JP2001263820A - Heater - Google Patents

Heater

Info

Publication number
JP2001263820A
JP2001263820A JP2000071800A JP2000071800A JP2001263820A JP 2001263820 A JP2001263820 A JP 2001263820A JP 2000071800 A JP2000071800 A JP 2000071800A JP 2000071800 A JP2000071800 A JP 2000071800A JP 2001263820 A JP2001263820 A JP 2001263820A
Authority
JP
Japan
Prior art keywords
temperature gas
radiator
heating
radiation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000071800A
Other languages
Japanese (ja)
Inventor
Noriyuki Komeno
範幸 米野
Toshiro Ogino
俊郎 荻野
Takehiko Shigeoka
武彦 重岡
Motohiko Kitamura
基彦 北村
Seiichi Yasuki
誠一 安木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000071800A priority Critical patent/JP2001263820A/en
Publication of JP2001263820A publication Critical patent/JP2001263820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heater for eliminating the need for heating a heat exchanger directly with a burner and at the same time the need for a convection fan into a room by efficiently radiating the heat of a combustion gas. SOLUTION: The heater is provided with a radiation body 12 having a heat- sampling surface 13 that is heated by a high-temperature gas and a radiation surface 14 that is heated by the high-temperature gas and at the same time generates radiation energy, a radiation surface heating air duct 16 for guiding the high-temperature gas to the radiation surface 14 and the heat-sampling surface 13, a heat-sampling surface heating air duct 15, a high-temperature gas diffusion prevention body 18 for transmitting at least one portion of radiation being generated from the radiation surface 14 and guiding a high- temperature gas that is emitted from the radiation surface heating air duct 16 to the radiation body 12, and a connection air duct 17 for connecting the radiation surface heating air duct 16 and the heat-sampling surface heating air duct 15 to a high-temperature gas generation means, thus increasing the heat transfer area of the radiation body 12 and hence a heat transfer rate. Further, by directing the radiation surface 14 downward, forward blowing can be intensified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼熱用いた暖房
装置、特に輻射熱を用いた暖房装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device using combustion heat, and more particularly to a heating device using radiant heat.

【0002】[0002]

【従来の技術】従来のこの種の暖房装置は実公昭63−
11548号公報に記載されているようなものが一般的
であった。この暖房装置は図18示すようにの本体下部
に設けられたバーナー1と、前記バーナー1からの燃焼
ガスを通過させる中空の薄型箱状熱交換器2とこの熱交
換器の両側に形成された縦長の開口3と、前記熱交換器
2の少なくとも前面に塗装された遠赤外線塗料4と、前
記熱交換器の少なくとも前面に塗装された遠赤外線塗料
と、室内空気を前記熱交換器2に送風して熱交換し温風
として本体吐出口より吐出する対流ファン5からなり、
上記熱交換器2は内部を中空にして上記バーナー1から
の燃焼ガス6が通過するように中空形成して通路6を設
け、熱交換器の各部に上記燃焼ガスが行き渡るよう通路
7の一部に凹形のビード8を設けて開口3から排出する
構成となっていた。
2. Description of the Related Art A conventional heating device of this kind is disclosed in
What was described in 11548 gazette was common. As shown in FIG. 18, the heating device is provided with a burner 1 provided at the lower part of the main body, a hollow thin box-shaped heat exchanger 2 for passing the combustion gas from the burner 1, and formed on both sides of the heat exchanger. A vertically long opening 3, a far-infrared paint 4 applied on at least the front surface of the heat exchanger 2, a far-infrared paint applied on at least the front surface of the heat exchanger, and blowing indoor air to the heat exchanger 2. Consists of a convection fan 5 which exchanges heat and discharges it as warm air from the main body discharge port,
The heat exchanger 2 has a hollow interior so that the combustion gas 6 from the burner 1 passes therethrough and is provided with a passage 6 to provide a passage 6. A part of the passage 7 is provided so that the combustion gas can reach all parts of the heat exchanger. , A concave bead 8 is provided and discharged from the opening 3.

【0003】そしてバーナーで発生した燃焼ガスを熱交
換器2通過させて300℃〜500℃に加熱する事によ
り、遠赤外線塗料で塗装された前面より遠赤外線を輻射
し輻射暖房を行う。また、同時に熱交換器2の後面に沿
って対流ファン5で取り入れた室内空気を送風し、熱交
換器2の開口3で排出される燃焼ガスと混合して室内へ
温風として吐出し温風暖房を行う。
[0003] The combustion gas generated by the burner passes through the heat exchanger 2 and is heated to 300 ° C to 500 ° C to radiate far-infrared rays from the front surface coated with far-infrared paint to perform radiant heating. At the same time, the indoor air taken in by the convection fan 5 is blown along the rear surface of the heat exchanger 2, mixed with the combustion gas discharged at the opening 3 of the heat exchanger 2, and discharged into the room as warm air. Perform heating.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の暖房装置では、燃焼ガスは熱交換器内に流入し対流熱
伝達で熱交換器を加熱するが、対流熱伝達量Qcは(数
1)で示すように熱交換器温度と燃焼ガス温度の差に比
例するが、熱交換器からの輻射量Qrは(数2)熱交換器
の温度の4乗と輻射吸熱面の温度の4乗差に比例する。
However, in the above-mentioned conventional heating apparatus, the combustion gas flows into the heat exchanger and heats the heat exchanger by convective heat transfer. However, the convective heat transfer Qc is expressed by the following equation (1). As shown, it is proportional to the difference between the heat exchanger temperature and the combustion gas temperature, but the amount of radiation Qr from the heat exchanger is (Equation 2) the fourth power of the temperature of the heat exchanger and the fourth power of the temperature of the radiation heat absorbing surface. Proportional.

【0005】[0005]

【数1】 (Equation 1)

【0006】[0006]

【数2】 (Equation 2)

【0007】従来の暖房装置の熱交換器の構成は、燃焼
ガスと熱交換器の面積がほぼ等しく、また、熱交換器の
熱伝達率は、平板のため10W/m2K程度であり、熱交換
器温度を300℃にするためには、燃焼ガス温度とパネ
ル部材の温度差を大きくする必要があり、パネル部材へ
導入する燃焼ガス温度を約870℃の高温にしなければ
ならないのでバーナーや熱交換器を高温に耐える材質に
する必要があり、またバーナーで発生させた火炎で直接
熱交換器を加熱する必要があった。さらに、熱交換器で
熱交換した後の燃焼ガスを室内に循環させるために対流
ファンを設ける必要があった。
[0007] In the structure of the heat exchanger of the conventional heating device, the area of the combustion gas and that of the heat exchanger are almost equal, and the heat transfer coefficient of the heat exchanger is about 10 W / m 2 K because of the flat plate. In order to raise the temperature of the heat exchanger to 300 ° C., it is necessary to increase the temperature difference between the combustion gas temperature and the panel member. The temperature of the combustion gas introduced into the panel member must be as high as about 870 ° C. The heat exchanger must be made of a material that can withstand high temperatures, and the heat exchanger needs to be directly heated by the flame generated by the burner. Furthermore, a convection fan has to be provided to circulate the combustion gas after heat exchange in the heat exchanger into the room.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するため、高温ガスを発生する高温ガス発生手段と、高
温ガスの熱によって加熱される採熱面と輻射エネルギー
を発生する輻射面を持ち採熱面から輻射面へ貫通した穴
を設け輻射面が下方を向くように斜めに設置した輻射体
と、輻射体の採熱面に高温ガスを導く輻射体加熱風路
と、輻射体加熱風路と高温ガス発生手段とを結ぶ連結風
路からなる構成としたものである。
In order to solve the above-mentioned problems, the present invention comprises a high-temperature gas generating means for generating a high-temperature gas, a heat-collecting surface heated by the heat of the high-temperature gas, and a radiation surface for generating radiant energy. A radiator installed diagonally so that a hole penetrating from the heat-collecting surface to the radiation surface is provided so that the radiation surface faces downward, a radiator heating air path that guides high-temperature gas to the radiator's heat-collecting surface, and a radiator heating It is configured as a connecting air path that connects the air path and the high-temperature gas generating means.

【0009】上記構成により、輻射体に穴が設けられて
いるので高温ガスは輻射体加熱風路から輻射体の輻射面
にも流れ、高温ガスは採熱面と輻射面の両面から輻射体
を加熱するので高温ガスが輻射体に熱伝達する際の伝熱
面積は拡大されるとともに、穴によって境界層の発達が
小さくなり熱伝達率が大きくなる。
According to the above configuration, since the radiator is provided with the hole, the high-temperature gas flows from the radiator heating air path to the radiant surface of the radiator, and the high-temperature gas removes the radiator from both the heat-collecting surface and the radiant surface. The heating increases the heat transfer area when the high-temperature gas transfers heat to the radiator, and the holes reduce the development of the boundary layer and increase the heat transfer coefficient.

【0010】また、輻射体加熱風路から輻射体の輻射面
にも流れ出た高温ガスはドラフト作用によって上昇流と
なるが、輻射体の輻射面が下方を向くように斜めに設置
されているので、輻射面から輻射面の上方をなめるよう
に流れ、輻射面を加熱する。このため高温ガスは輻射面
から離れて拡散しないので燃焼ガスの熱が効率よく輻射
面に伝わる。また、加熱後の高温ガスは、斜め前方へ吹
出すことになり、特別な対流ファンを設置することなく
室内に温風を循環させることができる。
The high-temperature gas which has flowed out of the radiator heating air path to the radiating surface of the radiator forms an ascending flow due to the draft action, but is disposed obliquely so that the radiating surface of the radiator faces downward. Then, the radiation flows from the radiation surface so as to lick above the radiation surface, and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0011】[0011]

【発明の実施の形態】本発明の請求項1にかかる暖房装
置は、燃料を燃焼させるバーナー等の高温ガスを発生す
る高温ガス発生手段と、高温ガスの熱によって加熱され
る採熱面と高温ガスによって加熱されるとともに輻射エ
ネルギーを発生する輻射面を持った輻射体と、輻射体の
輻射面と採熱面に高温ガスを導く輻射面加熱風路と採熱
面加熱風路と、輻射面で発生した輻射の少なくとも一部
を透過するとともに輻射面加熱風路から出た高温ガスを
輻射体に導く、スリットを開口したパンチング板や、金
網等の高温ガス拡散防止体と、輻射面加熱風路及び採熱
面加熱風路と高温ガス発生手段とを結ぶ連結風路からな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heating apparatus according to a first aspect of the present invention includes a high-temperature gas generating means for generating a high-temperature gas, such as a burner for burning fuel, a heat-collecting surface heated by the heat of the high-temperature gas, and a high-temperature gas. A radiator that has a radiation surface that is heated by gas and generates radiant energy, a radiation surface heating air passage that guides high-temperature gas to the radiation surface and the heat collection surface of the radiator, a heating surface heating air passage, and a radiation surface A high-temperature gas diffusion preventive body such as a punched plate with slits or a wire mesh that transmits at least a part of the radiation generated in It is composed of a connecting air passage connecting the passage and the heating surface heating air passage with the high-temperature gas generating means.

【0012】そして、上記構成によって、高温ガスは、
輻射面と採熱面の両面から輻射面を加熱するので、高温
ガスが輻射体に熱伝達する際の伝熱面積は2倍になり、
さらに輻射面に送られた高温ガスは上昇流となって輻射
面を上昇していくが、高温ガス拡散防止体によって拡散
することなく輻射面を加熱するので高温ガスの熱が効率
よく輻射面に伝わるので、高温ガスの温度と輻射面の温
度差を小さくすることができる。
According to the above configuration, the high-temperature gas is
Since the radiant surface is heated from both the radiating surface and the heat collecting surface, the heat transfer area when the high-temperature gas transfers heat to the radiator is doubled,
Further, the high-temperature gas sent to the radiation surface rises up the radiation surface as an upward flow, but heats the radiation surface without being diffused by the high-temperature gas diffusion preventer, so that the heat of the high-temperature gas is efficiently transmitted to the radiation surface. As a result, the difference between the temperature of the high-temperature gas and the temperature of the radiation surface can be reduced.

【0013】本発明の請求項2にかかる暖房装置は、バ
ーナー等の高温ガスを発生する高温ガス発生手段と、高
温ガスの熱によって加熱される採熱面と輻射エネルギー
を発生する輻射面を持ち穴を設けた輻射体と、輻射体の
採熱面に高温ガスを導く輻射体加熱風路と、輻射面で発
生した輻射の少なくとも一部を透過するとともに輻射面
加熱風路から出た高温ガスを輻射体に導く、スリットを
開口したパンチング板や、金網等の高温ガス拡散防止体
と、輻射体加熱風路と高温ガス発生手段とを結ぶ連結風
路からなる。
A heating apparatus according to a second aspect of the present invention has a high-temperature gas generating means such as a burner for generating a high-temperature gas, a heat-collecting surface heated by the heat of the high-temperature gas, and a radiation surface for generating radiant energy. A radiator provided with holes, a radiator heating air path that guides high-temperature gas to the heat collecting surface of the radiator, and a high-temperature gas that transmits at least a part of the radiation generated on the radiation surface and exits from the radiation surface heating air path And a high-temperature gas diffusion preventive body such as a punched plate or a wire mesh having a slit, and a connecting air path connecting the radiator heating air path and the high-temperature gas generating means.

【0014】そして上記構成により、輻射体に穴が設け
られているので高温ガスは輻射体加熱風路から輻射体輻
射面にも流れ、加熱風路側と輻射面側の両面から輻射面
を加熱するので、高温ガスが輻射体に熱伝達する際の伝
熱面積は拡大されるとともに、穴によって境界層の発達
が小さくなり熱伝達率が大きくなる。さらに輻射面に送
られた高温ガスは上昇流となって輻射面を上昇していく
が、高温ガス拡散防止体によって拡散することなく輻射
面を加熱する。したがって高温ガスの熱が効率よく輻射
面に伝わり、燃焼ガスの温度と輻射面の温度差をより小
さくすることができる。
Since the radiator is provided with a hole, the high-temperature gas also flows from the radiator heating air path to the radiator radiation surface, and heats the radiation surface from both the heating air path side and the radiation surface side. Therefore, the heat transfer area when the high-temperature gas transfers heat to the radiator is enlarged, and the hole reduces the development of the boundary layer and increases the heat transfer coefficient. Further, the high-temperature gas sent to the radiation surface rises on the radiation surface as an upward flow, but heats the radiation surface without being diffused by the high-temperature gas diffusion preventing member. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the combustion gas temperature and the radiation surface can be further reduced.

【0015】本発明の請求項3にかかる暖房装置は、燃
料を燃焼させるバーナー等の高温ガスを発生する高温ガ
ス発生手段と、高温ガスの熱によって加熱される採熱面
と高温ガスによって加熱されるとともに輻射エネルギー
を発生する輻射面を持ち輻射面が下方を向くように斜め
に設置した輻射体と、輻射体の輻射面と採熱面に高温ガ
スを導く輻射面加熱風路と採熱面加熱風路と、輻射面加
熱風路及び採熱面加熱風路と高温ガス発生手段とを結ぶ
連結風路からなる。
According to a third aspect of the present invention, there is provided a heating apparatus for generating a high-temperature gas, such as a burner for burning fuel, a heating surface heated by the heat of the high-temperature gas, and a high-temperature gas. A radiator that has a radiating surface that generates radiant energy and that is installed diagonally so that the radiating surface faces downward, a radiating surface that guides high-temperature gas to the radiating surface and the collecting surface of the radiator It is composed of a heating air path, and a connecting air path connecting the radiation surface heating air path, the heat collecting surface heating air path, and the high-temperature gas generating means.

【0016】そして上記構成により、高温ガスは、輻射
面と採熱面の両面から輻射面を加熱するので、高温ガス
が輻射体に熱伝達する際の伝熱面積は2倍になる。ま
た、また、輻射面加熱風路から輻射体の輻射面にも流れ
出た高温ガスはドラフト作用によって上昇流となるが、
輻射体の輻射面が下方を向くように斜めに設置されてい
るので、輻射面加熱風路から輻射面の上方をなめるよう
に流れ、輻射面を加熱する。このため高温ガスは輻射面
から離れて拡散しないので燃焼ガスの熱が効率よく輻射
面に伝わり、高温ガスの温度と輻射面の温度差を小さく
することができる。また、加熱後の高温ガスは、斜め前
方へ吹出すことになり、特別な対流ファンを設置するこ
となく室内に温風を循環させることができる。
According to the above configuration, since the high-temperature gas heats the radiation surface from both the radiation surface and the heat collecting surface, the heat transfer area when the high-temperature gas transfers heat to the radiator is doubled. In addition, the high-temperature gas that has flowed out from the radiation surface heating air path to the radiation surface of the radiator also becomes an upward flow due to the draft action,
Since the radiation surface of the radiator is installed obliquely so as to face downward, the radiation flows from the radiation surface heating air path to lick above the radiation surface, and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0017】本発明の請求項4にかかる暖房装置は、燃
料を燃焼させるバーナー等の高温ガスを発生する高温ガ
ス発生手段と、高温ガスの熱によって加熱される採熱面
と輻射エネルギーを発生する輻射面を持ち採熱面から輻
射面へ貫通した穴を設け輻射面が下方を向くように斜め
に設置した輻射体と、輻射体の採熱面に高温ガスを導く
輻射体加熱風路と、輻射体加熱風路と高温ガス発生手段
とを結ぶ連結風路からなる構成としたものである。
According to a fourth aspect of the present invention, there is provided a heating apparatus for generating a high-temperature gas, such as a burner for burning fuel, a high-temperature gas generating means, a heat-collecting surface heated by the heat of the high-temperature gas, and radiant energy. A radiator that has a radiation surface and has a hole that penetrates from the heat collection surface to the radiation surface and is installed diagonally so that the radiation surface faces downward, and a radiator heating air passage that guides high-temperature gas to the heat collection surface of the radiator, It is configured as a connecting air path connecting the radiator heating air path and the high-temperature gas generating means.

【0018】上記構成により、輻射体に穴が設けられて
いるので高温ガスは輻射体加熱風路から輻射体の輻射面
にも流れ、高温ガスは採熱面と輻射面の両面から輻射体
を加熱するので高温ガスが輻射体に熱伝達する際の伝熱
面積は拡大されるとともに、穴によって境界層の発達が
小さくなり熱伝達率が大きくなる。また、輻射体加熱風
路から輻射体の輻射面にも流れ出た高温ガスはドラフト
作用によって上昇流となるが、輻射体の輻射面が下方を
向くように斜めに設置されているので、輻射面から輻射
面の上方へなめるように流れ、輻射面を加熱する。この
ため高温ガスは輻射面から離れて拡散しないので燃焼ガ
スの熱が効率よく輻射面に伝わり、高温ガスの温度と輻
射面の温度差を小さくすることができる。また、加熱後
の高温ガスは、斜め前方へ吹出すことになり、特別な対
流ファンを設置することなく室内に温風を循環させるこ
とができる。
According to the above configuration, since the radiator is provided with the hole, the high-temperature gas flows from the radiator heating air path to the radiant surface of the radiator, and the high-temperature gas removes the radiator from both the heat-collecting surface and the radiant surface. The heating increases the heat transfer area when the high-temperature gas transfers heat to the radiator, and the holes reduce the development of the boundary layer and increase the heat transfer coefficient. In addition, the high-temperature gas that has also flowed out of the radiator heating air path to the radiant surface of the radiator becomes a rising flow due to the draft action, but since the radiator is installed obliquely so that the radiant surface faces downward, the radiant surface is From the radiating surface, and heats the radiating surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0019】本発明の請求項5にかかる暖房装置は、燃
料を燃焼させるバーナー等の高温ガスを発生する高温ガ
ス発生手段と、高温ガスの熱によって加熱される採熱面
と高温ガスによって加熱されるとともに輻射エネルギー
を発生する輻射面を持ち輻射面左右端が開くように湾曲
させた形状で輻射面が下方を向くように斜めに設置した
輻射体と、輻射体の輻射面と採熱面に高温ガスを導く輻
射面加熱風路と採熱面加熱風路と、輻射面加熱風路及び
採熱面加熱風路と高温ガス発生手段とを結ぶ連結風路か
らなる。
According to a fifth aspect of the present invention, there is provided a heating apparatus for generating a high-temperature gas, such as a burner for burning fuel, a heating surface heated by the heat of the high-temperature gas, and a heating surface heated by the high-temperature gas. The radiator has a radiating surface that generates radiant energy and is curved so that the left and right ends of the radiating surface are open.The radiator is installed diagonally so that the radiating surface faces downward. It is composed of a radiant surface heating air path and a heat collecting surface heating air path for introducing a high temperature gas, and a connecting air path connecting the radiation surface heating air path, the heat collecting surface heating air path and the high temperature gas generating means.

【0020】そして上記構成により、高温ガスは、輻射
面と採熱面の両面から輻射面を加熱するので、高温ガス
が輻射体に熱伝達する際の伝熱面積は2倍になる。ま
た、輻射面加熱風路から輻射体の輻射面にも流れ出た高
温ガスはドラフト作用によって上昇流となるが、輻射体
の輻射面が輻射面左右端が開くように湾曲させた形状で
下方を向くように斜めに設置されているので、輻射面か
ら輻射面の上方をなめるように流れるとともに左右方向
にも広がりながら流れ、輻射面を加熱する。このため高
温ガスは輻射面から離れて拡散しないので燃焼ガスの熱
が効率よく輻射面に伝わり、高温ガスの温度と輻射面の
温度差を小さくすることができる。また、輻射面に流れ
出た高温ガスは、左右に広がるので、輻射面横方向を加
熱し、輻射体を均一に加熱することができる。さらに、
加熱後の高温ガスは、斜め前方へ吹出すことになり、特
別な対流ファンを設置することなく室内に温風を循環さ
せることができる。また、輻射面が左右端が開くように
湾曲させた形状のため、輻射面で発生した輻射が広範囲
に広がり、室内を広く輻射暖房することができる。
With the above configuration, since the high-temperature gas heats the radiation surface from both the radiation surface and the heat-collecting surface, the heat transfer area when the high-temperature gas transfers heat to the radiator is doubled. In addition, the high-temperature gas that has also flowed out of the radiating surface heating air path to the radiating surface of the radiator becomes a rising flow due to the draft action. Since it is installed obliquely so as to face, it flows so as to lick above the radiation surface from the radiation surface, and also flows while spreading in the left-right direction to heat the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, since the high-temperature gas flowing out to the radiation surface spreads right and left, it is possible to heat the lateral direction of the radiation surface and uniformly heat the radiator. further,
The heated high-temperature gas is blown obliquely forward, so that warm air can be circulated indoors without installing a special convection fan. Further, since the radiation surface is curved so that the left and right ends open, the radiation generated on the radiation surface spreads over a wide range, and the room can be radiated and heated widely.

【0021】本発明の請求項6にかかる暖房装置は、燃
料を燃焼させるバーナー等の高温ガスを発生する高温ガ
ス発生手段と、高温ガスの熱によって加熱される採熱面
と輻射エネルギーを発生する輻射面を持ち採熱面から輻
射面へ貫通した穴を設け輻射面左右端が開くように湾曲
させた形状で輻射面が下方を向くように斜めに設置した
輻射体と、輻射体の採熱面に高温ガスを導く輻射体加熱
風路と、輻射体加熱風路と高温ガス発生手段とを結ぶ連
結風路からなる構成としたものである。
According to a sixth aspect of the present invention, there is provided a heating apparatus for generating a high-temperature gas, such as a burner for burning fuel, a high-temperature gas generating means, a heat-collecting surface heated by the heat of the high-temperature gas, and radiant energy. A radiator that has a radiation surface and a hole that penetrates from the heat collection surface to the radiation surface, is curved so that the left and right ends of the radiation surface open, and is installed diagonally so that the radiation surface faces downward, and heat collection of the radiator The radiator heating air path for guiding the high-temperature gas to the surface, and a connecting air path connecting the radiator heating air path and the high-temperature gas generating means.

【0022】上記構成により、輻射体に穴が設けられて
いるので高温ガスは輻射体加熱風路から輻射体の輻射面
にも流れ、高温ガスは採熱面と輻射面の両面から輻射体
を加熱するので高温ガスが輻射体に熱伝達する際の伝熱
面積は拡大されるとともに、穴によって境界層の発達が
小さくなり熱伝達率が大きくなる。また、輻射体加熱風
路から輻射体の輻射面にも流れ出た高温ガスはドラフト
作用によって上昇流となるが、輻射体の輻射面が輻射面
左右端が開くように湾曲させた形状で下方を向くように
斜めに設置されているので、輻射面から輻射面の上方を
なめるように流れとともに左右方向にも広がりながら流
れ、輻射面を加熱する。このため高温ガスは輻射面から
離れて拡散しないので燃焼ガスの熱が効率よく輻射面に
伝わり、高温ガスの温度と輻射面の温度差を小さくする
ことができる。
According to the above configuration, since the radiator is provided with holes, the high-temperature gas flows from the radiator heating air path to the radiant surface of the radiator, and the high-temperature gas removes the radiator from both the heat-collecting surface and the radiant surface. The heating increases the heat transfer area when the high-temperature gas transfers heat to the radiator, and the holes reduce the development of the boundary layer and increase the heat transfer coefficient. In addition, the high-temperature gas that has also flowed out of the radiator heating air path to the radiant surface of the radiator becomes a rising flow due to the draft action, but the radiant surface of the radiator is curved so that the left and right ends of the radiant surface are opened, and the lower portion is directed downward. Since it is installed obliquely so as to face, it flows while spreading in the left-right direction along with the flow so as to lick above the radiation surface from the radiation surface, and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced.

【0023】また、輻射面に流れ出た高温ガスは、左右
に広がるので、輻射面横方向を加熱し、輻射体を均一に
加熱することができる。さらに、加熱後の高温ガスは、
斜め前方へ吹出すことになり、特別な対流ファンを設置
することなく室内に温風を循環させることができる。ま
た、輻射面が左右端が開くように湾曲させた形状のた
め、輻射面で発生した輻射が広範囲に広がり、室内を広
く輻射暖房することができる。
Further, since the high-temperature gas flowing out to the radiation surface spreads right and left, it is possible to heat the lateral direction of the radiation surface and uniformly heat the radiator. Furthermore, the hot gas after heating is
By blowing obliquely forward, warm air can be circulated indoors without installing a special convection fan. Further, since the radiation surface is curved so that the left and right ends open, the radiation generated on the radiation surface spreads over a wide range, and the room can be radiated and heated widely.

【0024】本発明の請求項7にかかる暖房装置は、燃
料を燃焼させるバーナー等の高温ガスを発生する高温ガ
ス発生手段と、高温ガスの熱によって加熱される採熱面
と高温ガスによって加熱されるとともに輻射エネルギー
を発生する輻射面を持ち輻射面が上方に行くに従って下
方を向くように湾曲させた輻射体と、輻射体の輻射面と
採熱面に高温ガスを導く輻射面加熱風路と採熱面加熱風
路と、輻射面加熱風路及び採熱面加熱風路と高温ガス発
生手段とを結ぶ連結風路からなる。
A heating device according to a seventh aspect of the present invention is a high-temperature gas generating means for generating a high-temperature gas, such as a burner for burning fuel, a heating surface heated by the heat of the high-temperature gas, and a high-temperature gas. A radiator that has a radiating surface that generates radiant energy and is curved so that the radiating surface faces downward as it goes upward, and a radiating surface heating air duct that guides high-temperature gas to the radiating surface of the radiator and the heat collecting surface It comprises a heating surface heating air passage, a radiation surface heating air passage, and a connecting air passage connecting the heating surface heating air passage and the high-temperature gas generating means.

【0025】そして上記構成により、高温ガスは、輻射
面と採熱面の両面から輻射面を加熱するので、高温ガス
が輻射体に熱伝達する際の伝熱面積は2倍になる。ま
た、また、輻射面加熱風路から輻射体の輻射面にも流れ
出た高温ガスはドラフト作用によって上昇流となるが、
輻射面が上方に行くに従って下方を向くように湾曲させ
た形状なので、輻射面から輻射面の上方をなめるように
流れ、輻射面を加熱する。このため高温ガスは輻射面か
ら離れて拡散しないので燃焼ガスの熱が効率よく輻射面
に伝わり、高温ガスの温度と輻射面の温度差を小さくす
ることができる。また、加熱後の高温ガスは、斜め前方
へ吹出すことになり、特別な対流ファンを設置すること
なく室内に温風を循環させることができる。
With the above configuration, the high-temperature gas heats the radiation surface from both the radiation surface and the heat-collecting surface, so that the heat transfer area when the high-temperature gas transfers heat to the radiator is doubled. In addition, the high-temperature gas that has flowed out from the radiation surface heating air path to the radiation surface of the radiator also becomes an upward flow due to the draft action,
Since the radiation surface is curved so as to face downward as it goes upward, it flows from the radiation surface to lick above the radiation surface, and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0026】本発明の請求項8にかかる暖房装置は、燃
料を燃焼させるバーナー等の高温ガスを発生する高温ガ
ス発生手段と、高温ガスの熱によって加熱される採熱面
と輻射エネルギーを発生する輻射面を持ち採熱面から輻
射面へ貫通した穴を設け輻射面が上方に行くに従って下
方を向くように湾曲させた輻射体と、輻射体の採熱面に
高温ガスを導く輻射体加熱風路と、輻射体加熱風路と高
温ガス発生手段とを結ぶ連結風路からなる構成としたも
のである。
The heating apparatus according to claim 8 of the present invention generates a high-temperature gas generating means such as a burner for burning fuel, a high-temperature gas generating means, a heat-collecting surface heated by the heat of the high-temperature gas, and radiant energy. A radiator that has a radiating surface and a hole that penetrates from the heat collecting surface to the radiating surface and is curved so that the radiating surface faces downward as the radiating surface goes up, and a radiant heating wind that guides high-temperature gas to the radiating member's heat collecting surface And a connecting air path connecting the radiator heating air path and the high-temperature gas generating means.

【0027】上記構成により、輻射体に穴が設けられて
いるので高温ガスは輻射体加熱風路から輻射体の輻射面
にも流れ、高温ガスは採熱面と輻射面の両面から輻射体
を加熱するので高温ガスが輻射体に熱伝達する際の伝熱
面積は拡大されるとともに、穴によって境界層の発達が
小さくなり熱伝達率が大きくなる。また、輻射体加熱風
路から輻射体の輻射面にも流れ出た高温ガスはドラフト
作用によって上昇流となるが、輻射面が上方に行くに従
って下方を向くように湾曲させた形状なので、輻射面か
ら輻射面の上方をなめるように流れ、輻射面を加熱す
る。このため高温ガスは輻射面から離れて拡散しないの
で燃焼ガスの熱が効率よく輻射面に伝わり、高温ガスの
温度と輻射面の温度差を小さくすることができる。ま
た、加熱後の高温ガスは、斜め前方へ吹出すことにな
り、特別な対流ファンを設置することなく室内に温風を
循環させることができる。
With the above structure, since the radiator is provided with a hole, the high-temperature gas also flows from the radiator heating air path to the radiant surface of the radiator, and the high-temperature gas removes the radiator from both the heat-collecting surface and the radiant surface. The heating increases the heat transfer area when the high-temperature gas transfers heat to the radiator, and the holes reduce the development of the boundary layer and increase the heat transfer coefficient. In addition, the high-temperature gas that has also flowed out of the radiator heating air path to the radiant surface of the radiator becomes a rising flow due to the draft action, but since the radiant surface is curved so as to face downward as it goes upward, it is formed from the radiant surface. It flows so as to lick above the radiation surface and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0028】本発明の請求項9にかかる暖房装置は、請
求項3ないし請求項8の構成に加え、輻射面で発生した
輻射の少なくとも一部を透過するとともに輻射面加熱風
路ないし輻射体の穴から出た高温ガスを輻射体に導く高
温ガス拡散防止体を設けた構成により、高温ガスが高温
ガス拡散防止体によって拡散することなく輻射面を加熱
するので高温ガスの熱が効率よく輻射面に伝わるので、
高温ガスの温度と輻射面の温度差をより小さくすること
ができる。
According to a ninth aspect of the present invention, in addition to the configuration of the third to eighth aspects, the heating apparatus transmits at least a part of the radiation generated on the radiation surface and also has a radiation surface heating air passage or a radiation body. The high-temperature gas diffuser is heated by the high-temperature gas diffusion preventive body without diffusing the high-temperature gas by the high-temperature gas diffusion preventive body that guides the high-temperature gas from the hole to the radiator. It is transmitted to
The difference in temperature between the high-temperature gas and the radiation surface can be further reduced.

【0029】(実施例1)図1は本発明の実施例1の暖
房装置の要部切り欠き斜視図であり、図2は図1の暖房
装置の断面図であり、図3は高温ガス拡散防止体の要部
断面図である。図1〜3において、11は石油やガス燃
料を燃焼させる円形バーナー等の高温ガスを発生する高
温ガス発生手段であり、12は高温ガスの熱によって加
熱される採熱面13と輻射エネルギーを発生する輻射面
14を持った輻射体であり、高温ガスを採熱面13およ
び輻射面14に送風する採熱面加熱風路15および輻射
面下端に設けられた輻射面加熱風路16を持ち、採熱面
加熱風路15および輻射面加熱風路16は連結風路17
によって高温ガス発生手段11から高温ガスが導かれ
る。さらに輻射面14で発生した輻射の少なくとも一部
を透過するとともに輻射面加熱風路16から出た高温ガ
スを輻射体12に導く、スリット19を開口し切起し2
0を持った高温ガス拡散防止体18が設けられた構成と
なっている。
(Embodiment 1) FIG. 1 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 1 of the present invention, FIG. 2 is a sectional view of the heating apparatus of FIG. 1, and FIG. It is principal part sectional drawing of a prevention body. In FIGS. 1 to 3, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel, and reference numeral 12 denotes a heat-collecting surface 13 which is heated by the heat of the high-temperature gas and generates radiant energy. A radiator having a radiating surface 14, which has a radiating surface heating air passage 16 provided at a lower end of the radiating surface, and a heating surface heating air passage 15 for blowing high-temperature gas to the heating surface 13 and the radiating surface 14, The heating surface heating air path 15 and the radiation surface heating air path 16 are connected to the connecting air path 17.
Thereby, the high-temperature gas is guided from the high-temperature gas generating means 11. Further, a slit 19 is opened and cut and raised by transmitting at least a part of the radiation generated on the radiation surface 14 and guiding the high-temperature gas emitted from the radiation surface heating air passage 16 to the radiator 12.
The configuration is such that a high-temperature gas diffusion preventive body 18 having 0 is provided.

【0030】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって採熱面
加熱風路15下部に設けられた採熱面加熱風路入口21
に導かれ採熱面加熱風路15を通ってドラフト作用によ
って風速を増しながら、採熱面13を加熱し採熱面加熱
風路15上方に設けられた輻射体加熱風路出口22に導
かれる。さらに高温ガスは連結風路17から輻射面加熱
風路16に導かれ、輻射面14にも送風され輻射面14
下端から上昇気流23となって上昇していくが、高温ガ
ス拡散防止体18の切起し20によって輻射面14に導
かれ拡散することなく輻射面14を加熱する。このため
輻射体は、高温ガスによって採熱面13、および輻射面
14の両方から加熱される。そして、輻射体が約300
℃に加熱され、輻射面から遠赤外線24が輻射され、輻
射によって室内の暖房を行う。このため人体に直接風が
当たる事なく快適な暖房感が得られる。
With the above configuration, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is connected to the heat-collecting surface heating air path inlet 21 provided below the heat-collecting surface heating air path 15 by the connecting air path 17.
While increasing the wind speed by the draft action through the heating surface heating air passage 15, the heating surface 13 is heated and guided to the radiator heating air passage outlet 22 provided above the heating surface heating air passage 15. . Further, the high-temperature gas is guided from the connection air passage 17 to the radiation surface heating air passage 16 and is also blown to the radiation surface 14 so that the radiation surface 14
The gas flows upward from the lower end as an ascending air flow 23, but is guided to the radiation surface 14 by the cut-and-raised portion 20 of the high-temperature gas diffusion preventer 18, and heats the radiation surface 14 without diffusion. Therefore, the radiator is heated from both the heat collecting surface 13 and the radiating surface 14 by the high-temperature gas. And the radiator is about 300
℃, far infrared rays 24 are radiated from the radiation surface, and the room is heated by the radiation. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0031】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるので
高温ガスとして高温の直接火炎が不要であり、このため
高温ガス発生手段としてラインバーナーを用い火炎で直
接熱交換器を加熱する必要がなく、排気ガス特性の良い
円形バーナーを用い、高温ガスによって輻射暖房を行う
事が出来る。
In the configuration of this embodiment, the heat transfer area between the high-temperature gas and the radiator is doubled as compared with the heating of only the heat-collecting surface, so that a high-temperature direct flame is not required as the high-temperature gas. It is not necessary to heat the heat exchanger directly with a flame by using a line burner as a generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics.

【0032】なお、高温ガス拡散防止体18として、金
網等を用いても上昇気流23は輻射体に導かれるので、
本実施例と同様の効果が得られる。
Even if a wire mesh or the like is used as the high-temperature gas diffusion preventing member 18, the updraft 23 is guided to the radiator.
The same effects as in the present embodiment can be obtained.

【0033】(実施例2)図4は本発明の実施例2の暖
房装置の要部切り欠き斜視図であり、図5は図4の暖房
装置側の断面図である。さらに高温ガス拡散防止体の要
部断面図である図3を用いて説明する。
(Embodiment 2) FIG. 4 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 2 of the present invention, and FIG. 5 is a sectional view of the heating apparatus side of FIG. Further description will be made with reference to FIG. 3 which is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member.

【0034】図4、5および図3において、11は石油
やガス燃料を燃焼させる円形バーナー等の高温ガスを発
生する高温ガス発生手段であり、26は高温ガスの熱に
よって加熱される採熱面27と輻射エネルギーを発生す
る輻射面28を持ち、採熱面から輻射面に貫通し輻射面
を切り起こした開口端があるルーバー30を付けた穴2
9を設けた輻射体であり、輻射体26の採熱面27には
高温ガスを導く輻射体加熱風路31が取り付けられ、輻
射体加熱風路31には連結風路17によって高温ガス発
生手段11から高温ガスが導かれる構成となっている。
さらに輻射面28で発生した輻射の少なくとも一部を透
過するとともに穴29から出た高温ガスを輻射体26に
導く、スリット19を開口し切起し20を持った高温ガ
ス拡散防止体18が設けられた構成となっている。
4, 5 and 3, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel, and 26 denotes a heat collecting surface heated by the heat of the high-temperature gas. A hole 2 having a louver 30 having a radiation surface 28 for generating radiation energy and a radiation end 28 penetrating from the heat-collecting surface to the radiation surface and having an open end cut out from the radiation surface.
9, a radiator heating air passage 31 for guiding a high-temperature gas is attached to the heat-collecting surface 27 of the radiator 26, and the radiator heating air passage 31 is connected to the radiator heating air passage 31 by the connecting air passage 17. The configuration is such that a high-temperature gas is led from 11.
Further, a high-temperature gas diffusion preventing member 18 having a slit 19 opened and cut and raised 20 is provided, which transmits at least a part of the radiation generated at the radiation surface 28 and guides the high-temperature gas which has exited from the hole 29 to the radiator 26. Configuration.

【0035】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路31下部に設けられた輻射体加熱風路入口32
に導かれ輻射体加熱風路31を通ってドラフト作用によ
って風速を増しながら、採熱面27を加熱するととも
に、穴29を通って輻射面28に導かれ、上昇流となっ
て輻射面を加熱するが、高温ガス拡散防止体18の切起
し20によって輻射面28に導かれ拡散することなく輻
射面28を加熱する。このため輻射体26は、高温ガス
によって採熱面27、および輻射面28の両方から加熱
される。そして、輻射体が約300℃に加熱され、輻射
面から遠赤外線が輻射され、輻射によって室内の暖房を
行う。このため人体に直接風が当たる事なく快適な暖房
感が得られる。
With the above structure, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is connected to the radiant heating air path inlet 32 provided below the radiant heating air path 31 by the connecting air path 17.
While passing through the radiator heating air passage 31 and increasing the wind speed by the draft action, the heating surface 27 is heated, and is guided to the radiating surface 28 through the hole 29 to heat the radiating surface as an ascending flow. However, the radiating surface 28 is heated without being diffused by the cut-and-raised portion 20 of the high-temperature gas diffusion preventing member 18 and diffused. Therefore, the radiator 26 is heated by the high-temperature gas from both the heat collecting surface 27 and the radiating surface 28. Then, the radiator is heated to about 300 ° C., far infrared rays are radiated from the radiation surface, and the room is heated by the radiation. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0036】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるされ
るとともに、穴によって境界層の発達が小さくなり熱伝
達率が20W/m2Kとなる。したがって高温ガスの熱が効
率よく輻射面に伝わり、燃焼ガスの温度と輻射面の温度
差をより小さくすることができる。このため高温ガス発
生手段としてラインバーナーを用い火炎で直接熱交換器
を加熱する必要がなく、排気ガス特性の良い円形バーナ
ーを用い、高温ガスによって輻射暖房を行う事が出来
る。さらに、境界層が発達しないので輻射面の温度変化
を少なくすることができる。
In the structure of this embodiment, the heat transfer area between the high-temperature gas and the radiator is doubled with respect to the heating of only the heat-collecting surface, and the hole reduces the development of the boundary layer, thereby reducing the heat transfer coefficient. It will be 20 W / m 2 K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the combustion gas temperature and the radiation surface can be further reduced. Therefore, it is not necessary to directly heat the heat exchanger with a flame using a line burner as a high-temperature gas generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics. Further, since the boundary layer does not develop, the temperature change of the radiation surface can be reduced.

【0037】(実施例3)図6は本発明の実施例3の暖
房装置の要部切り欠き斜視図であり、図7は図6の暖房
装置の側断面図である。さらに高温ガス拡散防止体の要
部断面図である図3を用いる。図6、7および図3にお
いて、11は石油やガス燃料を燃焼させる円形バーナー
等の高温ガスを発生する高温ガス発生手段であり、12
は高温ガスの熱によって加熱される採熱面13と輻射エ
ネルギーを発生する輻射面14を持ち輻射面14が下方
を向くように斜めに設置した輻射体であり、高温ガスを
採熱面13および輻射面14に送風する採熱面加熱風路
15および輻射面下端に設けられた輻射面加熱風路16
を持ち、採熱面加熱風路15および輻射面加熱風路16
は連結風路17によって高温ガス発生手段11から高温
ガスが導かれる。さらに輻射面16で発生した輻射の少
なくとも一部を透過するとともに輻射面加熱風路16か
ら出た高温ガスを輻射体12に導く、スリット19を開
口し切起し20を持った高温ガス拡散防止体18が設け
られた構成となっている。
(Embodiment 3) FIG. 6 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 3 of the present invention, and FIG. 7 is a side sectional view of the heating apparatus of FIG. Further, FIG. 3 which is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member is used. 6, 7 and 3, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel.
Is a radiator having a heat-collecting surface 13 heated by the heat of the high-temperature gas and a radiating surface 14 for generating radiant energy, the radiator being installed obliquely so that the radiating surface 14 faces downward. Heating surface heating air passage 15 that blows to radiation surface 14 and radiation surface heating air passage 16 provided at the lower end of radiation surface.
And the heating surface heating air passage 15 and the radiation surface heating air passage 16
The high-temperature gas is guided from the high-temperature gas generation means 11 by the connecting air passage 17. Further, it transmits at least a part of the radiation generated on the radiation surface 16 and guides the high-temperature gas that has exited from the radiation surface heating air passage 16 to the radiator 12. It has a configuration in which a body 18 is provided.

【0038】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって採熱面
加熱風路15下部に設けられた採熱面加熱風路入口21
に導かれ採熱面加熱風路15を通ってドラフト作用によ
って風速を増しながら、採熱面14を加熱し採熱面加熱
風路15上方に設けられた輻射体加熱風路出口22に導
かれる。さらに高温ガスは連結風路17から輻射面加熱
風路16に導かれ、輻射面14にも送風され輻射面14
下端から上昇気流23となって上昇していくが、輻射体
12の輻射面14が下方を向くように斜めに設置されて
いるので、輻射面加熱風路16から輻射面14の上方へ
なめるように流れ、輻射面14を加熱する。このため高
温ガスは輻射面14から離れて拡散しないので燃焼ガス
の熱が効率よく輻射面に伝わる。さらに、輻射面加熱風
路16から拡散した高温ガスは、高温ガス拡散防止体1
8の切起し20によって輻射面14に導かれ輻射面14
を加熱する。このため輻射体は、高温ガスによって採熱
面13、および輻射面14の両方から効率よく加熱され
る。そして、輻射体が約300℃に加熱され、輻射面か
ら遠赤外線24が輻射され、輻射によって室内の暖房を
行う。このため人体に直接風が当たる事なく快適な暖房
感が得られる。
With the above structure, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is connected by the connecting air path 17 to the heating-surface heating air path inlet 21 provided below the heating-surface heating air path 15.
While increasing the wind speed by the draft action through the heating surface heating air passage 15, the heating surface 14 is heated and guided to the radiator heating air passage outlet 22 provided above the heating surface heating air passage 15. . Further, the high-temperature gas is guided from the connection air passage 17 to the radiation surface heating air passage 16 and is also blown to the radiation surface 14 so that the radiation surface 14
Ascending airflow 23 rises from the lower end, but since the radiating surface 14 of the radiator 12 is installed obliquely so as to face downward, the radiating surface heating air passage 16 licks upward from the radiating surface 14. And heats the radiation surface 14. For this reason, the high-temperature gas does not diffuse away from the radiation surface 14, and the heat of the combustion gas is efficiently transmitted to the radiation surface. Further, the high-temperature gas diffused from the radiation surface heating air passage 16 is supplied to the high-temperature gas diffusion preventing body 1.
8 is led to the radiation surface 14 by the cut-and-raised 20 of the radiation surface 14.
Heat. Therefore, the radiator is efficiently heated by both the heat collecting surface 13 and the radiation surface 14 by the high-temperature gas. Then, the radiator is heated to about 300 ° C., far infrared rays 24 are radiated from the radiation surface, and the room is heated by the radiation. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0039】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるので
高温ガスとして高温の直接火炎が不要であり、このため
高温ガス発生手段としてラインバーナーを用い火炎で直
接熱交換器を加熱する必要がなく、排気ガス特性の良い
円形バーナーを用い、高温ガスによって輻射暖房を行う
事が出来る。また、図7に示すように加熱後の高温ガス
33は、輻射体上部から斜め前方へ吹出すことになり、
特別な対流ファンを設置することなく室内に温風を循環
させることができる。
In the configuration of the present embodiment, the heat transfer area between the high-temperature gas and the radiator is twice as large as the heating of only the heat-collecting surface, so that a high-temperature direct flame is not required as the high-temperature gas. It is not necessary to heat the heat exchanger directly with a flame by using a line burner as a generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics. Further, as shown in FIG. 7, the heated high-temperature gas 33 is blown obliquely forward from the upper part of the radiator,
Hot air can be circulated indoors without installing a special convection fan.

【0040】(実施例4)図8は本発明の実施例4の暖
房装置の要部切り欠き斜視図であり、図9は図8の暖房
装置の側断面図である。さらに高温ガス拡散防止体の要
部断面図である図3を用いる。図8、9および図3にお
いて、11は石油やガス燃料を燃焼させる円形バーナー
等の高温ガスを発生する高温ガス発生手段であり、26
は高温ガスの熱によって加熱される採熱面27と輻射エ
ネルギーを発生する輻射面28を持ち、採熱面から輻射
面に貫通し輻射面を切り起こした開口端があるルーバー
30を付けた穴29を設け、輻射面28が下方を向くよ
うに斜めに設置したた輻射体であり、輻射体26の採熱
面27には高温ガスを導く輻射体加熱風路31が取り付
けられ、輻射体加熱風路31には連結風路17によって
高温ガス発生手段11から高温ガスが導かれる構成とな
っている。さらに輻射面28で発生した輻射の少なくと
も一部を透過するとともに穴29から出た高温ガスを輻
射体12に導く、スリット19を開口し切起し20を持
った高温ガス拡散防止体18が設けられた構成となって
いる。
(Embodiment 4) FIG. 8 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 4 of the present invention, and FIG. 9 is a side sectional view of the heating apparatus of FIG. Further, FIG. 3 which is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member is used. 8, 9 and 3, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel.
Has a heat collecting surface 27 heated by the heat of the high-temperature gas and a radiation surface 28 for generating radiant energy, and a hole provided with a louver 30 having an opening end penetrating from the heat collecting surface to the radiation surface and cutting the radiation surface. The radiator is provided with a radiator heating air passage 31 for guiding a high-temperature gas to the heat-collecting surface 27 of the radiator 26. The high-temperature gas is guided from the high-temperature gas generating means 11 to the air path 31 by the connecting air path 17. Further, a high-temperature gas diffusion preventing member 18 having a slit 19 opened and cut and raised 20 is provided, which transmits at least a part of the radiation generated on the radiation surface 28 and guides the high-temperature gas discharged from the hole 29 to the radiator 12. Configuration.

【0041】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路31下部に設けられた輻射体加熱風路入口32
に導かれ輻射体加熱風路31を通ってドラフト作用によ
って風速を増しながら、採熱面27を加熱するととも
に、穴を通って輻射面28に導かれ、上昇流となって輻
射面を加熱するが、輻射体26の輻射面28が下方を向
くように斜めに設置されているので、穴28から出た高
温ガスは輻射面28の上方へなめるように流れ、輻射面
を加熱する。このため高温ガスは輻射面28から離れて
拡散しないので燃焼ガスの熱が効率よく輻射面28に伝
わり、高温ガスの温度と輻射面の温度差を小さくするこ
とができる。さらに高温ガス拡散防止体18の切起し2
0によって輻射面28に導かれ拡散することなく輻射面
28を加熱する。このため輻射体26は、高温ガスによ
って採熱面27、および輻射面28の両方から加熱され
る。そして、輻射体26が約300℃に加熱され、輻射
面から遠赤外線が輻射され、輻射によって室内の暖房を
行う。このため人体に直接風が当たる事なく快適な暖房
感が得られる。
With the above configuration, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is supplied to the radiant heating air path inlet 32 provided below the radiant heating air path 31 by the connecting air path 17.
While heating the heat collecting surface 27 while increasing the wind speed by the draft action through the radiator heating air passage 31 and being guided to the radiating surface 28 through the hole, the radiating surface is heated as a rising flow. However, since the radiating surface 28 of the radiator 26 is obliquely installed so that the radiating surface 28 faces downward, the hot gas flowing out of the hole 28 flows upward to lick the radiating surface 28 and heats the radiating surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface 28, the heat of the combustion gas is efficiently transmitted to the radiation surface 28, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. Further, cutting and raising of the high-temperature gas diffusion preventing body 18
0 guides the radiation surface 28 to the radiation surface 28 without diffusion and heats the radiation surface 28. Therefore, the radiator 26 is heated by the high-temperature gas from both the heat collecting surface 27 and the radiating surface 28. Then, the radiator 26 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface, and the radiation is used to heat the room. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0042】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるされ
るとともに、穴によって境界層の発達が小さくなり熱伝
達率が20W/m2Kとなる。したがって高温ガスの熱が効
率よく輻射面に伝わり、燃焼ガスの温度と輻射面の温度
差をより小さくすることができる。このため高温ガス発
生手段としてラインバーナーを用い火炎で直接熱交換器
を加熱する必要がなく、排気ガス特性の良い円形バーナ
ーを用い、高温ガスによって輻射暖房を行う事が出来
る。さらに、境界層が発達しないので輻射面の温度変化
を少なくすることができる。また、図9に示すように加
熱後の高温ガス34は、輻射体26上部から斜め前方へ
吹出すことになり、特別な対流ファンを設置することな
く室内に温風を循環させることができる。
In the structure of this embodiment, the heat transfer area between the high-temperature gas and the radiator is doubled with respect to the heating of only the heat-collecting surface, and the hole reduces the development of the boundary layer, thereby reducing the heat transfer coefficient. It will be 20 W / m 2 K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the combustion gas temperature and the radiation surface can be further reduced. Therefore, it is not necessary to directly heat the heat exchanger with a flame using a line burner as a high-temperature gas generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics. Further, since the boundary layer does not develop, the temperature change of the radiation surface can be reduced. Further, as shown in FIG. 9, the heated high-temperature gas 34 is blown obliquely forward from above the radiator 26, and hot air can be circulated indoors without installing a special convection fan.

【0043】(実施例5)図10は本発明の実施例5の
暖房装置の要部切り欠き斜視図であり、図11は図10
の暖房装置の側断面図である。さらに高温ガス拡散防止
体の要部断面図である図3を用いる。図10、11およ
び図3において、11は石油やガス燃料を燃焼させる円
形バーナー等の高温ガスを発生する高温ガス発生手段で
あり、35は高温ガスの熱によって加熱される採熱面3
6と輻射エネルギーを発生する輻射面37を持ち輻射面
37の左右端が開くように湾曲させた形状で輻射面37
が下方を向くように斜めに設置した輻射体であり、高温
ガスを採熱面36および輻射面37に送風する採熱面加
熱風路15および輻射面下端に設けられた輻射面加熱風
路16を持ち、採熱面加熱風路15および輻射面加熱風
路16は連結風路17によって高温ガス発生手段11か
ら高温ガスが導かれる。さらに輻射面16で発生した輻
射の少なくとも一部を透過するとともに輻射面加熱風路
16から出た高温ガスを輻射体12に導く、スリット1
9を開口し切起し20を持った高温ガス拡散防止体18
が設けられた構成となっている。
(Embodiment 5) FIG. 10 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 5 of the present invention, and FIG.
FIG. 3 is a side sectional view of the heating device of FIG. Further, FIG. 3 which is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member is used. 10, 11 and 3, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel, and 35 denotes a heat-collecting surface 3 heated by the heat of the high-temperature gas.
6 and a radiation surface 37 for generating radiation energy, the radiation surface 37 having a shape curved so that the left and right ends of the radiation surface 37 are open.
Is a radiator installed obliquely so as to face downward, a heating surface heating air passage 15 for sending high-temperature gas to the heating surface 36 and the radiation surface 37, and a radiation surface heating air passage 16 provided at the lower end of the radiation surface. The high-temperature gas is guided from the high-temperature gas generating means 11 to the heating surface heating air path 15 and the radiation surface heating air path 16 by the connecting air path 17. Further, the slit 1 transmits at least a part of the radiation generated on the radiation surface 16 and guides the high-temperature gas that has exited from the radiation surface heating air passage 16 to the radiator 12.
High temperature gas diffusion preventing body 18 having opening 9 and cut and raised 20
Is provided.

【0044】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって採熱面
加熱風路15下部に設けられた採熱面加熱風路入口21
に導かれ採熱面加熱風路15を通ってドラフト作用によ
って風速を増しながら、採熱面36を加熱し採熱面加熱
風路15上方に設けられた輻射体加熱風路出口22に導
かれる。さらに高温ガスは連結風路17から輻射面加熱
風路16に導かれ、輻射面37にも送風され輻射面37
下端から上昇気流となって上昇していく。
With the above configuration, the high-temperature gas generated by combustion in the high-temperature gas generating means 11 is connected to the heating surface heating air path inlet 21 provided below the heating surface heating air path 15 by the connecting air path 17.
While being increased by the draft action through the heat-collecting surface heating air path 15, the heat-collecting surface 36 is heated and guided to the radiator heating air path outlet 22 provided above the heat-collecting surface heating air path 15. . Further, the high-temperature gas is guided from the connection air passage 17 to the radiation surface heating air passage 16, and is also blown to the radiation surface 37, and
Ascending airflow rises from the lower end.

【0045】図10に示すように輻射体35の輻射面3
7は輻射面左右端が開くように湾曲させた形状下方を向
くように斜めに設置されているので、高温ガス38は輻
射面加熱風路16から輻射面37の上方へなめるように
流れるとともに左右方向にも広がりながら流れ、輻射面
37を加熱する。このため高温ガスは輻射面37から離
れて拡散しないので燃焼ガスの熱が効率よく輻射面に伝
わる。また、輻射面37に流れ出た高温ガスは、左右に
広がるので、輻射面37の横方向を加熱し、輻射体を均
一に加熱することができる。さらに、輻射面加熱風路1
6から拡散した高温ガスは、高温ガス拡散防止体18の
切起し20によって輻射面14に導かれ輻射面14を加
熱する。このため輻射体は、高温ガスによって採熱面1
3、および輻射面14の両方から効率よく加熱される。
そして、輻射体が約300℃に加熱され、輻射面から遠
赤外線24が輻射され、輻射によって室内の暖房を行
う。このため人体に直接風が当たる事なく快適な暖房感
が得られる。
As shown in FIG. 10, the radiation surface 3 of the radiation body 35
7 is curved so that the left and right ends of the radiation surface are open, and is installed obliquely so as to face downward, so that the high-temperature gas 38 flows from the radiation surface heating air passage 16 upward to the radiation surface 37 while licking. It flows while spreading in the direction, and heats the radiation surface 37. For this reason, the high-temperature gas does not diffuse away from the radiation surface 37, so that the heat of the combustion gas is efficiently transmitted to the radiation surface. In addition, since the high-temperature gas flowing out to the radiation surface 37 spreads right and left, the lateral direction of the radiation surface 37 can be heated, and the radiator can be uniformly heated. Further, the radiation surface heating air path 1
The high-temperature gas diffused from 6 is guided to the radiation surface 14 by the cut-and-raised portion 20 of the high-temperature gas diffusion preventer 18 and heats the radiation surface 14. For this reason, the radiator emits heat from the hot surface 1
3 and the radiation surface 14 for efficient heating.
Then, the radiator is heated to about 300 ° C., far infrared rays 24 are radiated from the radiation surface, and the room is heated by the radiation. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0046】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になり、か
つ輻射体左右方向へ伝熱量も増えるので輻射面からの輻
射量が増え、高温ガスとして高温の直接火炎が不要であ
り、このため高温ガス発生手段としてラインバーナーを
用い火炎で直接熱交換器を加熱する必要がなく、排気ガ
ス特性の良い円形バーナーを用い、高温ガスによって輻
射暖房を行う事が出来る。また、図11に示すように加
熱後の高温ガス39は、輻射体35上部から斜め前方へ
吹出すことになり、特別な対流ファンを設置することな
く室内に温風を循環させることができる。
In the structure of this embodiment, the heat transfer area between the high-temperature gas and the radiator is twice as large as the heating of only the heat collecting surface, and the amount of heat transfer in the radiator right and left direction is also increased. The amount is increased, and a high-temperature direct flame is not required as a high-temperature gas.Therefore, there is no need to use a line burner as a high-temperature gas generation means and directly heat the heat exchanger with the flame, and use a circular burner having good exhaust gas characteristics. Radiant heating can be performed with high-temperature gas. Further, as shown in FIG. 11, the heated high-temperature gas 39 is blown obliquely forward from the upper portion of the radiator 35, so that hot air can be circulated indoors without installing a special convection fan.

【0047】(実施例6)図12は本発明の実施例6の
暖房装置の要部切り欠き斜視図であり、図13は図12
の暖房装置の側断面図である。さらに高温ガス拡散防止
体の要部断面図である図3を用いる。図12、13およ
び図3において、11は石油やガス燃料を燃焼させる円
形バーナー等の高温ガスを発生する高温ガス発生手段で
あり、40は高温ガスの熱によって加熱される採熱面4
1と輻射エネルギーを発生する輻射面42を持ち、採熱
面から輻射面に貫通し輻射面を切り起こした開口端30
があるルーバー30を付けた穴29を設け、輻射面42
の左右端が開くように湾曲させた形状で下方を向くよう
に斜めに設置した輻射体であり、輻射体40の採熱面4
1には高温ガスを導く輻射体加熱風路31が取り付けら
れ、輻射体加熱風路31には連結風路17によって高温
ガス発生手段11から高温ガスが導かれる構成となって
いる。さらに輻射面42で発生した輻射の少なくとも一
部を透過するとともに穴29から出た高温ガスを輻射体
12に導く、スリット19を開口し切起し20を持った
高温ガス拡散防止体18が設けられた構成となってい
る。
(Embodiment 6) FIG. 12 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 6 of the present invention, and FIG.
FIG. 3 is a side sectional view of the heating device of FIG. Further, FIG. 3 which is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member is used. 12, 13, and 3, reference numeral 11 denotes a high-temperature gas generating unit that generates a high-temperature gas such as a circular burner that burns oil or gas fuel, and 40 denotes a heat-collecting surface 4 heated by the heat of the high-temperature gas.
1 and an opening end 30 having a radiation surface 42 for generating radiation energy, penetrating from the heat collection surface to the radiation surface, and cutting and raising the radiation surface.
A hole 29 with a louver 30 is provided.
Is a radiator that is curved so that the left and right ends of the radiator are open and is installed obliquely so as to face downward.
A radiator heating air passage 31 for guiding a high-temperature gas is attached to 1, and the radiator heating air passage 31 is configured such that a high-temperature gas is guided from the high-temperature gas generating means 11 by a connecting air passage 17. Further, a high-temperature gas diffusion preventing body 18 having a slit 19 opened and cut and raised 20 is provided, which transmits at least a part of the radiation generated on the radiation surface 42 and guides the high-temperature gas which has exited from the hole 29 to the radiator 12. Configuration.

【0048】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路31下部に設けられた輻射体加熱風路入口32
に導かれ輻射体加熱風路31を通ってドラフト作用によ
って風速を増しながら、採熱面41を加熱する。図12
に示すように穴を通って輻射面42に導かれた高温ガス
43は、輻射体の輻射面42が輻射面左右端が開くよう
に湾曲させた形状で下方を向くように斜めに設置されて
いるので、輻射面42から輻射面の上方をなめるように
流れとともに左右方向にも広がりながら流れ、輻射面4
2を加熱する。このため高温ガスは輻射面28から離れ
て拡散しないので燃焼ガスの熱が効率よく輻射面28に
伝わり、高温ガスの温度と輻射面の温度差を小さくする
ことができる。
With the above structure, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is connected to the radiant heating air path inlet 32 provided below the radiant heating air path 31 by the connecting air path 17.
The heat collection surface 41 is heated while increasing the wind speed by the draft action through the radiator heating air passage 31. FIG.
The high-temperature gas 43 guided to the radiation surface 42 through the hole as shown in (1) is installed obliquely so that the radiation surface 42 of the radiator faces downward in a shape curved so that the radiation surface left and right ends open. Flow from the radiation surface 42 so as to lick above the radiation surface and spread in the left-right direction along with the flow.
Heat 2 For this reason, since the high-temperature gas does not diffuse away from the radiation surface 28, the heat of the combustion gas is efficiently transmitted to the radiation surface 28, and the temperature difference between the high-temperature gas and the radiation surface can be reduced.

【0049】また、輻射面に流れ出た高温ガスは、左右
に広がるので、輻射面横方向を加熱し、輻射体40を均
一に加熱することができる。さらに高温ガス拡散防止体
18の切起し20によって輻射面28に導かれ拡散する
ことなく輻射面28を加熱する。このため輻射体40
は、高温ガスによって採熱面27、および輻射面28の
両方から加熱される。そして、輻射体が約300℃に加
熱され、輻射面から遠赤外線が輻射され、輻射によって
室内の暖房を行う。このため人体に直接風が当たる事な
く快適な暖房感が得られる。
The high-temperature gas flowing out to the radiation surface spreads right and left, so that the radiation surface can be heated in the lateral direction and the radiator 40 can be uniformly heated. Further, the radiating surface 28 is heated by the cut-and-raised portion 20 of the high-temperature gas diffusion preventing member 18 without being diffused. Therefore, the radiator 40
Is heated from both the heat collecting surface 27 and the radiation surface 28 by the high-temperature gas. Then, the radiator is heated to about 300 ° C., far infrared rays are radiated from the radiation surface, and the room is heated by the radiation. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0050】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるされ
るとともに、穴によって境界層の発達が小さくなり熱伝
達率が20W/m2Kとなる。したがって高温ガスの熱が効
率よく輻射面に伝わり、燃焼ガスの温度と輻射面の温度
差をより小さくすることができる。このため高温ガス発
生手段としてラインバーナーを用い火炎で直接熱交換器
を加熱する必要がなく、排気ガス特性の良い円形バーナ
ーを用い、高温ガスによって輻射暖房を行う事が出来
る。さらに、境界層が発達しないので輻射面の温度変化
を少なくすることができる。また、図13に示すように
加熱後の高温ガス34は、輻射体上部から斜め前方へ吹
出すことになり、特別な対流ファンを設置することなく
室内に温風を循環させることができる。
In the structure of the present embodiment, the heat transfer area between the high-temperature gas and the radiator is doubled as compared with the heating of only the heat-collecting surface, and the hole reduces the development of the boundary layer to reduce the heat transfer coefficient. It will be 20 W / m 2 K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the combustion gas temperature and the radiation surface can be further reduced. Therefore, it is not necessary to directly heat the heat exchanger with a flame using a line burner as a high-temperature gas generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics. Further, since the boundary layer does not develop, the temperature change of the radiation surface can be reduced. Further, as shown in FIG. 13, the heated high-temperature gas 34 is blown obliquely forward from the upper part of the radiator, so that hot air can be circulated indoors without installing a special convection fan.

【0051】(実施例7)図14は本発明の実施例7の
暖房装置の要部切り欠き斜視図であり、図15は図14
の暖房装置の側断面図である。さらに高温ガス拡散防止
体の要部断面図である図3を用いる。図14、15およ
び図3において、11は石油やガス燃料を燃焼させる円
形バーナー等の高温ガスを発生する高温ガス発生手段で
あり、45は高温ガスの熱によって加熱される採熱面4
6と輻射エネルギーを発生する輻射面47を持ち輻射面
47が上方に行くに従って下方を向くように湾曲させた
輻射体であり、高温ガスを採熱46および輻射面47に
送風する採熱面加熱風路15および輻射面下端に設けら
れた輻射面加熱風路16を持ち、採熱面加熱風路15お
よび輻射面加熱風路16は連結風路17によって高温ガ
ス発生手段11から高温ガスが導かれる。さらに輻射面
16で発生した輻射の少なくとも一部を透過するととも
に輻射面加熱風路16から出た高温ガスを輻射体12に
導く、スリット19を開口し切起し20を持った高温ガ
ス拡散防止体18が設けられた構成となっている。
(Embodiment 7) FIG. 14 is a cutaway perspective view of a main part of a heating apparatus according to Embodiment 7 of the present invention, and FIG.
FIG. 3 is a side sectional view of the heating device of FIG. Further, FIG. 3 which is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member is used. In FIGS. 14, 15 and 3, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel, and 45 denotes a heat-collecting surface 4 heated by the heat of the high-temperature gas.
6 is a radiator having a radiation surface 47 for generating radiant energy and having a radiation surface 47 curved downward so that the radiation surface 47 goes upward. It has an air passage 15 and a radiation surface heating air passage 16 provided at the lower end of the radiation surface, and the heating surface heating air passage 15 and the radiation surface heating air passage 16 are connected with the high temperature gas from the high temperature gas generating means 11 by the connecting air passage 17. I will Further, it transmits at least a part of the radiation generated on the radiation surface 16 and guides the high-temperature gas that has exited from the radiation surface heating air passage 16 to the radiator 12. It has a configuration in which a body 18 is provided.

【0052】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって採熱面
加熱風路15下部に設けられた採熱面加熱風路入口21
に導かれ採熱面加熱風路15を通ってドラフト作用によ
って風速を増しながら、採熱面46を加熱し採熱面加熱
風路15上方に設けられた輻射体加熱風路出口22に導
かれる。図15に示すように高温ガスは連結風路17か
ら輻射面加熱風路16に導かれ、輻射面47にも送風さ
れ輻射面47下端から上昇気流48となって上昇してい
くが、輻射体45の輻射面47が上方に行くに従って下
方を向くように湾曲させた形状なので、輻射面加熱風路
16から輻射面47の上方へなめるように流れ、輻射面
47を加熱する。このため高温ガスは輻射面47から離
れて拡散しないので燃焼ガスの熱が効率よく輻射面に伝
わる。さらに、輻射面加熱風路16から拡散した高温ガ
スは、高温ガス拡散防止体18の切起し20によって輻
射面47に導かれ加熱する。このため輻射体45は、高
温ガスによって採熱面46、および輻射面47の両方か
ら効率よく加熱される。そして、輻射体45が約300
℃に加熱され、輻射面47から遠赤外線24が輻射さ
れ、輻射によって室内の暖房を行う。このため人体に直
接風が当たる事なく快適な暖房感が得られる。
With the above configuration, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is connected to the heat-collecting surface heating air path inlet 21 provided below the heat-collecting surface heating air path 15 by the connecting air path 17.
The heating surface 46 is heated while passing through the heating surface heating air passage 15 to increase the wind speed by the draft action, and is guided to the radiator heating air passage outlet 22 provided above the heating surface heating air passage 15. . As shown in FIG. 15, the high-temperature gas is guided from the connection air passage 17 to the radiation surface heating air passage 16, is also blown to the radiation surface 47, and rises from the lower end of the radiation surface 47 as an ascending airflow 48. Since the radiating surface 47 of 45 is curved so as to face downward as it goes upward, the radiating surface 47 flows from the radiating surface heating air passage 16 to lick the radiating surface 47 and heats the radiating surface 47. Therefore, the high-temperature gas is not diffused away from the radiation surface 47, so that the heat of the combustion gas is efficiently transmitted to the radiation surface. Further, the high-temperature gas diffused from the radiation surface heating air path 16 is guided to the radiation surface 47 by the cut-and-raised portion 20 of the high-temperature gas diffusion preventing member 18 and is heated. Therefore, the radiator 45 is efficiently heated by the high-temperature gas from both the heat collecting surface 46 and the radiating surface 47. And the radiator 45 is about 300
° C, the far infrared ray 24 is radiated from the radiation surface 47, and the radiation heats the room. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0053】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるので
高温ガスとして高温の直接火炎が不要であり、このため
高温ガス発生手段としてラインバーナーを用い火炎で直
接熱交換器を加熱する必要がなく、排気ガス特性の良い
円形バーナーを用い、高温ガスによって輻射暖房を行う
事が出来る。また、図15に示すように加熱後の高温ガ
ス48は、輻射体45上部から斜め前方へ吹出すことに
なり、特別な対流ファンを設置することなく室内に温風
を循環させることができる。
In the structure of the present embodiment, the heat transfer area between the high-temperature gas and the radiator is doubled as compared with the heating of only the heat-collecting surface, so that a high-temperature direct flame is not required as the high-temperature gas. It is not necessary to heat the heat exchanger directly with a flame by using a line burner as a generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics. In addition, as shown in FIG. 15, the heated high-temperature gas 48 is blown obliquely forward from above the radiator 45, so that warm air can be circulated indoors without installing a special convection fan.

【0054】(実施例8)図16は本発明の実施例8の
暖房装置の要部切り欠き斜視図であり、図17は図16
の暖房装置の側断面図である。さらに高温ガス拡散防止
体の要部断面図である図を用いる。図において、11は
石油やガス燃料を燃焼させる円形バーナー等の高温ガス
を発生する高温ガス発生手段であり、49は高温ガスの
熱によって加熱される採熱面50と輻射エネルギーを発
生する輻射面51を持ち、採熱面から輻射面に貫通し輻
射面を切り起こした開口端があるルーバー30を付けた
穴29を設け、輻射面51が上方に行くに従って下方を
向くように湾曲させた輻射体であり、輻射体49の採熱
面50には高温ガスを導く輻射体加熱風路31が取り付
けられ、輻射体加熱風路31には連結風路17によって
高温ガス発生手段11から高温ガスが導かれる構成とな
っている。さらに輻射面28で発生した輻射の少なくと
も一部を透過するとともに穴29から出た高温ガスを輻
射体12に導く、スリット19を開口し切起し20を持
った高温ガス拡散防止体18が設けられた構成となって
いる。
(Eighth Embodiment) FIG. 16 is a cutaway perspective view of a main part of a heating apparatus according to an eighth embodiment of the present invention, and FIG.
FIG. 3 is a side sectional view of the heating device of FIG. Further, a diagram that is a cross-sectional view of a main part of the high-temperature gas diffusion preventing member is used. In the figure, reference numeral 11 denotes a high-temperature gas generating means for generating a high-temperature gas such as a circular burner for burning oil or gas fuel, and 49 denotes a heat-collecting surface 50 heated by the heat of the high-temperature gas and a radiation surface for generating radiant energy. A hole 29 having a louver 30 having an opening end which penetrates from the heat collection surface to the radiation surface and cuts and raises the radiation surface is provided, and the radiation surface 51 is curved so that the radiation surface 51 faces downward as going upward. A radiator heating air passage 31 for guiding a high-temperature gas is attached to the heat collecting surface 50 of the radiator 49, and the radiator heating air passage 31 receives the high-temperature gas from the high-temperature gas generating unit 11 by the connecting air passage 17. It is a configuration that is guided. Further, a high-temperature gas diffusion preventing member 18 having a slit 19 opened and cut and raised 20 is provided, which transmits at least a part of the radiation generated on the radiation surface 28 and guides the high-temperature gas discharged from the hole 29 to the radiator 12. Configuration.

【0055】上記構成により、高温ガス発生手段11で
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路31下部に設けられた輻射体加熱風路入口32
に導かれ輻射体加熱風路31を通ってドラフト作用によ
って風速を増しながら、採熱面50を加熱するととも
に、穴29を通って輻射面51に導かれ、上昇流となっ
て輻射面51を加熱するが、輻射面51が上方に行くに
従って下方を向くように湾曲させた形状なので、穴29
から出た高温ガスは輻射面51の上方へなめるように流
れ、輻射面を加熱する。このため高温ガスは輻射面51
から離れて拡散しないので燃焼ガスの熱が効率よく輻射
面51に伝わり、高温ガスの温度と輻射面の温度差を小
さくすることができる。さらに高温ガス拡散防止体18
の切起し20によって輻射面28に導かれ拡散すること
なく輻射面を加熱する。このため輻射体は、高温ガスに
よって採熱面、および輻射面の両方から加熱される。そ
して、輻射体が約300℃に加熱され、輻射面から遠赤
外線が輻射され、輻射によって室内の暖房を行う。この
ため人体に直接風が当たる事なく快適な暖房感が得られ
る。
With the above configuration, the high-temperature gas generated by the combustion in the high-temperature gas generating means 11 is connected to the radiant heating air path inlet 32 provided below the radiant heating air path 31 by the connecting air path 17.
While heating the heat collecting surface 50 while increasing the wind speed by the draft action through the radiator heating air passage 31 and being guided to the radiating surface 51 through the hole 29, the radiating surface 51 is formed as an ascending flow. Although heating is performed, since the radiation surface 51 is curved so as to face downward as it goes upward, the hole 29
The high-temperature gas that has flowed out licks above the radiation surface 51 and heats the radiation surface. For this reason, the high-temperature gas is
The heat of the combustion gas is efficiently transmitted to the radiating surface 51 because the heat is not diffused away from the radiating surface 51, and the temperature difference between the temperature of the high-temperature gas and the radiating surface can be reduced. Further, the high-temperature gas diffusion preventing body 18
The radiating surface is heated by the cut-and-raised portion 20 without being diffused by the radiating surface 28. Therefore, the radiator is heated by the high-temperature gas from both the heat collecting surface and the radiation surface. Then, the radiator is heated to about 300 ° C., far infrared rays are radiated from the radiation surface, and the room is heated by the radiation. For this reason, a comfortable heating feeling can be obtained without direct wind blowing on the human body.

【0056】本実施例の構成では高温ガスと輻射体の熱
伝達面積は、採熱面のみの加熱に対して2倍になるされ
るとともに、穴によって境界層の発達が小さくなり熱伝
達率が20W/m2Kとなる。したがって高温ガスの熱が効
率よく輻射面に伝わり、燃焼ガスの温度と輻射面の温度
差をより小さくすることができる。このため高温ガス発
生手段としてラインバーナーを用い火炎で直接熱交換器
を加熱する必要がなく、排気ガス特性の良い円形バーナ
ーを用い、高温ガスによって輻射暖房を行う事が出来
る。さらに、境界層が発達しないので輻射面の温度変化
を少なくすることができる。また、図17に示すように
加熱後の高温ガス52は、輻射体上部から斜め前方へ吹
出すことになり、特別な対流ファンを設置することなく
室内に温風を循環させることができる
In the structure of this embodiment, the heat transfer area between the high-temperature gas and the radiator is doubled with respect to the heating of only the heat-collecting surface, and the hole reduces the development of the boundary layer, thereby reducing the heat transfer coefficient. It will be 20 W / m 2 K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface, and the temperature difference between the combustion gas temperature and the radiation surface can be further reduced. Therefore, it is not necessary to directly heat the heat exchanger with a flame using a line burner as a high-temperature gas generating means, and it is possible to perform radiant heating with a high-temperature gas using a circular burner having good exhaust gas characteristics. Further, since the boundary layer does not develop, the temperature change of the radiation surface can be reduced. Further, as shown in FIG. 17, the heated high-temperature gas 52 is blown obliquely forward from the upper part of the radiator, so that the hot air can be circulated indoors without installing a special convection fan.

【0057】[0057]

【発明の効果】以上説明したように本発明の請求項1に
係る暖房装置は、高温ガス拡散防止体によって、高温ガ
スの熱が効率よく輻射面に伝わるので、高温ガスの温度
と輻射面の温度差を小さくすることができる。
As described above, in the heating apparatus according to the first aspect of the present invention, the heat of the high-temperature gas is efficiently transmitted to the radiation surface by the high-temperature gas diffusion preventing member. The temperature difference can be reduced.

【0058】また、請求項2に係る暖房装置は、高温ガ
スは輻射体加熱風路から輻射体の輻射面にも流れ、高温
ガスは採熱面と輻射面の両面から輻射体を加熱するので
高温ガスが輻射体に熱伝達する際の伝熱面積は拡大され
るとともに、穴によって境界層の発達が小さくなり熱伝
達率が大きくなる。さらに輻射面に送られた高温ガスは
上昇流となって輻射面を上昇していくが、高温ガス拡散
防止体によって拡散することなく輻射面を加熱するので
高温ガスの熱が効率よく輻射面に伝わるので、高温ガス
の温度と輻射面の温度差を小さくすることができる。
In the heating device according to the second aspect, the high-temperature gas also flows from the radiator heating air passage to the radiating surface of the radiator, and the high-temperature gas heats the radiator from both the heat collecting surface and the radiating surface. The heat transfer area when the high-temperature gas transfers heat to the radiator is enlarged, and the hole reduces the development of the boundary layer and increases the heat transfer coefficient. Further, the high-temperature gas sent to the radiation surface rises up the radiation surface as an upward flow, but heats the radiation surface without being diffused by the high-temperature gas diffusion preventer, so that the heat of the high-temperature gas is efficiently transmitted to the radiation surface. As a result, the difference between the temperature of the high-temperature gas and the temperature of the radiation surface can be reduced.

【0059】また、請求項3に係る暖房装置は、高温ガ
スは、輻射面と採熱面の両面から輻射面を加熱するとと
もに、輻射面加熱風路から輻射体の輻射面にも流れ出た
高温ガスは輻射面の上方をなめるように流れ、輻射面を
加熱する。このため高温ガスは輻射面から離れて拡散し
ないので燃焼ガスの熱が効率よく輻射面に伝わり、高温
ガスの温度と輻射面の温度差を小さくすることができ
る。また、加熱後の高温ガスは、斜め前方へ吹出すこと
になり、特別な対流ファンを設置することなく室内に温
風を循環させることができる。
Further, in the heating device according to the third aspect, the high-temperature gas heats the radiation surface from both the radiation surface and the heat-collecting surface, and flows into the radiation surface of the radiator from the radiation surface heating air path. The gas flows so as to lick above the radiation surface and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0060】また、請求項4に係る暖房装置は、高温ガ
スは穴を通って輻射面にも流れ、高温ガスは採熱面と輻
射面の両面から輻射体を加熱するので高温ガスが輻射体
に熱伝達する際の伝熱面積は拡大されるとともに、穴に
よって境界層の発達が小さくなり熱伝達率が大きくな
る。また、輻射体加熱風路から輻射体の輻射面にも流れ
出た高温ガスはドラフト作用によって上昇流となるが、
輻射体の輻射面が下方を向くように斜めに設置されてい
るので、輻射面から輻射面の上方へなめるように流れ輻
射面を加熱する。このため高温ガスは輻射面から離れて
拡散しないので燃焼ガスの熱が効率よく輻射面に伝わ
り、高温ガスの温度と輻射面の温度差を小さくすること
ができる。また、加熱後の高温ガスは、斜め前方へ吹出
すことになり、特別な対流ファンを設置することなく室
内に温風を循環させることができる。
In the heating device according to the fourth aspect, the high-temperature gas flows to the radiation surface through the hole, and the high-temperature gas heats the radiator from both the heat-collecting surface and the radiation surface. The heat transfer area when transferring heat to the air is enlarged, and the holes reduce the development of the boundary layer and increase the heat transfer coefficient. Also, the high-temperature gas that has flowed out from the radiator heating air path to the radiating surface of the radiator becomes a rising flow due to the draft action,
Since the radiation surface of the radiator is obliquely installed so that the radiation surface faces downward, the radiator flows from the radiation surface to the upper side of the radiation surface and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. Further, the heated high-temperature gas is blown obliquely forward, so that warm air can be circulated indoors without installing a special convection fan.

【0061】また、請求項5に係る暖房装置は、輻射面
加熱風路から輻射体の輻射面にも流れ出た高温ガスはド
ラフト作用によって上昇流となるが、輻射体の輻射面が
輻射面左右端が開くように湾曲させた形状で下方を向く
ように斜めに設置されているので、輻射面から輻射面の
上方をなめるように流れるとともに左右方向にも広がり
ながら流れ、輻射面を加熱する。このため高温ガスは採
熱面を加熱するとともに、輻射面から離れて拡散しない
ので燃焼ガスの熱が効率よく輻射面に伝わり、高温ガス
の温度と輻射面の温度差を小さくすることができる。ま
た、輻射面に流れ出た高温ガスは、左右に広がるので、
輻射面横方向を加熱し、輻射体を均一に加熱することが
できる。さらに、加熱後の高温ガスは、斜め前方へ吹出
すことになり、特別な対流ファンを設置することなく室
内に温風を循環させることができる。また、輻射面が左
右端が開くように湾曲させた形状のため、輻射面で発生
した輻射が広範囲に広がり、室内を広く輻射暖房するこ
とができる。
Further, in the heating device according to the fifth aspect, the high-temperature gas which has also flowed out of the radiating surface heating air path to the radiating surface of the radiator forms an ascending flow due to the draft action, but the radiating surface of the radiator is shifted to the right and left of the radiating surface. Since it is installed obliquely so as to face downward with a curved shape so that the end opens, it flows while licking from the radiation surface to above the radiation surface, and also flows while spreading in the left-right direction to heat the radiation surface. Therefore, the high-temperature gas heats the heat collecting surface and does not diffuse away from the radiation surface, so that the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas temperature and the radiation surface can be reduced. Also, the high-temperature gas that has flowed out to the radiation surface spreads right and left,
The radiating body can be heated uniformly by heating the radiating surface in the lateral direction. Further, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan. Further, since the radiation surface is curved so that the left and right ends open, the radiation generated on the radiation surface spreads over a wide range, and the room can be radiated and heated widely.

【0062】また、請求項7に係る暖房装置は、高温ガ
スは、輻射面と採熱面の両面から輻射面を加熱するとと
もに、輻射面加熱風路から輻射体の輻射面にも流れ出た
高温ガスは輻射面の上方をなめるように流れ、輻射面を
加熱する。このため高温ガスは輻射面から離れて拡散し
ないので燃焼ガスの熱が効率よく輻射面に伝わり、高温
ガスの温度と輻射面の温度差を小さくすることができ
る。また、加熱後の高温ガスは、斜め前方へ吹出すこと
になり、特別な対流ファンを設置することなく室内に温
風を循環させることができる。
In the heating device according to the seventh aspect, the high-temperature gas heats the radiant surface from both the radiating surface and the heat collecting surface, and the high-temperature gas flows from the radiating surface heating air path to the radiating surface of the radiator. The gas flows so as to lick above the radiation surface and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0063】また、請求項8に係る暖房装置は、高温ガ
スは穴を通って輻射面にも流れ、高温ガスは採熱面と輻
射面の両面から輻射体を加熱するので高温ガスが輻射体
に熱伝達する際の伝熱面積は拡大されるとともに、穴に
よって境界層の発達が小さくなり熱伝達率が大きくな
る。また、輻射体加熱風路から輻射体の輻射面にも流れ
出た高温ガスはドラフト作用によって上昇流となるが、
輻射面から輻射面の上方へなめるように流れ、輻射面を
加熱する。このため高温ガスは輻射面から離れて拡散し
ないので燃焼ガスの熱が効率よく輻射面に伝わり、高温
ガスの温度と輻射面の温度差を小さくすることができ
る。また、加熱後の高温ガスは、斜め前方へ吹出すこと
になり、特別な対流ファンを設置することなく室内に温
風を循環させることができる。
In the heating device according to the eighth aspect, the high-temperature gas flows to the radiation surface through the hole, and the high-temperature gas heats the radiator from both the heat-collecting surface and the radiation surface. The heat transfer area when transferring heat to the air is enlarged, and the holes reduce the development of the boundary layer and increase the heat transfer coefficient. Also, the high-temperature gas that has flowed out from the radiator heating air path to the radiating surface of the radiator becomes a rising flow due to the draft action,
It flows so as to lick from the radiation surface to the radiation surface, and heats the radiation surface. For this reason, since the high-temperature gas does not diffuse away from the radiation surface, the heat of the combustion gas is efficiently transmitted to the radiation surface, and the temperature difference between the high-temperature gas and the radiation surface can be reduced. In addition, the heated high-temperature gas is blown obliquely forward, so that hot air can be circulated indoors without installing a special convection fan.

【0064】また、請求項8に係る暖房装置は、請求項
3ないし請求項8の構成に加え、輻射面で発生した輻射
の少なくとも一部を透過するとともに輻射面加熱風路な
いし輻射体の穴から出た高温ガスを輻射体に導く高温ガ
ス拡散防止体を設けた構成により、高温ガスが高温ガス
拡散防止体によって拡散することなく輻射面を加熱する
ので高温ガスの熱が効率よく輻射面に伝わるので、高温
ガスの温度と輻射面の温度差をより小さくすることがで
きる。
The heating device according to claim 8 has the constitution according to claims 3 to 8, wherein at least a part of the radiation generated on the radiation surface is transmitted and the radiation surface heating air passage or the hole of the radiation body is provided. The high-temperature gas diffuser is heated by the high-temperature gas diffusion preventive body without diffusing the high-temperature gas by the high-temperature gas diffusion preventive body. As a result, the difference between the temperature of the high-temperature gas and the temperature of the radiation surface can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における暖房装置の要部切り
欠き斜視図
FIG. 1 is a cutaway perspective view of a main part of a heating device according to a first embodiment of the present invention.

【図2】本発明の実施例1における暖房装置の側断面図FIG. 2 is a side sectional view of a heating device according to the first embodiment of the present invention.

【図3】本発明の高温ガス拡散防止体の要部断面図FIG. 3 is a sectional view of a main part of the high-temperature gas diffusion preventing body of the present invention.

【図4】本発明の実施例2における暖房装置の要部切り
欠き斜視図
FIG. 4 is a cutaway perspective view of a main part of a heating device according to a second embodiment of the present invention.

【図5】本発明の実施例2における暖房装置の側断面図FIG. 5 is a side sectional view of a heating device according to a second embodiment of the present invention.

【図6】本発明の実施例3における暖房装置の要部切り
欠き斜視図
FIG. 6 is a cutaway perspective view of a main part of a heating device according to a third embodiment of the present invention.

【図7】本発明の実施例3における暖房装置の側断面図FIG. 7 is a side sectional view of a heating device according to a third embodiment of the present invention.

【図8】本発明の実施例4における暖房装置の要部切り
欠き斜視図
FIG. 8 is a cutaway perspective view of a main part of a heating device according to a fourth embodiment of the present invention.

【図9】本発明の実施例4における暖房装置の側断面図FIG. 9 is a side sectional view of a heating device according to a fourth embodiment of the present invention.

【図10】本発明の実施例5における暖房装置の要部切
り欠き斜視図
FIG. 10 is a cutaway perspective view of a main part of a heating device according to a fifth embodiment of the present invention.

【図11】本発明の実施例5における暖房装置の側断面
FIG. 11 is a side sectional view of a heating device according to a fifth embodiment of the present invention.

【図12】本発明の実施例6における暖房装置の要部切
り欠き斜視図
FIG. 12 is a cutaway perspective view of a main part of a heating device according to a sixth embodiment of the present invention.

【図13】本発明の実施例6における暖房装置の側断面
FIG. 13 is a side sectional view of a heating device according to a sixth embodiment of the present invention.

【図14】本発明の実施例7における暖房装置の要部切
り欠き斜視図
FIG. 14 is a cutaway perspective view of a main part of a heating device according to a seventh embodiment of the present invention.

【図15】本発明の実施例7における暖房装置の側断面
FIG. 15 is a side sectional view of a heating device according to a seventh embodiment of the present invention.

【図16】本発明の実施例8における暖房装置の要部切
り欠き斜視図
FIG. 16 is a cutaway perspective view of a main part of a heating device according to an eighth embodiment of the present invention.

【図17】本発明の実施例8における暖房装置の側断面
FIG. 17 is a side sectional view of a heating device according to an eighth embodiment of the present invention.

【図18】従来の暖房装置の要部切り欠き斜視図FIG. 18 is a cutaway perspective view of a main part of a conventional heating device.

【符号の説明】[Explanation of symbols]

11 高温ガス発生手段 12、26、35、40、45、49 輻射体 13、27、36、41、46、50 採熱面 14、28、37、42、47、51 輻射面 15 採熱面加熱風路 16 輻射面加熱風路 17 連結風路 29 穴 31 輻射体加熱風路 11 High-temperature gas generating means 12, 26, 35, 40, 45, 49 Radiator 13, 27, 36, 41, 46, 50 Heating surface 14, 28, 37, 42, 47, 51 Radiation surface 15 Heating surface heating Air path 16 Radiation surface heating air path 17 Connecting air path 29 Hole 31 Radiant heating air path

フロントページの続き (72)発明者 重岡 武彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 北村 基彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 安木 誠一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L028 AB01 AC03 AC06 Continuing on the front page (72) Inventor Takehiko Shigeoka 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Person Seiichi Yasu 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. 3L028 AB01 AC03 AC06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と高温ガスによ
って加熱されるとともに輻射エネルギーを発生する輻射
面を持った輻射体と、輻射体の輻射面と採熱面に高温ガ
スを導く輻射面加熱風路と採熱面加熱風路と、輻射面で
発生した輻射の少なくとも一部を透過するとともに輻射
面加熱風路から出た高温ガスを輻射体に導く高温ガス拡
散防止体と、輻射面加熱風路及び採熱面加熱風路と高温
ガス発生手段とを結ぶ連結風路からなる暖房装置。
1. A high-temperature gas generating means for generating a high-temperature gas,
A radiator that has a heating surface heated by the heat of the high-temperature gas and a radiating surface that is heated by the high-temperature gas and generates radiant energy, and a radiant surface heating that guides the high-temperature gas to the radiating surface of the radiator and the collecting surface An air passage, a heating surface heating air passage, a high-temperature gas diffusion preventer that transmits at least a part of the radiation generated on the radiation surface and guides a high-temperature gas exiting the radiation surface heating air passage to the radiator, and a radiation surface heating. A heating device comprising a connecting air passage connecting the air passage and the heating surface heating air passage with the high-temperature gas generating means.
【請求項2】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と輻射エネルギ
ーを発生する輻射面を持ち採熱面から輻射面へ貫通した
穴を設けた輻射体と、輻射体の採熱面に高温ガスを導く
輻射体加熱風路と、輻射面で発生した輻射の少なくとも
一部を透過するとともに輻射体の穴から出た高温ガスを
輻射体に導く高温ガス拡散防止体と、輻射体加熱風路と
高温ガス発生手段とを結ぶ連結風路からなる暖房装置。
2. A high-temperature gas generating means for generating a high-temperature gas,
A radiator that has a heating surface heated by the heat of the high-temperature gas and a radiation surface that generates radiant energy and that has a hole that penetrates from the collection surface to the radiation surface, and radiation that guides the high-temperature gas to the collection surface of the radiator A body heating air passage, a high-temperature gas diffusion preventer that transmits at least a portion of the radiation generated on the radiation surface and guides a high-temperature gas that has exited from the hole of the radiator to the radiator, and a radiator heating air passage and high-temperature gas generation. A heating device consisting of a connecting air path connecting the means.
【請求項3】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と高温ガスによ
って加熱されるとともに輻射エネルギーを発生する輻射
面を持ち輻射面が下方を向くように斜めに設置した輻射
体と、輻射体の輻射面と採熱面に高温ガスを導く輻射面
加熱風路と採熱面加熱風路と、輻射面加熱風路及び採熱
面加熱風路と高温ガス発生手段とを結ぶ連結風路からな
る暖房装置。
3. A high-temperature gas generating means for generating a high-temperature gas,
A radiator that has a heating surface heated by the heat of the high-temperature gas, a radiator that is heated by the high-temperature gas, and has a radiating surface that generates radiant energy and is installed diagonally so that the radiating surface faces downward, and a radiating surface of the radiator A heating device comprising: a radiant surface heating air passage for introducing a high-temperature gas to a heat collecting surface; a heat collecting surface heating air passage; and a connecting air passage connecting the radiation surface heating air passage, the heat collecting surface heating air passage, and the high-temperature gas generating means.
【請求項4】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と輻射エネルギ
ーを発生する輻射面を持ち採熱面から輻射面へ貫通した
穴を設け輻射面が下方を向くように斜めに設置した輻射
体と、輻射体の採熱面に高温ガスを導く輻射体加熱風路
と、輻射体加熱風路と高温ガス発生手段とを結ぶ連結風
路からなる暖房装置。
4. A high-temperature gas generating means for generating a high-temperature gas,
A radiator that has a heat-collecting surface heated by the heat of the high-temperature gas and a radiation surface that generates radiant energy, has a hole that penetrates from the heat-collecting surface to the radiation surface, and is installed diagonally so that the radiation surface faces downward, A heating device comprising a radiant body heating air path for guiding a high-temperature gas to a body heat collecting surface, and a connecting air path connecting the radiant body heating air path and the high-temperature gas generating means.
【請求項5】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と高温ガスによ
って加熱されるとともに輻射エネルギーを発生する輻射
面を持ち輻射面左右端が開くように湾曲させた形状で輻
射面が下方を向くように斜めに設置した輻射体と、輻射
体の輻射面と採熱面に高温ガスを導くと採熱面加熱風路
と輻射面加熱風路と、輻射面加熱風路及び採熱面加熱風
路と高温ガス発生手段とを結ぶ連結風路からなる暖房装
置。
5. A high-temperature gas generating means for generating a high-temperature gas,
It has a heating surface that is heated by the heat of the high-temperature gas and a radiation surface that is heated by the high-temperature gas and generates radiant energy. The radiation surface is curved so that the left and right ends open, and the radiation surface is inclined downward. When the high-temperature gas is introduced to the radiator installed in the radiator, the radiator surface and the heating surface, the heating surface heating air passage, the radiation surface heating air passage, the radiation surface heating air passage and the heating surface heating air passage A heating device consisting of a connecting air passage connecting the gas generating means.
【請求項6】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と輻射エネルギ
ーを発生する輻射面を持ち採熱面から輻射面へ貫通した
穴を設け輻射面左右端が開くように湾曲させた形状で輻
射面が下方を向くように斜めに設置した輻射体と、輻射
体の採熱面に高温ガスを導く輻射体加熱風路と、輻射体
加熱風路と高温ガス発生手段とを結ぶ連結風路からなる
暖房装置。
6. A high-temperature gas generating means for generating a high-temperature gas,
It has a heating surface that is heated by the heat of the high-temperature gas and a radiation surface that generates radiant energy. A hole that penetrates from the heating surface to the radiation surface is provided, and the radiation surface is curved so that the left and right ends open. A heating device comprising a radiator installed obliquely so as to face the radiator, a radiator heating air path for guiding the high-temperature gas to the heat collecting surface of the radiator, and a connecting air path connecting the radiator heating air path and the high-temperature gas generating means. .
【請求項7】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と高温ガスによ
って加熱されるとともに輻射エネルギーを発生する輻射
面を持ち輻射面が上方に行くに従って下方を向くように
湾曲させた輻射体と、輻射体の輻射面と採熱面に高温ガ
スを導くと採熱面加熱風路と輻射面加熱風路と、輻射面
加熱風路及び採熱面加熱風路と高温ガス発生手段とを結
ぶ連結風路からなる暖房装置。
7. A high-temperature gas generating means for generating a high-temperature gas,
A radiator that has a heating surface heated by the heat of the high-temperature gas and a radiating surface that is heated by the high-temperature gas and generates radiant energy and that is curved so that the radiating surface faces downward as it goes upward; When the high-temperature gas is introduced to the radiation surface and the heat collection surface, the heat collection surface heating air passage, the radiation surface heating air passage, and the connection air passage that connects the radiation surface heating air passage and the heat collection surface heating air passage to the high-temperature gas generation means. Become a heating system.
【請求項8】高温ガスを発生する高温ガス発生手段と、
高温ガスの熱によって加熱される採熱面と輻射エネルギ
ーを発生する輻射面を持ち採熱面から輻射面へ貫通した
穴を設け輻射面が上方に行くに従って下方を向くように
湾曲させた輻射体と、輻射体の採熱面に高温ガスを導く
輻射体加熱風路と、輻射体加熱風路と高温ガス発生手段
とを結ぶ連結風路からなる暖房装置。
8. A high-temperature gas generating means for generating a high-temperature gas,
A radiator that has a heating surface heated by the heat of a high-temperature gas and a radiation surface that generates radiant energy, has a hole that penetrates from the heating surface to the radiation surface, and is curved so that the radiation surface faces downward as it goes upward A heating device comprising: a radiator heating air passage for guiding a high-temperature gas to a heat collecting surface of the radiator; and a connecting air passage connecting the radiator heating air passage and the high-temperature gas generating means.
【請求項9】輻射面で発生した輻射の少なくとも一部を
透過するとともに輻射面加熱風路ないし輻射体の穴から
出た高温ガスを輻射体に導く高温ガス拡散防止体を設け
た請求項3ないし請求項8記載の暖房装置。
9. A high-temperature gas diffusion preventer which transmits at least a part of the radiation generated on the radiation surface and guides a high-temperature gas which has exited from the radiation surface heating air passage or the hole of the radiator to the radiator is provided. A heating device according to claim 8.
JP2000071800A 2000-03-15 2000-03-15 Heater Pending JP2001263820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000071800A JP2001263820A (en) 2000-03-15 2000-03-15 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000071800A JP2001263820A (en) 2000-03-15 2000-03-15 Heater

Publications (1)

Publication Number Publication Date
JP2001263820A true JP2001263820A (en) 2001-09-26

Family

ID=18590314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000071800A Pending JP2001263820A (en) 2000-03-15 2000-03-15 Heater

Country Status (1)

Country Link
JP (1) JP2001263820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298194A (en) * 2006-04-28 2007-11-15 Corona Corp Heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298194A (en) * 2006-04-28 2007-11-15 Corona Corp Heater

Similar Documents

Publication Publication Date Title
JP2001263820A (en) Heater
JP6484202B2 (en) Infrared hot air heater
KR101139897B1 (en) A radiater blowing with warm wind
JP2002267270A (en) Heater
JP3461817B2 (en) Heating system
JP2002162053A (en) Air conditioner
JP3674431B2 (en) Heating system
JP3295924B2 (en) Radiant heater with hot air mechanism
JP3849497B2 (en) Air conditioner
JP2002039548A (en) Heating apparatus
JP2001336765A (en) Heating device
JP2001336750A (en) Space heater
JP2002257360A (en) Heater
JP3566887B2 (en) heater
JP2003227660A (en) Heating system
JPS6311548Y2 (en)
SE523648C2 (en) Supply air baffle for placement next to a room ceiling for supplying air to a room
JP2001336763A (en) Heating device
JP3564697B2 (en) Forced convection radiant heating system
JP2001215060A (en) Space heater
JP2002039547A (en) Heating apparatus
JP2002213756A (en) Heating apparatus
RU2244874C2 (en) Gas-infra-red radiator
JP2001215058A (en) Space heater
JP2003194410A (en) Heating device