JP2001267303A - Plasma processor and plasma processing method - Google Patents

Plasma processor and plasma processing method

Info

Publication number
JP2001267303A
JP2001267303A JP2000080311A JP2000080311A JP2001267303A JP 2001267303 A JP2001267303 A JP 2001267303A JP 2000080311 A JP2000080311 A JP 2000080311A JP 2000080311 A JP2000080311 A JP 2000080311A JP 2001267303 A JP2001267303 A JP 2001267303A
Authority
JP
Japan
Prior art keywords
substrate
electrode
plasma
chamber
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000080311A
Other languages
Japanese (ja)
Other versions
JP4583543B2 (en
Inventor
Tsutomu Satoyoshi
務 里吉
Hiromichi Ito
博道 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000080311A priority Critical patent/JP4583543B2/en
Priority to KR1020010014236A priority patent/KR100755594B1/en
Priority to TW090106649A priority patent/TW497123B/en
Publication of JP2001267303A publication Critical patent/JP2001267303A/en
Application granted granted Critical
Publication of JP4583543B2 publication Critical patent/JP4583543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processor and a plasma processing method, which can perform uniform processing on a large substrate with a uniform plasma. SOLUTION: First and second electrodes 21 and 5 are arranged in a chamber 2, so that they counterpose each other. A substrate to be processed G is placed on the second electrode 5 and processing gas is introduced into the chamber 2, whose pressure is reduced. High frequency power is given to the upper electrode 21, and a plasma is formed. For performing a plasma processing on the substrate G, a substrate mount 10 on the lower electrode 5 is constituted, in such a way that the rectangular substrate whose long side is not less than 600 mm or the square substrate, whose one side is not led than 600 mm is installed and the frequency of high-frequency power is set to a range of 10 MHz to 13.56 MHz.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置(L
CD)基板等の被処理基板に対してドライエッチング等
のプラズマ処理を施すプラズマ処理装置およびプラズマ
処理方法に関する。
The present invention relates to a liquid crystal display (L).
The present invention relates to a plasma processing apparatus and a plasma processing method for performing plasma processing such as dry etching on a substrate to be processed such as a CD) substrate.

【0002】[0002]

【従来の技術】例えば、LCD製造プロセスにおいて
は、被処理基板であるガラス製のLCD基板に対して、
エッチングやスパッタリング、CVD(化学気相成長)
等のプラズマ処理が多用されている。
2. Description of the Related Art For example, in an LCD manufacturing process, a glass LCD substrate as a substrate to be processed is
Etching, sputtering, CVD (chemical vapor deposition)
Etc. are frequently used.

【0003】このようなプラズマ処理を行うためのプラ
ズマ処理装置としては、種々のものが用いられている
が、その中でも容量結合型平行平板プラズマ処理装置が
主流である。
Various types of plasma processing apparatuses have been used for performing such plasma processing, and among them, a capacitively coupled parallel plate plasma processing apparatus is mainly used.

【0004】容量結合型平行平板プラズマ処理装置は、
チャンバー内に一対の平行平板電極(上部および下部電
極)を配置し、処理ガスをチャンバー内に導入するとと
もに、電極の少なくとも一方に高周波を印加して電極間
に高周波電界を形成し、この高周波電界により処理ガス
のプラズマを形成して被処理基板に対してプラズマ処理
を施す。このようなプラズマ処理装置においては、一般
的に、そのプラズマ発生高周波として13.56MHz
またはその整数倍の周波数が使用されている。
A capacitively coupled parallel plate plasma processing apparatus is
A pair of parallel plate electrodes (upper and lower electrodes) are arranged in the chamber, a processing gas is introduced into the chamber, and a high frequency is applied to at least one of the electrodes to form a high-frequency electric field between the electrodes. To form a plasma of a processing gas to perform plasma processing on the substrate to be processed. In such a plasma processing apparatus, generally, the plasma generation high frequency is 13.56 MHz.
Alternatively, a frequency that is an integral multiple of the frequency is used.

【0005】[0005]

【発明が解決しようとする課題】ところで、近時、LC
D基板に対して一層の大型化の要求が高まっており、一
辺が1mというような極めて大型の基板も製造されつつ
ある。このように被処理基板の大型化に伴い、チャンバ
ーが大型化すると、均一なプラズマが得られなくなり、
被処理基板の処理均一性も低下してしまう。
By the way, recently, LC
There is an increasing demand for a larger size D-substrate, and a very large substrate having a side of 1 m is being manufactured. As described above, as the size of the chamber increases with the size of the substrate to be processed, uniform plasma cannot be obtained,
The processing uniformity of the substrate to be processed also decreases.

【0006】本発明はかかる事情に鑑みてなされたもの
であって、大型の被処理基板に対しても均一なプラズマ
により均一な処理を行うことができるプラズマ処理装置
およびプラズマ処理方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a plasma processing apparatus and a plasma processing method capable of performing uniform processing with uniform plasma even on a large-sized substrate to be processed. With the goal.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、被処理基板が収容されるチャンバーと、
チャンバー内に相対向するように設けられた第1および
第2の電極と、前記第1の電極に高周波電力を供給する
高周波電源と、前記チャンバー内を所定の減圧状態に維
持する排気手段と、前記チャンバー内に処理ガスを導入
する処理ガス導入手段とを具備し、前記高周波電力によ
り処理ガスをプラズマ化して、前記基板載置部に載置さ
れた基板に対しプラズマ処理を行うプラズマ処理装置で
あって、前記第2の電極は接地され、その上に長辺が6
00mm以上の長方形または一辺が600mm以上の正
方形の被処理基板が載置されるように構成され、前記高
周波電源から供給される高周波電力の周波数が10MH
z以上13.56MHz未満であることを特徴とするプ
ラズマ処理装置を提供する。
According to the present invention, there is provided a chamber for accommodating a substrate to be processed,
First and second electrodes provided so as to face each other in a chamber, a high-frequency power supply for supplying high-frequency power to the first electrode, and exhaust means for maintaining the inside of the chamber at a predetermined reduced pressure; A processing gas introduction unit that introduces a processing gas into the chamber, a plasma processing apparatus that converts the processing gas into plasma with the high-frequency power and performs plasma processing on the substrate mounted on the substrate mounting unit. The second electrode is grounded and has a long side of 6
A substrate to be processed having a rectangular shape of 00 mm or more or a square having a side of 600 mm or more is placed, and the frequency of the high-frequency power supplied from the high-frequency power source is 10 MHz.
Provided is a plasma processing apparatus, which is not less than z and less than 13.56 MHz.

【0008】また、本発明は、チャンバー内に第1およ
び第2の電極を互いに平行に設け、前記第2の電極を接
地するとともに、第2の電極上に被処理基板を載置した
状態で、減圧下に保持されたチャンバー内に処理ガスを
導入しつつ前記第1の電極に高周波電力を供給し、これ
ら電極間に高周波電界を形成して処理ガスのプラズマを
生成し、このプラズマにより被処理基板に所定のプラズ
マ処理を施すプラズマ処理方法であって、被処理基板を
長辺が600mm以上の長方形または一辺が600mm
以上の正方形とした場合に、供給する高周波電力の周波
数を10MHz以上13.56MHz未満とすることを
特徴とするプラズマ処理方法を提供する。
Further, the present invention provides a method in which a first electrode and a second electrode are provided in a chamber in parallel with each other, the second electrode is grounded, and a substrate to be processed is mounted on the second electrode. A high-frequency power is supplied to the first electrode while introducing a processing gas into a chamber maintained under reduced pressure, a high-frequency electric field is formed between the electrodes to generate a plasma of the processing gas, and the plasma is applied to the first electrode. A plasma processing method for performing a predetermined plasma processing on a processing substrate, wherein the processing target substrate is a rectangle having a long side of 600 mm or more or a side of 600 mm or more.
The present invention provides a plasma processing method characterized in that the frequency of the supplied high-frequency power is 10 MHz or more and less than 13.56 MHz in the case of the above square.

【0009】本発明者らは、長辺が600mm以上の長
方形または一辺が600mm以上の正方形という大型の
被処理基板でも均一なプラズマ処理を可能にすべく検討
を重ねた。その結果、図1に示すように、チャンバー内
の真空度(圧力)と電極における高周波電圧のピークツ
ーピーク値VPPとの関係においてVPPの極小値が存在
し、基板サイズが大きくなるとVPPの極小値が高真空側
(低圧側)にシフトすることを見出した。また、経験的
にVPPの極小値の極小値近傍でプラズマ密度が均一にな
ることが知られている。そこで、VPPの極小値近傍まで
チャンバー内の真空度(圧力)を高真空側(低圧側)に
すると、カソード電極がスパッタされるという不都合お
よびプラズマ密度が低下するという不都合が生じる。こ
のような不都合を回避するためにさらに検討した結果、
供給する高周波電力の周波数を従来の13.56MHz
よりも低周波数にするとVPPの極小値をより低真空側
(高圧側)へシフトさせることができることを見出し
た。したがって、上記のような大型基板であっても、カ
ソード電極がスパッタされるという不都合およびプラズ
マ密度が低下するという不都合を生じさせることなく、
PPの極小値近傍でプラズマ処理を行うことができる。
したがって、均一なプラズマにより均一な処理を行うこ
とができる。ただし、周波数を10MHz未満とすると
プラズマ密度自体が低下するため、10MHz以上とす
る。
The inventors of the present invention have studied to enable uniform plasma processing even for a large-sized substrate having a rectangular shape having a long side of 600 mm or more or a square having a side of 600 mm or more. As a result, as shown in FIG. 1, the minimum value of V PP is present in relation to the peak-to-peak value V PP of the high-frequency voltage in the vacuum in the chamber and (pressure) electrode, when the substrate size is increased V PP Is shifted to the high vacuum side (low pressure side). It is empirically known that the plasma density becomes uniform near the minimum value of the minimum value of V PP . Therefore, if the degree of vacuum (pressure) in the chamber is set to the high vacuum side (low pressure side) to the vicinity of the minimum value of V PP , the disadvantage that the cathode electrode is sputtered and the plasma density decreases are caused. After further investigation to avoid such inconvenience,
The frequency of the supplied high frequency power is 13.56 MHz
It has been found that when the frequency is set lower than that, the minimum value of V PP can be shifted to a lower vacuum side (higher pressure side). Therefore, even with a large substrate as described above, without causing the disadvantage that the cathode electrode is sputtered and the disadvantage that the plasma density is reduced,
Plasma processing can be performed near the minimum value of V PP .
Therefore, uniform processing can be performed by uniform plasma. However, if the frequency is lower than 10 MHz, the plasma density itself decreases, so that the frequency is higher than 10 MHz.

【0010】なお、被処理体を載置する第2の電極に高
周波電力を印加するRIEモードでは、プラズマ中のイ
オンの作用を主体とするので上記不都合は見られない。
したがって、本発明は被処理体を載置しない第1の電極
に高周波電力を印加するPEモードの場合に適用され
る。
[0010] In the RIE mode in which high-frequency power is applied to the second electrode on which the object to be processed is placed, the above-mentioned inconvenience is not seen because the action of ions in the plasma is mainly involved.
Therefore, the present invention is applied to the case of the PE mode in which high-frequency power is applied to the first electrode on which no object is placed.

【0011】[0011]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態について説明する。図2は本発明の一実施
形態に係るLCD基板用のプラズマ処理装置を模式的に
示す断面図で、図3はそのプラズマ処理装置のサセプタ
(下部電極)を示す平面図である。このプラズマ処理装
置1は、電極板が上下平行に対向し、上部電極にプラズ
マ形成用電源が接続された容量結合型平行平板エッチン
グ装置として構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a sectional view schematically showing a plasma processing apparatus for an LCD substrate according to one embodiment of the present invention, and FIG. 3 is a plan view showing a susceptor (lower electrode) of the plasma processing apparatus. The plasma processing apparatus 1 is configured as a capacitively-coupled parallel plate etching apparatus in which electrode plates are vertically opposed to each other and a power supply for plasma formation is connected to an upper electrode.

【0012】このプラズマ処理装置1は、例えば表面が
アルマイト処理(陽極酸化処理)されたアルミニウムか
らなる角筒形状に成形されたチャンバー2を有してお
り、このチャンバー2は接地されている。前記チャンバ
ー2内の底部には角柱状のサセプタ支持台4が設けられ
ており、さらにこのサセプタ支持台4の上には、被処理
基板であるLCD基板Gを載置するためのサセプタ5が
設けられている。このサセプタ5は下部電極(第2の電
極)として機能し、接地されている。
The plasma processing apparatus 1 has a chamber 2 formed in the shape of a rectangular tube made of, for example, aluminum whose surface is anodized (anodized), and the chamber 2 is grounded. A prismatic susceptor support 4 is provided at the bottom of the chamber 2, and a susceptor 5 for mounting an LCD substrate G as a substrate to be processed is provided on the susceptor support 4. Have been. This susceptor 5 functions as a lower electrode (second electrode) and is grounded.

【0013】前記サセプタ支持台4の内部には、冷媒室
7が設けられており、この冷媒室7には、冷媒が冷媒導
入管8を介して導入され冷媒排出管9から排出されて循
環し、その冷熱が前記サセプタ5を介して基板Gに伝熱
され、これによりウエハWの処理面が所望の温度に制御
される。
A refrigerant chamber 7 is provided inside the susceptor support 4. In the refrigerant chamber 7, a refrigerant is introduced through a refrigerant introduction pipe 8, discharged from a refrigerant discharge pipe 9, and circulated. Then, the cold heat is transferred to the substrate G via the susceptor 5, whereby the processing surface of the wafer W is controlled to a desired temperature.

【0014】前記サセプタ5もサセプタ支持台4と同様
に角柱状に成形されている。サセプタ5の上部中央部は
凸状部となっており、その凸状部上面に基板Gが載置さ
れる。その凸状部は載置される基板Gとほぼ同サイズと
なっており、図2に示すように、長辺の長さが600m
m以上の矩形状をなしている。したがって、長辺の長さ
が600mm以上の基板を載置するように構成されてい
る。なお、サセプタ5の凸状部は一辺の長さが600m
m以上の正方形をなしていてもよく、その場合には一辺
の長さが600mm以上の正方形が載置される。また、
サセプタ5からは、図3に示すように4本のリフトピン
14が突出するようになっており、リフトピン14が突
出した状態で基板Gの受け渡しが行われる。
The susceptor 5 is shaped like a prism similarly to the susceptor support 4. The upper central portion of the susceptor 5 is a convex portion, and the substrate G is placed on the upper surface of the convex portion. The protruding portion has substantially the same size as the substrate G to be placed, and as shown in FIG.
It has a rectangular shape of m or more. Therefore, the configuration is such that a substrate having a long side of 600 mm or more is placed. In addition, the length of one side of the convex portion of the susceptor 5 is 600 m.
m or more, and in that case, a square having a side length of 600 mm or more is placed. Also,
As shown in FIG. 3, four lift pins 14 protrude from the susceptor 5, and the transfer of the substrate G is performed with the lift pins 14 protruding.

【0015】前記サセプタ5の上端周縁部には、基板G
を囲むように、額縁状のフォーカスリング16が配置さ
れている。このフォーカスリング16はセラミックなど
の絶縁性材料からなっている。
At the periphery of the upper end of the susceptor 5, a substrate G
A frame-shaped focus ring 16 is arranged so as to surround. The focus ring 16 is made of an insulating material such as ceramic.

【0016】前記サセプタ5の上方には、このサセプタ
5と平行に対向して上部電極21が設けられている。こ
の上部電極21は、絶縁材25を介して、チャンバー2
の上部に支持されており、サセプタ5との対向面を構成
し、多数の吐出孔24を有する電極板23と、この電極
板23を支持し、導電性材料、例えば表面がアルマイト
処理されたアルミニウムからなる電極支持体22とを有
しており、シャワーヘッドを構成している。なお、下部
電極としてのサセプタ5と上部電極21とは、例えば3
0〜300mm程度離間している。
An upper electrode 21 is provided above the susceptor 5 so as to face the susceptor 5 in parallel. The upper electrode 21 is connected to the chamber 2 via an insulating material 25.
And an electrode plate 23 having a surface facing the susceptor 5 and having a large number of discharge holes 24, and a conductive material that supports the electrode plate 23, such as aluminum whose surface is anodized. And an electrode support 22 made of the same, and constitutes a shower head. The susceptor 5 as the lower electrode and the upper electrode 21 are, for example, 3
They are separated by about 0 to 300 mm.

【0017】前記上部電極21における電極支持体22
にはガス導入口26が設けられ、さらにこのガス導入口
26には、ガス供給管27が接続されており、このガス
供給管27には、バルブ28、およびマスフローコント
ローラ29を介して、処理ガス供給源30が接続されて
いる。処理ガス供給源30から、プラズマ処理であるエ
ッチングのための処理ガスが供給される。
The electrode support 22 of the upper electrode 21
Is provided with a gas inlet 26, and a gas supply pipe 27 is connected to the gas inlet 26. The gas supply pipe 27 is connected to a processing gas via a valve 28 and a mass flow controller 29. A source 30 is connected. A processing gas for etching, which is plasma processing, is supplied from a processing gas supply source 30.

【0018】前記チャンバー2の底部には排気管31が
接続されており、この排気管31には排気装置35が接
続されている。排気装置35はターボ分子ポンプなどの
真空ポンプを備えており、これによりチャンバー2内を
所定の減圧雰囲気まで真空引き可能なように構成されて
いる。また、チャンバー2の側壁にはゲートバルブ32
が設けられており、このゲートバルブ32を開にした状
態で基板Gが隣接するロードロック室(図示せず)との
間で搬送されるようになっている。
An exhaust pipe 31 is connected to the bottom of the chamber 2, and an exhaust device 35 is connected to the exhaust pipe 31. The evacuation device 35 is provided with a vacuum pump such as a turbo-molecular pump, so that the inside of the chamber 2 can be evacuated to a predetermined reduced-pressure atmosphere. A gate valve 32 is provided on the side wall of the chamber 2.
The substrate G is conveyed to and from an adjacent load lock chamber (not shown) with the gate valve 32 opened.

【0019】上部電極21には、整合器41を介して高
周波電源40が接続されており、その際の給電は上部電
極21の上面中央部に接続された給電棒33により行わ
れる。この高周波電源40は、10MHz以上13.5
6MHz未満の範囲の周波数を印加するようになってお
り、この範囲の周波数の高周波電力を印加することによ
り均一なプラズマ処理を行うことができる。
A high-frequency power supply 40 is connected to the upper electrode 21 via a matching device 41. At this time, power is supplied by a power supply rod 33 connected to the center of the upper surface of the upper electrode 21. The high frequency power supply 40 has a frequency of 10 MHz or more and 13.5.
A frequency in a range of less than 6 MHz is applied, and a uniform plasma process can be performed by applying a high frequency power in a frequency in this range.

【0020】次に、プラズマ処理装置1における処理動
作について、基板Gに形成されたアモルファスシリコン
膜をエッチングする場合を例にとって説明する。
Next, the processing operation in the plasma processing apparatus 1 will be described by taking as an example the case where the amorphous silicon film formed on the substrate G is etched.

【0021】まず、被処理体である基板Gは、ゲートバ
ルブ32が開放された後、図示しないロードロック室か
らチャンバー2内へと搬入され、サセプタ5上に載置さ
れる。この場合に、基板Gの受け渡しはサセプタ5の内
部を挿通しサセプタ5から突出可能に設けられたリフタ
ーピン14によって行われる。次いで、ゲートバルブ3
2が閉じられ、排気装置35によって、チャンバー2内
が所定の真空度まで真空引きされる。
First, the substrate G to be processed is carried into the chamber 2 from a load lock chamber (not shown) after the gate valve 32 is opened, and is placed on the susceptor 5. In this case, the transfer of the substrate G is performed by a lifter pin 14 that is inserted through the inside of the susceptor 5 and protrudes from the susceptor 5. Next, gate valve 3
2 is closed, and the inside of the chamber 2 is evacuated to a predetermined degree of vacuum by the exhaust device 35.

【0022】その後、バルブ28が開放されて、処理ガ
ス供給源30から処理ガスがマスフローコントローラ2
9によってその流量が調整されつつ、処理ガス供給管2
7、ガス導入口26を通って上部電極21の内部へ導入
され、さらに電極板23の吐出孔24を通って、図2の
矢印に示すように、基板Gに対して均一に吐出され、チ
ャンバー2内の圧力が所定の値に維持される。
Thereafter, the valve 28 is opened and the processing gas is supplied from the processing gas supply source 30 to the mass flow controller 2.
9, while the flow rate is adjusted, the processing gas supply pipe 2
7. The gas is introduced into the upper electrode 21 through the gas inlet 26 and further discharged through the discharge hole 24 of the electrode plate 23 to the substrate G as shown by the arrow in FIG. The pressure in 2 is maintained at a predetermined value.

【0023】そして、高周波電源40から高周波電力が
上部電極21に印加され、これにより、上部電極21と
下部電極としてのサセプタ5との間に高周波電界が生
じ、処理ガスが解離してプラズマ化し、エッチング処理
が施される。
Then, a high-frequency power is applied to the upper electrode 21 from the high-frequency power source 40, and thereby a high-frequency electric field is generated between the upper electrode 21 and the susceptor 5 as a lower electrode, and the processing gas is dissociated into plasma, An etching process is performed.

【0024】この場合に、従来のように、印加される高
周波電力の周波数が13.56MHzまたはその整数倍
の場合には、チャンバー内圧力を従来と同様にすると、
長辺が600mm以上の長方形または一辺が600mm
以上の正方形という大型基板では、基板G全体に亘って
プラズマを均一化することは困難であり、プラズマの不
均一が生じる傾向がある。これは上述したように基板が
大型化すると、その近傍でプラズマ密度が均一になるこ
とが知られているVPPの極小値が高真空側(低圧側)に
シフトするからである。
In this case, when the frequency of the applied high frequency power is 13.56 MHz or an integer multiple thereof as in the conventional case, if the pressure in the chamber is made the same as in the conventional case,
A rectangle with a long side of 600 mm or more or a side of 600 mm
With the large-sized substrate having the square shape described above, it is difficult to make the plasma uniform over the entire substrate G, and the plasma tends to be non-uniform. This is because, as described above, when the size of the substrate increases, the minimum value of V PP , which is known to have a uniform plasma density in the vicinity thereof, shifts to the high vacuum side (low pressure side).

【0025】VPPの極小値がシフトした分だけチャンバ
ー内の真空度(圧力)を高真空度(低圧)にすると、カ
ソード電極として機能する上部電極21の電極板23が
スパッタされる不都合がある。したがって、このような
電極板23がスパッタされる不都合を回避しつつプラズ
マの均一性を確保するために、本実施形態においては高
周波電源40から上部電極21に印加する高周波電力の
周波数を10MHz以上13.56MHz未満とする。
このように周波数を13.56MHz未満とすることに
より、VPPの極小値をより高圧側へシフトさせることが
でき、カソード電極である上部電極21の電極板23が
スパッタされるという不都合を生じさせることなく、V
PPのピーク近傍でプラズマ処理を行うことができる。し
たがって、均一なプラズマにより均一な処理を行うこと
ができる。ただし、周波数を10MHz未満とするとプ
ラズマ密度自体が低下して処理効率が低下するため、1
0MHz以上とする。
If the degree of vacuum (pressure) in the chamber is set to a high degree of vacuum (low pressure) by an amount corresponding to the shift of the minimum value of V PP , there is a disadvantage that the electrode plate 23 of the upper electrode 21 functioning as a cathode electrode is sputtered. . Therefore, in order to avoid such inconvenience that the electrode plate 23 is sputtered and to ensure the uniformity of the plasma, in the present embodiment, the frequency of the high-frequency power applied from the high-frequency power supply 40 to the upper electrode 21 is 10 MHz or more. .56 MHz or less.
By setting the frequency to less than 13.56 MHz, the minimum value of V PP can be shifted to a higher voltage side, which causes a disadvantage that the electrode plate 23 of the upper electrode 21 serving as the cathode electrode is sputtered. Without, V
Plasma processing can be performed near the peak of PP . Therefore, uniform processing can be performed by uniform plasma. However, if the frequency is less than 10 MHz, the plasma density itself decreases and the processing efficiency decreases.
0 MHz or more.

【0026】なお、本実施形態のように基板を載置しな
い上部電極21に高周波電力を印加するPEモードの場
合には、良好なプラズマ状態を得るためには、チャンバ
ー2内の圧力は13.3Pa以上であることが好まし
い。チャンバー内圧力の上限は通常のプラズマ処理が行
うことができる範囲で設定され、例えば300Pa程度
である。
In the case of the PE mode in which high-frequency power is applied to the upper electrode 21 on which no substrate is mounted as in the present embodiment, the pressure in the chamber 2 must be 13. It is preferably at least 3 Pa. The upper limit of the pressure in the chamber is set within a range in which normal plasma processing can be performed, and is, for example, about 300 Pa.

【0027】次に、本発明の効果を確認した実験につい
て説明する。680mm×680mmの正方形のLCD
基板に対し、図1で示した装置を用いてエッチング実験
を行った。高周波電源から供給される高周波電力を24
00Wに設定し、周波数を13.56MHz、12.0
MHz、10.0MHzとして実験を行った。なお、処
理ガスとしてはSF、HCl、Heの混合ガスを用
い、チャンバー内圧力は30Paに設定した。
Next, an experiment for confirming the effect of the present invention will be described. 680mm x 680mm square LCD
An etching experiment was performed on the substrate using the apparatus shown in FIG. The high frequency power supplied from the high frequency power supply is 24
00W and the frequency is 13.56 MHz, 12.0
MHz and 10.0 MHz. Note that a mixed gas of SF 6 , HCl, and He was used as the processing gas, and the pressure in the chamber was set to 30 Pa.

【0028】その結果、13.56MHzの際には、中
央部のエッチレートが高く、平均エッチレートは16
5.4nm/minで均一性が±24%であったが、周
波数を下げるに従って周辺部のエッチレートが上昇する
傾向が見られ、12.0MHzの場合には242.3n
m/min,±11%、10MHzの場合には240.
2nm/min,±16%となって、周波数を13.5
6MHz未満とすることでエッチングの均一性が良好と
なり、しかもエッチレートが高くなることが確認され
た。
As a result, at 13.56 MHz, the etch rate in the center is high and the average etch rate is 16
The uniformity was ± 24% at 5.4 nm / min. However, the etch rate in the peripheral part tended to increase as the frequency was lowered. In the case of 12.0 MHz, 242.3 n was used.
m / min, ± 11%, 10 MHz, 240.
2 nm / min, ± 16%, and the frequency is 13.5
It has been confirmed that by setting the frequency to less than 6 MHz, the uniformity of etching is improved and the etch rate is increased.

【0029】なお、本発明は上記実施の形態に限定され
ることなく種々変形可能である。例えば、上記実施形態
では本発明をエッチング装置に適用した場合について示
したが、エッチング装置に限らず、スパッタリングや、
CVD成膜等の他のプラズマ処理装置に適用することが
できる。
The present invention can be variously modified without being limited to the above embodiment. For example, in the above embodiment, the case where the present invention is applied to an etching apparatus has been described.
The present invention can be applied to other plasma processing apparatuses such as CVD film formation.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
電極に供給する高周波電力の周波数を10MHz以上1
3.56MHz未満とすることにより、長辺が600m
m以上の長方形または一辺が600mm以上の正方形の
大型基板のプラズマ処理において、プラズマを均一化す
ることができ、均一なプラズマ処理を行うことができ
る。
As described above, according to the present invention,
The frequency of the high-frequency power supplied to the electrode is 10 MHz or more1
By setting it to less than 3.56 MHz, the long side is 600 m
In plasma processing of a large substrate having a rectangular shape of m or more or a square shape having a side of 600 mm or more, plasma can be made uniform and uniform plasma processing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】チャンバー内の真空度(圧力)とVPPとの関係
を示すグラフ。
FIG. 1 is a graph showing the relationship between the degree of vacuum (pressure) in a chamber and V PP .

【図2】本発明の一実施形態に係るLCD基板用のプラ
ズマ処理装置を模式的に示す断面図
FIG. 2 is a cross-sectional view schematically showing a plasma processing apparatus for an LCD substrate according to an embodiment of the present invention.

【図3】図1のプラズマ処理装置のサセプタ(下部電
極)を示す平面図。
FIG. 3 is a plan view showing a susceptor (lower electrode) of the plasma processing apparatus of FIG. 1;

【符号の説明】[Explanation of symbols]

1;プラズマ処理装置(エッチング装置) 2;チャンバー 5;サセプタ(第2の電極) 21;上部電極(第1の電極) 30;処理ガス供給源 35;排気装置 40;高周波電源 G;LCD基板 DESCRIPTION OF SYMBOLS 1; Plasma processing apparatus (etching apparatus) 2: Chamber 5; Susceptor (second electrode) 21; Upper electrode (first electrode) 30; Processing gas supply source 35; Exhaust apparatus 40;

フロントページの続き Fターム(参考) 4G075 AA24 AA30 BC02 BC04 BC06 BD14 CA47 EB42 EC10 FC13 5F004 AA01 AA16 BA04 BB11 BB15 DA18 DA22 DA29 DB01 5F045 AA08 AF11 BB02 CA15 DQ10 EB08 EB09 EF05 EH04 EH05 EH14 EH19 EJ02 EM02 EM10Continuation of the front page F term (reference) 4G075 AA24 AA30 BC02 BC04 BC06 BD14 CA47 EB42 EC10 FC13 5F004 AA01 AA16 BA04 BB11 BB15 DA18 DA22 DA29 DB01 5F045 AA08 AF11 BB02 CA15 DQ10 EB08 EB09 EF05 EH04 EH05 EM05E14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被処理基板が収容されるチャンバーと、 チャンバー内に相対向するように設けられた第1および
第2の電極と、 前記第1の電極に高周波電力を供給する高周波電源と、 前記チャンバー内を所定の減圧状態に維持する排気手段
と、 前記チャンバー内に処理ガスを導入する処理ガス導入手
段とを具備し、 前記高周波電力により処理ガスをプラズマ化して、前記
基板載置部に載置された基板に対しプラズマ処理を行う
プラズマ処理装置であって、 前記第2の電極は接地され、その上に長辺が600mm
以上の長方形または一辺が600mm以上の正方形の被
処理基板が載置されるように構成され、 前記高周波電源から供給される高周波電力の周波数が1
0MHz以上13.56MHz未満であることを特徴と
するプラズマ処理装置。
A chamber accommodating a substrate to be processed, first and second electrodes provided to face each other in the chamber, a high-frequency power supply for supplying high-frequency power to the first electrode, An exhaust unit that maintains the inside of the chamber at a predetermined reduced pressure state; and a processing gas introduction unit that introduces a processing gas into the chamber. A plasma processing apparatus for performing plasma processing on a mounted substrate, wherein the second electrode is grounded, and a long side thereof is 600 mm
The above-described rectangular or square substrate having a side of 600 mm or more is configured to be mounted thereon, and the frequency of the high-frequency power supplied from the high-frequency power source is 1
A plasma processing apparatus characterized by being at least 0 MHz and less than 13.56 MHz.
【請求項2】 前記高周波電源から供給される高周波電
力の周波数が12MHzであることを特徴とする請求項
1に記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein the frequency of the high-frequency power supplied from the high-frequency power supply is 12 MHz.
【請求項3】 チャンバー内に第1および第2の電極を
互いに平行に設け、前記第2の電極を接地するととも
に、第2の電極上に被処理基板を載置した状態で、減圧
下に保持されたチャンバー内に処理ガスを導入しつつ前
記第1の電極に高周波電力を供給し、これら電極間に高
周波電界を形成して処理ガスのプラズマを生成し、この
プラズマにより被処理基板に所定のプラズマ処理を施す
プラズマ処理方法であって、 被処理基板を長辺が600mm以上の長方形または一辺
が600mm以上の正方形とした場合に、供給する高周
波電力の周波数を10MHz以上13.56MHz未満
とすることを特徴とするプラズマ処理方法。
3. A first electrode and a second electrode are provided in a chamber in parallel with each other, the second electrode is grounded, and a substrate to be processed is placed on the second electrode under reduced pressure. A high-frequency power is supplied to the first electrode while introducing a processing gas into the held chamber, and a high-frequency electric field is formed between the electrodes to generate a plasma of the processing gas. A plasma processing method for performing the plasma processing described above, wherein the frequency of the high-frequency power to be supplied is 10 MHz or more and less than 13.56 MHz when the substrate to be processed is a rectangle having a long side of 600 mm or more or a square having a side of 600 mm or more. A plasma processing method characterized by the above-mentioned.
【請求項4】 供給する高周波電力の周波数を12MH
zとすることを特徴とする請求項3に記載のプラズマ処
理方法。
4. The frequency of the supplied high frequency power is 12 MHz.
The plasma processing method according to claim 3, wherein z is set to z.
【請求項5】 前記チャンバー内の圧力は、13.3P
a以上であることを特徴とする請求項3または請求項4
に記載のプラズマ処理方法。
5. The pressure in the chamber is 13.3P.
5. The method according to claim 3, wherein the distance is not less than a.
4. The plasma processing method according to 1.
JP2000080311A 2000-03-22 2000-03-22 Plasma processing apparatus and plasma processing method Expired - Fee Related JP4583543B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000080311A JP4583543B2 (en) 2000-03-22 2000-03-22 Plasma processing apparatus and plasma processing method
KR1020010014236A KR100755594B1 (en) 2000-03-22 2001-03-20 Plasma etching apparatus having parallel plate structure of capacitive coupling type and plasma etching method using the same
TW090106649A TW497123B (en) 2000-03-22 2001-03-21 Plasma etching apparatus having parallel plate structure of capacitive coupling type and plasma etching method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080311A JP4583543B2 (en) 2000-03-22 2000-03-22 Plasma processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
JP2001267303A true JP2001267303A (en) 2001-09-28
JP4583543B2 JP4583543B2 (en) 2010-11-17

Family

ID=18597438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080311A Expired - Fee Related JP4583543B2 (en) 2000-03-22 2000-03-22 Plasma processing apparatus and plasma processing method

Country Status (3)

Country Link
JP (1) JP4583543B2 (en)
KR (1) KR100755594B1 (en)
TW (1) TW497123B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481278B1 (en) * 2002-08-22 2005-04-07 한국디엔에스 주식회사 Capacitance coupled plasma etching apparatus
KR100965759B1 (en) * 2003-07-01 2010-06-24 주성엔지니어링(주) Manufacturing apparatus for large-size LCD substrate using plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722388A (en) * 1993-06-16 1995-01-24 Nec Corp Dry etching equipment
JPH09246244A (en) * 1996-03-12 1997-09-19 Sony Corp Plasma processing apparatus
JPH1032171A (en) * 1996-05-16 1998-02-03 Sharp Corp Electric device manufacturing device and method
JPH11229165A (en) * 1998-02-09 1999-08-24 Seiko Epson Corp Chromium etching method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100188455B1 (en) * 1991-05-20 1999-06-01 이노우에 아키라 Drying etching method
KR100226366B1 (en) * 1995-08-23 1999-10-15 아끼구사 나오유끼 Plasma equipment and plasma processing method
JPH1167725A (en) * 1997-08-18 1999-03-09 Hitachi Ltd Plasma etching device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722388A (en) * 1993-06-16 1995-01-24 Nec Corp Dry etching equipment
JPH09246244A (en) * 1996-03-12 1997-09-19 Sony Corp Plasma processing apparatus
JPH1032171A (en) * 1996-05-16 1998-02-03 Sharp Corp Electric device manufacturing device and method
JPH11229165A (en) * 1998-02-09 1999-08-24 Seiko Epson Corp Chromium etching method

Also Published As

Publication number Publication date
TW497123B (en) 2002-08-01
KR20010092693A (en) 2001-10-26
KR100755594B1 (en) 2007-09-06
JP4583543B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US6387208B2 (en) Inductive coupling plasma processing apparatus
JP3192370B2 (en) Plasma processing equipment
US7846293B2 (en) Plasma processing apparatus and method
JP3314151B2 (en) Plasma CVD apparatus and method for manufacturing semiconductor device
US6727654B2 (en) Plasma processing apparatus
JP5399208B2 (en) Plasma processing apparatus and components thereof
US20080156441A1 (en) Plasma processing apparatus and electrode plate, electrode supporting body, and shield ring thereof
EP1553208A2 (en) Substrate processing apparatus and cleaning method therefor
WO2006036753A2 (en) Methods and apparatus for tuning a set of plasma processing steps
KR20100020927A (en) Focus ring, plasma processing appratus and palasma processing method
WO2001080297A1 (en) Plasma processing apparatus
JP2001156051A (en) Plasma processing method and apparatus
US20140083615A1 (en) Antenna assembly and a plasma processing chamber having the same
TW200901363A (en) Substrate carrying bench and substrate treatment device
JP2016506592A (en) Capacitively coupled plasma device with uniform plasma density
US20010030024A1 (en) Plasma-enhanced processing apparatus
JP3946640B2 (en) Plasma processing apparatus and plasma processing method
JP2004327767A (en) Plasma processing apparatus
JPH0927398A (en) Plasma treatment device
WO2008049024A1 (en) Methods and apparatus for tuning a set of plasma processing steps
TWI276173B (en) Plasma processing device and plasma processing method
CN110846636A (en) Coating material for processing chamber
JP4583543B2 (en) Plasma processing apparatus and plasma processing method
JP3966788B2 (en) Plasma processing equipment
JP2002164329A (en) Plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4583543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees