JP2001258272A - Static pressure gas bearing unit - Google Patents

Static pressure gas bearing unit

Info

Publication number
JP2001258272A
JP2001258272A JP2000066686A JP2000066686A JP2001258272A JP 2001258272 A JP2001258272 A JP 2001258272A JP 2000066686 A JP2000066686 A JP 2000066686A JP 2000066686 A JP2000066686 A JP 2000066686A JP 2001258272 A JP2001258272 A JP 2001258272A
Authority
JP
Japan
Prior art keywords
moving body
gas bearing
static pressure
pressure gas
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000066686A
Other languages
Japanese (ja)
Inventor
Takuma Tsuda
拓真 津田
Shigemi Suzuki
茂美 鈴木
Shinji Shinohara
慎二 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2000066686A priority Critical patent/JP2001258272A/en
Publication of JP2001258272A publication Critical patent/JP2001258272A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70816Bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small and light static pressure gas bearing even if it has a driving mechanism in it. SOLUTION: An air pad is provided for a sliding surface formed out of a guide shaft and a traveling body, and a static pressure gas bearing which permits the traveling body to be slidable by supplying gas from the air pad is mounted on a surface plate. A plurality of band-shaped electrodes are fitted on the surface of the traveling body and the surface of a section facing the traveling body, and multi-phase AC voltage is applied to between the respective band-shaped electrodes, thus it is possible to generate driving power at the traveling body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に半導体製造装
置内にて使用される静圧気体軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic gas bearing mainly used in a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】非常に良好な運動性能を有するため主に
半導体装置内などで使用される静圧気体軸受は、一般の
軸受同様に、軸受機構とは別に当然何らかの駆動機構が
必要である。従来、駆動機構にはリニアモーター等の電
磁モーターがよく用いられており、軸受に電磁モーター
を固定することで軸受の駆動を行っていた。
2. Description of the Related Art A hydrostatic gas bearing mainly used in a semiconductor device or the like because of having a very good kinetic performance requires a certain driving mechanism in addition to a bearing mechanism, like a general bearing. Conventionally, an electromagnetic motor such as a linear motor is often used as a driving mechanism, and the bearing is driven by fixing the electromagnetic motor to the bearing.

【0003】[0003]

【発明が解決しようとする課題】近年の半導体装置にお
いては、高スループットの要求により軽量化、小型化が
求められているため、装置に使用される軸受機構はもち
ろんのこと、駆動機構についてもできるだけ軽量、小型
のものが求められている。しかしながら、現在の駆動機
構である電磁モーターの改良はその歴史の長さからもも
はや極限の域に達しており、これ以上の小型化は非常に
困難なのが現状である。
In recent semiconductor devices, weight reduction and miniaturization are demanded due to the demand for high throughput. Therefore, not only the bearing mechanism used in the device but also the drive mechanism are required. Lightweight and small ones are required. However, the improvement of the electromagnetic motor, which is the current drive mechanism, has already reached the limit of its long history, and further miniaturization is extremely difficult at present.

【0004】また、特に半導体露光装置においては、高
集積化の要求によりその光源がレーザーから電子ビー
ム、さらにはX線へと移行しているため、装置内部は将
来減圧、もしくは真空となると考えられる。これに伴
い、装置内部で使用されている静圧気体軸受も当然真空
環境に耐えうるものが要求されており、軸受のエアパッ
ド周囲に排気機構を設ける必要があるが、そうなると逆
に軸受は大型化し、軸受に駆動機構を取り付ける余地は
もはや残されていない。
In particular, in a semiconductor exposure apparatus, the light source is shifting from a laser to an electron beam and further to an X-ray due to a demand for high integration, so that the inside of the apparatus will be decompressed or vacuumed in the future. . Along with this, the static pressure gas bearings used inside the equipment are naturally required to be able to withstand the vacuum environment, and it is necessary to provide an exhaust mechanism around the air pads of the bearings. There is no longer any room for mounting a drive mechanism on the bearing.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
になされた本発明は、ガイド軸と移動体とで形成される
摺動面にエアパッド部を備え、該エアパッド部から気体
供給することで前記移動体が摺動自在となる静圧気体軸
受を定盤に搭載してなり、前記移動体の面上と前記移動
体の対向する部位の面上に、それぞれ複数の帯状電極を
設け、前記それぞれの帯状電極間に多相交流電圧を印加
することで、前記移動体に駆動力を発生させることを特
徴とする。これにより、駆動機構の取り付けによる大型
化の問題を回避することが可能である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an air pad on a sliding surface formed by a guide shaft and a moving body, and supplies gas from the air pad. A static pressure gas bearing in which the moving body is slidable is mounted on a surface plate, and a plurality of strip-shaped electrodes are provided on a surface of the moving body and a surface of a portion opposed to the moving body, respectively. A driving force is generated in the moving body by applying a multi-phase AC voltage between the respective strip electrodes. This makes it possible to avoid the problem of an increase in size due to the attachment of the drive mechanism.

【0006】また、本発明の好ましい態様として、前記
複数の帯状電極を前記移動体の対向する前記定盤に設け
る。
In a preferred aspect of the present invention, the plurality of strip electrodes are provided on the surface plate facing the moving body.

【0007】また、本発明の好ましい態様として、複数
の帯状電極を前記移動体の対向する前記ガイド軸に設け
る。
In a preferred aspect of the present invention, a plurality of strip electrodes are provided on the guide shaft facing the moving body.

【0008】また、本発明の好ましい態様として、前記
移動体の対向する部位に設けられる複数の前記帯状電極
が、更にその表面に絶縁素材でコーティングを施されて
いることとする。これにより、帯状電極が表面に露出す
ることが無くなるため、移動体と前記移動体の対向する
部位とが接触した際の電気的短絡、絶縁破壊などの事故
を防止することができる。
[0008] In a preferred aspect of the present invention, the plurality of strip electrodes provided at opposing portions of the moving body are further coated on their surfaces with an insulating material. Thereby, since the strip-shaped electrode is not exposed on the surface, it is possible to prevent an accident such as an electrical short circuit or dielectric breakdown when the moving body comes into contact with a portion facing the moving body.

【0009】また、本発明の好ましい態様として、前記
移動体に設けられる複数の前記帯状電極が、更にその表
面に絶縁素材でコーティングを施されていることとす
る。これにより、帯状電極が移動体表面に露出すること
が無くなるため、移動体と前記移動体の対向する部位と
が接触した際の電気的短絡、絶縁破壊などの事故を防止
することができる。
In a preferred aspect of the present invention, the plurality of strip-shaped electrodes provided on the moving body are further coated on their surfaces with an insulating material. Thereby, since the strip-shaped electrode is not exposed on the surface of the moving body, it is possible to prevent an accident such as an electrical short circuit or dielectric breakdown when the moving body comes into contact with a portion facing the moving body.

【0010】また、本発明の好ましい態様として、前記
エアパッド周囲をラビリンス機構にて取り囲み、前記ラ
ビリンス機構部に浮上気体排出用の配管を接続すること
とした。こうすることによって、静圧気体軸受外部への
浮上気体流出を抑えることができる。
In a preferred aspect of the present invention, the air pad is surrounded by a labyrinth mechanism, and a pipe for discharging a floating gas is connected to the labyrinth mechanism. By doing so, it is possible to suppress the floating gas from flowing out of the static pressure gas bearing.

【0011】また、本発明の好ましい態様として、前記
移動体および前記移動体の対向する部位のそれぞれの前
記帯状電極を、減圧状態もしくは真空となる部分に配置
する。減圧状態もしくは真空となる部分に配置すること
で、両電極間に高電圧を印可した際の放電及び絶縁破壊
の発生確率を低く抑えることが可能となる。
In a preferred aspect of the present invention, each of the moving body and the band-shaped electrode at a portion facing the moving body is disposed in a portion where the pressure is reduced or a vacuum is applied. By arranging it in a portion where the pressure is reduced or in a vacuum, it is possible to reduce the probability of occurrence of discharge and dielectric breakdown when a high voltage is applied between both electrodes.

【0012】[0012]

【発明の実施の形態】図1は本発明にかかる一実施例を
示す斜視図である。同図において、静圧気体軸受けユニ
ットは、ガイド軸1a、支柱1b、定盤1c、移動体2
とからなっている。移動体2は天板2a、底板2b、側
板2cとからなり、ガイド軸1aに対し図示しないエア
パッドから浮上気体を供給し、浮上気体の圧力で浮上し
ている。浮上気体の供給配管3及び排気配管4はどちら
も定盤1c裏面に設けられている。移動体2と定盤1c
とは、両者の隙間がたとえば5μmとなるように設計さ
れており、移動体2及び定盤1cの対向するそれぞれの
面には帯状電極5が形成されている。移動体2及び定盤
1cのそれぞれの前記帯状電極5は三相の交流電圧が印
可できるようになっており、それぞれが電圧印可ケーブ
ル6を介して図示しない三相交流電源に接続されている
ため、前記帯状電極5間に三相交流電圧を印可すること
で移動体2と定盤1cとの間に駆動力を発生させること
が可能となっている。
FIG. 1 is a perspective view showing an embodiment according to the present invention. In the figure, a static pressure gas bearing unit includes a guide shaft 1a, a support 1b, a surface plate 1c, and a moving body 2.
It consists of The moving body 2 includes a top plate 2a, a bottom plate 2b, and a side plate 2c. The moving body 2 supplies a floating gas from an air pad (not shown) to the guide shaft 1a, and floats by the pressure of the floating gas. Both the supply pipe 3 and the exhaust pipe 4 for the floating gas are provided on the back surface of the surface plate 1c. Moving body 2 and surface plate 1c
Is designed so that the gap between them is, for example, 5 μm, and the strip electrodes 5 are formed on the opposing surfaces of the moving body 2 and the surface plate 1c. Each of the strip electrodes 5 of the moving body 2 and the surface plate 1c can apply a three-phase AC voltage, and each is connected to a three-phase AC power source (not shown) via a voltage application cable 6. By applying a three-phase AC voltage between the band-shaped electrodes 5, it is possible to generate a driving force between the moving body 2 and the surface plate 1c.

【0013】ガイド軸1aの軸方向に沿った断面図を図
2に示した。また、ガイド軸1aの軸方向と垂直に切断
した断面図を図3に示した。以下、両図に従い、軸受の
給気及び排気の機構を解説する。浮上気体は、定盤1c
裏面に設けられた供給配管3から供給される。供給用配
管3は定盤1cを貫通しており、支柱1b内部に設けら
れた支柱内部給気配管7へ接続され、更にガイド軸1a
内部に設けられたガイド軸内部給気配管8へと接続され
ている。ガイド軸内部給気配管8はガイド軸1a内部で
分岐しており、移動体2の天板2a及び底板2bそれぞ
れに設けられた気体供給溝9へと接続されている。軸受
のエアーパッド部10は移動体2側に設けられており、
天板2a及び底板2bそれぞれの前記気体供給溝9から
移動体内部給気配管11を通じて浮上気体がエアーパッ
ド部10に供給されるようになっている。
FIG. 2 is a sectional view taken along the axial direction of the guide shaft 1a. FIG. 3 is a cross-sectional view cut perpendicular to the axial direction of the guide shaft 1a. Hereinafter, the supply and exhaust mechanisms of the bearing will be described with reference to both figures. The floating gas is the surface plate 1c
It is supplied from a supply pipe 3 provided on the back surface. The supply pipe 3 penetrates the surface plate 1c, is connected to a support internal air supply pipe 7 provided inside the support 1b, and further has a guide shaft 1a.
It is connected to a guide shaft internal air supply pipe 8 provided inside. The guide shaft internal air supply pipe 8 branches inside the guide shaft 1a, and is connected to gas supply grooves 9 provided on the top plate 2a and the bottom plate 2b of the moving body 2, respectively. The air pad portion 10 of the bearing is provided on the moving body 2 side,
The floating gas is supplied from the gas supply grooves 9 of the top plate 2a and the bottom plate 2b to the air pad unit 10 through the moving body internal air supply pipe 11.

【0014】エアーパッド部10に供給された浮上気体
は、その圧力により移動体2をガイド軸1aから浮上さ
せ、軸受隙間部12を通過した後、エアーパッド部10
を取り囲んで移動体2に設けられた排気溝13へと流入
する。排気溝13へと流入した浮上気体はその後、排気
溝13と対向する位置に設けられたガイド軸1a上の排
気穴14へと流入し、ガイド軸1a内部に設けられたガ
イド軸内部排気配管15、支柱1b内部に設けられた支
柱内部排気配管16、定盤1cに設けられた排気配管4
を順に通過して、装置外部に設置された図示されない真
空ポンプへと排気される。したがって、浮上気体は軸受
外部に流出することなくそのほとんどが回収されるた
め、本実施例による静圧気体軸受は真空環境内における
使用が可能である。
The floating gas supplied to the air pad section 10 causes the moving body 2 to float from the guide shaft 1a by its pressure, passes through the bearing gap section 12, and then moves to the air pad section 10.
And flows into the exhaust groove 13 provided in the moving body 2. The floating gas that has flowed into the exhaust groove 13 then flows into an exhaust hole 14 on the guide shaft 1a provided at a position facing the exhaust groove 13, and a guide shaft internal exhaust pipe 15 provided inside the guide shaft 1a. , An exhaust pipe 16 provided inside the support 1b, and an exhaust pipe 4 provided in the base 1c.
, And exhausted to a vacuum pump (not shown) installed outside the apparatus. Therefore, most of the floating gas is recovered without flowing out of the bearing, so that the hydrostatic gas bearing according to the present embodiment can be used in a vacuum environment.

【0015】本実施例による静圧気体軸受の移動体2
は、定盤1cとの間がたとえば5μmの微少な隙間を保
ちながら移動するよう設計されている。この微笑隙間を
介して対向している移動体2及び定盤1cのそれぞれの
面上には、移動体2の移動方向と垂直な方向に並んだ帯
状電極5が配置されている。この帯状電極5は、それぞ
れの部材表面にパターン印刷などの手法により形成さ
れ、その後、部材表面を絶縁素材17にてコーティング
し、移動体2と定盤1cが接触した際の電気的短絡及び
放電を防いでいる。帯状電極5は、移動体2及び定盤1
cに設けられた電極取り出し溝18へ引き出されてお
り、各相毎にまとめられ電圧印可ケーブル6を介して図
示しない三相交流電源に接続されている。移動体2及び
定盤1cそれぞれの帯状電極5に三相交流電圧を印可す
ることで、移動体2の移動方向の向きに推力が発生する
ので、これを軸受の駆動機構として利用している。
The moving body 2 of the hydrostatic gas bearing according to the present embodiment.
Is designed to move while maintaining a small gap of, for example, 5 μm between itself and the surface plate 1c. On each surface of the moving body 2 and the surface plate 1c opposed to each other via the smile gap, the strip-shaped electrodes 5 arranged in a direction perpendicular to the moving direction of the moving body 2 are arranged. The strip-shaped electrode 5 is formed on each member surface by a method such as pattern printing, and thereafter, the member surface is coated with an insulating material 17, and an electrical short circuit and discharge when the moving body 2 comes into contact with the surface plate 1c. Is preventing. The strip electrode 5 includes the moving body 2 and the surface plate 1.
c, and are connected to a three-phase AC power supply (not shown) via a voltage application cable 6 which is grouped for each phase. When a three-phase AC voltage is applied to each of the strip electrodes 5 of the moving body 2 and the surface plate 1c, a thrust is generated in the moving direction of the moving body 2, and this is used as a drive mechanism of the bearing.

【0016】実施例では、移動体2の底板2bと定盤1
cとにそれぞれの帯状電極5を設けたが、定盤1cに別
の固定体を取付け、移動体2の側板2cと別の固定体と
に帯状電極を設けて軸受の駆動機構としてもよい。
In the embodiment, the bottom plate 2b of the moving body 2 and the surface plate 1
Although the respective band-shaped electrodes 5 are provided on the base plate 1c, a separate fixed body may be attached to the surface plate 1c, and the band-shaped electrodes may be provided on the side plate 2c of the moving body 2 and the other fixed body to form a drive mechanism of the bearing.

【0017】[0017]

【発明の効果】本発明により、静圧気体軸受の外形寸法
に影響を与えず、且つリニアモーターなどの外部駆動機
構を接続することもなく、駆動機構を内蔵した軸受を提
供することができるため、軸受を利用した装置全体の小
型化が可能である。
According to the present invention, it is possible to provide a bearing having a built-in drive mechanism without affecting the external dimensions of the hydrostatic gas bearing and without connecting an external drive mechanism such as a linear motor. In addition, it is possible to reduce the size of the entire device using the bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる静圧気体軸受の一実施例を示
す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a hydrostatic gas bearing according to the present invention.

【図2】 図1に示した静圧気体軸受の、ガイド軸の軸
方向に沿って切断した断面図である。
FIG. 2 is a cross-sectional view of the hydrostatic gas bearing shown in FIG. 1, taken along an axial direction of a guide shaft.

【図3】 図1に示した静圧気体軸受の、ガイド軸の軸
方向に対して垂直に切断した断面図である。
FIG. 3 is a cross-sectional view of the hydrostatic gas bearing shown in FIG. 1 cut perpendicularly to an axial direction of a guide shaft.

【符号の説明】[Explanation of symbols]

1…固定部、1a…ガイド軸、1b…支柱、1c…定盤 2…移動体、2a…天板、2b…底板、2c…側板 3…供給配管 4…排気配管 5…帯状電極 6…電圧印可ケーブル 7…支柱内部給気配管 8…ガイド軸内部給気配管 9…気体供給溝 10…エアーパッド部 11…移動体内部給気配管 12…軸受隙間部 13…排気溝 14…排気穴 15…ガイド軸内部排気配管 16…支柱内部排気配管 17…絶縁素材 18…電極取り出し溝 DESCRIPTION OF SYMBOLS 1 ... Fixed part, 1a ... Guide shaft, 1b ... Prop, 1c ... Surface plate 2 ... Moving body, 2a ... Top plate, 2b ... Bottom plate, 2c ... Side plate 3 ... Supply piping 4 ... Exhaust piping 5 ... Strip electrode 6 ... Voltage Applicable cable 7 ... Purple internal air supply pipe 8 ... Guide shaft internal air supply pipe 9 ... Gas supply groove 10 ... Air pad part 11 ... Moving body internal air supply pipe 12 ... Bearing gap 13 ... Exhaust groove 14 ... Exhaust hole 15 ... Exhaust pipe inside guide shaft 16 ... Exhaust pipe inside pillar 17 ... Insulating material 18 ... Groove

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J102 AA02 BA06 BA09 CA19 EA02 EA08 EA10 EA23 EA24 GA20 3J104 AA52 AA67 AA69 AA74 AA76 AA79 BA52 BA62 DA16 EA10 5F046 GA11 GA12 GA18 5F056 CB21 CC05 EA14 EA16  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J102 AA02 BA06 BA09 CA19 EA02 EA08 EA10 EA23 EA24 GA20 3J104 AA52 AA67 AA69 AA74 AA76 AA79 BA52 BA62 DA16 EA10 5F046 GA11 GA12 GA18 5F056 CB21 CC05 EA14 EA16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガイド軸と移動体とで形成される摺動面
にエアパッド部を備え、該エアパッド部から気体供給す
ることで前記移動体が摺動自在となる静圧気体軸受を定
盤に搭載してなり、前記移動体の面上と前記移動体の対
向する部位の面上に、それぞれ複数の帯状電極を設け、
前記それぞれの帯状電極間に多相交流電圧を印加するこ
とで、前記移動体に駆動力を発生させることを特徴とす
る静圧気体軸受ユニット。
An air pad portion is provided on a sliding surface formed by a guide shaft and a moving body, and a static pressure gas bearing in which the moving body is slidable by supplying gas from the air pad portion is provided on a surface plate. It is mounted, on the surface of the moving body and on the surface of a portion facing the moving body, a plurality of band-shaped electrodes are provided, respectively.
A hydrostatic gas bearing unit, wherein a driving force is generated in the moving body by applying a polyphase AC voltage between the respective strip electrodes.
【請求項2】 前記移動体の対向する部位が前記定盤に
設けられていることを特徴とする請求項1に記載の静圧
気体軸受ユニット。
2. The hydrostatic gas bearing unit according to claim 1, wherein a portion of the moving body opposed to the moving body is provided on the surface plate.
【請求項3】 前記移動体の対向する部位が前記ガイド
軸に設けられていることを特徴とする請求項1に記載の
静圧気体軸受ユニット。
3. The hydrostatic gas bearing unit according to claim 1, wherein an opposing portion of the moving body is provided on the guide shaft.
【請求項4】 前記移動体の対向する部位に設けられる
複数の前記帯状電極が、更にその表面に絶縁素材でコー
ティングを施されていることを特徴とする請求項1から
3のいずれかに記載の静圧気体軸受構造ユニット。
4. The plurality of strip-shaped electrodes provided at opposing portions of the moving body are further coated on their surfaces with an insulating material. Static pressure gas bearing structure unit.
【請求項5】 前記移動体に設けられる複数の前記帯状
電極が、更にその表面に絶縁素材でコーティングを施さ
れていることを特徴とする請求項1から4のいずれかに
記載の静圧気体軸受ユニット。
5. The static pressure gas according to claim 1, wherein the plurality of strip electrodes provided on the moving body are further coated on their surfaces with an insulating material. Bearing unit.
【請求項6】 前記エアパッド周囲をラビリンス機構に
て取り囲み、前記ラビリンス機構部に気体排出用の配管
を接続し静圧気体軸受外部への浮上気体流出を抑えたこ
とを特徴とする請求項1から5のいずれかに記載の静圧
気体軸受ユニット。
6. The air pad is surrounded by a labyrinth mechanism, and a gas discharge pipe is connected to the labyrinth mechanism to suppress outflow of floating gas to the outside of the static pressure gas bearing. 6. The hydrostatic gas bearing unit according to any one of 5.
【請求項7】 前記移動体および前記移動体の対向する
部位のそれぞれの前記帯状電極を、減圧状態もしくは真
空となる部分に配置したことを特徴とする請求項1から
6のいずれかに記載の静圧気体軸受。
7. The moving body according to claim 1, wherein the moving body and the strip-shaped electrodes of the opposing portions of the moving body are arranged in a reduced pressure or vacuum portion. Hydrostatic gas bearing.
JP2000066686A 2000-03-10 2000-03-10 Static pressure gas bearing unit Pending JP2001258272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066686A JP2001258272A (en) 2000-03-10 2000-03-10 Static pressure gas bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066686A JP2001258272A (en) 2000-03-10 2000-03-10 Static pressure gas bearing unit

Publications (1)

Publication Number Publication Date
JP2001258272A true JP2001258272A (en) 2001-09-21

Family

ID=18586006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066686A Pending JP2001258272A (en) 2000-03-10 2000-03-10 Static pressure gas bearing unit

Country Status (1)

Country Link
JP (1) JP2001258272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100237A1 (en) * 2003-05-12 2004-11-18 Nikon Corporation Stage apparatus, exposure apparatus, and device-producing method
WO2005062130A2 (en) * 2003-12-12 2005-07-07 Nikon Corporation Utilities transfer system in a lithography system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100237A1 (en) * 2003-05-12 2004-11-18 Nikon Corporation Stage apparatus, exposure apparatus, and device-producing method
WO2005062130A2 (en) * 2003-12-12 2005-07-07 Nikon Corporation Utilities transfer system in a lithography system
WO2005062130A3 (en) * 2003-12-12 2006-04-20 Nippon Kogaku Kk Utilities transfer system in a lithography system
US7375797B2 (en) 2003-12-12 2008-05-20 Nikon Corporation Utilities transfer system in a lithography system
US8619234B2 (en) 2003-12-12 2013-12-31 Nikon Corporation Utilities transfer system in a lithography system

Similar Documents

Publication Publication Date Title
US7663270B2 (en) Canned linear motor armature and canned linear motor
KR101222713B1 (en) Armature of canned linear motor and canned linear motor
US7280185B2 (en) Stage system including fine-motion cable unit, exposure apparatus, and method of manufacturing device
US20030141769A1 (en) Linear motor, stage apparatus, exposure apparatus, and device manufacturing apparatus
US6864601B2 (en) Electric motors with reduced stray magnetic fields
DE10007428A1 (en) Magnetic bearing contains group of coils, stator and rotating shaft attached to rotor which rotates when current flows through coils, convex shaft retainer being attached to shaft and concave stator retainer to inside of stator
JP2000055048A (en) Air bearing enforceable in vacuum area
JP2001258272A (en) Static pressure gas bearing unit
JP4753004B2 (en) Electromagnet unit, electromagnetic actuator, levitation control device for electromagnetic actuator, and stage device
EP1398521B1 (en) Shock absorbing apparatus and use thereof in a positioning apparatus
TWI720828B (en) Linear actuator
TW201735506A (en) Linear motor, voice coil motor, and stage device
US7144160B2 (en) Hydrodynamic bearing apparatus and stage apparatus using the same
KR102181534B1 (en) Linear Motor Assembly For Vacuum
CN108279552B (en) Substrate stage and exposure machine
JP2010213546A (en) Canned linear motor armature and canned linear motor
JPH1162965A (en) Static pressure guide device and moving body
CN111261570A (en) Substrate processing apparatus
JP2993504B1 (en) Electronic beam drawing apparatus and semiconductor device having pattern drawn by the apparatus
EP4369878A1 (en) Cooling device
JP2006344620A (en) Current transformer
KR100518436B1 (en) Linear Motor Assembly
CN116972068A (en) Tandem type self-sensing automatic emergency bearing and working method
JP2013101840A (en) Charged particle beam device and article manufacturing method using the same
TW202243778A (en) Electrical discharge machining apparatus