JP2001263864A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JP2001263864A
JP2001263864A JP2000079362A JP2000079362A JP2001263864A JP 2001263864 A JP2001263864 A JP 2001263864A JP 2000079362 A JP2000079362 A JP 2000079362A JP 2000079362 A JP2000079362 A JP 2000079362A JP 2001263864 A JP2001263864 A JP 2001263864A
Authority
JP
Japan
Prior art keywords
passage
refrigerant
pressure
expansion valve
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000079362A
Other languages
Japanese (ja)
Other versions
JP4292676B2 (en
Inventor
Masanori Yasuda
真範 安田
Yoriaki Ando
順明 安藤
Fujio Nomura
富士夫 野村
Teruyuki Hotta
照之 堀田
Hiroshi Hayashi
宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Denso Corp
Soken Inc
Original Assignee
Fujikoki Corp
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp, Denso Corp, Nippon Soken Inc filed Critical Fujikoki Corp
Priority to JP2000079362A priority Critical patent/JP4292676B2/en
Publication of JP2001263864A publication Critical patent/JP2001263864A/en
Application granted granted Critical
Publication of JP4292676B2 publication Critical patent/JP4292676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Details Of Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce noise generated when a large quantity of refrigerant flows through a passage hole. SOLUTION: Since the first passage 43a of a two-phase refrigerant passage 43 on the low pressure side is provided with a member 60 projecting toward a second passage 43b, significant pressure variation of refrigerant immediately after passing through a throttle passage hole 48 is damped when the refrigerant flows through the projecting member 60. Noise can be reduced by passing refrigerant through a block joint after pressure variation thereof is damped thereby suppressing vibration of the block joint.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルの蒸
発器出口の冷媒過熱度が設定値に維持されるように蒸発
器への流入冷媒の流量を調整する膨張弁に関し、特にそ
の騒音低減のための改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve for adjusting the flow rate of refrigerant flowing into an evaporator such that the degree of superheat of the refrigerant at the evaporator outlet of a refrigeration cycle is maintained at a set value. For improvement.

【0002】[0002]

【従来の技術】この種の膨張弁は、冷凍サイクルの高圧
側液冷媒が流入する高圧側液冷媒通路と、蒸発器入口に
接続される低圧側2相冷媒通路との間に、微小な絞り通
路穴を設置して、この絞り通路穴にて液冷媒を減圧、膨
張させるとともに、ダイヤフラムで駆動される弁体によ
って絞り通路穴の開口面積を調整して、蒸発器への流入
冷媒流量を調整するものである。
2. Description of the Related Art An expansion valve of this type is provided with a fine throttle between a high-pressure side liquid refrigerant passage into which a high-pressure side liquid refrigerant of a refrigeration cycle flows and a low-pressure side two-phase refrigerant passage connected to an evaporator inlet. By installing a passage hole, the liquid refrigerant is decompressed and expanded in this throttle passage hole, and the opening area of the throttle passage hole is adjusted by a valve driven by a diaphragm to adjust the flow rate of the refrigerant flowing into the evaporator. Is what you do.

【0003】そして、上記低圧側2相冷媒通路は、絞り
通路穴側に位置する第1通路と、第1通路の冷媒流れ下
流側に位置し、第1通路よりも通路断面積が大きい第2
通路とを有しており、低圧側2相冷媒通路と蒸発器入口
を接続する接続部品(例えばブロックジョイント等)が
第2通路内に、冷媒流れ下流側から挿入されるようにな
っている。
The low-pressure two-phase refrigerant passage has a first passage located on the throttle passage hole side and a second passage located on the downstream side of the refrigerant flow in the first passage and having a passage cross-sectional area larger than the first passage.
A connecting part (for example, a block joint or the like) connecting the low-pressure two-phase refrigerant passage and the evaporator inlet is inserted into the second passage from the downstream side of the refrigerant flow.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
において、特に冷凍サイクル起動直後のように冷媒が多
量に流れる際には、高周波数の騒音が発生するという問
題がある。
However, in the above-mentioned prior art, there is a problem that high-frequency noise is generated particularly when a large amount of refrigerant flows immediately after the start of the refrigeration cycle.

【0005】この騒音の発生原因を説明すると、膨張弁
の絞り通路穴で冷媒が減圧膨張し、液相から気液2相に
変わる際に、液冷媒中に気泡が発生、成長し、合体、分
裂することで圧力変動が発生する。また、気液2相冷媒
中の液滴流が壁面に衝突することによっても圧力変動が
発生する。
The cause of this noise will be explained. When the refrigerant decompresses and expands in the throttle passage hole of the expansion valve and changes from a liquid phase to a gas-liquid two phase, bubbles are generated and grow in the liquid refrigerant, and coalescence occurs. The split causes pressure fluctuations. Pressure fluctuations also occur when the droplet flow in the gas-liquid two-phase refrigerant collides with the wall surface.

【0006】そして、このように発生した冷媒の圧力変
動が、絞り通路穴から低圧側2相冷媒通路を伝わり、さ
らには、低圧側2相冷媒通路と蒸発器入口を接続する接
続部品を振動させることにより、この接続部品や蒸発器
等から騒音が発生していることが判明した。
[0006] The pressure fluctuation of the refrigerant thus generated is transmitted from the throttle passage hole to the low-pressure two-phase refrigerant passage, and further vibrates a connecting part connecting the low-pressure two-phase refrigerant passage to the evaporator inlet. Thus, it was found that noise was generated from the connection parts, the evaporator, and the like.

【0007】本発明は上記点に鑑み、冷媒が絞り通路穴
を多量に流れることに起因して発生する騒音の低減を図
ることを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to reduce noise generated due to a large amount of refrigerant flowing through a throttle passage hole.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1に記載の発明では、高圧側の液
冷媒を減圧膨張させる絞り通路穴(48)の開口面積を
調整するように変位する弁体(47)と、絞り通路穴
(48)を通過した低圧側2相冷媒を蒸発器(5)に送
り込む低圧側2相冷媒通路(43)とを備える膨張弁に
おいて、低圧側2相冷媒通路(43)は、絞り通路穴
(48)側に位置する第1通路(43a)と、第1通路
(43a)の冷媒流れ下流側に位置し、第1通路(43
a)よりも通路断面積が大きい第2通路(43b)とを
有しており、第1通路(43a)に、第2通路(43
b)に向かって突出する突出部材(60)を備えること
を特徴としている。
In order to achieve the above object, according to the present invention, the opening area of the throttle passage hole (48) for decompressing and expanding the high-pressure side liquid refrigerant is adjusted. And a low-pressure two-phase refrigerant passage (43) that feeds the low-pressure two-phase refrigerant that has passed through the throttle passage hole (48) to the evaporator (5). The low-pressure two-phase refrigerant passage (43) is located on the first passage (43a) located on the throttle passage hole (48) side, and is located on the downstream side of the first passage (43a) in the refrigerant flow.
a) has a second passage (43b) having a passage cross-sectional area larger than that of the first passage (43a).
It is characterized by comprising a projecting member (60) projecting toward b).

【0009】これにより、絞り通路穴(48)を通過し
た低圧側2相冷媒は、第1通路(43a)を通過して、
突出部材(60)内を通過した後に、蒸発器(5)と膨
張弁とを接続する接続部品内を流通するようになるの
で、絞り通路穴(48)通過直後の圧力変動が大きい冷
媒は、突出部材(60)内を流通する間にその圧力変動
が減衰され、この圧力変動が減衰した冷媒を接続部品内
に流通させるようにできる。
Thus, the low-pressure two-phase refrigerant that has passed through the throttle passage hole (48) passes through the first passage (43a),
After passing through the protruding member (60), the refrigerant flows through the connecting part connecting the evaporator (5) and the expansion valve. Therefore, the refrigerant having a large pressure fluctuation immediately after passing through the throttle passage hole (48) The pressure fluctuation is attenuated while flowing through the protruding member (60), and the refrigerant having the pressure fluctuation attenuated can be circulated in the connection component.

【0010】よって、突出部材(60)を配置しない従
来の膨張弁に比べて、小さい圧力変動の冷媒を接続部品
(5a)内に流通させることができ、接続部品の振動を
抑制して騒音を低減することができる。
[0010] Therefore, compared with the conventional expansion valve without the protruding member (60), the refrigerant having a small pressure fluctuation can be circulated in the connecting part (5a), and the vibration of the connecting part can be suppressed to reduce the noise. Can be reduced.

【0011】ところで、冷媒の圧力変動が通路を流通す
ることによる減衰の効果は、その通路断面積が小さいほ
ど、また、通路長が長いほど、冷媒の圧力変動の減衰の
効果は大きくなる。
By the way, the effect of the pressure fluctuation of the refrigerant due to the flow through the passage is reduced as the passage cross-sectional area becomes smaller and the passage length becomes longer.

【0012】また、本発明者らの実験によれば、請求項
2に記載の発明の如く、突出部材(60)を円筒形状に
して、低圧側2相冷媒通路(43)のうち、絞り通路穴
(48)から突出部材(60)の突出端面までの長さ
(B)を突出部材(60)の内径(A)の1.5倍以上
にすれば、突出部材(60)内における冷媒の圧力変動
の減衰が、十分になされることが分かった。
According to an experiment conducted by the present inventors, as in the second aspect of the present invention, the projecting member (60) is formed in a cylindrical shape, and the throttle passage of the low-pressure two-phase refrigerant passage (43) is formed. If the length (B) from the hole (48) to the protruding end surface of the protruding member (60) is set to be 1.5 times or more the inner diameter (A) of the protruding member (60), the refrigerant in the protruding member (60) will It has been found that pressure fluctuations are sufficiently damped.

【0013】また、請求項3に記載の発明では、突出部
材(60)を、低圧側2相冷媒通路(43)を形成する
膨張弁本体(41a)に、低圧側2相冷媒通路(43)
の冷媒流れ下流側から圧入することを特徴としている。
According to the third aspect of the present invention, the projecting member (60) is connected to the expansion valve body (41a) forming the low-pressure two-phase refrigerant passage (43) by the low-pressure two-phase refrigerant passage (43).
Is injected from the downstream side of the refrigerant flow.

【0014】また、請求項4に記載の発明では、突出部
材(60)を、剛性の高い剛性部材(60a)と、剛性
部材(60a)の内面に配置された、衝撃吸収性を有す
る緩衝部材(60b)とから形成することを特徴として
いるので、圧力変動の大きい冷媒が突出部材(60)に
衝突する際の加振力は、緩衝部材(60b)によって内
部減衰される。従って、突出部材(60)内における冷
媒の圧力変動を、より一層減衰することができる。
According to the fourth aspect of the present invention, the projecting member (60) is a rigid member (60a) having high rigidity, and a shock absorbing member having shock absorbing properties disposed on the inner surface of the rigid member (60a). (60b), the vibration force when the refrigerant having large pressure fluctuation collides with the protruding member (60) is internally attenuated by the buffer member (60b). Therefore, the pressure fluctuation of the refrigerant in the protruding member (60) can be further attenuated.

【0015】因みに、上記各手段の括弧内の符号は、後
述する実施形態に記載の具体的手段との対応関係を示す
一例である。
Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0016】[0016]

【発明の実施の形態】(第1実施形態)本実施形態は、
本発明の膨張弁を車両用空調装置の温度式膨張弁に適用
したものであり、図1は膨張弁を含む車両用空調装置の
冷凍サイクルを示している。図中、1は圧縮機で、電磁
クラッチ1aを介して図示しない車両エンジンにより駆
動される。2は凝縮器で、圧縮機1から吐出されたガス
冷媒を図示しないファンによって送風される冷却空気
(外気)により冷却し、凝縮するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment)
The expansion valve of the present invention is applied to a temperature-type expansion valve of a vehicle air conditioner. FIG. 1 shows a refrigeration cycle of a vehicle air conditioner including the expansion valve. In the figure, reference numeral 1 denotes a compressor, which is driven by a vehicle engine (not shown) via an electromagnetic clutch 1a. A condenser 2 cools and condenses the gas refrigerant discharged from the compressor 1 with cooling air (outside air) blown by a fan (not shown).

【0017】3はレシーバで、凝縮器3で凝縮した液冷
媒を貯えて、液冷媒のみをその出口側に導出するもので
ある。4はレシーバ3からの冷媒を減圧、膨張させる温
度式膨張弁、5は蒸発器で、図示しない空調ユニットの
ケース内に収容され、図示しない空調用ファンによって
送風される空調空気を冷却、除湿するものである。
Numeral 3 is a receiver for storing the liquid refrigerant condensed in the condenser 3 and discharging only the liquid refrigerant to its outlet side. Reference numeral 4 denotes a thermal expansion valve for decompressing and expanding the refrigerant from the receiver 3, and reference numeral 5 denotes an evaporator, which is accommodated in a case of an air conditioning unit (not shown) and cools and dehumidifies conditioned air blown by an air conditioning fan (not shown). Things.

【0018】上記した温度式膨張弁4は、アルミニウム
等の金属で成形された縦長の直方体状の形状からなる本
体41を有している。この本体41内には、高圧側液冷
媒通路42と低圧側2相冷媒通路43と低圧側ガス冷媒
通路44とが形成されている。高圧側液冷媒通路42
は、レシーバ3の出口に接続されて高圧の液冷媒が送り
込まれてくる。また、低圧側2相冷媒通路43は、蒸発
器5の冷媒入口部(図3参照)5aに接続されて断熱膨
張後の気液2相冷媒が送り出される。
The above-mentioned temperature type expansion valve 4 has a vertically elongated rectangular parallelepiped main body 41 formed of a metal such as aluminum. In the main body 41, a high-pressure side liquid refrigerant passage 42, a low-pressure side two-phase refrigerant passage 43, and a low-pressure side gas refrigerant passage 44 are formed. High-pressure side liquid refrigerant passage 42
Is connected to the outlet of the receiver 3 and a high-pressure liquid refrigerant is sent in. The low-pressure two-phase refrigerant passage 43 is connected to a refrigerant inlet (see FIG. 3) 5a of the evaporator 5, and the gas-liquid two-phase refrigerant after adiabatic expansion is sent out.

【0019】また、低圧側ガス冷媒通路44は、その一
端が蒸発器5の出口部5b(図3参照)に接続され、他
端が圧縮機1の吸入側に接続されて、蒸発器5で熱交換
(吸熱)して蒸発したガス冷媒が通過するものである。
この低圧側ガス冷媒通路44にはアルミニウム等の熱伝
導の良好な金属からなる感温棒(ヒートステム)45が
貫通するように配置され、この感温棒45の下端には弁
作動棒46が当接し、さらにこの弁作動棒46の下端に
は球状の弁体47が当接するように配置されている。
The low-pressure gas refrigerant passage 44 has one end connected to the outlet 5b (see FIG. 3) of the evaporator 5 and the other end connected to the suction side of the compressor 1. The gas refrigerant evaporated by heat exchange (heat absorption) passes.
A temperature sensing rod (heat stem) 45 made of a metal having good heat conductivity such as aluminum is arranged to penetrate the low-pressure side gas refrigerant passage 44, and a valve actuation rod 46 is provided at a lower end of the temperature sensing rod 45. A spherical valve element 47 is disposed so as to contact the lower end of the valve operating rod 46.

【0020】前記した高圧側液冷媒通路42は、高圧液
冷媒を減圧膨張させる微小な絞り通路穴48を介して低
圧側2相冷媒通路43に連通しており、絞り通路穴48
の開口面積が球状の弁体47により調整されるようにな
っている。ここで、球状の弁体47と絞り通路穴48と
により、膨張弁4の減圧機構を構成している。
The high-pressure side liquid refrigerant passage 42 communicates with the low-pressure two-phase refrigerant passage 43 through a minute throttle passage hole 48 for reducing and expanding the high-pressure liquid refrigerant.
Is adjusted by a spherical valve element 47. Here, the pressure reducing mechanism of the expansion valve 4 is configured by the spherical valve element 47 and the throttle passage hole 48.

【0021】また、感温棒45の上端側はダイヤフラム
(圧力応動部材)49と当接し、このダイヤフラム49
により弁体47は開弁方向(図1の下方)に付勢され
る。ここで、ダイヤフラム49はダイヤフラムケース5
0内に配設され、ダイヤフラムケース50内の空間を上
側の第1圧力室51と下側の第2圧力室52とに仕切っ
ている。
The upper end of the temperature sensing rod 45 is in contact with a diaphragm (pressure responsive member) 49.
As a result, the valve element 47 is urged in the valve opening direction (downward in FIG. 1). Here, the diaphragm 49 is a diaphragm case 5
0, and partitions the space inside the diaphragm case 50 into an upper first pressure chamber 51 and a lower second pressure chamber 52.

【0022】上側の第1圧力室51内には、冷凍サイク
ルが運転される条件下でほぼ飽和蒸気の状態となる冷媒
が封入されている。従って、蒸発器5を出た冷媒、すな
わち、低圧側ガス冷媒通路44を通過するガス冷媒の温
度変動(過熱度変動)が感温棒45を伝わって第1圧力
室51内の冷媒に伝わることにより、第1圧力室51内
の冷媒圧力が変化する。
The upper first pressure chamber 51 is filled with a refrigerant that is substantially saturated vapor under the condition that the refrigeration cycle is operated. Accordingly, the temperature fluctuation (superheat degree fluctuation) of the refrigerant that has exited the evaporator 5, that is, the gas refrigerant that passes through the low-pressure gas refrigerant passage 44, is transmitted to the refrigerant in the first pressure chamber 51 through the temperature sensing rod 45. Accordingly, the refrigerant pressure in the first pressure chamber 51 changes.

【0023】一方、ダイヤフラムケース50内下側の第
2圧力室52は、感温棒45と本体41との間に形成さ
れる空間56を通して低圧側ガス冷媒通路44に常時連
通して、この第2圧力室52内は低圧側ガス冷媒通路4
4と同一圧力になっている。
On the other hand, the second pressure chamber 52 on the lower side in the diaphragm case 50 always communicates with the low-pressure side gas refrigerant passage 44 through a space 56 formed between the temperature sensing rod 45 and the main body 41, and 2 The inside of the pressure chamber 52 is a low pressure side gas refrigerant passage 4.
It has the same pressure as 4.

【0024】高圧側液冷媒通路42内には弁体47を閉
弁方向に付勢するコイルばね(ばね手段)53が配置さ
れており、このコイルばね53の一端部は支持台座54
を介して弁体47にばね力を作用させる。コイルばね5
3の他端部は金属プラグ55により支持されており、こ
の金属プラグ55は本体41のねじ穴に位置調整可能に
固定され、金属プラグ55の位置調整によりコイルばね
53の取付荷重を調整できる。
A coil spring (spring means) 53 for urging the valve body 47 in the valve closing direction is disposed in the high-pressure side liquid refrigerant passage 42, and one end of the coil spring 53 has a support base 54.
A spring force is applied to the valve body 47 through. Coil spring 5
The other end of 3 is supported by a metal plug 55, and the metal plug 55 is fixed to a screw hole of the main body 41 so as to be position-adjustable, and the mounting load of the coil spring 53 can be adjusted by adjusting the position of the metal plug 55.

【0025】このような構成によって、第1、第2圧力
室51、52の圧力と、コイルばね53の力とのバラン
スで弁体47が変位して、絞り通路穴48の開口面積
(弁開度)が最適となるように制御される。
With such a configuration, the valve element 47 is displaced by the balance between the pressures of the first and second pressure chambers 51 and 52 and the force of the coil spring 53, and the opening area of the throttle passage hole 48 (valve opening) Degree) is controlled to be optimal.

【0026】次に、本実施形態の要部である低圧側2相
冷媒通路43に関し、図1の部分拡大図である図2を用
いて説明する。
Next, the low-pressure side two-phase refrigerant passage 43, which is a main part of the present embodiment, will be described with reference to FIG. 2, which is a partially enlarged view of FIG.

【0027】膨張弁4の本体41に形成される低圧側2
相冷媒通路43は、図2の左右方向に延びる断面円形の
形状であり、絞り通路穴48と連通する第1通路43a
と、第1通路43aの冷媒流れ下流側に位置し、第1通
路43aよりも通路断面積が大きい第2通路43bとを
有している。
The low pressure side 2 formed on the main body 41 of the expansion valve 4
The phase refrigerant passage 43 has a circular cross section extending in the left-right direction in FIG. 2 and has a first passage 43 a communicating with the throttle passage hole 48.
And a second passage 43b located downstream of the first passage 43a in the refrigerant flow and having a larger passage cross-sectional area than the first passage 43a.

【0028】そして、膨張弁本体41のうち第1通路4
3aの端部を形成する部分には第1通路43aの通路断
面積を拡大する拡大部41aが形成されており、この拡
大部41aには、冷媒流れ下流側から円筒形状の突出部
材60が圧入されている。従って、突出部材60は、第
1通路43aから第2通路43bに向かって突出するよ
うに配置されている。
The first passage 4 in the expansion valve body 41
An enlarged portion 41a for enlarging the passage cross-sectional area of the first passage 43a is formed at a portion forming the end of 3a, and a cylindrical projecting member 60 is press-fitted into the enlarged portion 41a from the downstream side of the refrigerant flow. Have been. Therefore, the protruding member 60 is disposed so as to protrude from the first passage 43a toward the second passage 43b.

【0029】この突出部材60は、剛性を有する材質
(例えば金属)で形成されており、第1通路43aから
第2通路43bに向かって突出するように配置されてい
る。そして、突出部材60の突出端面は、膨張弁4の側
面と同一平面上に位置するように形成されている。ま
た、突出部材60の内径Aは、第1通路43aの内径と
同じ大きさに形成されている。さらにまた、低圧側2相
冷媒通路43のうち、絞り通路穴48の中心軸位置から
突出部材60の端面までの長さBを、突出部材60の内
径Aの約1.5倍に形成している。
The protruding member 60 is formed of a rigid material (eg, metal) and is disposed so as to protrude from the first passage 43a toward the second passage 43b. The projecting end surface of the projecting member 60 is formed so as to be located on the same plane as the side surface of the expansion valve 4. The inner diameter A of the protruding member 60 is formed to be the same size as the inner diameter of the first passage 43a. Further, in the low-pressure side two-phase refrigerant passage 43, the length B from the central axis position of the throttle passage hole 48 to the end face of the protruding member 60 is formed to be about 1.5 times the inner diameter A of the protruding member 60. I have.

【0030】次に、上記構造の膨張弁4と蒸発器5との
接続構造を図3を用いて説明する。
Next, a connection structure between the expansion valve 4 and the evaporator 5 having the above structure will be described with reference to FIG.

【0031】膨張弁4と蒸発器5との間にはブロックジ
ョイント(接続部品)70が配設されて、相互間の冷媒
を流通させている。なお、本実施形態では、このブロッ
クジョイント70は、アルミニュウム等の金属を切削ま
たはダイカスト成形で形成した直方体形状状であり、蒸
発器5に対しては、例えば一体ろう付けにより接合され
ており、膨張弁4に対しては、例えばボルト等の締結手
段により締結されている。
A block joint (connecting part) 70 is provided between the expansion valve 4 and the evaporator 5 to allow the refrigerant to flow between them. In this embodiment, the block joint 70 has a rectangular parallelepiped shape formed by cutting or die-casting a metal such as aluminum, and is joined to the evaporator 5 by, for example, integral brazing. The valve 4 is fastened by fastening means such as a bolt.

【0032】ブロックジョイント70内部には、膨張弁
4の低圧側2相冷媒通路43から蒸発器5の冷媒入口部
5aに気液2相冷媒を流入させる入口通路71、及び蒸
発器5の冷媒出口部5bから膨張弁4の低圧側ガス冷媒
通路44にガス冷媒を流出させる出口通路72が形成さ
れている。
Inside the block joint 70, an inlet passage 71 for allowing gas-liquid two-phase refrigerant to flow from the low-pressure two-phase refrigerant passage 43 of the expansion valve 4 to the refrigerant inlet 5a of the evaporator 5, and a refrigerant outlet of the evaporator 5 An outlet passage 72 through which the gas refrigerant flows from the portion 5b to the low-pressure gas refrigerant passage 44 of the expansion valve 4 is formed.

【0033】そして、両通路71、72の膨張弁4側端
部には、膨張弁4側に向かって突出する円筒形状の入口
挿入接続部73、出口挿入接続部74がそれぞれ形成さ
れており、入口挿入接続部73は膨張弁4の第2通路4
3bに挿入され、出口挿入接続部74は低圧側ガス冷媒
通路44に挿入されている。従って、入口挿入接続部7
3の内部に膨張弁4の突出部材60が位置することとな
り、そして、入口挿入接続部73の内周面と突出部材6
0の外周面との間には隙間CLが形成されるようになっ
ている。
At the ends of the two passages 71 and 72 on the expansion valve 4 side, there are formed a cylindrical inlet insertion connection 73 and an outlet insertion connection 74 projecting toward the expansion valve 4 side, respectively. The inlet insertion connection 73 is connected to the second passage 4 of the expansion valve 4.
3b, and the outlet insertion connection portion 74 is inserted into the low-pressure side gas refrigerant passage 44. Therefore, the inlet insertion connection 7
3 and the projecting member 60 of the expansion valve 4 is located inside, and the inner peripheral surface of the inlet insertion connection portion 73 and the projecting member 6
A gap CL is formed between the outer peripheral surface of the first member and the outer peripheral surface of the first member.

【0034】なお、両挿入接続部73、の外周面には、
リング形状の溝部73a、74aがそれぞれ形成されて
おり、この溝部73a、74aにはシール部材(例えば
Oリング等の弾性材)75、76がはめ込まれて、ブロ
ックジョイント70と膨張弁4との間をシールして冷媒
の洩れを防止するようになっている。
The outer peripheral surfaces of both insertion connecting portions 73 are
Ring-shaped grooves 73a, 74a are respectively formed, and seal members (for example, elastic materials such as O-rings) 75, 76 are fitted into the grooves 73a, 74a, so that the space between the block joint 70 and the expansion valve 4 is provided. Is sealed to prevent leakage of the refrigerant.

【0035】また、膨張弁4のうち、ブロックジョイン
ト70と反対側の面には、配管接続部80がボルト等の
締結手段により締結されている。この配管接続部80内
部には、レシーバ3の出口から膨張弁4の高圧側液冷媒
通路42に液冷媒を流入させる入口通路81、及び膨張
弁4の低圧側ガス冷媒通路44から圧縮機1の吸入側に
ガス冷媒を流出させる出口通路82が形成されている。
A pipe connecting portion 80 is fastened to a surface of the expansion valve 4 opposite to the block joint 70 by fastening means such as bolts. Inside the pipe connection portion 80, an inlet passage 81 through which liquid refrigerant flows from the outlet of the receiver 3 to the high-pressure liquid refrigerant passage 42 of the expansion valve 4, and a low-pressure gas refrigerant passage 44 of the expansion valve 4 from the compressor 1. An outlet passage 82 for allowing the gas refrigerant to flow out is formed on the suction side.

【0036】これら両通路81、82にはブロックジョ
イント70と同様の入口挿入接続部83、出口挿入接続
部84がそれぞれ形成されており、シール部材85、8
6により配管接続部80と膨張弁4との間をシールする
ようになっている。
An inlet insertion connection 83 and an outlet insertion connection 84 similar to those of the block joint 70 are formed in these two passages 81 and 82, respectively.
6 seals the space between the pipe connection portion 80 and the expansion valve 4.

【0037】次に、上記構成において作動を説明する。
いま、図1の冷凍サイクルにおいて圧縮機1が作動し、
サイクル内に冷媒が循環していると、膨張弁4の第1圧
力室51内の封入ガスに、感温棒45を介して、通路4
4内の蒸発器出口の過熱ガス冷媒温度が伝導されるの
で、第1圧力室51内の圧力は通路44の過熱ガス冷媒
温度に応じた圧力となり、一方、第1圧力室52内の圧
力は通路44の冷媒圧力となる。
Next, the operation of the above configuration will be described.
Now, the compressor 1 operates in the refrigeration cycle of FIG.
When the refrigerant is circulated in the cycle, the filled gas in the first pressure chamber 51 of the expansion valve 4 is supplied to the passage 4 via the temperature sensing rod 45.
Since the superheated gas refrigerant temperature at the evaporator outlet in 4 is conducted, the pressure in the first pressure chamber 51 becomes a pressure corresponding to the superheated gas refrigerant temperature in the passage 44, while the pressure in the first pressure chamber 52 becomes The refrigerant pressure in the passage 44 is obtained.

【0038】従って、この両室51、52内の圧力差
と、弁体47を上方へ押圧するばね53の取り付け荷重
とのバランスで、弁体47が変位することになる。そし
て、この弁体47の変位により絞り通路穴48の開度が
調整され、冷媒流量が自動調整される。この冷媒流量の
調整作用により、蒸発器出口のガス冷媒の過熱度が所定
値に維持される。
Accordingly, the valve body 47 is displaced by the balance between the pressure difference between the two chambers 51 and 52 and the mounting load of the spring 53 for pressing the valve body 47 upward. Then, the opening degree of the throttle passage hole 48 is adjusted by the displacement of the valve body 47, and the refrigerant flow rate is automatically adjusted. The superheat degree of the gas refrigerant at the outlet of the evaporator is maintained at a predetermined value by the adjusting operation of the refrigerant flow rate.

【0039】ところで、膨張弁4の絞り通路穴48で減
圧膨張した冷媒には、液相から気液2相に変わる際に、
液冷媒中に気泡が発生、成長し、合体、分裂することで
圧力変動が発生する。また、気液2相冷媒中の液滴流が
膨張弁本体41の壁面に衝突することによっても圧力変
動が発生する。そして、このように発生した圧力変動
が、ブロックジョイント70を振動させる。
By the way, when the refrigerant decompressed and expanded in the throttle passage hole 48 of the expansion valve 4 changes from the liquid phase to the gas-liquid two phase,
Bubbles are generated, grown, coalesced, and split in the liquid refrigerant, causing pressure fluctuations. Further, pressure fluctuations are also generated by the collision of the droplet flow in the gas-liquid two-phase refrigerant with the wall surface of the expansion valve body 41. Then, the thus generated pressure fluctuation causes the block joint 70 to vibrate.

【0040】これに対し、本実施形態の構成によれば、
絞り通路穴48を通過した低圧側2相冷媒は、突出部材
60内を通過した後に、ブロックジョイント70内を流
通するようになっているので、絞り通路穴48を通過直
後の圧力変動が大きい冷媒は、突出部材60内を流通す
る間にその圧力変動が減衰され、この圧力変動が減衰し
た冷媒がブロックジョイント70を流通するようにでき
る。よって、突出部材60を配置しない従来の膨張弁に
比べて、冷媒の圧力変動によるブロックジョイント70
の振動を抑制でき、騒音を低減することができる。
On the other hand, according to the configuration of the present embodiment,
The low-pressure side two-phase refrigerant that has passed through the throttle passage hole 48 flows through the block joint 70 after passing through the projecting member 60, so that the refrigerant having a large pressure fluctuation immediately after passing through the throttle passage hole 48. The pressure fluctuation is attenuated while flowing through the protruding member 60, and the refrigerant having the pressure fluctuation attenuated can flow through the block joint 70. Therefore, as compared with the conventional expansion valve in which the projecting member 60 is not provided, the block joint 70 due to the pressure fluctuation of the refrigerant
Vibration can be suppressed, and noise can be reduced.

【0041】また、突出部材60とブロックジョイント
70との間には隙間CLが形成されているので、冷媒の
圧力変動による突出部材60の振動が、ブロックジョイ
ント70に直接伝わることを防止でき、より一層ブロッ
クジョイント70の振動を抑制できる。
Since the gap CL is formed between the projecting member 60 and the block joint 70, the vibration of the projecting member 60 due to the pressure fluctuation of the refrigerant can be prevented from being directly transmitted to the block joint 70. The vibration of the block joint 70 can be further suppressed.

【0042】ところで、突出部材60内では、気液2相
冷媒は、気相中に複数の液滴を包含するため、気相中を
伝搬する圧力変動が液滴に衝突、分散することにより、
自身の圧力変動を減衰させている。そして、気液2相冷
媒が流通する通路断面積が小さいほど、また、気液2相
冷媒が流通する通路長が長いほど、このような圧力変動
の減衰の効果は大きくなる。
In the protruding member 60, the gas-liquid two-phase refrigerant contains a plurality of droplets in the gas phase, so that the pressure fluctuation propagating in the gas phase collides with and disperses the droplets.
It attenuates its own pressure fluctuations. The effect of attenuating such pressure fluctuations increases as the cross-sectional area of the passage through which the gas-liquid two-phase refrigerant flows decreases and as the length of the passage through which the gas-liquid two-phase refrigerant flows increases.

【0043】そこで、本実施形態では、突出部材60の
内径Aは、第1通路43aの内径と同じ大きさに形成さ
れているので、突出部材60を配置しない従来の膨張弁
に比べて、第2通路43bより通路断面積の小さい第1
通路43a及び突出部材60内を流通する経路の長さB
が長くなるので、上述のような圧力変動の減衰効果を高
めることができる。
Therefore, in the present embodiment, the inner diameter A of the protruding member 60 is formed to be the same size as the inner diameter of the first passage 43a. The first having a smaller passage cross-sectional area than the second passage 43b
Length B of the passage flowing through the passage 43a and the protruding member 60
, The damping effect of the pressure fluctuation as described above can be enhanced.

【0044】図4は冷凍サイクル起動時の冷媒質量流量
変化に対する騒音レベル変化を示すもので、Rは突出部
材60を有する本実施形態の膨張弁4の特性を示し、S
は突出部材60を有しない従来の膨張弁の特性を示して
いる。なお、騒音の計測場所は蒸発器5の略中央部分か
ら約10cm離れた場所である。また、騒音レベルは、
2k〜6.3kHzOAを基準に測定したデシベル騒音
計測値である。
FIG. 4 shows the change in the noise level with respect to the change in the refrigerant mass flow rate at the start of the refrigeration cycle.
Indicates the characteristics of a conventional expansion valve having no protruding member 60. The noise was measured at a location approximately 10 cm away from the approximate center of the evaporator 5. The noise level is
It is a decibel noise measurement value measured on the basis of 2 kHz to 6.3 kHz OA.

【0045】本発明品の場合、冷凍サイクル起動時の騒
音レベルを、従来品よりも低減できることがわかる。
In the case of the product of the present invention, it can be seen that the noise level at the start of the refrigeration cycle can be reduced as compared with the conventional product.

【0046】(第2実施形態)第1実施形態では、突出
部材60を剛性を有する材質(例えば金属)のみで形成
しているが、本実施形態では、図5に示すように、突出
部材60を、剛性を有する材質(例えば金属)により形
成された筒形状の剛性部材60aと、衝撃吸収性を有す
る材質(例えばゴム)により剛性部材60aの内面に筒
形状に形成された、緩衝部材60bとから構成してい
る。なお、緩衝部材60bがゴム製の場合には、緩衝部
材60bを剛性部材60aに焼き付け等の手段により固
定すればよい。
(Second Embodiment) In the first embodiment, the projecting member 60 is formed only of a rigid material (eg, metal). In the present embodiment, as shown in FIG. A cylindrical rigid member 60a formed of a rigid material (eg, metal) and a cushioning member 60b formed of a cylindrical material on the inner surface of the rigid member 60a with a shock absorbing material (eg, rubber). It consists of. When the cushioning member 60b is made of rubber, the cushioning member 60b may be fixed to the rigid member 60a by means such as printing.

【0047】これにより、圧力変動の大きい冷媒が突出
部材60に衝突する際の加振力は、緩衝部材60bによ
って内部減衰される。従って、突出部材60内において
冷媒の圧力変動をより一層減衰することができ、ブロッ
クジョイント70の振動を抑制して騒音を低減する効果
を増大できる。
As a result, the exciting force when the refrigerant having a large pressure fluctuation collides with the protruding member 60 is internally attenuated by the buffer member 60b. Therefore, the pressure fluctuation of the refrigerant in the protruding member 60 can be further attenuated, and the effect of suppressing the vibration of the block joint 70 and reducing the noise can be increased.

【0048】なお、本実施形態では緩衝部材60bの材
質がゴムであるものについて述べたが、緩衝部材60b
は樹脂または金属性材料(例えばアルミニウム)を用い
ても、緩衝部材60により冷媒圧力変動を内部減衰さ
せ、騒音を低減させることができる。従って、緩衝部材
60bの材質としては、弾性体のみならず、緩衝部材6
0bの内部で冷媒圧力変動を減衰できる材質を用いるこ
とができる。
Although the cushioning member 60b is made of rubber in this embodiment, the cushioning member 60b is made of rubber.
Even if a resin or a metallic material (for example, aluminum) is used, the fluctuation of the refrigerant pressure can be internally attenuated by the buffer member 60 and the noise can be reduced. Therefore, the material of the buffer member 60b is not limited to the elastic body,
A material that can attenuate fluctuations in refrigerant pressure inside 0b can be used.

【0049】(第3実施形態)第1実施形態では、膨張
弁4と蒸発器5とは近接して配置されており、膨張弁4
と蒸発器5との間接続する接続部品70としてブロック
ジョイントを用いているが、本実施形態では、膨張弁4
と蒸発器5とが近接して配置されていない場合に本発明
を適用した例であり、図6に示すように、接続部品70
として配管接続部材を用いて、配管77、78により膨
張弁4と蒸発器5とを接続するようにしている。
(Third Embodiment) In the first embodiment, the expansion valve 4 and the evaporator 5 are arranged close to each other.
Although a block joint is used as the connecting part 70 connecting between the evaporator 5 and the evaporator 5, in the present embodiment, the expansion valve 4 is used.
This is an example in which the present invention is applied to a case where the present invention is applied when the evaporator 5 and the evaporator 5 are not arranged close to each other. As shown in FIG.
The expansion valve 4 and the evaporator 5 are connected by pipes 77 and 78 using a pipe connection member.

【0050】(第4実施形態)第1実施形態では、ブロ
ックジョイント70に入口挿入接続部73、出口挿入接
続部74を形成し、これらの挿入接続部73、74を膨
張弁4の第2通路43b、及び低圧側ガス冷媒通路44
に挿入している。
(Fourth Embodiment) In the first embodiment, an inlet insertion connection portion 73 and an outlet insertion connection portion 74 are formed in the block joint 70, and these insertion connection portions 73 and 74 are connected to the second passage of the expansion valve 4. 43b and low-pressure side gas refrigerant passage 44
Has been inserted.

【0051】これに対し本実施形態では、図7に示すよ
うに、挿入接続部73、74の代わりにフランジ部79
を形成し、このフランジ部79を膨張弁4にボルト79
a等の締結手段で締結するようにしている。
On the other hand, in the present embodiment, as shown in FIG.
The flange 79 is attached to the expansion valve 4 with bolts 79.
a) and the like.

【0052】(他の実施形態)第1、第2実施形態で
は、突出部材60を、膨張弁4の本体41とは別体に成
形して本体41に圧入しているが、突出部材60を、膨
張弁4の本体41と一体に成形してもよい。例えば、鍛
造、切削等による一体成型法が挙げられる。
(Other Embodiments) In the first and second embodiments, the projecting member 60 is formed separately from the main body 41 of the expansion valve 4 and press-fitted into the main body 41. Alternatively, it may be formed integrally with the main body 41 of the expansion valve 4. For example, an integral molding method by forging, cutting, or the like may be used.

【0053】また、第1実施形態では、突出部材60の
突出端面は、膨張弁4の側面と同一平面上に位置するよ
うに形成されているが、本発明はこのような位置関係に
限られることなく、突出部材60の突出端面が、膨張弁
4の側面より蒸発器5側へ突出するようにしてもよい
し、膨張弁4の側面までは突出しないような位置関係に
してもよい。
In the first embodiment, the projecting end surface of the projecting member 60 is formed so as to be located on the same plane as the side surface of the expansion valve 4, but the present invention is limited to such a positional relationship. Instead, the protruding end surface of the protruding member 60 may be protruded from the side surface of the expansion valve 4 toward the evaporator 5 or may be in a positional relationship such that it does not protrude to the side surface of the expansion valve 4.

【0054】また、第1、第2実施形態では、蒸発器5
の出口側ガス冷媒の温度変動(過熱度変動)を第1圧力
室51内の冷媒に伝える部材として、膨張弁4の本体4
1内部に配置された感温棒45を用いていたが、感温棒
45を廃止して、膨張弁4の本体41外部に配置される
感温筒により蒸発器5の出口側ガス冷媒の温度変動(過
熱度変動)を第1圧力室51内の冷媒に伝えるようにし
たものにおいても、本発明を適用することができる。
In the first and second embodiments, the evaporator 5
The main body 4 of the expansion valve 4 serves as a member for transmitting the temperature fluctuation (superheat degree fluctuation) of the outlet side gas refrigerant to the refrigerant in the first pressure chamber 51.
Although the temperature sensing rod 45 disposed inside 1 is used, the temperature sensing rod 45 is eliminated, and the temperature of the outlet side gas refrigerant of the evaporator 5 is changed by a temperature sensing cylinder arranged outside the main body 41 of the expansion valve 4. The present invention can be applied to a configuration in which the fluctuation (superheat degree fluctuation) is transmitted to the refrigerant in the first pressure chamber 51.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態による膨張弁を含む冷凍
サイクル図である。
FIG. 1 is a refrigeration cycle diagram including an expansion valve according to a first embodiment of the present invention.

【図2】図1の突出部材の拡大断面図である。FIG. 2 is an enlarged sectional view of a protruding member of FIG.

【図3】図1の膨張弁と蒸発器との接続構造を示す断面
図である。
FIG. 3 is a sectional view showing a connection structure between an expansion valve and an evaporator in FIG. 1;

【図4】本発明の効果説明図である。FIG. 4 is an explanatory diagram of an effect of the present invention.

【図5】本発明の第2実施形態を示す膨張弁の要部断面
図である。
FIG. 5 is a cross-sectional view of a main part of an expansion valve according to a second embodiment of the present invention.

【図6】本発明の第3実施形態に係る、膨張弁と蒸発器
との接続構造を示す断面図である。
FIG. 6 is a sectional view showing a connection structure between an expansion valve and an evaporator according to a third embodiment of the present invention.

【図7】本発明の第4実施形態を示す膨張弁の要部断面
図である。
FIG. 7 is a sectional view of a main part of an expansion valve showing a fourth embodiment of the present invention.

【符号の説明】 4…膨張弁、5…蒸発器、43…低圧側2相冷媒通路、
43a…第1通路、43b…第2通路、47…弁体、4
8…絞り通路穴、60…突出部材、60a…剛性部材、
60b…緩衝部材、70…ブロックジョイント。
[Explanation of Symbols] 4 ... Expansion valve, 5 ... Evaporator, 43 ... Low pressure side two-phase refrigerant passage,
43a: first passage, 43b: second passage, 47: valve body, 4
8: throttle passage hole, 60: projecting member, 60a: rigid member,
60b: buffer member, 70: block joint.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 真範 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 安藤 順明 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 野村 富士夫 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 堀田 照之 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 林 宏 東京都世田谷区等々力7丁目17番24号 株 式会社不二工機内 Fターム(参考) 3H057 AA04 BB45 CC06 DD05 EE01 FB05 HH07 HH18 3H066 AA01 BA32 EA11 EA31  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanori Yasuda 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Prefecture Inside the Japan Automobile Parts Research Institute (72) Inventor Noriaki Ando 14-Iwatani, Shimowasumi-cho, Nishio-shi, Aichi Prefecture Inside the Japan Automobile Parts Research Institute (72) Inventor Fujio Nomura 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Inside Denso Corporation (72) Inventor Teruyuki Hotta 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Inside Denso (72) Inventor Hiroshi Hayashi 7-17-24 Todoroki, Setagaya-ku, Tokyo F-term in Fujikoki Co., Ltd. F-term (reference) 3H057 AA04 BB45 CC06 DD05 EE01 FB05 HH07 HH18 3H066 AA01 BA32 EA11 EA31

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高圧側の液冷媒を減圧膨張させる絞り通
路穴(48)と、この絞り通路穴(48)の開口面積を
調整するように変位する弁体(47)と、 前記絞り通路穴(48)を通過した低圧側2相冷媒を蒸
発器(5)の入口部(5a)に送り込む低圧側2相冷媒
通路(43)とを備える膨張弁において、 前記低圧側2相冷媒通路(43)は、前記絞り通路穴
(48)側に位置する第1通路(43a)と、第1通路
(43a)の冷媒流れ下流側に位置し、第1通路(43
a)よりも通路断面積が大きい第2通路(43b)とを
有しており、 前記第1通路(43a)には、前記第2通路(43b)
に向かって突出する突出部材(60)が備えられること
を特徴とする膨張弁。
1. A throttle passage hole (48) for reducing and expanding a high-pressure side liquid refrigerant, a valve body (47) displaced so as to adjust an opening area of the throttle passage hole (48), and the throttle passage hole. And a low-pressure two-phase refrigerant passage (43) for feeding the low-pressure two-phase refrigerant that has passed through (48) to the inlet (5a) of the evaporator (5). ) Are a first passage (43a) located on the throttle passage hole (48) side and a first passage (43) located on the refrigerant flow downstream side of the first passage (43a).
a) having a second passage (43b) having a larger passage cross-sectional area than that of the first passage (43b).
An expansion valve, characterized in that it is provided with a protruding member (60) that protrudes toward the front.
【請求項2】 前記突出部材(60)は円筒形状であ
り、 前記低圧側2相冷媒通路(43)のうち、前記絞り通路
穴(48)から前記突出部材(60)の突出端面までの
長さ(B)は、前記突出部材(60)の内径(A)の
1.5倍以上であることを特徴とする請求項1に記載の
膨張弁。
2. The projecting member (60) has a cylindrical shape and has a length from the throttle passage hole (48) to the projecting end face of the projecting member (60) in the low-pressure side two-phase refrigerant passage (43). The expansion valve according to claim 1, wherein the length (B) is at least 1.5 times the inner diameter (A) of the projecting member (60).
【請求項3】 前記突出部材(60)は、前記低圧側2
相冷媒通路(43)を形成する膨張弁本体(41a)
に、前記低圧側2相冷媒通路(43)の冷媒流れ下流側
から圧入されることを特徴とする請求項1または2に記
載の膨張弁。
3. The protruding member (60) is connected to the low pressure side 2
Expansion valve body (41a) forming phase refrigerant passage (43)
3. The expansion valve according to claim 1, wherein the expansion valve is press-fitted from a downstream side of the refrigerant flow in the low-pressure two-phase refrigerant passage.
【請求項4】 前記突出部材(60)は、剛性の高い剛
性部材(60a)と、前記剛性部材(60a)の内面に
配置された、衝撃吸収性を有する緩衝部材(60b)と
から形成されていることを特徴とする請求項1ないし3
のいずれか1つに記載の膨張弁。
4. The projecting member (60) is formed of a rigid member (60a) having high rigidity and a shock absorbing cushioning member (60b) disposed on an inner surface of the rigid member (60a). 4. The method according to claim 1, wherein
The expansion valve according to any one of the above.
JP2000079362A 2000-03-16 2000-03-16 Expansion valve Expired - Fee Related JP4292676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079362A JP4292676B2 (en) 2000-03-16 2000-03-16 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079362A JP4292676B2 (en) 2000-03-16 2000-03-16 Expansion valve

Publications (2)

Publication Number Publication Date
JP2001263864A true JP2001263864A (en) 2001-09-26
JP4292676B2 JP4292676B2 (en) 2009-07-08

Family

ID=18596618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079362A Expired - Fee Related JP4292676B2 (en) 2000-03-16 2000-03-16 Expansion valve

Country Status (1)

Country Link
JP (1) JP4292676B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051499A (en) * 2007-11-12 2008-03-06 Denso Corp Refrigerating cycle device, and refrigerating cycle
JP2009222313A (en) * 2008-03-17 2009-10-01 Denso Corp Refrigerating cycle device, expansion valve for refrigerating cycle, connection block and internal heat exchanger
KR101170579B1 (en) * 2005-10-31 2012-08-01 한라공조주식회사 Expansion valve for rear car air conditioner
KR101170846B1 (en) * 2005-10-31 2012-08-02 한라공조주식회사 Expansion valve for rear car air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101170579B1 (en) * 2005-10-31 2012-08-01 한라공조주식회사 Expansion valve for rear car air conditioner
KR101170846B1 (en) * 2005-10-31 2012-08-02 한라공조주식회사 Expansion valve for rear car air conditioner
JP2008051499A (en) * 2007-11-12 2008-03-06 Denso Corp Refrigerating cycle device, and refrigerating cycle
JP2009222313A (en) * 2008-03-17 2009-10-01 Denso Corp Refrigerating cycle device, expansion valve for refrigerating cycle, connection block and internal heat exchanger

Also Published As

Publication number Publication date
JP4292676B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
USRE42908E1 (en) Vapor-compression-type refrigerating machine
JP4375412B2 (en) Evaporator unit
US20050268644A1 (en) Vapor compression cycle having ejector
JP2006189240A (en) Expansion device
JP2002323274A (en) Refrigeration cycle apparatus
JP3637651B2 (en) Thermal expansion valve
US5732570A (en) Thermal expansion valve and air conditioning apparatus using the same
JP3843652B2 (en) Expansion valve for air conditioner
JP4292676B2 (en) Expansion valve
US6510701B2 (en) Expansion valve with vibration-proof member
JP5141489B2 (en) Thermal expansion valve
JP3943843B2 (en) Soundproof cover for expansion valve
JP4285897B2 (en) Expansion valve used in refrigeration cycle
JP3924935B2 (en) Thermal expansion valve
JP3557632B2 (en) Expansion valve for refrigerant
CN111133240B (en) Expansion valve
JP2008089238A (en) Air conditioner for vehicle
JPH07294063A (en) Expansion valve for refrigeration cycle
JPH0814711A (en) Solenoid valve-integrated receiver and refrigerating cycle
JP4043195B2 (en) Expansion valve
JP3932621B2 (en) Thermal expansion valve
JP2001183032A (en) Temperature type expansion valve
JPH09300950A (en) Air conditioner for automobile
JP3963672B2 (en) Expansion valve
JPH027346Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees