the above-mentioned battery to prepare a test battery.

【0063】このようにして作製した電池を、以下、比
較電池X109と称する。 〔比較例10〕LiCox y Alz 2 におけるx、
y、zをx=0.99、y=0.01、z=0とする他
は、上記実施例21に示す方法と同様の方法で電池を作
製した。
The battery fabricated in this manner is hereinafter referred to as Comparative Battery X109. Comparative Example 10] LiCo x M y Al z x in O 2,
A battery was fabricated in the same manner as in Example 21 except that y and z were set to x = 0.99, y = 0.01, and z = 0.

【0064】このようにして作製した電池を、以下、比
較電池X10と称する。
The battery fabricated in this manner is hereinafter referred to as Comparative Battery X10.

【0065】また、上記電池と同一の正極と金属リチウ
ム箔から成る負極(参照極)とを、上記電池と同一の電
解液中に浸漬して、試験用電池を作製した。
A test battery was prepared by immersing the same positive electrode as the above battery and a negative electrode (reference electrode) made of a metallic lithium foil in the same electrolytic solution as the above battery.

【0066】このようにして作製した電池を、以下、比
較電池X110と称する。 〔実験1〕上記本発明電池A101〜A120及び比較
電池X101〜X109を用いて、正極活物質における
単位重量当たりの充電容量を調べたので、その結果を、
表1及び表2に示す。
The battery fabricated in this manner is hereinafter referred to as Comparative Battery X110. [Experiment 1] Using the batteries A101 to A120 of the present invention and the comparative batteries X101 to X109, the charge capacity per unit weight of the positive electrode active material was examined.
The results are shown in Tables 1 and 2.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 上記表1及び表2から明らかなように、LiCox y
Alz 2 (x+y+z=1)におけるy、zの値の合
計が大きくなるにしたがって、単位重量当たりの充電容
量が小さくなっていることが認められ、この結果重量エ
ネルギー密度も小さくなっていく。これは、y、zの値
の合計が大きくなると、Co量が少なくなるということ
に起因するものと考えられる。
[Table 2] As is apparent from Table 1 and Table 2, LiCo x M y
As the sum of the values of y and z in Al z O 2 (x + y + z = 1) increases, it is recognized that the charge capacity per unit weight decreases, and as a result, the weight energy density also decreases. This is considered to be due to the fact that as the sum of the y and z values increases, the Co amount decreases.

【0069】したがって、重量エネルギー密度の観点か
らは、LiCox y Alz 2 におけるx、y、z
は、0.9≦x、y≦0.05、z≦0.05(特に、
0.94≦x、y≦0.05、z≦0.05)であるこ
とが望ましいことがわかる。 〔実験2〕上記本発明電池A1〜A20及び比較電池X
1〜X9を用いて、下記に示す条件でサイクル特性、高
温保存特性及び安全性を調べたので、その結果を、上記
表1及び表2に併せて示す。 ・サイクル特性 充電電流500mAで充電終止電圧が4.2Vまで充電
した後、放電電流500mAで放電終止電圧が3.1V
まで放電するという条件で、500サイクル充放電を行
った。そして、初期放電容量と、500サイクル後の放
電容量と、容量残存率〔500サイクル後の放電容量/
初期放電容量×100(%)〕とを調べた。 ・高温保存特性 各電池を80℃で96時間保存した後に、電池内でのガ
ス発生量を調べた。 ・安全性 4.2Vまで充電した正極活物質5mgとEC(エチレ
ンカーボネート)2mgとを所定の容器に密封してDS
C測定し、発熱開始温度と発熱量とを調べた。
[0069] Therefore, from the viewpoint of weight energy density, x in the LiCo x M y Al z O 2 , y, z
Are 0.9 ≦ x, y ≦ 0.05, z ≦ 0.05 (particularly,
0.94 ≦ x, y ≦ 0.05, z ≦ 0.05). [Experiment 2] Batteries A1 to A20 of the present invention and comparative battery X
Using 1 to X9, the cycle characteristics, high-temperature storage characteristics, and safety were examined under the following conditions, and the results are shown in Tables 1 and 2 above. -Cycle characteristics After charging until the end-of-charge voltage reaches 4.2 V at a charge current of 500 mA, the end-of-discharge voltage becomes 3.1 V at a discharge current of 500 mA.
The battery was charged and discharged for 500 cycles under the condition that the battery was discharged to the maximum. Then, the initial discharge capacity, the discharge capacity after 500 cycles, and the remaining capacity rate [discharge capacity after 500 cycles /
Initial discharge capacity × 100 (%)]. -High-temperature storage characteristics After each battery was stored at 80 ° C for 96 hours, the amount of gas generated in the batteries was examined.・ Safety 5 mg of the positive electrode active material charged to 4.2 V and 2 mg of EC (ethylene carbonate) are sealed in a predetermined container and DS
C was measured, and the heat generation starting temperature and the heat generation amount were examined.

【0070】上記表1及び表2から明らかなように、コ
バルト酸リチウムに他の元素Mを固溶した比較電池X
1、X3、X5、X7は、コバルト酸リチウムに他の元
素Mを固溶していない比較電池X9に比べて、サイクル
特性が向上し、さらに表1及び表2には示していない低
温特性等の電池特性も向上する(特に、LiCox y
2 におけるyの値がy≧0.00001のとき)。と
ころが、比較電池X1、X3、X5、X7は比較電池X
9に比べて、高温保存後のガス量が多く、しかも発熱開
始温度が低く且つ発熱量が多いので安全性が低下してい
ることが認められる。
As is clear from Tables 1 and 2, the comparative battery X in which another element M was dissolved in lithium cobaltate was dissolved.
1, X3, X5, and X7 have improved cycle characteristics as compared with the comparative battery X9 in which the other element M is not dissolved in lithium cobalt oxide, and have low-temperature characteristics not shown in Tables 1 and 2. also improved battery characteristics (in particular, LiCo x M y
When the value of y in O 2 is y ≧ 0.00001). However, the comparative batteries X1, X3, X5, and X7 are comparative batteries X
As compared with No. 9, the amount of gas after high-temperature storage was large, the heat generation starting temperature was low, and the amount of heat generation was large.

【0071】これに対して、コバルト酸リチウムに他の
元素MのみならずAlをも固溶した本発明電池A1〜A
20では、比較電池X9と略同等のサイクル特性を有
し、しかも、比較電池X1、X3、X5、X7に比べ
て、高温保存後のガス量が少なく、更に発熱開始温度が
高く且つ発熱量が少ないので安全性が向上していること
が認められる(特に、LiCox y Alz 2 におけ
るzの値がz≧0.0001のとき)。
On the other hand, the batteries A1 to A of the present invention in which not only the other element M but also Al was dissolved in lithium cobaltate as a solid solution.
20 has substantially the same cycle characteristics as the comparative battery X9, and has a smaller amount of gas after high-temperature storage, a higher heat generation start temperature, and a lower calorific value than the comparative batteries X1, X3, X5, and X7. it is recognized that safety is improved because less (in particular, when the value of z in LiCo x M y Al z O 2 is z ≧ 0.0001).

【0072】以上、実験1及び実験2の結果から、Li
Cox y Alz 2 におけるx、y、zが0.90≦
x<1、0<y≦0.05、0<z≦0.05の範囲で
あれば、正極容量やサイクル特性の低下を抑制しつつ、
高温保存時等のガス量を減少させ、且つ安全性を向上さ
せることができる。特に、0.94≦x<1、0.00
001≦y≦0.05、0.0001≦z≦0.05の
範囲であれば、上記の効果が一層発揮される。 〔実験3〕上記本発明電池A121及び比較電池X11
0を用いて、正極活物質における単位重量当たりの充電
容量を調べ、且つ、上記本発明電池A21及び比較電池
X10を用いて、サイクル特性、高温保存特性及び安全
性を調べたので、その結果を、下記表3に示す。尚、サ
イクル特性、高温保存特性及び安全性における条件は、
上記実験2と同様の条件であり、また表2においては、
本発明電池A3、A103、A8、A108、A13、
A113、A18、A118及び比較電池X1、X10
1、X3、X103、X5、X105、X7、X107
の結果についても併せて示している。
From the results of Experiments 1 and 2, Li
Co x M y Al z x in O 2, y, z is 0.90 ≦
When x <1, 0 <y ≦ 0.05, and 0 <z ≦ 0.05, while suppressing the deterioration of the positive electrode capacity and the cycle characteristics,
It is possible to reduce the amount of gas during high-temperature storage and the like, and to improve safety. In particular, 0.94 ≦ x <1, 0.00
If the range is 001 ≦ y ≦ 0.05 and 0.0001 ≦ z ≦ 0.05, the above effect is further exhibited. [Experiment 3] Battery A121 of the present invention and Comparative Battery X11
0, the charge capacity per unit weight of the positive electrode active material was examined, and the cycle characteristics, high-temperature storage characteristics, and safety were examined using the battery A21 of the present invention and the comparative battery X10. And Table 3 below. The conditions for cycle characteristics, high-temperature storage characteristics and safety are as follows:
The conditions were the same as in Experiment 2 above, and in Table 2,
Inventive batteries A3, A103, A8, A108, A13,
A113, A18, A118 and comparative batteries X1, X10
1, X3, X103, X5, X105, X7, X107
The results are also shown.

【0073】[0073]

【表3】 表3から明らかなように、コバルト酸リチウムに他の元
素M(Ti、Nb、又はZr)を固溶した比較電池X
1、X3、X10は、コバルト酸リチウムに他の元素M
(Pb、又はZn)を固溶した比較電池X5、X7に比
べて、サイクル特性が向上し、さらに表3には示してい
ない低温特性等の電池特性も向上する。その反面、比較
電池X1、X3、X10は比較電池X5、X7に比べ
て、高温保存後のガス量が多く、しかも発熱開始温度が
低く且つ発熱量が多いので安全性が低下していることが
認められる。
[Table 3] As is clear from Table 3, a comparative battery X in which another element M (Ti, Nb, or Zr) was dissolved in lithium cobalt oxide as a solid solution
1, X3 and X10 represent other elements M in lithium cobalt oxide.
Compared with the comparative batteries X5 and X7 in which (Pb or Zn) is dissolved, cycle characteristics are improved, and battery characteristics such as low-temperature characteristics not shown in Table 3 are also improved. On the other hand, the comparative batteries X1, X3, and X10 have a larger amount of gas after high-temperature storage than the comparative batteries X5 and X7. Is recognized.

【0074】これに対して、コバルト酸リチウムに他の
元素M(Ti、Nb、又はZr)のみならずAlをも固
溶した本発明電池A3、A8、A21では、比較電池X
1、X3、X10と略同等のサイクル特性を有し、しか
も、比較電池X1、X3、X10に比べて、高温保存後
のガス量が大幅に少なく、更に発熱開始温度が格段に高
く且つ発熱量が極めて少ないので安全性が飛躍的に向上
していることが認められる。したがって、LiCox
y 2 に他の元素Mを固溶させて高温保存後のガス量を
低減し、安全性を向上させるという効果は、他の元素M
としてTi、Nb、又はZrを用いた場合に顕著である
ということがわかる。
On the other hand, in the batteries A3, A8 and A21 of the present invention in which not only the other element M (Ti, Nb or Zr) but also Al was dissolved in lithium cobaltate, the comparative battery X
1, X3, and X10, have substantially the same cycle characteristics as those of Comparative batteries X1, X3, and X10, have a significantly smaller amount of gas after high-temperature storage, have a significantly higher heat generation start temperature, and have a higher heat generation value. It is recognized that the safety has been dramatically improved because the number of particles is extremely small. Therefore, LiCo x M
The effect of dissolving the other element M in y O 2 to reduce the amount of gas after high-temperature storage and improving the safety is as follows.
It can be understood that this is remarkable when Ti, Nb, or Zr is used.

【0075】(第2実施例) 〔実施例1〜21〕実施例1〜20に示す電池は、前記
第2の形態に示す方法と同様の方法で作製した。尚、M
〔Mは遷移金属元素及び周期律表IIA、 IIIB、IVB、
VB族の元素(但し、Alは除く)〕の種類、及びLi
Cox y Alz 2 におけるx、y、zの値は上記第
1の実施例における実施例1〜21に対応している(例
えば、第2実施例の実施例1は第1実施例の実施例1と
Mの種類及びx、y、zの値が同じである)。
(Second Example) [Examples 1 to 21] The batteries shown in Examples 1 to 20 were manufactured by the same method as that described in the second embodiment. Note that M
[M is a transition metal element and periodic table IIA, IIIB, IVB,
VB group elements (excluding Al)] and Li
The value of Co x M y Al z x in O 2, y, z corresponds to Examples 1-21 in the first embodiment (e.g., Example 1 of the second embodiment is the first embodiment Example 1 and the type of M and the values of x, y, and z are the same).

【0076】このようにして作製した電池を、以下、そ
れぞれ本発明電池B1〜B21と称する。 〔比較例1〜9〕Mの種類、及びLiCox y Alz
2 におけるx、y、zの値は上記第1の実施例におけ
る比較例1〜9に対応させる(例えば、第2実施例の比
較例1は第1実施例の比較例1とMの種類及びx、y、
zの値が同じである)他は、上記実施例1と同様にして
電池を作製した。
The batteries fabricated in this manner are hereinafter referred to as Batteries B1 to B21 of the present invention, respectively. Comparative Example 1-9] kind of M, and LiCo x M y Al z
The values of x, y, and z in O 2 correspond to Comparative Examples 1 to 9 in the first embodiment (for example, Comparative Example 1 in the second embodiment differs from Comparative Example 1 in the first embodiment in the type of M). And x, y,
A battery was fabricated in the same manner as in Example 1 except that the value of z was the same.

【0077】このようにして作製した電池を、以下、そ
れぞれ比較電池Y1〜Y9と称する。 〔実験1〕上記本発明電池B1〜B20及び比較電池Y
1〜Y9を用いて、サイクル特性、高温保存特性及び安
全性を調べたので、その結果を、下記表4及び表5に示
す。尚、サイクル特性と高温保存特性とは前記第1実施
例の実験2と同様の条件で行い、また安全性について
は、以下の条件で行った。 ・安全性 4.2Vまで充電した正極活物質5mgとゲル状ポリマ
ー電解質2mgとを所定の容器に密封してDSC測定
し、発熱開始温度と発熱量とを調べた。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries Y1 to Y9, respectively. [Experiment 1] Batteries B1 to B20 of the present invention and comparative battery Y
The cycle characteristics, high-temperature storage characteristics and safety were examined using 1 to Y9, and the results are shown in Tables 4 and 5 below. The cycle characteristics and the high-temperature storage characteristics were performed under the same conditions as in Experiment 2 of the first embodiment, and the safety was performed under the following conditions. -Safety 5 mg of the positive electrode active material charged to 4.2 V and 2 mg of the gel polymer electrolyte were sealed in a predetermined container, and DSC measurement was performed to examine the heat generation start temperature and the heat generation amount.

【0078】[0078]

【表4】 [Table 4]

【0079】[0079]

【表5】 上記表4及び表5から明らかなように、コバルト酸リチ
ウムに他の元素Mを固溶した比較電池Y1、Y3、Y
5、Y7は、コバルト酸リチウムに他の元素Mを固溶し
ていない比較電池Y9に比べて、サイクル特性が向上
し、さらに表4及び表5には示していない低温特性等の
電池特性も向上する(特に、LiCox y2 におけ
るyの値がy≧0.00001のとき)。ところが、比
較電池Y1、Y3、Y5、Y7は比較電池Y9に比べ
て、高温保存後のガス量が多く、しかも発熱開始温度が
低く且つ発熱量が多いので安全性が低下していることが
認められる。
[Table 5] As is clear from Tables 4 and 5, the comparative batteries Y1, Y3, and Y obtained by dissolving another element M in lithium cobalt oxide were dissolved.
5 and Y7 have improved cycle characteristics as compared with the comparative battery Y9 in which the other element M is not dissolved in lithium cobaltate, and also have battery characteristics such as low-temperature characteristics not shown in Tables 4 and 5. improved (especially, when the value of y in the LiCo x M y O 2 is y ≧ 0.00001). However, the comparative batteries Y1, Y3, Y5, and Y7 have a larger amount of gas after high-temperature storage than the comparative battery Y9, and have a lower heat generation start temperature and a larger calorific value, so that the safety is reduced. Can be

【0080】これに対して、コバルト酸リチウムに他の
元素MのみならずAlをも固溶した本発明電池B1〜B
20では、比較電池Y1、Y3、Y5、Y7と略同等の
サイクル特性を有し、しかも、比較電池Y1、Y3、Y
5、Y7に比べて、高温保存後のガス量が少なく、更に
発熱開始温度が高く且つ発熱量が少ないので安全性が向
上していることが認められる(特に、LiCox y
z 2 におけるzの値がz≧0.0001のとき)。
On the other hand, the batteries B1 to B of the present invention in which not only the other element M but also Al was dissolved in lithium cobaltate as a solid solution.
20 has cycle characteristics substantially equivalent to those of the comparative batteries Y1, Y3, Y5, and Y7, and furthermore, the comparative batteries Y1, Y3, and Y7.
5, Y7 compared to, small amount of gas after high temperature storage is recognized that safety is improved because more heat generation initiation temperature is high and heat generation amount is small (particularly, LiCo x M y A
When the value of z in l z O 2 is z ≧ 0.0001).

【0081】一方、上記表4及び表5には示していない
が、ゲル状ポリマー電解質を用いた電池でも、LiCo
x y Alz 2 (x+y+z=1)におけるy、zの
値の合計が大きくなる(xの値が小さくなる)にしたが
って、単位重量当たりの充電容量が小さくなっているこ
とが認められ、この結果重量エネルギー密度も小さくな
っていくことがわかった。したがって、重量エネルギー
密度の観点からは、LiCox y Alz 2 における
x、y、zは、0.9≦x、y≦0.05、z≦0.0
5(特に、0.94≦x、y≦0.05、z≦0.0
5)であることが望ましいことがわかる。
On the other hand, although not shown in Tables 4 and 5, the battery using the gel polymer
x M y Al z O 2 ( x + y + z = 1) in the y, according to the total value of z is greater (the value of x decreases), it is recognized that the charge capacity per unit weight is reduced, As a result, the weight energy density was found to decrease. Therefore, from the viewpoint of the weight energy density, LiCo x M y Al z x in O 2, y, z is, 0.9 ≦ x, y ≦ 0.05 , z ≦ 0.0
5 (especially 0.94 ≦ x, y ≦ 0.05, z ≦ 0.0
It is understood that 5) is desirable.

【0082】以上、実験1の結果から、LiCox y
Alz 2 におけるx、y、zが0.90≦x<1、0
<y≦0.05、0<z≦0.05の範囲であれば、正
極容量やサイクル特性の低下を抑制しつつ、高温保存時
等のガス量を減少させ、且つ安全性を向上させることが
できる。特に、0.94≦x<1、0.00001≦y
≦0.05、0.0001≦z≦0.05の範囲であれ
ば、上記の効果が一層発揮される。
[0082] As described above, from the results of the experiment 1, LiCo x M y
X, y, and z in Al z O 2 are 0.90 ≦ x <1, 0
Within the ranges of <y ≦ 0.05 and 0 <z ≦ 0.05, it is possible to reduce the amount of gas at the time of high-temperature storage and to improve the safety while suppressing the deterioration of the positive electrode capacity and the cycle characteristics. Can be. In particular, 0.94 ≦ x <1, 0.00001 ≦ y
Within the ranges of ≦ 0.05 and 0.0001 ≦ z ≦ 0.05, the above effects are further exhibited.

【0083】加えて、電解液を用いた本発明電池A1〜
A21に比べて、ゲル状ポリマー電解質を用いた本発明
電池B1〜B21は、高温保存後ガス発生量が更に少な
くなっている(例えば、電解液を用いた本発明電池A1
では3.8mgであるのに対して、ゲル状ポリマー電解
質を用いた本発明電池B1では3.0mgである)こと
が認められる。したがって、本発明をゲル状ポリマー電
解質を用いた電池に適用すれば、その効果は更に発揮さ
れる。 〔実験2〕上記本発明電池B21及び比較電池Y10を
用いて、サイクル特性、高温保存特性及び安全性を調べ
たので、その結果を、下記表6に示す。尚、サイクル特
性、高温保存特性及び安全性における条件は、上記実験
1と同様の条件であり、また表6においては、本発明電
池B3、B8、B13、B18及び比較電池Y1、Y
3、Y5、Y7の結果についても併せて示している。
In addition, the batteries A1 to A1 of the present invention using the electrolytic solution
Compared with A21, the batteries B1 to B21 of the present invention using the gel polymer electrolyte further reduced the amount of gas generated after high-temperature storage (for example, the battery A1 of the present invention using the electrolytic solution).
Is 3.8 mg, whereas that of the battery B1 of the present invention using the gel polymer electrolyte is 3.0 mg). Therefore, when the present invention is applied to a battery using a gel polymer electrolyte, the effect is further exhibited. [Experiment 2] The cycle characteristics, high-temperature storage characteristics, and safety were examined using the battery B21 of the present invention and the comparative battery Y10. The results are shown in Table 6 below. The cycle characteristics, high-temperature storage characteristics, and safety conditions were the same as those in Experiment 1. In Table 6, the batteries B3, B8, B13, and B18 of the present invention and the comparative batteries Y1 and Y
3, Y5, and Y7 are also shown.

【0084】[0084]

【表6】 表6から明らかなように、コバルト酸リチウムに他の元
素M(Ti、Nb、又はZr)を固溶した比較電池Y
1、Y3、Y10は、コバルト酸リチウムに他の元素M
(Pb、又はZn)を固溶した比較電池Y5、Y7に比
べて、サイクル特性が向上し、さらに表6には示してい
ない低温特性等の電池特性も向上する。その反面、比較
電池Y1、Y3、Y10は比較電池Y5、Y7に比べ
て、高温保存後のガス量が多く、しかも発熱開始温度が
低く且つ発熱量が多いので安全性が低下していることが
認められる。
[Table 6] As is clear from Table 6, the comparative battery Y in which another element M (Ti, Nb, or Zr) was dissolved in lithium cobalt oxide was dissolved.
1, Y3 and Y10 are other elements M in lithium cobalt oxide.
Compared with the comparative batteries Y5 and Y7 in which (Pb or Zn) is dissolved, cycle characteristics are improved, and battery characteristics such as low-temperature characteristics not shown in Table 6 are also improved. On the other hand, the comparative batteries Y1, Y3, and Y10 have a larger amount of gas after high-temperature storage than the comparative batteries Y5 and Y7. Is recognized.

【0085】これに対して、コバルト酸リチウムに他の
元素M(Ti、Nb、又はZr)のみならずAlをも固
溶した本発明電池B3、B8、B21では、比較電池Y
1、Y3、Y10と略同等のサイクル特性を有し、しか
も、比較電池Y1、Y3、Y10に比べて、高温保存後
のガス量が大幅に少なく、更に発熱開始温度が格段に高
く且つ発熱量が極めて少ないので安全性が飛躍的に向上
していることが認められる。したがって、ゲル状ポリマ
ー電解質を用いた電池においても、LiCoxy 2
に他の元素Mを固溶させて高温保存後のガス量を低減
し、安全性を向上させるという効果は、他の元素Mとし
てTi、Nb、又はZrを用いた場合に顕著であるとい
うことがわかる。
On the other hand, in the batteries B3, B8, and B21 of the present invention in which not only the other element M (Ti, Nb, or Zr) but also Al was dissolved in lithium cobalt oxide, the comparative battery Y
1, Y3, and Y10, have substantially the same cycle characteristics, and have a significantly smaller amount of gas after high-temperature storage than the comparative batteries Y1, Y3, and Y10. It is recognized that the safety has been dramatically improved because the number of particles is extremely small. Accordingly, even in a battery using a gel polymer electrolyte, LiCo x M y O 2
The effect of improving the safety by reducing the amount of gas after high-temperature storage by dissolving another element M in a solid solution is remarkable when Ti, Nb, or Zr is used as the other element M. I understand.

【0086】[0086]

【発明の効果】以上説明したように、本発明によれば、
サイクル特性等の電池特性を低下させることなく、安全
性の向上とガス発生量の低減とを図ることができるとい
う優れた効果がある。特に、アルミラミネート外装体を
用いた電池では、ガス発生量の低減により、外装体の変
形や破裂を抑制することができるので、その効果は大き
い。
As described above, according to the present invention,
There is an excellent effect that safety can be improved and the amount of gas generated can be reduced without lowering battery characteristics such as cycle characteristics. In particular, in a battery using an aluminum laminate exterior body, deformation and rupture of the exterior body can be suppressed by reducing the amount of gas generated, so that the effect is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の形態に係る非水電解質電池の正面図。FIG. 1 is a front view of a nonaqueous electrolyte battery according to a first embodiment.

【図2】図1のA−A線矢視断面図。FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】第1の形態に係る非水電解質電池に用いるラミ
ネート外装体の断面図。
FIG. 3 is a cross-sectional view of a laminate exterior body used for the nonaqueous electrolyte battery according to the first embodiment.

【図4】第1の形態に係る非水電解質電池に用いる発電
要素の斜視図。
FIG. 4 is a perspective view of a power generation element used in the nonaqueous electrolyte battery according to the first embodiment.

【符号の説明】[Explanation of symbols]

1:発電要素 2:収納空間 3:ラミネート外装体 5:正極 6:負極 1: Power generation element 2: Storage space 3: Laminated exterior body 5: Positive electrode 6: Negative electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H011 AA01 AA13 CC02 CC06 CC10 5H029 AJ11 AJ12 AK03 AL07 AM00 AM03 AM04 AM07 AM16 BJ04 BJ14 DJ02 DJ09 EJ01 EJ12 HJ02 5H050 AA14 AA15 BA17 CA08 CB08 DA02 DA13 DA14 EA11 EA22 FA05 HA02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H011 AA01 AA13 CC02 CC06 CC10 5H029 AJ11 AJ12 AK03 AL07 AM00 AM03 AM04 AM07 AM16 BJ04 BJ14 DJ02 DJ09 EJ01 EJ12 HJ02 5H050 AA14 AA15 BA17 CA08 CB08 DA02 DA13 DA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質を含む正極と、負極と、リチ
ウム塩を含む非水電解質とが外装体内に収納された非水
電解質電池において、 上記正極活物質として、LiCox y Alz 2 〔M
は遷移金属元素及び周期律表IIA、 IIIB、IVB、 VB
族の元素(但し、Alは除く)から選択される少なくと
も一種であり、0.90≦x<1(特に、0.94≦x
<1)、0<y≦0.05(特に、0.00001≦y
≦0.05)、0<z≦0.05(特に、0.0001
≦z≦0.05)、x+y+z=1〕で示されるリチウ
ム含有複合酸化物が用いられることを特徴とする非水電
解質電池。
[1 claim: a positive electrode including a positive active material, a negative electrode, the nonaqueous electrolyte battery and a non-aqueous electrolyte is housed in the outer package containing a lithium salt, as the positive electrode active material, LiCo x M y Al z O 2 [M
Is the transition metal element and the periodic table IIA, IIIB, IVB, VB
And at least one element selected from group III elements (excluding Al), and 0.90 ≦ x <1 (particularly 0.94 ≦ x
<1), 0 <y ≦ 0.05 (especially, 0.00001 ≦ y
≦ 0.05), 0 <z ≦ 0.05 (especially 0.0001
≦ z ≦ 0.05), and a lithium-containing composite oxide represented by x + y + z = 1] is used.
【請求項2】 上記LiCox y Alz 2 のMとし
て、Ti、Nb、及びZrから選択される少なくとも一
種である、請求項1記載の非水電解質電池。
As M of wherein said LiCo x M y Al z O 2 , Ti, is at least one selected Nb, and from Zr, non-aqueous electrolyte battery according to claim 1, wherein.
【請求項3】 上記電解質がゲル状固体高分子である、
請求項1又は2記載の非水電解質電池。
3. The method according to claim 2, wherein the electrolyte is a gel-like solid polymer.
The non-aqueous electrolyte battery according to claim 1.
【請求項4】 上記外装体として、僅かな電池内圧の上
昇によって変形する外装体が用いられる、請求項1、2
又は3記載の非水電解質電池。
4. An exterior body that is deformed by a slight increase in battery internal pressure is used as the exterior body.
Or the non-aqueous electrolyte battery according to 3.
【請求項5】 上記僅かな電池内圧の上昇によって変形
する外装体として、アルミラミネート外装体が用いられ
る、請求項4記載の非水電解質電池。
5. The nonaqueous electrolyte battery according to claim 4, wherein an aluminum laminate exterior body is used as the exterior body deformed by a slight increase in battery internal pressure.
JP2000087717A 2000-03-28 2000-03-28 Non-aqueous electrolyte battery Expired - Fee Related JP4136260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087717A JP4136260B2 (en) 2000-03-28 2000-03-28 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087717A JP4136260B2 (en) 2000-03-28 2000-03-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001273896A true JP2001273896A (en) 2001-10-05
JP4136260B2 JP4136260B2 (en) 2008-08-20

Family

ID=18603682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087717A Expired - Fee Related JP4136260B2 (en) 2000-03-28 2000-03-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4136260B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JP2005129489A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2005183116A (en) * 2003-12-18 2005-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030126A1 (en) * 2002-09-25 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode material for lithium secondary battery and process for producing the same
JPWO2004030126A1 (en) * 2002-09-25 2006-01-26 セイミケミカル株式会社 Positive electrode material for lithium secondary battery and method for producing the same
KR101021991B1 (en) * 2002-09-25 2011-03-16 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode material for lithium secondary battery and process for producing the same
JP2005129489A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
US7381395B2 (en) 2003-09-30 2008-06-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4518865B2 (en) * 2003-09-30 2010-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2005183116A (en) * 2003-12-18 2005-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4651279B2 (en) * 2003-12-18 2011-03-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4136260B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
KR100545955B1 (en) Non-aqueous Secondary Electrolyte Battery
JP3754218B2 (en) Non-aqueous electrolyte battery positive electrode and manufacturing method thereof, and non-aqueous electrolyte battery using the positive electrode and manufacturing method thereof
US8187752B2 (en) High energy lithium ion secondary batteries
KR100589321B1 (en) An electrolyte for lithium secondary battery and a lithium secondary battery comprising the same
KR100585389B1 (en) Nonaqueous electrolyte cell
JPWO2006088002A1 (en) Electrolyte and battery
JP2008234872A (en) Positive electrode active material and battery
JP2000277148A (en) Polymer electrolyte battery
JP2011071100A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US20030148183A1 (en) Non-aqueous electrolyte battery
JP4240060B2 (en) Positive electrode active material and battery
JP2008171589A (en) Negative electrode and battery
JP4152056B2 (en) Non-aqueous electrolyte battery
JP4136260B2 (en) Non-aqueous electrolyte battery
JP2006278260A (en) Lithium secondary battery
JP6081357B2 (en) Nonaqueous electrolyte secondary battery
JP4097337B2 (en) Non-aqueous electrolyte battery
JP4951923B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP2001068167A (en) Nonaqueous electrolyte battery
JP2005108500A (en) Nonaqueous electrolyte battery
JPWO2006088001A1 (en) Electrolyte and battery
JP5115104B2 (en) Secondary battery charging method, charging device and electronic device
JP2006164866A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R151 Written notification of patent or utility model registration

Ref document number: 4136260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees