JP3461817B2 - Heating system - Google Patents

Heating system

Info

Publication number
JP3461817B2
JP3461817B2 JP2001320180A JP2001320180A JP3461817B2 JP 3461817 B2 JP3461817 B2 JP 3461817B2 JP 2001320180 A JP2001320180 A JP 2001320180A JP 2001320180 A JP2001320180 A JP 2001320180A JP 3461817 B2 JP3461817 B2 JP 3461817B2
Authority
JP
Japan
Prior art keywords
temperature gas
radiator
heat
high temperature
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001320180A
Other languages
Japanese (ja)
Other versions
JP2002181331A (en
Inventor
範幸 米野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001320180A priority Critical patent/JP3461817B2/en
Publication of JP2002181331A publication Critical patent/JP2002181331A/en
Application granted granted Critical
Publication of JP3461817B2 publication Critical patent/JP3461817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼熱を用いた暖
房装置、特に輻射熱を用いた暖房装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device using combustion heat, and more particularly to a heating device using radiant heat.

【0002】[0002]

【従来の技術】従来のこの種の暖房装置は実公昭63−
11548号公報に記載されているようなものが一般的
であった。この暖房装置は図11に示すように本体下部
に設けられたバーナー1と、前記バーナー1からの燃焼
ガスを通過させる中空の薄型箱状の熱交換器2とこの熱
交換器2の両側に形成された縦長の開口3と、前記熱交
換器2の少なくとも前面に塗装された遠赤外線塗料4
と、室内空気を前記熱交換器2に送風して熱交換し温風
として本体吐出口より吐出する対流ファン5からなり、
前記上記熱交換器2は内部を中空にして前記バーナー1
からの燃焼ガス6が通過するように中空形成して通路7
を設け、熱交換器2の各部に前記燃焼ガス6が行き渡る
よう通路7の一部に凹形のビード8を設けて開口3から
排出する構成となっていた。
2. Description of the Related Art A conventional heating device of this type is disclosed in Japanese Utility Model Publication No. 63-
What was described in the 11548 gazette was general. As shown in FIG. 11, this heating device is provided with a burner 1 provided in the lower part of the main body, a hollow thin box-shaped heat exchanger 2 for passing combustion gas from the burner 1, and both sides of this heat exchanger 2. Longitudinal opening 3 and far-infrared paint 4 applied on at least the front surface of the heat exchanger 2.
And a convection fan 5 that blows indoor air to the heat exchanger 2 to exchange heat with the heat exchanger 2 and discharge it as hot air from the main body outlet.
The heat exchanger 2 has a hollow inside and the burner 1
The passage 7 is formed to be hollow so that the combustion gas 6 from
And a concave bead 8 is provided in a part of the passage 7 so that the combustion gas 6 is distributed to each part of the heat exchanger 2 and is discharged from the opening 3.

【0003】そしてバーナー1で発生した燃焼ガス6を
熱交換器2に通過させて300℃〜500℃に加熱する
事により、遠赤外線塗料で塗装された前面より遠赤外線
を輻射し輻射暖房を行う。また、同時に熱交換器2の後
面に沿って対流ファン5で取り入れた室内空気を送風
し、熱交換器2の開口3で排出される燃焼ガス6と混合
して室内へ温風として吐出し温風暖房を行うようになっ
ていた。
Then, the combustion gas 6 generated in the burner 1 is passed through the heat exchanger 2 and heated to 300 ° C. to 500 ° C., so that far infrared rays are radiated from the front surface coated with far infrared paint to perform radiant heating. . At the same time, the indoor air taken in by the convection fan 5 is blown along the rear surface of the heat exchanger 2, mixed with the combustion gas 6 discharged from the opening 3 of the heat exchanger 2, and discharged as warm air into the room. It was supposed to do wind heating.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の暖房装置では、燃焼ガスは熱交換器内に流入し対流熱
伝達で熱交換器を加熱するが、対流熱伝達量Qcは(数
1)で示すように熱交換器温度と燃焼ガス温度の差に比
例するが、熱交換器からの輻射量Qrは(数2)で示す
ように熱交換器の温度の4乗と輻射吸熱面の温度の4乗
差に比例する。
However, in the above conventional heating device, the combustion gas flows into the heat exchanger and heats the heat exchanger by convective heat transfer, but the convective heat transfer amount Qc is (Equation 1). As shown, it is proportional to the difference between the heat exchanger temperature and the combustion gas temperature, but the radiation amount Qr from the heat exchanger is the fourth power of the temperature of the heat exchanger and the temperature of the radiation heat absorption surface as shown in (Equation 2). It is proportional to the fourth power difference.

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【数2】 [Equation 2]

【0007】従来の暖房装置における熱交換器の構成
は、燃焼ガスと熱交換器の面積がほぼ等しく、また、熱
交換器の熱伝達率は平板であるため10W/m2K程度
であり、熱交換器温度を300℃にするためには、燃焼
ガス温度とパネル部材の温度差を大きくする必要があ
り、パネル部材へ導入する燃焼ガス温度を約870℃の
高温にしなければならないのでバーナーや熱交換器を高
温に耐える材質にする必要があり、また、バーナーで発
生させた火炎で直接熱交換器を加熱する必要があった。
また熱交換器通路内の燃焼ガスは流れが下流になるにし
たがって境界層の厚さが大きくなり、熱交換器温度はバ
ーナー付近より開口端付近の温度が低下するという課題
があった。さらに、熱交換器が高温になった場合、熱膨
張によって熱交換器が変形するという課題があった。
In the structure of the heat exchanger in the conventional heating device, the areas of the combustion gas and the heat exchanger are substantially equal, and the heat transfer coefficient of the heat exchanger is about 10 W / m2K because it is a flat plate. In order to raise the chamber temperature to 300 ° C, it is necessary to increase the temperature difference between the combustion gas temperature and the panel member, and the temperature of the combustion gas introduced into the panel member must be as high as about 870 ° C. The vessel had to be made of a material that could withstand high temperatures, and the flame generated by the burner had to heat the heat exchanger directly.
Further, the combustion gas in the heat exchanger passage has a problem that the thickness of the boundary layer increases as the flow becomes downstream, and the temperature of the heat exchanger decreases near the open end rather than near the burner. Furthermore, when the temperature of the heat exchanger becomes high, there is a problem that the heat exchanger is deformed due to thermal expansion.

【0008】[0008]

【課題を解決するための手段】本発明は前記課題を解決
するため、高温ガスを発生する高温ガス発生手段と、前
記高温ガスの熱によって加熱される採熱面と輻射エネル
ギーを発生する輻射面との両面を持ち前記高温ガス発生
手段の前側から上方にかけて配置した輻射体と、輻射体
の採熱面に対向して下端より上端に向かって形成し、前
記採熱面に前記高温ガスを導く輻射体加熱風路と、前記
輻射体加熱風路下部と高温ガス発生手段とを結ぶ連結風
路とを備え、輻射体の採熱面には、輻射体の下部より高
温ガス発生手段の高温ガスをドラフト作用により導くと
ともに、輻射体の輻射面にも高温ガス発生手段の高温ガ
スを輻射体の下端より上昇気流として導き、輻射体を採
熱面と輻射面の両面から加熱してなるものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a high temperature gas generating means for generating a high temperature gas, a heat collecting surface heated by the heat of the high temperature gas and a radiation surface for generating radiant energy. A radiator which has both surfaces of the radiator and is arranged from the front side to the upper side of the high temperature gas generating means, and is formed from the lower end toward the upper end facing the heat collecting surface of the radiator and guiding the high temperature gas to the heat collecting surface. The radiant body heating air passage, and a connecting air passage connecting the lower portion of the radiant body heating air passage and the high temperature gas generating means, and the heat collecting surface of the radiant body has a high temperature gas of the high temperature gas generating means lower than the radiant body. In addition to guiding the draft by the draft action, the hot gas of the hot gas generating means is also guided to the radiant surface of the radiant body as an ascending air current from the lower end of the radiant body, and the radiant body is heated from both the heat collecting surface and the radiant surface. is there.

【0009】上記構成により、高温ガスは採熱面と輻射
面の両面を輻射体の下端より上昇気流によって加熱し、
高温ガスが輻射体に熱伝達する際の伝熱面積は拡大され
る。また、輻射面の面積が減少することもない。さらに
両面加熱によって熱伝達率が大きくなるので、高温ガス
の熱が効率よく輻射面に伝わる。したがって、高温ガス
の温度が低くても高い輻射体温度が得られ、また輻射面
の温度変化も少なくすることができる。
With the above structure, the high temperature gas heats both the heat collecting surface and the radiating surface by the ascending air current from the lower end of the radiator,
The heat transfer area when the hot gas transfers heat to the radiator is expanded. Further, the area of the radiation surface does not decrease. Further, since the heat transfer coefficient is increased by heating both sides, the heat of the high temperature gas is efficiently transmitted to the radiating surface. Therefore, a high radiator temperature can be obtained even when the temperature of the high-temperature gas is low, and the temperature change of the radiation surface can be reduced.

【0010】[0010]

【発明の実施の形態】本発明の請求項1にかかる暖房装
置は、高温ガスを発生する高温ガス発生手段と、前記高
温ガスの熱によって加熱される採熱面と輻射エネルギー
を発生する輻射面との両面を持ち前記高温ガス発生手段
の前側から上方にかけて配置した輻射体と、輻射体の採
熱面に対向して下端より上端に向かって形成し、前記採
熱面に前記高温ガスを導く輻射体加熱風路と、前記輻射
体加熱風路下部と高温ガス発生手段とを結ぶ連結風路と
を備え、輻射体の採熱面には、輻射体の下部より高温ガ
ス発生手段の高温ガスをドラフト作用により導くととも
に、輻射体の輻射面にも高温ガス発生手段の高温ガスを
輻射体の下端より上昇気流として導き、輻射体を採熱面
と輻射面の両面から加熱してなるものである。上記実施
形態により、高温ガスの熱が効率よく輻射面に伝わるの
で、高温ガスの温度と輻射面の温度差を小さくすること
ができる。そして、高温ガスは、輻射面と採熱面の両面
から輻射面を加熱するので、高温ガスが輻射体に熱伝達
する際の伝熱面積は2倍になり、高温ガスの熱が効率よ
く輻射面に伝わる。したがって、高温ガスの温度と輻射
面の温度差を小さくすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heating device according to claim 1 of the present invention comprises a high temperature gas generating means for generating high temperature gas, a heat collecting surface heated by the heat of the high temperature gas and a radiant surface for generating radiant energy. A radiator which has both surfaces of the radiator and is arranged from the front side to the upper side of the high temperature gas generating means, and is formed from the lower end toward the upper end facing the heat collecting surface of the radiator and guiding the high temperature gas to the heat collecting surface. The radiant body heating air passage, and a connecting air passage connecting the lower portion of the radiant body heating air passage and the high temperature gas generating means, and the heat collecting surface of the radiant body has a high temperature gas of the high temperature gas generating means lower than the radiant body. In addition to guiding the draft by the draft action, the hot gas of the hot gas generating means is also guided to the radiant surface of the radiant body as an ascending air current from the lower end of the radiant body, and the radiant body is heated from both the heat collecting surface and the radiant surface. is there. According to the above-described embodiment, the heat of the high temperature gas is efficiently transmitted to the radiating surface, so that the temperature difference between the temperature of the high temperature gas and the radiating surface can be reduced. Since the high-temperature gas heats the radiation surface from both the radiation surface and the heat collection surface, the heat transfer area when the high-temperature gas transfers heat to the radiator is doubled, and the heat of the high-temperature gas is efficiently radiated. It is transmitted to the surface. Therefore, the temperature difference between the high temperature gas and the radiation surface can be reduced.

【0011】本発明の請求項2にかかる暖房装置は、輻
射体に採熱面と輻射面を貫通した穴を設けて輻射体の輻
射面に高温ガス発生手段の高温ガスを導いてなるもので
ある。
According to a second aspect of the present invention, there is provided a heating device in which a radiator is provided with a heat collecting surface and a hole penetrating the radiation surface, and the high temperature gas of the high temperature gas generating means is guided to the radiation surface of the radiator. is there.

【0012】そして上記実施形態により、輻射体に穴か
ら高温ガスが輻射体の輻射面に流れ、高温ガスが輻射体
に熱伝達する際の伝熱面積は拡大されるとともに、穴に
よって境界層の発達が小さくなり熱伝達率が大きくな
る。したがって高温ガスの熱が効率よく輻射面に伝わ
り、燃焼ガスの温度と輻射面の温度差をより小さくする
ことができるとともに、境界層が発達しないので輻射面
の温度変化を少なくすることができる。
According to the above embodiment, the high-temperature gas flows from the hole to the radiant body to the radiant surface of the radiant body, and the heat transfer area when the high-temperature gas transfers heat to the radiant body is expanded. Development is small and heat transfer rate is large. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiant surface, the temperature difference between the combustion gas and the radiant surface can be made smaller, and the boundary layer does not develop, so that the temperature change on the radiant surface can be reduced.

【0013】本発明の請求項3にかかる暖房装置は、輻
射体の穴は千鳥配置にしてなるものである。これにより
高温ガスは輻射面をむらなく加熱するので、高温ガスが
輻射体に熱伝達する際の伝熱面積はより拡大され、高温
ガスの熱が効率よく輻射面に伝わり、高温ガスの温度と
輻射面の温度差をより小さくすることができる。
In the heating device according to the third aspect of the present invention, the holes of the radiator are arranged in a staggered arrangement. As a result, the high-temperature gas heats the radiant surface evenly, so the heat transfer area when the high-temperature gas transfers heat to the radiant body is further expanded, and the heat of the high-temperature gas is efficiently transferred to the radiant surface. The temperature difference on the radiation surface can be made smaller.

【0014】本発明の請求項4にかかる暖房装置は、輻
射体の穴の数は輻射体の下部より離れるにしたがって多
くしたものである。これにより、高温ガスは輻射体の下
部より離れるほど輻射面にも多く流れ両面から輻射面を
加熱するので、輻射体の温度を均一にすることができ
る。
In the heating device according to the fourth aspect of the present invention, the number of holes in the radiator is increased as the distance from the lower portion of the radiator is increased. As a result, the higher the temperature of the hot gas, the more it flows into the radiating surface as it goes farther from the lower part of the radiating body, and the radiating surface is heated from both sides, so that the temperature of the radiating body can be made uniform.

【0015】[0015]

【実施例】(実施例1図1 は本発明の実施例1における暖房装置の一部を切り
欠いて要部を示した斜視図である。図において、11は
石油やガス燃料を燃焼させる円形バーナー等の高温ガス
を発生する高温ガス発生手段であり、24は高温ガスの
熱によって加熱される採熱面25と輻射エネルギーを発
生する輻射面26を持った輻射体であり、高温ガスを採
熱面25および輻射面26に送風する採熱面加熱風路2
7および輻射面下端に設けられた輻射面加熱風路28を
持ち、採熱面加熱風路27および輻射面加熱風路28は
連結風路17によって高温ガス発生手段11から高温ガ
スが導かれる構成となっている。上記構成により、高温
ガス発生手段11の燃焼で発生した高温ガスは連結風路
17によって採熱面加熱風路27の下部に設けられた輻
射体加熱風路入口29に導かれ採熱面加熱風路27を通
ってドラフト作用によって風速を増しながら、採熱面2
5を加熱し採熱面加熱風路27の上方に設けられた輻射
体加熱風路出口30に導かれる。さらに高温ガスは連結
風路17から輻射面加熱風路28に導かれ、輻射面26
にも送風され輻射面26の下端から上昇気流となって上
昇し輻射面26を加熱する。このため輻射体24は、高
温ガスによって採熱面25、および輻射面26の両方か
ら加熱される。そして、輻射体24が約300℃に加熱
され、輻射面から遠赤外線が輻射され、輻射によって室
内の暖房を行う。このため人体に直接風が当たる事なく
快適な暖房感が得られる。
( Embodiment 1 ) FIG. 1 is a perspective view showing a main part of a heating device according to a first embodiment of the present invention with a part cut away. In the figure, 11 is a high temperature gas generating means for generating high temperature gas such as a circular burner for burning oil or gas fuel, and 24 is a heat collecting surface 25 heated by the heat of the high temperature gas and a radiant surface for generating radiant energy. A heat-collecting surface heating air passage 2 which is a radiant body having 26 and which blows high-temperature gas to the heat-collecting surface 25 and the radiant surface 26.
7 and a radiant surface heating air passage 28 provided at the lower end of the radiant surface, and the heat collecting surface heating air passage 27 and the radiant surface heating air passage 28 guide the hot gas from the hot gas generating means 11 by the connecting air passage 17. Has become. With the above configuration, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is guided by the connecting air passage 17 to the radiator heating air passage inlet 29 provided below the heat-collecting surface heating air passage 27, and the heat-collecting surface heating air is introduced. While increasing the wind speed by draft action through the passage 27, the heat collecting surface 2
5 is heated and guided to the radiator heating air passage outlet 30 provided above the heat collecting surface heating air passage 27. Further, the high-temperature gas is guided from the connection air passage 17 to the radiation surface heating air passage 28, and the radiation surface 26
Is also blown to the upper surface of the radiant surface 26 to form an ascending air current, which rises and heats the radiant surface 26. Therefore, the radiator 24 is heated by the high temperature gas from both the heat collecting surface 25 and the radiation surface 26. Then, the radiator 24 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface, and the room is heated by the radiation. Therefore, a comfortable feeling of heating can be obtained without direct breeze on the human body.

【0016】本実施例の構成では高温ガスと輻射体24
の熱伝達面積は、採熱面25のみの加熱に対して2倍に
なるので、従来例と同じように輻射体温度を300℃の
温度にする場合には、580℃で良い。このため高温ガ
ス発生手段11としてラインバーナーを用い火炎で直接
熱交換器を加熱する必要がなく、排気ガス特性の良い円
形バーナーを用い、高温ガスによって輻射暖房を行う事
ができる。なお、輻射体24の中にフィンを配設すれば
より熱伝達効率を向上させることができる。
In the structure of this embodiment, the high temperature gas and the radiator 24
Since the heat transfer area of 2 is twice as large as the heating of only the heat collecting surface 25, when the temperature of the radiator is 300 ° C. as in the conventional example, it may be 580 ° C. Therefore, it is not necessary to use a line burner as the high-temperature gas generating means 11 to directly heat the heat exchanger with a flame, and a circular burner having excellent exhaust gas characteristics can be used to perform radiant heating with high-temperature gas. If the fins are provided in the radiator 24, the heat transfer efficiency can be further improved.

【0017】(実施例2図2 は本発明の実施例2における暖房装置の一部を切り
欠いて要部を示した斜視図である。図2において、11
は石油やガス燃料を燃焼させる円形バーナー等の高温ガ
スを発生する高温ガス発生手段であり、31は高温ガス
の熱によって加熱される採熱面32と輻射エネルギーを
発生する輻射面33を持ち、採熱面32から輻射面33
に直径5mmで20mmピッチに配置した貫通した穴3
4を設けた輻射体であり、輻射体31の採熱面32には
高温ガスを導く輻射体加熱風路16が取り付けられ、輻
射体加熱風路16には連結風路17によって高温ガス発
生手段11から高温ガスが導かれる構成となっている。
( Embodiment 2 ) FIG. 2 is a perspective view showing a principal part of a heating device according to a second embodiment of the present invention with a part cut away. In FIG. 2 , 11
Is a high temperature gas generating means for generating high temperature gas such as a circular burner for burning oil or gas fuel, 31 has a heat collecting surface 32 heated by the heat of the high temperature gas and a radiation surface 33 for generating radiant energy, Heat collecting surface 32 to radiation surface 33
Through holes 3 with a diameter of 5 mm and a pitch of 20 mm
4, a radiator heating air passage 16 for guiding high temperature gas is attached to the heat collecting surface 32 of the radiator 31, and the radiator heating air passage 16 is connected to the heating air passage 16 by a connecting air passage 17 to generate high temperature gas. The configuration is such that the high temperature gas is introduced from 11.

【0018】上記構成により、高温ガス発生手段11の
燃焼により発生した高温ガスは連結風路17によって輻
射体加熱風路16の下部に設けられた輻射体加熱風路入
口29に導かれ輻射体加熱風路16を通ってドラフト作
用によって風速を増しながら、採熱面32を加熱すると
ともに、穴34を通って輻射面33に導かれ、上昇流と
なって輻射面33を加熱する。このため輻射体31は、
高温ガスによって採熱面32および輻射面33の両方か
ら加熱される。そして、輻射体31が約300℃に加熱
され、輻射面33から遠赤外線が輻射され、輻射によっ
て室内の暖房を行う。このため人体に直接風が当たる事
なく快適な暖房感が得られる。
With the above structure, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is guided by the connecting air passage 17 to the radiator heating air passage inlet 29 provided below the radiator heating air passage 16 to heat the radiator. The heat collecting surface 32 is heated while increasing the wind speed through the air passage 16 by the draft action, and is guided to the radiation surface 33 through the hole 34 to become an upward flow and heat the radiation surface 33. Therefore, the radiator 31 is
Both the heat collecting surface 32 and the radiation surface 33 are heated by the hot gas. Then, the radiator 31 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 33, and the room is heated by the radiation. Therefore, a comfortable feeling of heating can be obtained without direct breeze on the human body.

【0019】本実施例の構成では高温ガスと輻射体31
の熱伝達面積は、採熱面32のみの加熱に対して2倍に
なるとともに、穴34によって境界層の発達が小さくな
り熱伝達率が15W/m2Kとなる。したがって高温ガ
スの熱が効率よく輻射面33に伝わり、燃焼ガスの温度
と輻射面33の温度差をより小さくすることができる。
従来例と同じように輻射体温度を300℃の温度にする
場合には、高温ガス温度は490℃で良い。このため高
温ガス発生手段11としてラインバーナーを用い火炎で
直接熱交換器を加熱する必要がなく、排気ガス特性の良
い円形バーナーを用い、高温ガスによって輻射暖房を行
う事ができる。さらに、境界層が発達しないので輻射面
33の温度変化を少なくすることができる。
In the structure of this embodiment, the high temperature gas and the radiator 31 are used.
The heat transfer area of is doubled as compared with the heating of only the heat collecting surface 32, and the development of the boundary layer is reduced by the holes 34, and the heat transfer coefficient is 15 W / m2K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 33, and the temperature difference between the combustion gas and the radiation surface 33 can be further reduced.
When the radiator temperature is set to 300 ° C. as in the conventional example, the high temperature gas temperature may be 490 ° C. Therefore, it is not necessary to use a line burner as the high-temperature gas generating means 11 to directly heat the heat exchanger with a flame, and a circular burner having excellent exhaust gas characteristics can be used to perform radiant heating with high-temperature gas. Furthermore, since the boundary layer does not develop, the temperature change of the radiation surface 33 can be reduced.

【0020】(実施例3図3 は本発明の実施例3における暖房装置の一部を切り
欠いて要部を示す斜視図である。図3において、実施例
と同じ部分は同様の構成であり、輻射体31には採熱
面32から輻射面33に直径5mmで20mmピッチに
配置した貫通した穴34を千鳥配置に設けられている。
( Embodiment 3 ) FIG. 3 is a perspective view showing a main part of a heating apparatus according to a third embodiment of the present invention with a part cut away. 3, Example
The same parts as those of 2 have the same configuration, and the radiator 31 is provided with holes 34 penetrating from the heat collecting surface 32 to the radiating surface 33 with a diameter of 5 mm and arranged at a pitch of 20 mm in a staggered arrangement.

【0021】上記構成により、高温ガス発生手段11の
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路16の下部に設けられた輻射体加熱風路入口2
9に導かれ輻射体加熱風路16を通ってドラフト作用に
よって風速を増しながら、採熱面33を加熱するととも
に、千鳥配置に設けられた穴34を通って輻射面33に
導かれ、上昇流となって輻射面33を加熱する。したが
って実施例4の構成に比べ輻射面33の加熱効率が良
く、従来例と同じように輻射体温度を300℃の温度に
する場合には、高温ガス温度は470℃で良く、さら
に。輻射面33の温度差をより小さくすることができ
る。
With the above structure, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is connected to the radiator-heating air passage 16 provided under the radiation-heating air passage 16 by the connecting air passage 17.
9 and heats the heat collecting surface 33 while increasing the wind speed by the draft action through the radiator heating air passage 16 and is also guided to the radiating surface 33 through the holes 34 provided in the staggered arrangement and the ascending flow. Then, the radiation surface 33 is heated. Therefore, the heating efficiency of the radiation surface 33 is higher than that of the configuration of the fourth embodiment, and when the temperature of the radiator is 300 ° C. as in the conventional example, the high temperature gas temperature may be 470 ° C., and further. The temperature difference of the radiation surface 33 can be made smaller.

【0022】(実施例4図4 は本発明の実施例4における暖房装置の一部を切り
欠いて要部を示した斜視図である。図4において、実施
例2と同じ部分は同様の構成であり、輻射体31には採
熱面32から輻射面33に直径5mmで貫通した穴34
を連結風路17から離れるにしたがって数が多くなるよ
うに配置している。
( Embodiment 4 ) FIG. 4 is a perspective view showing a principal part of a heating device according to a fourth embodiment of the present invention with a part thereof cut away. In Figure 4 , carried out
The same parts as in Example 2 have the same structure, and the radiator 31 has a hole 34 penetrating from the heat collecting surface 32 to the radiating surface 33 with a diameter of 5 mm.
Are arranged so that the number increases as the distance from the connecting air passage 17 increases.

【0023】上記構成により、高温ガス発生手段11の
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路16の下部に設けられた輻射体加熱風路入口2
9に導かれ輻射体加熱風路16を通ってドラフト作用に
よって風速を増しながら、採熱面33を加熱するととも
に、穴34を通って輻射面33に導かれ、上昇流となっ
て輻射面33を加熱する。連結風路17から流入した高
温ガス温度は連結風路17から離れるほど低下するが、
輻射面33の穴34を通過した高温ガスによる加熱は連
結風路17から離れるほど数が多くなるので、実施例2
の特徴に加え、輻射体31の輻射体加熱方向の温度分布
を均一にすることができる。
With the above-described structure, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is provided with the connection air passage 17, and the radiator heating air passage inlet 2 is provided below the radiator heating air passage 16.
9 while heating the heat collecting surface 33 while increasing the wind speed by the draft effect through the radiator heating air passage 16 through the radiation body heating air passage 16 and being guided to the radiating surface 33 through the hole 34 to become an upward flow and become the radiating surface 33. To heat. The temperature of the high temperature gas flowing in from the connecting air passage 17 decreases as the distance from the connecting air passage 17 increases,
Since heating by the hot gas passing through the holes 34 of the radiation surface 33 greater number increasing distance from the connection air duct 17, Example 2
In addition to the above feature, the temperature distribution of the radiator 31 in the radiator heating direction can be made uniform.

【0024】(実施例5図5 は本発明の実施例5における暖房装置の一部を切り
欠いて要部を示した斜視図である。図5において、11
は石油やガス燃料を燃焼させる円形バーナー等の高温ガ
スを発生する高温ガス発生手段であり、35は高温ガス
の熱によって加熱される採熱面36と輻射エネルギーを
発生する輻射面37を持ち採熱面36から輻射面37に
直径5mmで20mmピッチに配置した貫通した穴38
を設け、投影面積に対し採熱面36および輻射面37の
面積が3倍になるようなピッチと深さで連続的に折り曲
げられた形状の輻射体であり、輻射体35の採熱面37
には高温ガスを導く輻射体加熱風路16が取り付けら
れ、輻射体加熱風路16には連結風路17によって高温
ガス発生手段11から高温ガスが導かれる構成となって
いる。上記構成により、高温ガス発生手段11の燃焼で
発生した高温ガスは連結風路17によって輻射体加熱風
路16の下部に設けられた輻射体加熱風路入口29に導
かれ輻射体加熱風路16を通ってドラフト作用によって
風速を増しながら、採熱面36を加熱するとともに、穴
38を通って輻射面37に導かれ、上昇流となって輻射
面37を加熱する。このため輻射体36は、高温ガスに
よって採熱面36および輻射面37の両方から加熱され
る。そして、輻射体35が約300℃に加熱され、輻射
面37から遠赤外線が輻射され、輻射によって室内の暖
房を行う。このため人体に直接風が当たる事なく快適な
暖房感が得られる。本実施例の構成では高温ガスと輻射
体35の熱伝達面積は、採熱面のみの加熱に対して2倍
になるとともに、採熱面36の面積が投影面積に対して
3倍になるように折り曲げらているので、高温ガスから
輻射体35への伝熱面積は6倍になっており、穴38に
よって境界層の発達が小さくなり熱伝達率が15W/m
2Kとなる。したがって高温ガスの熱が効率よく輻射面
37に伝わり、燃焼ガスの温度と輻射面37の温度差を
より小さくすることができる。従来例と同じように輻射
体温度を300℃の温度にする場合には、高温ガス温度
は370℃で良い。このため高温ガス発生手段11とし
てラインバーナーを用い火炎で直接熱交換器を加熱する
必要がなく、排気ガス特性の良い円形バーナーを用い、
火炎で間接的に高温ガスを作って輻射暖房を行う事がで
きる。
( Embodiment 5 ) FIG. 5 is a perspective view showing a principal part of a heating device according to a fifth embodiment of the present invention with a part cut away. In FIG. 5 , 11
Is a high temperature gas generating means for generating high temperature gas such as a circular burner for burning oil or gas fuel, and 35 has a heat collecting surface 36 heated by the heat of the high temperature gas and a radiation surface 37 for generating radiant energy. Holes 38 penetrated from the heat surface 36 to the radiation surface 37 with a diameter of 5 mm and arranged at a pitch of 20 mm
And the heat collecting surface 37 and the radiating surface 37 are three times as large as the projected area, and are continuously bent at a pitch and a depth.
A radiator heating air passage 16 for guiding high temperature gas is attached to the radiator heating air passage 16, and a high temperature gas is guided from the high temperature gas generating means 11 to the radiator heating air passage 16 by a connecting air passage 17. With the above configuration, the high temperature gas generated by the combustion of the high temperature gas generating means 11 is guided by the connecting air passage 17 to the radiator heating air passage inlet 29 provided below the radiator heating air passage 16 and the radiator heating air passage 16 is provided. While heating the heat collecting surface 36 while increasing the wind speed by the draft action through the through holes, the heat collecting surface 36 is guided to the radiant surface 37 through the holes 38 and becomes an upward flow to heat the radiant surface 37. Therefore, the radiator 36 is heated by the hot gas from both the heat collecting surface 36 and the radiation surface 37. Then, the radiator 35 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 37, and the interior of the room is heated by the radiation. Therefore, a comfortable feeling of heating can be obtained without direct breeze on the human body. In the structure of this embodiment, the heat transfer area between the high temperature gas and the radiator 35 is doubled for heating only the heat collecting surface, and the area of the heat collecting surface 36 is tripled for the projected area. The heat transfer area from the high-temperature gas to the radiant body 35 is six times as large as that of the first embodiment. Due to the holes 38, the development of the boundary layer is reduced and the heat transfer coefficient is 15 W / m.
It will be 2K. Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 37, and the temperature difference between the temperature of the combustion gas and the radiation surface 37 can be made smaller. When the radiator temperature is set to 300 ° C. as in the conventional example, the high temperature gas temperature may be 370 ° C. Therefore, it is not necessary to use a line burner as the high-temperature gas generating means 11 to directly heat the heat exchanger with a flame, and a circular burner having good exhaust gas characteristics is used.
Radiant heating can be performed indirectly by producing high-temperature gas with a flame.

【0025】さらに輻射面37の面積が投影面積に対し
て3倍になっているので、見かけの輻射率が上がり、同
じ輻射体36の温度でも暖房時の輻射量を大きくする事
ができる。
Further, since the area of the radiation surface 37 is three times as large as the projected area, the apparent emissivity is increased and the radiation amount at the time of heating can be increased even at the same temperature of the radiator 36.

【0026】また、さらに輻射体35が高温になり熱膨
張した場合も、折り曲げ部によって膨張が吸収されるの
で、輻射体全体の変形を防止する事ができる。
Further, even when the radiator 35 becomes hot and thermally expands, the expansion is absorbed by the bent portion, so that the deformation of the entire radiator can be prevented.

【0027】(実施例6図6 は本発明の実施例6における暖房装置の一部を切り
欠いて要部を示した斜視図である。図6において、11
は石油やガス燃料を燃焼させる円形バーナー等の高温ガ
スを発生する高温ガス発生手段であり、39は、高温ガ
スの熱によって加熱される採熱面40と輻射エネルギー
を発生する輻射面41を持ち、採熱面40から輻射面4
に貫通し熱伝達促進手段として輻射面41を切り起こし
開口端42があるルーバーを付けた穴43を設けた輻射
体であり、輻射体39の採熱面40には高温ガスを導く
輻射体加熱風路16が取り付けられ、輻射体加熱風路1
6には連結風路17によって高温ガス発生手段16から
高温ガスが導かれる構成となっている。
( Embodiment 6 ) FIG. 6 is a perspective view showing a principal part of a heating device according to a sixth embodiment of the present invention with a part cut away. In FIG. 6 , 11
Is a high temperature gas generating means for generating high temperature gas such as a circular burner for burning oil or gas fuel, and 39 has a heat collecting surface 40 heated by the heat of the high temperature gas and a radiation surface 41 for generating radiant energy. , Heat collecting surface 40 to radiation surface 4
Is a radiant body having a louvered hole 43 with an open end 42 that cuts and raises the radiant surface 41 as a heat transfer promoting means. The air duct 16 is attached, and the radiator heating air duct 1 is installed.
A high temperature gas is guided from the high temperature gas generating means 16 to the 6 by a connecting air passage 17.

【0028】上記構成により、高温ガス発生手段11の
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路16の下部に設けられた輻射体加熱風路入口1
8に導かれ輻射体加熱風路16を通ってドラフト作用に
よって風速を増しながら、採熱面40を加熱するととも
に、ルーバーを付けた穴43によって輻射面41に導か
れ開口端42から輻射面41に吹き付けられ、上昇流と
なって輻射面41を加熱する。このため輻射体39は、
高温ガスによって採熱面40、および輻射面41の両方
から加熱される。そして、輻射体39が約300℃に加
熱され、輻射面41から遠赤外線が輻射され、輻射によ
って室内の暖房を行う。このため人体に直接風が当たる
事なく快適な暖房感が得られる。
With the above structure, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is connected to the radiator-heating air passage 16 provided below the radiation-heating air passage 16 by the connecting air passage 17.
8 through the radiant body heating air passage 16 to heat the heat collecting surface 40 while increasing the wind speed by the draft action, and at the same time, it is guided to the radiant surface 41 by the louvered hole 43 and from the open end 42 to the radiant surface 41. Are sprayed onto the radiant surface 41 to heat the radiation surface 41. Therefore, the radiator 39 is
Both the heat collecting surface 40 and the radiation surface 41 are heated by the hot gas. Then, the radiator 39 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 41, and the room is heated by the radiation. Therefore, a comfortable feeling of heating can be obtained without direct breeze on the human body.

【0029】本実施例の構成では高温ガスと輻射体39
の熱伝達面積は、採熱面40のみの加熱に対して2倍に
なるとともに、ルーバーも輻射体となるのでルーバーを
付けた穴43によって輻射面41の面積が減少すること
もない。またルーバーを付けた穴43によって境界層の
発達が小さくなり熱伝達率が25W/m2Kとなる。し
たがって高温ガスの熱が効率よく輻射面41に伝わり、
燃焼ガスの温度と輻射面41の温度差をより小さくする
ことができる。従来例と同じように輻射体温度を300
℃の温度にする場合には、高温ガス温度は410℃で良
い。このため高温ガス発生手段11としてラインバーナ
ーを用い火炎で直接熱交換器を加熱する必要がなく、排
気ガス特性の良い円形バーナーを用い、高温ガスによっ
て輻射暖房を行う事ができる。さらに、境界層が発達し
ないので輻射面の温度変化を少なくすることができる。
また、ルーバーによって輻射体が補強されるので輻射体
の変形を小さくすることができる。
In the structure of this embodiment, the high temperature gas and the radiator 39 are used.
The heat transfer area of 2 is twice as large as that of heating only the heat collecting surface 40, and the louver also serves as a radiator, so that the area of the radiating surface 41 is not reduced by the hole 43 with the louver. Further, the louvered holes 43 reduce the development of the boundary layer and the heat transfer coefficient becomes 25 W / m2K. Therefore, the heat of the high temperature gas is efficiently transmitted to the radiation surface 41,
The temperature difference between the combustion gas and the radiation surface 41 can be made smaller. The radiator temperature is set to 300 as in the conventional example.
When the temperature is ℃, the high temperature gas temperature may be 410 ℃. Therefore, it is not necessary to use a line burner as the high-temperature gas generating means 11 to directly heat the heat exchanger with a flame, and a circular burner having excellent exhaust gas characteristics can be used to perform radiant heating with high-temperature gas. Furthermore, since the boundary layer does not develop, the temperature change of the radiation surface can be reduced.
Further, since the radiator is reinforced by the louver, the deformation of the radiator can be reduced.

【0030】(実施例7図7 は本発明の実施例7における暖房装置の一部を切り
欠いて要部を示した斜視図である。図7において、実施
例6と同じ番号の部分は同様の構成であり熱伝達促進手
段として、ルーバーを付けた穴43の開口端42が重力
方向の上方に設けられた構成としたものである。そして
上記構成により高温ガスは輻射体加熱風路16からドラ
フト効果により輻射体49の輻射面41の上方に流れ出
すので、開口端42からの風速が増し輻射面41での熱
伝達率が増加するので高温ガスの温度と輻射面41の温
度差をより小さくすることができる。さらに、高温ガス
送風の圧力損失を小さくすることができ、送風機44を
小型化することができる。
( Embodiment 7 ) FIG. 7 is a perspective view showing a main part of a heating device according to a seventh embodiment of the present invention with a part thereof cut away. In Figure 7 , carried out
The parts with the same numbers as in Example 6 have the same structure, and as the heat transfer promoting means, the opening end 42 of the hole 43 with the louver is provided above in the direction of gravity. With the above structure, the high-temperature gas flows out from the radiator heating air passage 16 above the radiating surface 41 of the radiating body 49 due to the draft effect, so that the wind speed from the opening end 42 increases and the heat transfer coefficient on the radiating surface 41 increases. The temperature difference between the high temperature gas and the radiation surface 41 can be made smaller. Further, the pressure loss of the high temperature gas blow can be reduced, and the blower 44 can be downsized.

【0031】(実施例8図8 は本発明の実施例8における暖房装置の一部を切り
欠いて要部を示した斜視図である。図8において、実施
例6と同じ番号の部分は同様の構成であり、千鳥配置に
輻射体39の採熱面40から輻射面41に貫通し熱伝達
促進手段としてあるルーバーを付けた穴43を設けた構
成となっている。そして上記構成により、高温ガスは輻
射体加熱風路16から千鳥配置に設けられたルーバーを
付けた穴43を通って開口端42から輻射面41に流れ
輻射面41をむらなく加熱するので、高温ガスが輻射体
39に熱伝達する際の伝熱面積はより拡大され、高温ガ
スの熱が効率よく輻射面41に伝わり、高温ガスの温度
と輻射面の温度差をより小さくすることができる。
( Embodiment 8 ) FIG. 8 is a perspective view showing a principal part of a heating device according to an eighth embodiment of the present invention with a part cut away. 8, carried out
The parts with the same numbers as in Example 6 have the same structure, and the holes 43 are provided in a staggered arrangement from the heat collecting surface 40 of the radiating body 39 to the radiating surface 41 and with louvers as heat transfer promoting means. ing. With the above configuration, the high temperature gas flows from the radiator heating air passage 16 through the louvered holes 43 provided in the staggered arrangement from the opening end 42 to the radiant surface 41 and uniformly heats the radiant surface 41. The heat transfer area when the gas transfers heat to the radiator 39 is further expanded, the heat of the high-temperature gas is efficiently transferred to the radiant surface 41, and the temperature difference between the high-temperature gas and the radiant surface can be made smaller.

【0032】(実施例9図9 は本発明の実施例9における暖房装置の一部を切り
欠いて要部を示した斜視図である。図9において、実施
例6と同じ番号の部分は同様の構成であり、輻射体39
には採熱面40から輻射面39に貫通し熱伝達促進手段
として輻射面39を切り起こし開口端42があるルーバ
ーを付けた穴43を連結風路17から離れるにしたがっ
て数多くなるよう配置している。
( Embodiment 9 ) FIG. 9 is a perspective view showing a principal part of a heating device according to a ninth embodiment of the present invention with a part thereof cut away. 9, exemplary
The parts with the same numbers as in Example 6 have the same configuration, and the radiator 39
The louvered holes 43, which penetrate the heat collecting surface 40 to the radiant surface 39 and cut and raise the radiant surface 39 as a heat transfer promoting means and have the opening end 42, are arranged so that the number becomes larger as the distance from the connecting air passage 17 increases. There is.

【0033】上記構成により、高温ガス発生手段11の
燃焼で発生した高温ガスは連結風路17によって輻射体
加熱風路16の下部に設けられた輻射体加熱風路入口1
8に導かれ輻射体加熱風路16を通ってドラフト作用に
よって風速を増しながら、採熱面40を加熱するととも
に、ルーバーを付けた穴43を通って輻射面41に導か
れ、上昇気流となって輻射面41を加熱する。連結風路
17から流入した高温ガス温度は連結風路17から離れ
るほど低下するが、輻射面41のルーバーを付けた穴4
3を通過した高温ガスによる加熱は連結風路17から離
れるほど数が多くなるので、実施例8の特徴に加え、輻
射体の輻射体加熱方向の温度分布を均一にすることがで
きる。
With the above structure, the high-temperature gas generated by the combustion of the high-temperature gas generating means 11 is connected to the radiator-heating air passage 16 provided below the radiation-heating air passage 16 by the connecting air passage 17.
8 through the radiant body heating air passage 16 to heat the heat collecting surface 40 while increasing the wind speed by the draft action, and at the same time, it is guided to the radiant surface 41 through the hole 43 provided with the louver and becomes an updraft. To heat the radiation surface 41. Although the temperature of the high-temperature gas flowing in from the connecting air passage 17 decreases as the distance from the connecting air passage 17 increases, the louvered hole 4 of the radiation surface 41 is provided.
Since the number of heating by the high-temperature gas that has passed through 3 increases as the distance from the connecting air passage 17 increases, the temperature distribution in the radiator heating direction of the radiator can be made uniform in addition to the characteristics of the eighth embodiment.

【0034】(実施例10図10 は本発明の実施例10における暖房装置の一部を
切り欠いて要部を示した斜視図である。
( Embodiment 10 ) FIG. 10 is a perspective view showing a principal part of a heating device according to a tenth embodiment of the present invention with a part cut away.

【0035】図10において、11は石油やガス燃料を
燃焼させる円形バーナー等の高温ガスを発生する高温ガ
ス発生手段であり、45は高温ガスの熱によって加熱さ
れる採熱面46と輻射エネルギーを発生する輻射面47
を持ち採熱面46から輻射面47に貫通し熱伝達促進手
段として輻射面47を切り起こし開口端48があるル―
バーを付けた穴49を設けた輻射体であり、採熱面46
および輻射面47の面積が3倍になるようなピッチと深
さで連続的に折り曲げられた形状であり、輻射体45の
採熱面46には高温ガスを導く輻射体加熱風路16が取
り付けられ、輻射体加熱風路16には連結風路17によ
って高温ガス発生手段11から高温ガスが導かれる構成
となっている。上記構成により、高温ガス発生手段11
の燃焼により発生した高温ガスは連結風路17によって
輻射体加熱風路16の下部に設けられた輻射体加熱風路
入口29に導かれ輻射体加熱風路16を通ってドラフト
作用によって風速を増しながら、輻射体加熱風路16の
途中にある採熱面46を加熱するとともに、ルーバーを
付けた穴49を通って開口端48から輻射面47に導か
れ、上昇気流となって輻射面47を加熱する。このため
輻射体45は、高温ガスによって採熱面46および輻射
面47の両方から加熱される。そして、輻射体45が約
300℃に加熱され、輻射面47から遠赤外線が輻射さ
れ、輻射によって室内の暖房を行う。このため人体に直
接風が当たる事なく快適な暖房感が得られる。本実施例
の構成では高温ガスと輻射体45の熱伝達面積は、採熱
面46のみの加熱に対して2倍になるとともに、採熱面
46の面積が投影面積に対して3倍になるように折り曲
げらているので、高温ガスから輻射体45への伝熱面積
は6倍になっており、ルーバーを付けた穴49によって
境界層の発達が小さくなり熱伝達率が25W/m2Kと
なる。したがって高温ガスの熱が効率よく輻射面47に
伝わり、燃焼ガスの温度と輻射面47の温度差をより小
さくすることができる。従来例と同じように輻射体温度
を300℃の温度にする場合には、高温ガス温度は35
0℃で良い。このため高温ガス発生手段11としてライ
ンバーナーを用い火炎で直接熱交換器を加熱する必要が
なく、排気ガス特性の良い円形バーナーを用い、火炎で
間接的に高温ガスを作って輻射暖房を行う事ができる。
In FIG . 10 , 11 is a high temperature gas generating means for generating a high temperature gas such as a circular burner for burning oil or gas fuel, and 45 is a heat collecting surface 46 heated by the heat of the high temperature gas and radiant energy. Radiation surface 47 to be generated
Has a hole that penetrates from the heat collecting surface 46 to the radiation surface 47, cuts and raises the radiation surface 47 as a heat transfer promoting means, and has an opening end 48.
It is a radiator provided with a hole 49 with a bar and has a heat collecting surface 46.
And the radiating surface 47 has a shape that is continuously bent at a pitch and depth such that the area of the radiating surface 47 is tripled, and the radiant body heating air passage 16 that guides high-temperature gas is attached to the heat collecting surface 46 of the radiant body 45. The hot air generating means 11 is configured to guide the hot gas from the hot gas generating means 11 to the radiator heating air path 16 by the connecting air path 17. With the above configuration, the high temperature gas generating means 11
The high-temperature gas generated by the combustion of the air is guided by the connecting air passage 17 to the radiator heating air passage inlet 29 provided in the lower portion of the radiator heating air passage 16 and passes through the radiator heating air passage 16 to increase the wind speed by the draft action. Meanwhile, while heating the heat collecting surface 46 in the middle of the radiator heating air passage 16, it is guided from the opening end 48 to the radiating surface 47 through the hole 49 provided with the louver, and becomes an ascending airflow, so that the radiating surface 47 is formed. To heat. Therefore, the radiator 45 is heated by the high temperature gas from both the heat collecting surface 46 and the radiating surface 47. Then, the radiator 45 is heated to about 300 ° C., far infrared rays are radiated from the radiation surface 47, and the room is heated by the radiation. Therefore, a comfortable feeling of heating can be obtained without direct breeze on the human body. In the configuration of the present embodiment, the heat transfer area between the high temperature gas and the radiator 45 is double the heating area 46 alone, and the area of the heat collecting surface 46 is triple the projected area. Since it is bent like this, the heat transfer area from the high temperature gas to the radiator 45 is 6 times, and the development of the boundary layer is reduced by the hole 49 with the louver and the heat transfer coefficient is 25 W / m2K. . Therefore, the heat of the high-temperature gas is efficiently transmitted to the radiation surface 47, and the temperature difference between the combustion gas and the radiation surface 47 can be made smaller. When the radiator temperature is set to 300 ° C. as in the conventional example, the high temperature gas temperature is 35
0 ° C is good. Therefore, it is not necessary to use a line burner as the high temperature gas generating means 11 to directly heat the heat exchanger with a flame, and a circular burner having good exhaust gas characteristics is used to indirectly generate a high temperature gas with the flame to perform radiant heating. You can

【0036】さらに輻射面47の面積が投影面積に対し
て3倍になっているので、見かけの輻射率が上がり、同
じ輻射体47の温度でも暖房時の輻射量を大きくする事
ができる。
Further, since the area of the radiation surface 47 is three times as large as the projected area, the apparent emissivity is increased, and the radiation amount during heating can be increased even at the same temperature of the radiator 47.

【0037】また、さらに輻射面47が高温になり熱膨
張した場合も、ルーバーによって輻射体が補強されると
ともに折り曲げ部によって膨張が吸収されるので、輻射
体全体の変形を防止する事ができる。
Further, even when the radiation surface 47 becomes higher in temperature and thermally expands, the radiator is reinforced by the louver and the expansion is absorbed by the bent portion, so that the deformation of the entire radiator can be prevented.

【0038】[0038]

【発明の効果】以上説明したように本発明にかかる暖房
装置によれば、高温ガスが輻射体に熱伝達する電熱面積
は2倍になり、高温ガスの熱が効率よく輻射面に伝わる
ので、高温ガスの温度と輻射面の温度差を小さくするこ
とができ、高い輻射体温度が得られる。
As described above, according to the heating device of the present invention, the heating area for heat transfer of the hot gas to the radiator is doubled, and the heat of the hot gas is efficiently transferred to the radiation surface. The difference between the temperature of the high temperature gas and the temperature of the radiation surface can be reduced, and a high radiator temperature can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における暖房装置の一部を切
り欠いて要部を示した斜視図
FIG. 1 is a perspective view showing a main part by cutting away a part of a heating device according to a first embodiment of the present invention.

【図2】同実施例2における暖房装置の一部を切り欠い
て要部を示した斜視図
FIG. 2 is a perspective view showing a main part of the heating device according to the second embodiment with a part thereof cut away.

【図3】同実施例3における暖房装置の一部切り欠いて
要部を示した斜視図
FIG. 3 is a perspective view showing a main part of the heating device according to the third embodiment with a part thereof cut away.

【図4】同実施例4における暖房装置の一部を切り欠い
て要部を示した斜視図
FIG. 4 is a perspective view showing a main part by cutting out a part of a heating device according to the fourth embodiment.

【図5】同実施例5における暖房装置の一部切り欠いて
要部を示した斜視図
FIG. 5 is a perspective view showing a main part with a part of the heating device cut away according to the fifth embodiment.

【図6】同実施例6における暖房装置の一部切り欠いて
要部を示した斜視図
FIG. 6 is a perspective view showing a main part with a part of the heating device cut away according to the sixth embodiment.

【図7】同実施例7における暖房装置の一部切り欠いて
要部を示した斜視図
FIG. 7 is a perspective view showing a main part with a part of the heating device cut away according to the seventh embodiment.

【図8】同実施例8における暖房装置の一部切り欠いて
要部を示した斜視図
FIG. 8 is a perspective view showing a main part with a part of the heating device cut away according to the eighth embodiment.

【図9】同実施例9における暖房装置の一部切り欠いて
要部を示した斜視図
FIG. 9 is a perspective view showing a main part with a part of the heating device cut away according to the ninth embodiment.

【図10】同実施例10における暖房装置の一部切り欠
いて要部を示した斜視図
FIG. 10 is a perspective view showing a main part of the heating device according to the tenth embodiment with a part thereof cut away.

【図11】従来の暖房装置の一部切り欠いて要部を示し
た斜視図
FIG. 11 is a partially cutaway view showing a main part of a conventional heating device .
Perspective view

【符号の説明】[Explanation of symbols]

11 高温ガス発生手段 24、31、35、39、45 輻射体 25、32、36、40、46 採熱面 26、33、37、41、47 輻射面 16 輻射体加熱風路 17 連結風路 29 輻射体加熱風路入口 30 輻射体加熱風路出口 27 採熱面加熱風路 28 輻射面加熱風路 34、38 穴 42、48 開口端 43、49 ルーバーを付けた穴 11 High-temperature gas generating means 24, 31, 35, 39, 45 Radiant 25, 32, 36, 40, 46 Heat collecting surface 26, 33, 37, 41, 47 Radiant surface 16 Radiant heating air duct 17 Connected airways 29 Radiant heating air duct entrance 30 Radiant heating air duct outlet 27 Heat collecting surface heating air duct 28 Radiant surface heating air duct 34, 38 holes 42, 48 Open end 43,49 holes with louvers

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−106316(JP,A) 特開 平3−233230(JP,A) 特開 平2−4132(JP,A) 実開 平2−115619(JP,U) 実開 昭61−79153(JP,U) 実公 昭43−11434(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) H24C 1/00 - 15/24 F24H 3/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-106316 (JP, A) JP-A-3-233230 (JP, A) JP-A-2-4132 (JP, A) Actual Kaihei 2- 115619 (JP, U) Actual development 61-79153 (JP, U) Actual public 43-11434 (JP, Y2) (58) Fields investigated (Int.Cl. 7 , DB name) H24C 1/00-15 / 24 F24H 3/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温ガスを発生する高温ガス発生手段
と、前記高温ガスの熱によって加熱される採熱面と輻射
エネルギーを発生する輻射面との両面を持ち前記高温ガ
ス発生手段の前側から上方にかけて配置した輻射体と、
輻射体の採熱面に対向して下端より上端に向って形成
し、前記採熱面に前記高温ガスを導く輻射体加熱風路
と、前記輻射体加熱風路下部と高温ガス発生手段とを結
ぶ連結風路とを備え、輻射体の採熱面及び輻射面の両面
に高温ガス発生手段の高温ガスを輻射体の下端より上昇
気流として導き、輻射体を採熱面と輻射面の両面から加
熱する構成とした暖房装置。
1. A high temperature gas generating means for generating a high temperature gas, a heat collecting surface heated by the heat of the high temperature gas, and a radiant surface for generating radiant energy are provided on both sides of the high temperature gas generating means. And a radiator placed over
A radiator heating air passage formed to face the heat collecting surface of the radiant body from the lower end toward the upper end and guiding the high temperature gas to the heat collecting surface, a lower portion of the radiant body heating air passage, and a high temperature gas generating means. It is equipped with a connecting air path to connect, and guides the high temperature gas of the high temperature gas generating means to both sides of the heat collecting surface and the radiating surface of the radiating body as an ascending air current from the lower end of the radiating body, and the radiating body from both the heat collecting surface and the radiating surface A heating device configured to heat.
【請求項2】 輻射体は採熱面と輻射面に貫通した穴を
設けて輻射体の輻射面に高温ガス発生手段の高温ガスを
導いてなる請求項1記載の暖房装置。
2. The heating device according to claim 1, wherein the radiator has a heat collecting surface and a hole penetrating the radiation surface to guide the high temperature gas of the high temperature gas generating means to the radiation surface of the radiator.
【請求項3】 輻射体の穴は千鳥配置にしてなる請求項
2に記載の暖房装置。
3. The heating device according to claim 2, wherein the holes of the radiator are arranged in a staggered arrangement.
【請求項4】 輻射体の穴の数は輻射体の下部より離れ
るにしたがって多くした請求項2または3に記載の暖房
装置。
4. The heating device according to claim 2, wherein the number of holes in the radiator is increased with increasing distance from the lower portion of the radiator.
JP2001320180A 2001-10-18 2001-10-18 Heating system Expired - Fee Related JP3461817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320180A JP3461817B2 (en) 2001-10-18 2001-10-18 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320180A JP3461817B2 (en) 2001-10-18 2001-10-18 Heating system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP36983099A Division JP3674431B2 (en) 1999-12-27 1999-12-27 Heating system

Publications (2)

Publication Number Publication Date
JP2002181331A JP2002181331A (en) 2002-06-26
JP3461817B2 true JP3461817B2 (en) 2003-10-27

Family

ID=19137612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320180A Expired - Fee Related JP3461817B2 (en) 2001-10-18 2001-10-18 Heating system

Country Status (1)

Country Link
JP (1) JP3461817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598092B2 (en) * 2008-02-15 2010-12-15 株式会社コロナ Combustion part of heating system

Also Published As

Publication number Publication date
JP2002181331A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
CN106662344A (en) Air conditioner and air conditioning system
JPH05196383A (en) Corrugated fin type heat-exchanger
CN107806663B (en) Indoor unit of air conditioner and air conditioning system
JP2016217630A (en) Radiation air-conditioning system
CZ9903593A3 (en) Heating body
JP3461817B2 (en) Heating system
JP3674431B2 (en) Heating system
JP2004020047A (en) Air conditioner
CA2171554A1 (en) Air heater
JP2002162053A (en) Air conditioner
US4784110A (en) Wall furnace
JP3849497B2 (en) Air conditioner
JP2003042472A (en) Air conditioner
JP2006017414A (en) Air conditioner
JP2001336750A (en) Space heater
JP2002286241A (en) Air-conditioning device
JP2001263820A (en) Heater
JP3815631B2 (en) Fan coil unit
JP2002267270A (en) Heater
JP2003227660A (en) Heating system
JP2001336765A (en) Heating device
JP2002039548A (en) Heating apparatus
JP2002168470A (en) Air conditioner
JP3493641B2 (en) Vertical hot air heater
US6386193B1 (en) Combustion heater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees