JPH027346Y2 - - Google Patents

Info

Publication number
JPH027346Y2
JPH027346Y2 JP5762282U JP5762282U JPH027346Y2 JP H027346 Y2 JPH027346 Y2 JP H027346Y2 JP 5762282 U JP5762282 U JP 5762282U JP 5762282 U JP5762282 U JP 5762282U JP H027346 Y2 JPH027346 Y2 JP H027346Y2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
valve body
elastic body
ball valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5762282U
Other languages
Japanese (ja)
Other versions
JPS58161272U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5762282U priority Critical patent/JPS58161272U/en
Publication of JPS58161272U publication Critical patent/JPS58161272U/en
Application granted granted Critical
Publication of JPH027346Y2 publication Critical patent/JPH027346Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 本考案は、冷房サイクルの一部を構成するエバ
ポレータの冷房能力に応じてこのエバポレータへ
の冷媒供給量を変えてエバポレータの負荷を一定
に保つ膨張弁の改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement in an expansion valve that maintains a constant load on the evaporator by changing the amount of refrigerant supplied to the evaporator according to the cooling capacity of the evaporator that forms part of the cooling cycle.

一般に、冷房サイクルは、第1図に示すよう
に、コンプレツサ(圧縮機)1と、このコンプレ
ツサ1で高圧高温になつた気体状の冷媒を冷却し
凝縮させて高圧の液体に還元する凝縮器2と、冷
媒の気液分離と冷媒中の水分や塵埃を取除き系内
に冷媒を円滑に供給できるようにするためのリキ
ツドタンク(受液器)3と、冷媒を急激に減圧し
膨張させて霧状にするための膨張弁4と、冷媒と
空気との間で熱交換し空気より熱を奪い空気を冷
却するエバポレータ(蒸発器)6とから構成され
ている。
Generally, as shown in Fig. 1, a cooling cycle consists of a compressor 1 and a condenser 2 that cools and condenses the gaseous refrigerant that has become high-pressure and high-temperature in the compressor 1 and returns it to a high-pressure liquid. , a liquid tank (liquid receiver) 3 that separates the refrigerant into gas and liquid, removes moisture and dust from the refrigerant, and allows the refrigerant to be smoothly supplied into the system; It consists of an expansion valve 4 for cooling the air, and an evaporator 6 for exchanging heat between the refrigerant and air to remove heat from the air and cool the air.

ここで、膨張弁4は、エバポレータ6内を流れ
る冷媒の量をエバポレータ6の冷房能力に応じて
調整するもので、エバポレータ6の出力で丁度蒸
発が終り完全にガスになるような量の冷媒を供給
することが必要になる。そこで、従来から、第2
図に示すように、感温筒5を使用してエバポレー
タ出口の冷媒の温度変化を圧力変化として検出
し、この感温筒5の感温媒体の圧力変化とエバポ
レータ入口の冷媒圧力との差(内均式)あるいは
エバポレータ出口の圧力との差(外均式)に基づ
いてボール弁の開度即ち設定加熱度になるよう冷
媒流量を制御するように設けられている。
Here, the expansion valve 4 adjusts the amount of refrigerant flowing inside the evaporator 6 according to the cooling capacity of the evaporator 6, and adjusts the amount of refrigerant such that the output of the evaporator 6 just finishes evaporating and completely turns into gas. It will be necessary to supply. Therefore, traditionally, the second
As shown in the figure, the temperature change of the refrigerant at the outlet of the evaporator is detected as a pressure change using the temperature sensing cylinder 5, and the difference between the pressure change of the temperature sensing medium of the temperature sensing cylinder 5 and the refrigerant pressure at the evaporator inlet ( The refrigerant flow rate is controlled based on the difference between the pressure at the evaporator outlet (internal equation) or the pressure at the evaporator outlet (external equation) to maintain the opening degree of the ball valve, that is, the set heating degree.

ところで、このような従来の膨張弁において
は、さほど冷媒を必要とせずに弁を絞つている状
態で急にエンジン回転を上げ弁が絞られたまま冷
媒流量を急激に変動させる場合には、ピーという
高音を瞬間的(数秒間)に発生するという虞があ
る。この騒音は、金属の衝突音に類似するので、
弁体および弁棒が弁孔のスロート部分または弁口
内壁に衝突するために起こると考えられる。つま
り、従来の膨張弁においては、弁孔の中心に弁体
を正確に位置させておくことが困難であり、弁孔
と弁体との間隙が常に一定でないことから、弁体
周辺の圧力バランスを損う虞がある。そこに、急
激な流量変動が起こると、弁体周辺に生じる圧力
不均衡が弁体を振動させ、更にこの振動によつて
弁体の振動が助長されて終には弁体を弁孔と衝突
する程に振動させるものと考えられる。この自励
振動は膨張弁の常用範囲で問題となり、大量の冷
媒が必要なクールダウン時には弁を最も解放した
状態なので急激な流動変動が置きても弁体が本体
と衝突して騒音を発生することがなく問題となら
ない。
By the way, with such conventional expansion valves, when the engine speed is suddenly increased while the valve is being throttled without requiring much refrigerant, and the refrigerant flow rate is rapidly changing while the valve is being throttled, the peak There is a possibility that this high-pitched sound may be generated momentarily (for a few seconds). This noise is similar to the sound of metal colliding, so
This is thought to occur because the valve body and valve stem collide with the throat portion of the valve hole or the inner wall of the valve hole. In other words, in conventional expansion valves, it is difficult to accurately position the valve body in the center of the valve hole, and the gap between the valve hole and the valve body is not always constant, so the pressure around the valve body is balanced. There is a risk of damaging the When a sudden change in flow rate occurs, the pressure imbalance that occurs around the valve body causes the valve body to vibrate, and this vibration further aggravates the vibration of the valve body, eventually causing the valve body to collide with the valve hole. It is thought that it vibrates as much as possible. This self-excited vibration becomes a problem in the normal operating range of the expansion valve; during cool-down, when a large amount of refrigerant is required, the valve is in its most open state, so even if there is a sudden change in flow, the valve body collides with the main body, producing noise. There is no problem.

本考案は、常用範囲において冷媒流量を急激に
変動させても金属騒音が発生しない膨張弁を提供
することを目的とし、弁体と作動棒との間に弁体
の横振動を抑制する弾性体を介在させることによ
り、圧力バランスを損うことに伴つて生ずる弁体
の振動を減衰させると共に弁体が弁孔のスロート
部分に衝突しないようにしたものである。
The purpose of this invention is to provide an expansion valve that does not generate metallic noise even when the refrigerant flow rate changes rapidly in the normal operating range. By interposing the valve body, vibrations of the valve body caused by loss of pressure balance are damped, and the valve body is prevented from colliding with the throat portion of the valve hole.

以下本考案の構成を図面・第3図〜第5図に示
す一実施例に基づいて詳細に説明する。
The configuration of the present invention will be explained in detail below based on an embodiment shown in the drawings and FIGS. 3 to 5.

膨張弁4は、従来のものと基本的構造は変ら
ず、リキツドタンク3に連通する高圧側流路12
とエバポレータ6に連通する低圧側流路13及び
これらを連通する弁孔8を弁本体11内に有し、
ダイアフラム9の働きによつて弁孔8に沿つて移
動するボール弁7で流路の開閉を図り冷媒量を調
整するものである。前記ダイアフラム9は、感温
筒5によつて検出されたエバポレータ6の出口の
冷媒温度(これは感温媒体の圧力変化P1に置換
される)と、均圧管(図示省略)によつてダイヤ
フラム9の下部に導かれた冷媒圧力P2の変化に
基づき作動する。このダイアフラム9の動きは、
作動棒10を介してボール弁7を取付けたばね押
え14に伝達される。ボール弁7は、コイルスプ
リング(力P3)15によつて押し上げられるば
ね押え14に受け支えられているので、前記の3
つの力P1,P2,P3が均り合う位置に移動する。
尚、前記ばね押え14の押圧力は調節ねじ16に
よつて適宜調節される。
The expansion valve 4 has the same basic structure as the conventional one, and has a high pressure side flow path 12 communicating with the liquid tank 3.
and a low pressure side flow path 13 communicating with the evaporator 6 and a valve hole 8 communicating these, in the valve body 11,
The ball valve 7, which moves along the valve hole 8 by the action of the diaphragm 9, opens and closes the flow path to adjust the amount of refrigerant. The diaphragm 9 is connected to the temperature of the refrigerant at the outlet of the evaporator 6 detected by the temperature sensing tube 5 (this is replaced by the pressure change P 1 of the temperature sensing medium), and the diaphragm is controlled by the pressure equalization pipe (not shown). It operates based on changes in the refrigerant pressure P 2 introduced to the lower part of 9. The movement of this diaphragm 9 is
It is transmitted via the actuating rod 10 to the spring retainer 14 to which the ball valve 7 is attached. Since the ball valve 7 is supported by a spring retainer 14 that is pushed up by a coil spring (force P 3 ) 15, the above-mentioned 3.
Move to a position where the three forces P 1 , P 2 , and P 3 are balanced.
Incidentally, the pressing force of the spring presser 14 is appropriately adjusted by an adjusting screw 16.

弁体である前記ボール弁7は、ばね押え14に
固定され、ばね押え14と共に移動する。この固
定方法は、ばね押え14自体にボール弁7を直接
スポツト溶接で固着するか、あるいはC字形のば
ね押え14内にボール弁7をスポツト溶接付けし
た調整ロツド17を嵌め込んで締付け着脱可能に
固定する。このときばね押え14及び調整ロツド
17にローレツトを切つておくとより確実に締付
けできる。
The ball valve 7, which is a valve body, is fixed to a spring holder 14 and moves together with the spring holder 14. This fixing method is to fix the ball valve 7 directly to the spring holder 14 itself by spot welding, or fit the adjustment rod 17 to which the ball valve 7 is spot welded into the C-shaped spring holder 14 and tighten it to make it detachable. Fix it. At this time, if a knurl is cut in the spring holder 14 and the adjustment rod 17, the tightening can be made more securely.

前記ボール弁7を支持し弁孔8に向けて押しつ
けるばね押え14の動きを制御する作動棒10
は、ダイアフラム9に取付けられその動きを伝達
するものであり、本実施例の場合3本設けられて
いる。また、該作動棒10にはボール弁7を包囲
する弾性体18が嵌め込まれている。
an operating rod 10 that controls the movement of a spring retainer 14 that supports the ball valve 7 and presses it toward the valve hole 8;
are attached to the diaphragm 9 to transmit its movement, and in this embodiment, three are provided. Further, an elastic body 18 surrounding the ball valve 7 is fitted into the actuating rod 10.

前記弾性体18は、振動を減衰させかつ衝突時
に音を発生しないような弾力性に富むもので、例
えばゴムや合成樹脂から成る。弾性体18の形状
は、第3図〜第5図に示すように、円筒体、Oリ
ング、円板等種々考えられるが、要は作動棒10
とボール弁7との間に介在し、ボール弁7の横振
動を抑制しようとするものであれば足りる。ま
た、当初から弾性体18はボール弁7と当接せず
とも、騒音が発生する程度まで弁を絞つたときに
始めて当接するようにしてもよい。例えば、第3
図A,Bに示すような円筒状弾性体18を用いた
場合、弁を最大に開いた状態では弾性体18はボ
ール弁7と離れた状態にあるが、弁が閉じ始める
とばね押え14と弁本体11との間で弾性体が押
し潰されて樽状に膨出し、ボール弁7を押えてば
ね押え40、作動棒10及び弁本体11と一体的
にする。したがつて、ボール弁7の周辺で圧力不
均衡が生じても弁本体11に弾性体18を介して
取付けられるボール弁7は振動することはない
し、弾性体18を押しつける前にボール弁7の振
動が起きたとしても弾性体18に衝突することに
より振動は減衰される。尚、弾性体18の存在に
より膨張弁4の流路面積が部分的に狭くなるが、
これは開口面積をあらかじめ考慮して設計してお
けば問題はない。
The elastic body 18 is made of rubber or synthetic resin, for example, and has high elasticity so as to attenuate vibrations and not generate sound during a collision. As shown in FIGS. 3 to 5, the elastic body 18 may have various shapes such as a cylinder, an O-ring, or a disk, but the main thing is that the
It is sufficient if it is interposed between the ball valve 7 and the ball valve 7 and suppresses the lateral vibration of the ball valve 7. Further, the elastic body 18 may not come into contact with the ball valve 7 from the beginning, but may come into contact only when the valve is throttled to the extent that noise is generated. For example, the third
When using the cylindrical elastic body 18 as shown in Figures A and B, the elastic body 18 is separated from the ball valve 7 when the valve is opened to the maximum, but when the valve starts to close, the elastic body 18 is separated from the ball valve 7. The elastic body is crushed between the valve body 11 and expands into a barrel shape, and presses the ball valve 7 to integrate it with the spring retainer 40, the actuating rod 10, and the valve body 11. Therefore, even if pressure imbalance occurs around the ball valve 7, the ball valve 7 attached to the valve body 11 via the elastic body 18 will not vibrate, and the ball valve 7 will not vibrate before the elastic body 18 is pressed. Even if vibration occurs, the vibration is damped by colliding with the elastic body 18. Note that the flow path area of the expansion valve 4 is partially narrowed due to the presence of the elastic body 18;
This will not be a problem if the opening area is taken into consideration in advance when designing.

反面、ボール弁7を常時弾性体18で挟持する
ようにしても良い。たとえば第4図に示すような
ゴムリング18あるいはOリング(図示省略)を
作動棒10に嵌め込み、ボール弁7を包囲するの
である。
On the other hand, the ball valve 7 may be always held between the elastic bodies 18. For example, a rubber ring 18 or an O-ring (not shown) as shown in FIG. 4 is fitted onto the actuating rod 10 to surround the ball valve 7.

また、ボール弁7自体を直接弾性体18で挟持
し作動棒10と一体化する場合ばかりでなく、ボ
ール弁7を支える調整ロツド17と作動棒10と
の間に弾性体18を介在させることもある。しか
し、この場合においても、調整ロツド17は弁体
の一部を構成するものであり、弁体と作動棒10
との間に弾性体18を介在させている点には変り
ない。該実施例の弾性体18は、各作動棒10に
弾性体18を個々に単独で取付けるのではなく、
一部材として装着する。例えば、第5図A,Bに
示すように、調整ロツド17を包囲する環状部か
ら三菓のフランジを夫々突出させたような構成と
すれば良い。この場合、フランジの形状は冷媒流
路を確保するため、作動棒10を包囲する部分を
除いて不要な部分を落としておくことが必要であ
る。
Furthermore, not only the ball valve 7 itself is directly held between the elastic bodies 18 and integrated with the actuating rod 10, but also the elastic body 18 may be interposed between the adjusting rod 17 that supports the ball valve 7 and the actuating rod 10. be. However, even in this case, the adjustment rod 17 constitutes a part of the valve body, and the valve body and the actuating rod 10
There is no change in the fact that the elastic body 18 is interposed between the two. The elastic body 18 of this embodiment is not attached to each actuating rod 10 individually, but
Attach it as a part. For example, as shown in FIGS. 5A and 5B, a configuration may be adopted in which three flanges each protrude from an annular portion surrounding the adjustment rod 17. In this case, in order to ensure a refrigerant flow path, it is necessary to remove unnecessary portions of the flange except for the portion surrounding the actuating rod 10.

以上のように本考案の膨張弁4は、弁体7と作
動棒10との間に弾性体18を介在させたので、
急激な冷媒流れの変動により弁体周辺の圧力バラ
ンスが損われても弾性体18を介して作動棒10
に弾性支持される弁体7は変位量が少なく自励振
動へとは発達しない。また、弾性体18と弁体7
とが直接接触していない場合であつても、振動す
る弁体7は弾性体18に衝突することで減衰され
るし金属同士の衝突ではないので金属騒音を生ず
ることもない。
As described above, in the expansion valve 4 of the present invention, since the elastic body 18 is interposed between the valve body 7 and the actuating rod 10,
Even if the pressure balance around the valve body is lost due to sudden fluctuations in the refrigerant flow, the operating rod 10
The valve body 7, which is elastically supported, has a small amount of displacement and does not develop into self-excited vibration. In addition, the elastic body 18 and the valve body 7
Even if they are not in direct contact with each other, the vibrating valve body 7 is damped by colliding with the elastic body 18, and since it is not a metal-to-metal collision, no metal noise is generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷房サイクルの原理図、第2図は従来
の膨張弁の一例を示す中央縦断面図、第3図は本
考案の膨張弁の一例を部分的に示す断面図で、A
は弁を最も解放した状態を、Bは弁を絞つた状態
を示す。第4図は本考案の膨張弁の他の実施例を
部分的に示す断面図である。第5図は同じく膨張
弁の他の実施例を示すもので、Aは膨張弁を部分
的に示す断面図、Bは第5図Aの−線断面図
である。 4……膨張弁、7……弁体であるボール弁、8
……弁孔、9……ダイアフラム、10……作動
棒、11……弁本体、14……ばね押え、18…
…弾性体。
Fig. 1 is a principle diagram of a cooling cycle, Fig. 2 is a central vertical sectional view showing an example of a conventional expansion valve, and Fig. 3 is a sectional view partially showing an example of an expansion valve of the present invention.
B shows the valve in the most open state, and B shows the valve in the throttled state. FIG. 4 is a partially sectional view showing another embodiment of the expansion valve of the present invention. FIG. 5 similarly shows another embodiment of the expansion valve, where A is a sectional view partially showing the expansion valve, and B is a sectional view taken along the line -- in FIG. 5A. 4... Expansion valve, 7... Ball valve as valve body, 8
... Valve hole, 9 ... Diaphragm, 10 ... Operating rod, 11 ... Valve body, 14 ... Spring holder, 18 ...
...Elastic body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高圧側流路と低圧側流路とを連通する弁孔に向
けてばねの力で押し付けられるばね押えに固定さ
れた弁体と、前記ばね押えに当接しダイアフラム
と連動してばね押えの移動を制御する作動棒とを
有する膨張弁において、前記弁体と作動棒との間
に弁体の横振動を抑制する弾性体を介在させたこ
とを特徴とする膨張弁。
A valve body is fixed to a spring holder that is pressed by the force of a spring toward a valve hole that communicates a high-pressure side flow path and a low-pressure side flow path, and the valve body contacts the spring holder and works in conjunction with the diaphragm to move the spring holder. 1. An expansion valve having an operating rod to be controlled, characterized in that an elastic body is interposed between the valve element and the operating rod to suppress lateral vibration of the valve element.
JP5762282U 1982-04-22 1982-04-22 expansion valve Granted JPS58161272U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5762282U JPS58161272U (en) 1982-04-22 1982-04-22 expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5762282U JPS58161272U (en) 1982-04-22 1982-04-22 expansion valve

Publications (2)

Publication Number Publication Date
JPS58161272U JPS58161272U (en) 1983-10-27
JPH027346Y2 true JPH027346Y2 (en) 1990-02-21

Family

ID=30068062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5762282U Granted JPS58161272U (en) 1982-04-22 1982-04-22 expansion valve

Country Status (1)

Country Link
JP (1) JPS58161272U (en)

Also Published As

Publication number Publication date
JPS58161272U (en) 1983-10-27

Similar Documents

Publication Publication Date Title
US4542852A (en) Vibration damping device for thermostatic expansion valves
JP3637651B2 (en) Thermal expansion valve
JP4142290B2 (en) Expansion valve
JP6327401B2 (en) Pressure reducing valve
US5732570A (en) Thermal expansion valve and air conditioning apparatus using the same
JPH027346Y2 (en)
JP4069548B2 (en) Control valve
JP3843652B2 (en) Expansion valve for air conditioner
CN103994613A (en) Thermal expansion valve
JP3943843B2 (en) Soundproof cover for expansion valve
JP3987983B2 (en) Thermal expansion valve
JP5369259B2 (en) Expansion valve
JP4292676B2 (en) Expansion valve
JP2781064B2 (en) Evaporation pressure control valve for cooling system
JPH0861810A (en) Refrigerant control valve
JP3942848B2 (en) Expansion valve unit
JP6064185B2 (en) Control valve for variable capacity compressor
JP2003065634A (en) Expansion valve
JP2001153499A (en) Control valve for refrigerating cycle
JPH01134181A (en) Expansion valve
JPH0232506B2 (en)
JPH0979703A (en) Thermo-sensitive expansion valve
JP7478410B2 (en) Expansion valve and refrigeration cycle device
JPH0413581Y2 (en)
KR100242895B1 (en) Thermostatic expansion valve