JP2001255279A - Pattern defect inspection method and its device - Google Patents

Pattern defect inspection method and its device

Info

Publication number
JP2001255279A
JP2001255279A JP2001000939A JP2001000939A JP2001255279A JP 2001255279 A JP2001255279 A JP 2001255279A JP 2001000939 A JP2001000939 A JP 2001000939A JP 2001000939 A JP2001000939 A JP 2001000939A JP 2001255279 A JP2001255279 A JP 2001255279A
Authority
JP
Japan
Prior art keywords
defect
pattern
image
extracted
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001000939A
Other languages
Japanese (ja)
Other versions
JP3405338B2 (en
Inventor
Takashi Hiroi
高志 広井
Hitoshi Kubota
仁志 窪田
Shunji Maeda
俊二 前田
Hiroshi Makihira
坦 牧平
Mitsunobu Isobe
光庸 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001000939A priority Critical patent/JP3405338B2/en
Publication of JP2001255279A publication Critical patent/JP2001255279A/en
Application granted granted Critical
Publication of JP3405338B2 publication Critical patent/JP3405338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To inspect, at high speed with high reliability, a defect on an inspection object comprising three-dimensional minute patterns. SOLUTION: A substrate is moved at least in one direction, and simultaneously many pattern formed on the substrate are imaged successively by a first imaging means to obtain image signals. The image signals of the patterns obtained by successive imaging are memorized successively, and the image signals obtained by successive imaging are compared with the memorized image signals to extract defect expectations. A defect candidate to be inspected in detail is extracted from among the extracted defect candidates, and an image having three-dimensional information of the extracted defect candidate to be inspected in detail is obtained, and the pattern defect is detected based on the image having the three-dimensional information.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LSIウエハやTFT
などの立体的な微細パターンの欠陥を検査するパターン
欠陥方法およびその装置に関する。
The present invention relates to an LSI wafer and a TFT.
The present invention relates to a pattern defect method for inspecting a defect of a three-dimensional fine pattern such as a three-dimensional pattern and an apparatus therefor.

【0002】[0002]

【従来の技術】従来の方法は、特公昭62−39811
号公報に記載のようにパターンをセンサで検出してデジ
タル画像に変換するする手段と同一であるはずのパター
ン同士をデジタル画像上で比較する手段によってパター
ンの欠陥を検出するようになっていた。
2. Description of the Related Art A conventional method is disclosed in JP-B-62-39811.
As described in Japanese Patent Application Laid-Open Publication No. H10-107, a defect of a pattern is detected by means for comparing patterns which are supposed to be the same as means for detecting a pattern with a sensor and converting the pattern into a digital image.

【0003】即ち、検出対象は図1(a)に示すように
メモリー用LSIなどの半導体ウエハのパターンや、T
FT(Thin Film Transister)のパターンや、プリント
配線板のパターンや、セラミック基板のパターンや、そ
れらを製造する工程で用いるマスクやレチクルなどのパ
ターンである。ここでは一例として半導体ウエハのパタ
ーンについて説明するが、他のパターンに対しても同じ
事が成り立つ。半導体ウエハのパターンは最終的に切り
離されて個別製品となるチップが数十個一枚のウエハに
載ってい、それらは互いに同じパターンを持っているチ
ップ内はメモリセル部分などのように一定の周期で繰り
返し性を持った部分と周辺回路などのように周期性の乏
しい部分がある。また、パターンの微細化にともなって
パターンは立体的になり、対物レンズなど検出光学系の
焦点深度を越えるようになってきた。
That is, as shown in FIG. 1A, a detection target is a pattern on a semiconductor wafer such as a memory LSI,
This is a pattern of an FT (Thin Film Transister), a pattern of a printed wiring board, a pattern of a ceramic substrate, or a pattern of a mask or a reticle used in a process of manufacturing them. Here, a pattern on a semiconductor wafer will be described as an example, but the same holds true for other patterns. The semiconductor wafer pattern has several tens of individual chips that are ultimately separated into individual products mounted on a single wafer.They have the same pattern in each chip. There is a portion having repeatability and a portion having poor periodicity such as a peripheral circuit. Further, as the pattern becomes finer, the pattern becomes three-dimensional and exceeds the depth of focus of a detection optical system such as an objective lens.

【0004】このようなパターンの欠陥を検出する原理
を図1を用いて説明する。図1(a)は検出して記憶し
ているパターン、(b)は検出したパターン、(c)は
(a)と(b)の差を示している。各チップが全く同一
のパターンを持っている、または各セルが一定の周期で
繰り返し性を持っている事に着目し、パターンを検出し
て記憶しておき、それと同一であるはずの別のチップの
パターンを次に検出して比較する。いずれのパターンに
も欠陥が存在しない場合にはパターンの差は生じない
が、いずれかのパターンに欠陥が存在する場合には欠陥
部分でパターンに差を生じるため、パターンの比較によ
り差を生ずる場所を検出することによりパターン欠陥を
検出することができる。
The principle of detecting such a pattern defect will be described with reference to FIG. 1A shows a detected and stored pattern, FIG. 1B shows a detected pattern, and FIG. 1C shows a difference between (a) and (b). Paying attention to the fact that each chip has exactly the same pattern or that each cell has repeatability at a fixed cycle, detect and store the pattern, another chip that should be the same Are then detected and compared. If there is no defect in any of the patterns, there is no difference between the patterns. However, if there is a defect in any of the patterns, a difference occurs in the pattern at the defective portion. Can be detected to detect a pattern defect.

【0005】[0005]

【発明が解決しようとする課題】一般に、パターンを検
出する対物レンズなどの検出光学系には一定の焦点深度
があり、この焦点深度を越えるパターンは正確に検出す
る事は出来ない。対象物が立体的になった場合、従来は
正確なパターンの検出は出来ないが、比較して同じなら
正常部としているため、焦点深度外であっても正常部で
は同一パターンが検出されるため、立体形状であること
は無視して検査していた。
Generally, a detection optical system such as an objective lens for detecting a pattern has a certain depth of focus, and a pattern exceeding this depth of focus cannot be detected accurately. Conventionally, when the object becomes three-dimensional, accurate patterns cannot be detected conventionally, but if the comparison is the same, the normal part is determined. Inspection was conducted ignoring the three-dimensional shape.

【0006】しかし、欠陥の検出を考えたとき、焦点深
度外では正確なパターンが検出されず、解像度が低下し
たり、像の反転が生じたりする。この影響で、欠陥部で
あっても正常部との検出パターン差が小さく欠陥として
判定できない場合があった。このため、微細欠陥の検出
ができないか、または微細欠陥を検出できるが正常部を
欠陥と誤検出するかのいずれかであった。
However, when considering the detection of a defect, an accurate pattern is not detected outside the depth of focus, and the resolution is reduced or the image is inverted. Due to this effect, there are cases where even a defective portion has a small detection pattern difference from a normal portion and cannot be determined as a defect. For this reason, either a fine defect cannot be detected, or a fine defect can be detected, but a normal part is erroneously detected as a defect.

【0007】本発明の目的は、微細化にともなって立体
的になったパターン上の真の欠陥を高速度で、しかも高
信頼度で検査できるようにしたパターン欠陥方法および
その装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pattern defect method and a pattern defect apparatus capable of inspecting a true defect on a three-dimensional pattern with miniaturization at a high speed and with high reliability. It is in.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、上記目
的を達成するために、微細なパターン上の欠陥を検査す
る方法において、該微細なパターンについて焦点深度の
浅い平面的な光学顕微鏡を用いて2次元の光学画像信号
を検出して基準画像信号と比較して欠陥候補を抽出し、
該抽出された欠陥候補の内明らかな欠陥については欠陥
と判定し、上記抽出された欠陥候補の内欠陥と判定でき
ないものについては3次元の顕微鏡を用いて立体的な形
状信号を検出して基準立体的な形状信号と比較して真の
欠陥を判定することを特徴とするパターン欠陥検査方法
である。
In order to achieve the above object, the present invention provides a method for inspecting a defect on a fine pattern, the method comprising the steps of: providing a planar optical microscope having a small depth of focus for the fine pattern; Detects a two-dimensional optical image signal and compares it with a reference image signal to extract defect candidates,
Among the extracted defect candidates, an obvious defect is determined as a defect, and among the extracted defect candidates, a defect which cannot be determined as a defect is detected by using a three-dimensional microscope to detect a three-dimensional shape signal. A pattern defect inspection method characterized in that a true defect is determined by comparing with a three-dimensional shape signal.

【0009】また本発明は、微細なパターン上の欠陥を
検査する装置において、該微細なパターンについて2次
元の光学画像信号を検出して基準画像信号と比較して欠
陥候補を抽出する焦点深度の浅い平面的な光学顕微鏡
と、該焦点深度の浅い平面的な光学顕微鏡により抽出さ
れた欠陥候補の内明らかな欠陥については欠陥と判定す
る選択手段と、上記焦点深度の浅い平面的な光学顕微鏡
により抽出された欠陥候補の内上記選択手段により欠陥
と判定できないものについては立体的な形状信号を検出
して基準立体的な形状信号と比較して真の欠陥を判定す
る3次元の顕微鏡とを備えたことを特徴とするパターン
欠陥検査装置である。また本発明は、上記パターン欠陥
検査装置において、上記3次元の顕微鏡として共焦点顕
微鏡によって構成したことを特徴とする。また本発明
は、上記パターン欠陥検査装置において、上記3次元の
顕微鏡として集束されたエネルギービームを用いた走査
型顕微鏡によって構成したことを特徴とする。
The present invention also provides an apparatus for inspecting a defect on a fine pattern, wherein a two-dimensional optical image signal of the fine pattern is detected and compared with a reference image signal to extract a defect candidate. A shallow planar optical microscope, selecting means for judging a defect as an obvious defect among the defect candidates extracted by the planar optical microscope having a shallow depth of focus, and the planar optical microscope having a shallow focal depth. A three-dimensional microscope for detecting a three-dimensional shape signal and comparing the extracted defect candidate with a reference three-dimensional shape signal to determine a true defect for a defect that cannot be determined as a defect among the extracted defect candidates. This is a pattern defect inspection device characterized by the following. According to the present invention, in the pattern defect inspection apparatus, the three-dimensional microscope is configured by a confocal microscope. The present invention is also characterized in that the pattern defect inspection apparatus is constituted by a scanning microscope using a focused energy beam as the three-dimensional microscope.

【0010】[0010]

【作用】一般に、微細なパターンを検出する顕微鏡など
の検出光学系には検出波長λとNAで決まる解像度Δx
と焦点深度Δzがある。より微細なパターンを検出する
には解像度Δxを小さくする必要がある。例えば中心波
長λ=500nmで0.3μmのパターンを検出するに
はNAは(数1)式より0.8以上とする必要がある。
Generally, a detection optical system such as a microscope for detecting a fine pattern has a resolution Δx determined by a detection wavelength λ and NA.
And the depth of focus Δz. To detect a finer pattern, it is necessary to reduce the resolution Δx. For example, in order to detect a 0.3 μm pattern at a center wavelength λ = 500 nm, the NA needs to be 0.8 or more according to equation (1).

【0011】 Δx=λ/(2×NA) (数1) 一方、焦点深度はNA0.8の対物レンズを用いた顕微
鏡では中心波長λ=500nmとすると焦点深度Δzは
(数2)式よりΔz=0.4μmとなる。
Δx = λ / (2 × NA) (Equation 1) On the other hand, if the center wavelength λ = 500 nm in a microscope using an objective lens with a depth of focus of 0.8, the depth of focus Δz can be calculated from the equation (2). = 0.4 μm.

【0012】 Δz=λ/(2×NA×NA) (数2) また、検出すべきパターンは微細化にともなって図2に
示すように配線パターンの段差は最高1μmを越えて立
体的になり、この焦点深度を越えるパターンは正確に検
出することはできない。
Δz = λ / (2 × NA × NA) (Equation 2) Further, as the pattern to be detected is miniaturized, as shown in FIG. However, patterns exceeding this depth of focus cannot be detected accurately.

【0013】このような立体的な対象物の場合、従来は
正確なパターンの検出は出来ないが、比較して同じなら
正常部としているため、焦点深度外であっても正常部で
は同一パターンが検出されるため、立体形状であること
は無視して検査していた。
In the case of such a three-dimensional object, an accurate pattern cannot be detected conventionally, but if the same is compared, the same part is regarded as a normal part. Since it was detected, it was inspected ignoring that it was a three-dimensional shape.

【0014】しかし、欠陥の検出を考えたとき、焦点深
度外では正確なパターンが検出されず、解像度が低下し
たり、像の反転が生じたりする。この影響で、欠陥部で
あっても正常部との検出パターン差が小さく欠陥として
判定できない場合があった。また、逆に小さいパターン
差を欠陥として検出すると正常な部分に存在するわずか
なパターン差を欠陥としてしまう。このため、微細欠陥
の検出ができないか、または微細欠陥を検出できるが正
常部を欠陥と誤検出するかのいずれかであった。
However, when considering the detection of a defect, an accurate pattern is not detected outside the depth of focus, so that the resolution is reduced or the image is inverted. Due to this effect, there are cases where even a defective portion has a small detection pattern difference from a normal portion and cannot be determined as a defect. Conversely, if a small pattern difference is detected as a defect, a slight pattern difference existing in a normal portion will be determined as a defect. For this reason, either a fine defect cannot be detected, or a fine defect can be detected, but a normal part is erroneously detected as a defect.

【0015】また、立体的なパターンの欠陥を検出する
手段として共焦点顕微鏡画像を元に長焦点深度画像、ま
たは立体形状画像を構成する方法、焦点深度の深いSE
M画像を用いる方法がある。しかし、いずれの方法も低
速であり、立体的なパターン全面を検査することは実質
的に不可能である。
As a means for detecting a defect of a three-dimensional pattern, a method of forming a long focal depth image or a three-dimensional shape image based on a confocal microscope image, an SE with a deep focal depth
There is a method using M images. However, both methods are slow, and it is substantially impossible to inspect the entire three-dimensional pattern.

【0016】本発明は、これらの点に着目して生まれた
ものである。即ち、本発明によれば、微細化にともなっ
て立体的になったパターン上の真の欠陥を高速度で、し
かも高信頼度で検査することができる。
The present invention has been made by paying attention to these points. That is, according to the present invention, a true defect on a pattern which has become three-dimensional with miniaturization can be inspected at high speed and with high reliability.

【0017】[0017]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】先ず、本発明の原理について図3に基づい
て説明する。本発明は、メモリー用LSIなどの半導体
ウエハのパターンや、TFT(Thin Film Transister)
のパターンや、プリント配線板のパターンや、セラミッ
ク基板のパターンや、それらを製造する工程で用いるマ
スクやレチクルなどの立体的な微細パターンを光学画像
として検出して欠陥を検査して欠陥候補を抽出する焦点
深度の浅い光学顕微鏡である平面パターン検査装置2
と、該平面パターン検査装置2よりの欠陥候補の座標と
寸法などの欠陥情報3を伝達する伝達手段4と、該伝達
手段4により伝達された欠陥情報を元に欠陥情報のみか
ら明らかに欠陥とわかる物を除去する選択手段5と、該
選択手段で選択された欠陥情報の座標部位の立体形状ま
たは、焦点深度の深いパターンを検出し、真の欠陥を判
定する共焦点顕微鏡または集束されたエネルギービーム
を用いた走査型顕微鏡によって構成した3次元顕微鏡で
ある詳細検査装置6とによって構成される。
First, the principle of the present invention will be described with reference to FIG. The present invention relates to a semiconductor wafer pattern such as a memory LSI, a TFT (Thin Film Transister)
Patterns, printed wiring board patterns, ceramic substrate patterns, and three-dimensional micropatterns such as masks and reticles used in the process of manufacturing them as optical images to inspect for defects and extract defect candidates Pattern inspection apparatus 2 which is an optical microscope with a small depth of focus
A transmitting unit 4 for transmitting defect information 3 such as coordinates and dimensions of a defect candidate from the plane pattern inspection apparatus 2; and a defect from only the defect information based on the defect information transmitted by the transmitting unit 4. A selecting means 5 for removing a known object, a confocal microscope or a focused energy detecting a three-dimensional shape of a coordinate portion of the defect information selected by the selecting means or a pattern with a deep depth of focus to determine a true defect A detailed inspection device 6 which is a three-dimensional microscope constituted by a scanning microscope using a beam.

【0019】上記平面パターン検査装置2にて、光学画
像として微細欠陥は検出できるが、正常部を欠陥として
指摘する誤検出も出しておいて、微細欠陥と誤検出を合
わせて欠陥候補とし、立体的な微細パターン全面の検査
終了後、欠陥候補の欠陥情報3を伝達手段4で伝達し、
選択手段5は欠陥候補の欠陥情報より例えば欠陥寸法の
大きい物は明らかに真の欠陥であるとして除去して詳細
検査装置6に情報を送る。該3次元の顕微鏡で構成され
た詳細検査装置6は、この選択された欠陥候補の場所の
みを立体形状を検出して、立体形状を元に真の欠陥を検
出する。または、焦点深度の深い画像を検出して、この
画像を元に真の欠陥を検出する。これにより、ウエハ全
面を高速に検査して欠陥候補を抽出し、欠陥候補部分の
立体形状画像または長焦点深度画像を検出することで立
体的な欠陥を信頼性高く検査することができる。
The flat pattern inspection apparatus 2 can detect a fine defect as an optical image. However, erroneous detection indicating a normal portion as a defect is also performed. After completion of the inspection of the entire surface of the typical fine pattern, the defect information 3 of the defect candidate is transmitted by the transmitting means 4,
The selecting means 5 removes, for example, an object having a larger defect size than the defect information of the defect candidate as a clear defect and sends the information to the detailed inspection device 6. The detailed inspection device 6 composed of the three-dimensional microscope detects a three-dimensional shape only at the location of the selected defect candidate, and detects a true defect based on the three-dimensional shape. Alternatively, an image having a large depth of focus is detected, and a true defect is detected based on the image. Thus, the entire surface of the wafer can be inspected at high speed to extract defect candidates, and a three-dimensional shape image or a long depth of focus image of the defect candidate portion can be detected to inspect three-dimensional defects with high reliability.

【0020】以下、本発明の第1の実施例を図4により
説明する。本実施例ではLSIウエハのパターンを例に
説明するが、TFTなどのパターンにも適用できること
は言うまでもない。図4はLSIウエハ等の立体的な微
細パターンを検査する検査装置(以下の説明では検査装
置と略す)の全体構成図である。検査装置は照明光源9
と光源の光をステージ8上の立体的な微細パターンを有
する被検査対象物であるウェハ10に照明して反射光を
検出する検出光学系11と反射光を検出するセンサ12
とセンサよりの画像パターンを記憶する記憶部13とセ
ンサ12で検出した画像パターンと記憶部よりの画像パ
ターンを比較する比較部14と比較部よりの画像を元に
欠陥を抽出する欠陥抽出部15よりなる平面パターンを
検出して欠陥候補を抽出する平面パターン検査装置2、
及び平面パターン検査装置で検査した欠陥候補の座標と
寸法などの欠陥情報3を伝達する伝達手段4、及び伝達
された欠陥情報を元に欠陥情報のみから明らかに欠陥と
わかる物を除去する選択手段5、及び選択された欠陥情
報の座標部位の立体形状を検出して真の欠陥を抽出する
共焦点顕微鏡を用いた立体形状を検査する詳細検査装置
6を組み合わせる。
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. In this embodiment, a pattern of an LSI wafer will be described as an example, but it is needless to say that the present invention can be applied to a pattern of a TFT or the like. FIG. 4 is an overall configuration diagram of an inspection device (hereinafter, abbreviated as an inspection device) for inspecting a three-dimensional fine pattern such as an LSI wafer. The inspection device is an illumination light source 9
And a detection optical system 11 for detecting reflected light by illuminating light from a light source onto a wafer 10 which is an inspection target having a three-dimensional fine pattern on the stage 8 and a sensor 12 for detecting reflected light
And a storage unit 13 for storing an image pattern from the sensor, a comparison unit 14 for comparing the image pattern detected by the sensor 12 with the image pattern from the storage unit, and a defect extraction unit 15 for extracting a defect based on the image from the comparison unit. Pattern inspection apparatus 2 for detecting a planar pattern composed of
Transmitting means 4 for transmitting defect information 3 such as coordinates and dimensions of a defect candidate inspected by the plane pattern inspection apparatus, and selecting means for removing an object which can be clearly identified as a defect only from the defect information based on the transmitted defect information. 5 and a detailed inspection apparatus 6 for inspecting the three-dimensional shape using a confocal microscope that detects the three-dimensional shape of the coordinate part of the selected defect information and extracts a true defect.

【0021】次に本検査装置の動作を説明する。平面パ
ターン検査装置2はステージ8を走査してウエハ10の
画像パターンを順次センサ12で検出し、記憶部13に
記憶し、検出した画像パターンと記憶している同一であ
るはずの画像パターンを比較部14で比較して差が一定
以上ある部分を欠陥抽出部15で欠陥候補16として抽
出する。
Next, the operation of the inspection apparatus will be described. The plane pattern inspection apparatus 2 scans the stage 8 to sequentially detect the image pattern of the wafer 10 with the sensor 12, stores the image pattern in the storage unit 13, and compares the detected image pattern with the stored image pattern which should be the same. A part having a difference equal to or more than a certain value compared by the part 14 is extracted as a defect candidate 16 by the defect extracting part 15.

【0022】欠陥候補16の座標と寸法を欠陥情報3と
してLANよりなる伝達手段4で選択手段5に送る。選
択手段5では欠陥情報の欠陥面積Sより(数3)式の基
準で明らかに欠陥と判定できる物を除去する。
The coordinates and dimensions of the defect candidate 16 are sent as defect information 3 to the selection means 5 by the transmission means 4 comprising a LAN. The selection unit 5 removes an object that can be clearly determined to be a defect based on the equation (3) based on the defect area S of the defect information.

【0023】 S>Sth (数3) ここで、Sthはあらかじめ定めた面積閾値である。選択
手段5で選択された欠陥情報を詳細検査装置6に送る。
検査装置では欠陥情報の座標位置のみの立体形状を検出
し、検出した立体形状を同一のパターンであるはずの立
体形状と比較し、差が有れば真の欠陥と判定する。
S> Sth (Equation 3) where Sth is a predetermined area threshold. The defect information selected by the selection means 5 is sent to the detailed inspection device 6.
The inspection device detects a three-dimensional shape only at the coordinate position of the defect information, compares the detected three-dimensional shape with a three-dimensional shape that should be the same pattern, and determines that there is a true defect if there is a difference.

【0024】次に、共焦点顕微鏡を用いた詳細検査装置
6を図5で説明する。詳細検査装置6は共焦点顕微鏡1
7と、試料台の高さ0.1μm以下の精度で上下の高さ
を変えることの出来るzステージ18と、該zステージ
の各高さの共焦点顕微鏡の画像を検出するTVカメラ2
0と、TVカメラ20で検出した各高さでのパターン
(2次元の画像信号)とzステージ18から出力される
各高さ(z変位)信号とを元に、立体形状を構成する立
体形状構成部21と、該立体形状構成部21で構成した
立体形状を記憶しておく記憶部22と、該記憶部22で
記憶しておいた隣接するチップの立体形状と検出した立
体形状を比較して欠陥を検出する欠陥判定部23よりな
る。
Next, a detailed inspection apparatus 6 using a confocal microscope will be described with reference to FIG. Detailed inspection device 6 is confocal microscope 1
7, a z stage 18 capable of changing the height of the sample stage with an accuracy of 0.1 μm or less, and a TV camera 2 for detecting images of a confocal microscope at each height of the z stage.
0, a three-dimensional shape forming a three-dimensional shape based on a pattern (two-dimensional image signal) at each height detected by the TV camera 20 and each height (z displacement) signal output from the z stage 18 The configuration unit 21, a storage unit 22 that stores the three-dimensional shape configured by the three-dimensional configuration unit 21, and compares the three-dimensional shape of the adjacent chip stored in the storage unit 22 with the detected three-dimensional shape. And a defect determination unit 23 for detecting a defect.

【0025】詳細検査装置6は次のように動作して欠陥
を判定するものである。zステージ18を徐々に上げな
がらパターンをTVカメラ20で検出し、立体形状構成
部21はTVカメラの各画素について一番検出光量の大
きい高さをその点の高さとすることで立体形状を構成す
る。構成した立体形状と記憶部22で記憶しておいた隣
接するチップの立体形状を欠陥判定部23で差を取り、
差が一定以上の場所を欠陥と判定する。
The detailed inspection device 6 operates as follows to determine a defect. The pattern is detected by the TV camera 20 while gradually raising the z-stage 18, and the three-dimensional shape forming unit 21 forms a three-dimensional shape by setting the height of the detected light amount of each pixel of the TV camera that is the highest at that point. I do. The difference between the configured three-dimensional shape and the three-dimensional shape of an adjacent chip stored in the storage unit 22 is calculated by a defect determination unit 23,
A location where the difference is equal to or greater than a certain value is determined as a defect.

【0026】ここで、共焦点顕微鏡による立体形状検出
の原理を図6で説明する。光源24よりの光を移動する
ピンホール19を介して対象物の1点のみに照射し、そ
の点のみを同一のピンホール19を介して反射光をTV
カメラ20で検出する。対象物が焦点位置にある場合は
反射光はピンホール位置に戻るためTVカメラ20では
明るく検出できる。一方、対象物が焦点位置をはずれた
場合、反射光は反射光戻り位置に集光し、ピンホールを
ほとんど光が通過しない。
Here, the principle of three-dimensional shape detection by a confocal microscope will be described with reference to FIG. The light from the light source 24 is radiated to only one point of the object through the moving pinhole 19, and only that point is reflected by the TV through the same pinhole 19.
It is detected by the camera 20. When the object is at the focal position, the reflected light returns to the pinhole position, so that the TV camera 20 can detect it brightly. On the other hand, when the object goes out of the focal position, the reflected light is condensed at the reflected light return position, and almost no light passes through the pinhole.

【0027】これら性質のため、図7に示すようにzス
テージ18を徐々に上げて被検査対象物の高さを徐々に
変えながらピンホール19を介してTVカメラ20で検
出される複数枚の画像の内、焦点のあった場所、つまり
zステージ18から検出されるzステージの高さが被検
査対象物の高さと一致した場所では検出光量が高く、そ
れ以外の場所では低くなる。このため、最も検出光量の
高いステージ高さ(zステージ18から出力される高さ
(z変位)信号)が被検査対象物の高さ26となる。こ
の構成には以下の特徴がある。 (1)焦点深度が極めて浅く、焦点位置をはずれると急
激に検出光量が低下する。 (2)解像度が約2倍向上する。
Due to these properties, as shown in FIG. 7, a plurality of sheets detected by the TV camera 20 through the pinhole 19 while gradually raising the z-stage 18 to gradually change the height of the object to be inspected. Among the images, the detected light amount is high at a focused position, that is, at a position where the height of the z-stage detected from the z-stage 18 coincides with the height of the inspection object, and becomes low at other positions. For this reason, the stage height (height (z displacement) signal output from the z stage 18) with the highest detected light amount is the height 26 of the inspection object. This configuration has the following features. (1) The depth of focus is extremely shallow, and if the focal position is deviated, the amount of detected light rapidly decreases. (2) The resolution is improved about twice.

【0028】本実施例によると解像度の高い共焦点顕微
鏡で立体形状を求めているため、真の欠陥を正確に求め
る事が出来る効果がある。
According to the present embodiment, since a three-dimensional shape is obtained by using a high-resolution confocal microscope, there is an effect that a true defect can be accurately obtained.

【0029】次に本実施例の第1の変形を説明する。詳
細検査装置6を平面パターン検査装置2に組み込む。こ
れにより、装置がコンパクトになると共に、座標合わせ
などの初期化が省略できる効果がある。
Next, a first modification of this embodiment will be described. The detailed inspection device 6 is incorporated in the planar pattern inspection device 2. This has the effect of making the apparatus compact and omitting initialization such as coordinate alignment.

【0030】次に本実施例の第2の変形を図7で説明す
る。図7は横軸にステージ高さ、縦軸に検出光量を取っ
て、1点の検出光量変化を調べたグラフである。グラフ
からわかるように、検出光量の最も高いステージ高さの
近辺では検出光量がほとんど同じで高さ精度が出ない。
そこで、立体形状構成部21では最大の検出光量の1/
2以上の検出光量を持つ部分の重心位置のステージ高さ
を対象物の高さとする。これにより、TVカメラでパタ
ーンを検出するステージの高さピッチより小さい精度で
対象物の高さを検出できる効果がある。
Next, a second modification of this embodiment will be described with reference to FIG. FIG. 7 is a graph in which the horizontal axis indicates the stage height and the vertical axis indicates the detected light amount, and the change in the detected light amount at one point is examined. As can be seen from the graph, the detected light amount is almost the same near the stage height where the detected light amount is the highest, and the height accuracy is not obtained.
Therefore, the three-dimensional shape forming unit 21 uses 1/1 of the maximum detected light amount.
The height of the stage at the position of the center of gravity of the portion having two or more detected light amounts is defined as the height of the object. Thus, there is an effect that the height of the target can be detected with an accuracy smaller than the height pitch of the stage for detecting the pattern by the TV camera.

【0031】また、同様な変形としては2次曲線、正規
分布などの関数で近似してピーク位置を求める方法もあ
り、同様な効果がある。
Further, as a similar modification, there is a method of obtaining a peak position by approximating with a function such as a quadratic curve or a normal distribution, and has the same effect.

【0032】次に本実施例の第3の変形を説明する。立
体形状の構成手段としては、光切断法、モアレが良く知
られている。これらの方式を用いて立体形状を検出す
る。
Next, a third modification of this embodiment will be described. As a means for forming a three-dimensional shape, a light cutting method and moire are well known. A three-dimensional shape is detected using these methods.

【0033】次に本発明の第4の変形を説明する。伝達
手段4としてはフロッピー(登録商標)ディスク、テー
プ等の磁気記憶媒体、プリンタ出力、等の間接的伝達手
段、または通信ケーブル等の直接伝達手段のいずれを用
いることが出来る。これらは同様な効果がある。
Next, a fourth modification of the present invention will be described. As the transmission means 4, any of a magnetic storage medium such as a floppy (registered trademark) disk and a tape, an indirect transmission means such as a printer output, and a direct transmission means such as a communication cable can be used. These have similar effects.

【0034】以下、本発明の第2の実施例を図8により
説明する。図8は検査装置の全体構成図である。検査装
置は平面パターンを検出して欠陥候補を抽出する平面パ
ターン検査装置2と欠陥候補の座標を基に欠陥候補位置
のみの長焦点パターンを共焦点顕微鏡により検査して真
の欠陥を判定する詳細検査装置6よりなる。
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is an overall configuration diagram of the inspection apparatus. The inspection apparatus detects a plane pattern and extracts a defect candidate, and determines the true defect by inspecting a long-focal pattern only at the defect candidate position based on the coordinates of the defect candidate using a confocal microscope. It consists of an inspection device 6.

【0035】次に、共焦点顕微鏡を用いた詳細検査装置
6を図9で説明する。詳細検査装置6は、共焦点顕微鏡
17と、試料台の高さ0.1μm以下の精度で上下の高
さを変えることができると共に試料台の高さ(変位)信
号を0.1μm以下の精度で出力するzステージ18
と、zステージ18の各高さにおける共焦点顕微鏡の画
像を検出するTVカメラ20と、該TVカメラ20で検
出した各高さでのパターン(2次元の画像信号)と上記
zステージ18から出力される0.1μm以下の精度で
得られるz変位信号を基に、2次元の各画素について検
出光量の最大値を示すその画素の点のz変位とすること
で焦点深度の深いパターン(3次元の画像信号)を構成
する長焦点パターン構成部27と、該長焦点パターン構
成部27で立体形状を構成する3次元形状信号を記憶し
ておく記憶部22と、該記憶部22で記憶しておいた隣
接するチップの長焦点パターン(基準の3次元形状信
号)と検出した長焦点パターン(3次元の形状信号)と
を比較して真の欠陥を検出する欠陥判定部23とにより
構成される。
Next, a detailed inspection apparatus 6 using a confocal microscope will be described with reference to FIG. The detailed inspection device 6 is capable of changing the vertical height with a confocal microscope 17 with an accuracy of 0.1 μm or less and a height (displacement) signal of the sample stage with an accuracy of 0.1 μm or less. Output stage 18
A TV camera 20 for detecting an image of the confocal microscope at each height of the z stage 18, a pattern (two-dimensional image signal) at each height detected by the TV camera 20, and an output from the z stage 18. Based on the z displacement signal obtained with an accuracy of 0.1 μm or less, a z-displacement of a point of the pixel which indicates the maximum value of the detected light amount for each two-dimensional pixel can be used to form a pattern with a deep depth of focus (three-dimensional Image signal), a storage unit 22 that stores a three-dimensional shape signal that forms a three-dimensional shape by the long focus pattern configuration unit 27, and a storage unit 22 that stores a three-dimensional shape signal. The defect determination unit 23 detects a true defect by comparing a long-focal pattern (reference three-dimensional shape signal) of an adjacent chip and a detected long-focal pattern (three-dimensional shape signal). .

【0036】詳細検査装置6は次のように動作して真の
欠陥を判定するものである。zステージ18を徐々に上
げながらその都度平面断面のパターンを2次元の画像信
号としてTVカメラ20で検出し、長焦点パターン構成
部27はTVカメラ20からその都度検出される多数の
2次元画像信号の各画素について検出光量の最大値を示
すその画素の点のz変位とすることで長焦点パターンを
構成する。構成した長焦点パターンと記憶部22で記憶
しておいた隣接するチップの長焦点パターンを欠陥判定
部23で差を取り、差が一定以上の場所を欠陥と判定す
る。
The detailed inspection device 6 operates as follows to determine a true defect. While gradually raising the z-stage 18, the TV camera 20 detects a pattern of a plane cross section as a two-dimensional image signal each time, and the long focus pattern forming unit 27 detects a large number of two-dimensional image signals detected from the TV camera 20 each time. For each pixel, a long focal point pattern is formed by using the z displacement of a point of the pixel indicating the maximum value of the detected light amount. The defect determination unit 23 calculates a difference between the configured long focal pattern and the long focal pattern of the adjacent chip stored in the storage unit 22, and determines a location where the difference is equal to or more than a certain value as a defect.

【0037】次に長焦点パターンの検出原理を説明す
る。zステージ18を徐々に上げて被検査対象物の高さ
を徐々に変えながらピンホールを通してTVカメラ20
から検出される複数枚の画像の内焦点のあった場所、つ
まりzステージ18から検出されるzステージ高さが、
被検査対象物の高さと一致した場所では検出光量が高
く、それ以外の場所では低くなる。このため、最も検出
光量の高いステージ高さが被検査対象物の高さであり、
そのときの検出光量が焦点があったときの検出光量とな
る。
Next, the principle of detecting a long focus pattern will be described. The TV camera 20 passes through the pinhole while gradually raising the z-stage 18 to gradually change the height of the inspection object.
The position where the inner focus of the plurality of images detected from, that is, the z stage height detected from the z stage 18 is
The detected light amount is high at a location that matches the height of the object to be inspected, and is low at other locations. For this reason, the stage height with the highest detected light quantity is the height of the inspection object,
The detected light amount at that time is the detected light amount when the focus is on.

【0038】本実施例によると解像度の高い共焦点顕微
鏡により焦点の全て合った画像を求めているため、真の
欠陥を正確に求めることができる効果がある。
According to the present embodiment, since an in-focus image is obtained by a high-resolution confocal microscope, there is an effect that a true defect can be accurately obtained.

【0039】また、詳細検査装置5として、例えば特開
平03−63507号公報に記載されて合焦点顕微鏡を
用いることもできる。
As the detailed inspection device 5, for example, a focusing microscope described in JP-A-03-63507 can be used.

【0040】本実施例の第1の変形を説明する。詳細検
査装置5の検出器としてSEM、走査トンネリング顕微
鏡、近接光ビーム走査顕微鏡等の集束されたエネルギー
ビームを用いた走査型顕微鏡を用いれば、焦点深度の極
めて深い画像を検出することができる。これらの検出器
から検出される画像信号を用いて詳細検査を行なうこと
ができる。
A first modification of this embodiment will be described. If a scanning microscope using a focused energy beam such as an SEM, a scanning tunneling microscope, or a proximity light beam scanning microscope is used as a detector of the detailed inspection device 5, an image with an extremely deep depth of focus can be detected. Detailed inspection can be performed using image signals detected from these detectors.

【0041】また、詳細検査装置5の検出器としては光
切断法、モアレ法を用いた立体形状検出装置によって構
成することもできる。
Further, the detector of the detailed inspection device 5 may be constituted by a three-dimensional shape detection device using a light section method or a moire method.

【0042】[0042]

【発明の効果】本発明によれば、立体的な微細なパター
ン上の真の欠陥を高速で、しかも高信頼度で検査するこ
とができる効果を奏する。
According to the present invention, there is an effect that a true defect on a three-dimensional fine pattern can be inspected at high speed and with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】2次元の画像信号を示す図で、(a)は基準の画
像信号である記憶パターンを示し、(b)は検出される検
出画像信号である検出パターンを示し、(c)は不一致画
像信号であるパターン差を示す図である。
FIG. 1 is a diagram showing a two-dimensional image signal, (a) shows a storage pattern which is a reference image signal, (b) shows a detection pattern which is a detected image signal to be detected, and (c) shows a detection pattern which is a detected image signal to be detected. FIG. 7 is a diagram illustrating a pattern difference that is a mismatched image signal.

【図2】本発明に係る被検査対象である立体的な微細パ
ターンを有するLSIウエハの断面図である。
FIG. 2 is a cross-sectional view of an LSI wafer having a three-dimensional fine pattern to be inspected according to the present invention.

【図3】本発明に係るパターン検査装置の原理を示す図
である。
FIG. 3 is a diagram showing the principle of a pattern inspection apparatus according to the present invention.

【図4】本発明に係るパターン検査装置の第1の実施例
を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a first embodiment of a pattern inspection apparatus according to the present invention.

【図5】図4に示す詳細検査装置の具体的な一実施例を
示す構成図である。
FIG. 5 is a configuration diagram showing a specific example of the detailed inspection device shown in FIG. 4;

【図6】図5に示す共焦点顕微鏡の一実施例を示す図
で、(a)は被検査対象物の検出点が焦点位置にある場合
を示す図、(b)は被検査対象物の検出点が焦点位置にな
い場合を示す図である。
6A and 6B are diagrams illustrating an embodiment of the confocal microscope illustrated in FIG. 5; FIG. 6A is a diagram illustrating a case where a detection point of the inspection target is at a focal position; It is a figure showing the case where a detection point is not in a focus position.

【図7】図6に示す共焦点顕微鏡においてzステージか
ら検出されるステージ高さzとTVカメラから検出され
る検出光量との関係を示す図である。
7 is a diagram showing a relationship between a stage height z detected from a z stage and a detected light amount detected from a TV camera in the confocal microscope shown in FIG.

【図8】本発明に係るパターン検査装置の第2の実施例
を示す概略構成図である。
FIG. 8 is a schematic configuration diagram showing a second embodiment of the pattern inspection apparatus according to the present invention.

【図9】図8に示す詳細検査装置の具体的な一実施例を
示す構成図である。
FIG. 9 is a configuration diagram showing a specific example of the detailed inspection apparatus shown in FIG. 8;

【符号の説明】[Explanation of symbols]

2…平面パターン検査装置、3…欠陥情報、4…伝達手
段、5…選択手段 6…詳細検査装置、8…ステージ、9…照明光源、10
…ウエハ 11…検出光学系、12…センサ、13…記憶部、14
…比較部 15…欠陥抽出部、16…欠陥候補、17…共焦点顕微
鏡、18…zステージ19…ピンホール、20…TVカ
メラ、21…立体形状構成部 22…記憶部、23…欠陥判定部、24…光源、27…
長焦点パターン構成部
2 Planar pattern inspection apparatus, 3 Defect information, 4 Transmission means, 5 Selection means 6 Detailed inspection apparatus, 8 Stage, 9 Illumination light source, 10
... Wafer 11 ... Detection optical system, 12 ... Sensor, 13 ... Storage unit, 14
... Comparison unit 15 ... Defect extraction unit, 16 ... Defect candidate, 17 ... Confocal microscope, 18 ... Z stage 19 ... Pinhole, 20 ... TV camera, 21 ... Three-dimensional configuration unit 22 ... Storage unit, 23 ... Defect judgment unit , 24 ... light source, 27 ...
Long focus pattern component

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年2月2日(2001.2.2)[Submission date] February 2, 2001 (2001.2.2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【産業上の利用分野】本発明は、LSIウエハやTFT
などの立体的な微細パターンの欠陥を検査するパターン
欠陥検査方法およびその装置に関する。
The present invention relates to an LSI wafer and a TFT.
The present invention relates to a pattern defect inspection method and an apparatus for inspecting defects of a three-dimensional fine pattern such as a three-dimensional pattern.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】本発明の目的は、微細化にともなって立体
的になったパターン上の真の欠陥を高速度で、しかも高
信頼度で検査できるようにしたパターン欠陥検査方法お
よびその装置を提供することにある。
An object of the present invention is to provide a pattern defect inspection method and apparatus capable of inspecting a true defect on a pattern which has become three-dimensional with miniaturization at high speed and with high reliability. It is in.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、上記目
的を達成するために、本来同じ形状となるべきパターン
が多数形成された基板のパターンの欠陥を検査するパタ
ーン欠陥検査方法において、基板を少なくとも1方向に
移動させながら第1の撮像手段で基板上に形成された多
数のパターンを順次撮像して画像信号を得、この順次撮
像して得たパターンの画像信号を順次記憶し、順次撮像
して得た画像信号と記憶した画像信号とを比較して欠陥
候補を抽出し、この抽出した欠陥候補の中から詳細に検
査する欠陥候補を抽出し、この抽出した詳細に検査する
欠陥候補を第2の撮像手段で撮像して詳細に検査する欠
陥候補の3次元の情報を有する画像を得、この得た3次
元の情報を有する画像に基づいてパターンの欠陥を検出
するようにした。
That is, in order to achieve the above object, the present invention provides a pattern defect inspection method for inspecting a pattern defect of a substrate on which a number of patterns which should have the same shape are formed. While moving in at least one direction, the first imaging means sequentially captures a large number of patterns formed on the substrate to obtain image signals, sequentially stores the image signals of the patterns obtained by sequentially capturing, and sequentially stores A defect candidate is extracted by comparing the image signal obtained by imaging with the stored image signal, a defect candidate to be inspected in detail is extracted from the extracted defect candidates, and a defect candidate to be inspected in detail is extracted. Is required to take an image of the
An image having three-dimensional information of a defect candidate is obtained, and a pattern defect is detected based on the obtained image having three-dimensional information.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】また、本発明は、上記目的を達成するため
に、本来同じ形状となるべきパターンが多数形成された
基板のパターンの欠陥を検査するパターン欠陥検査装置
を、基板を載置して少なくとも1方向に移動させるテー
ブル手段と、このテーブル手段により基板を少なくとも
1方向に移動させながら基板を撮像して基板上に形成さ
れた多数のパターンの画像信号を順次得る第1の撮像手
段と第1の撮像手段で順次撮像して得たパターンの画
像信号を順次記憶する記憶手段と、第1の撮像手段で順
次撮像して得た画像信号と記憶手段に記憶した画像信号
とを比較して欠陥候補を抽出する欠陥候補抽出手段と、
この欠陥候補抽出手段で抽出した欠陥候補の中から詳細
に検査する欠陥候補を抽出する詳細検査欠陥候補抽出手
段と、この詳細検査欠陥候補抽出手段で抽出した詳細に
検査する欠陥候補の3次元の情報を有する画像を得る第
2の撮像手段と、この第2の撮像手段で得た3次元の情
報を有する画像に基づいてパターンの欠陥を検出する欠
陥検出手段とを備えて構成した。
Further, in order to achieve the above object, the present invention provides a pattern defect inspection apparatus for inspecting a pattern defect of a substrate on which a large number of patterns which should have the same shape is formed, at least by mounting the substrate. Table means for moving in one direction, first image pickup means for sequentially picking up an image of the substrate while moving the substrate in at least one direction by the table means to sequentially obtain image signals of a large number of patterns formed on the substrate , A storage unit for sequentially storing image signals of patterns sequentially obtained by the first imaging unit, and an image signal obtained by sequentially imaging the first imaging unit and an image signal stored in the storage unit. Defect candidate extraction means for extracting defect candidates;
A detailed inspection defect candidate extracting means for extracting a defect candidate to be inspected in detail from the defect candidates extracted by the defect candidate extracting means, and a three-dimensional defect candidate for the detailed inspection extracted by the detailed inspection defect candidate extracting means. A second image pickup means for obtaining an image having information and a defect detection means for detecting a pattern defect based on the image having three-dimensional information obtained by the second image pickup means are provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01B 15/00 G01B 15/00 B G01N 13/10 G01N 13/10 F 13/14 13/14 A (72)発明者 前田 俊二 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 牧平 坦 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 磯部 光庸 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // G01B 15/00 G01B 15/00 B G01N 13/10 G01N 13/10 F 13/14 13/14 A (72) Inventor Shunji Maeda 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside Hitachi, Ltd.Production Technology Laboratory Co., Ltd. (72) Inventor Mitsuyoshi Isobe 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】本来同じ形状となるべきパターンが多数形
成された基板の前記パターンの欠陥を検査する方法であ
って、前記基板を少なくとも1方向に移動させながら第
1の撮像手段で前記基板上に形成された多数のパターン
を順次撮像して画像信号を得、該順次撮像して得た前記
パターンの画像信号を順次記憶し、前記順次撮像して得
た画像信号と前記記憶した画像信号とを比較して欠陥候
補を抽出し、該抽出した欠陥候補の中から詳細に検査す
る欠陥候補を抽出し、該抽出した詳細に検査する欠陥候
補の3次元の情報を有する画像を得、該得た3次元の情
報を有する画像に基づいて前記パターンの欠陥を検出す
ることを特徴とするパターン欠陥検査方法。
1. A method for inspecting a defect of a pattern on a substrate on which a large number of patterns to be originally formed in the same shape is formed, wherein the substrate is moved in at least one direction by a first image pickup means. An image signal is obtained by sequentially capturing a large number of patterns formed on the image signal, the image signal of the pattern obtained by sequentially capturing is sequentially stored, and the image signal obtained by sequentially capturing the image signal and the stored image signal are To extract a defect candidate to be inspected in detail from among the extracted defect candidates, obtain an image having three-dimensional information of the extracted defect candidate to be inspected in detail, A defect of the pattern based on an image having three-dimensional information.
【請求項2】前記抽出した詳細に検査する欠陥候補の3
次元の情報を有する画像を、共焦点顕微鏡を用いて取得
することを特徴とする請求項1記載のパターン欠陥検査
方法。
2. The extracted defect candidates to be inspected in detail 3
2. The pattern defect inspection method according to claim 1, wherein an image having dimensional information is acquired using a confocal microscope.
【請求項3】前記抽出した詳細に検査する欠陥候補の3
次元の情報を有する画像を、走査型電子顕微鏡を用いて
取得することを特徴とする請求項1記載のパターン欠陥
検査方法。
3. The extracted defect candidates to be inspected in detail.
2. The pattern defect inspection method according to claim 1, wherein an image having dimensional information is acquired using a scanning electron microscope.
【請求項4】本来同じ形状となるべきパターンが多数形
成された基板の前記パターンの欠陥を検査する装置であ
って、前記基板を載置して少なくとも1方向に移動させ
るテーブル手段と、該テーブル手段により少なくとも1
方向に移動する前記基板を撮像して前記基板上に形成さ
れた多数のパターンの画像信号を順次得る第1の撮像手
段と、、該第1の撮像手段で順次撮像して得た前記パタ
ーンの画像信号を順次記憶する記憶手段と、前記第1の
撮像手段で順次撮像して得た画像信号と前記記憶手段に
記憶した前記画像信号とを比較して欠陥候補を抽出する
欠陥候補抽出手段と、該欠陥候補抽出手段で抽出した欠
陥候補の中から詳細に検査する欠陥候補を抽出する詳細
検査欠陥候補抽出手段と、該詳細検査欠陥候補抽出手段
で抽出した詳細に検査する欠陥候補の3次元の情報を有
する画像を得る第2の撮像手段と、該第2の撮像手段で
得た3次元の情報を有する画像に基づいて前記パターン
の欠陥を検出する欠陥検出手段とを備えたことを特徴と
するパターン欠陥検査装置。
4. An apparatus for inspecting a defect of a pattern on a substrate on which a large number of patterns that should have the same shape are formed, comprising: table means for mounting the substrate and moving the substrate in at least one direction; At least one by means
First imaging means for sequentially capturing image signals of a large number of patterns formed on the substrate by imaging the substrate moving in a direction, and the first imaging means for sequentially imaging the pattern obtained by the first imaging means. Storage means for sequentially storing image signals; defect candidate extraction means for extracting defect candidates by comparing the image signals obtained by sequentially imaging with the first imaging means and the image signals stored in the storage means; A detailed inspection defect candidate extracting means for extracting a defect candidate to be inspected in detail from among the defect candidates extracted by the defect candidate extracting means, and a three-dimensional defect candidate for the detailed inspection extracted by the detailed inspection defect candidate extracting means. A second image pickup means for obtaining an image having the above information, and a defect detecting means for detecting a defect of the pattern based on the image having three-dimensional information obtained by the second image pickup means. Pattern defect査 apparatus.
【請求項5】前記第2の撮像手段を、共焦点顕微鏡を用
いて構成したことを特徴とする請求項5記載のパターン
欠陥検査装置。
5. The pattern defect inspection apparatus according to claim 5, wherein said second imaging means is constituted by using a confocal microscope.
【請求項6】前記第2の撮像手段を、走査型電子顕微鏡
を用いて構成したことを特徴とする請求項5記載のパタ
ーン欠陥検査装置。
6. The pattern defect inspection apparatus according to claim 5, wherein said second imaging means is constituted by using a scanning electron microscope.
【請求項7】前記欠陥候補抽出手段と、前記詳細検査欠
陥候補抽出手段とを通信回線で接続する接続手段を更に
備え、前記欠陥候補抽出手段で抽出した欠陥候補の情報
を前記接続手段を介して前記詳細検査欠陥候補抽出手段
へ送信することを特徴とする請求項5記載のパターン欠
陥検査装置。
7. A connection means for connecting the defect candidate extraction means and the detailed inspection defect candidate extraction means via a communication line, wherein information on the defect candidates extracted by the defect candidate extraction means is transmitted via the connection means. 6. The pattern defect inspection apparatus according to claim 5, wherein the pattern defect inspection apparatus transmits the detailed inspection defect candidate to the detailed inspection defect candidate extraction unit.
JP2001000939A 2001-01-09 2001-01-09 Pattern defect inspection method and apparatus Expired - Fee Related JP3405338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000939A JP3405338B2 (en) 2001-01-09 2001-01-09 Pattern defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000939A JP3405338B2 (en) 2001-01-09 2001-01-09 Pattern defect inspection method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3920292A Division JP3186174B2 (en) 1992-02-26 1992-02-26 Pattern defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001255279A true JP2001255279A (en) 2001-09-21
JP3405338B2 JP3405338B2 (en) 2003-05-12

Family

ID=18869634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000939A Expired - Fee Related JP3405338B2 (en) 2001-01-09 2001-01-09 Pattern defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3405338B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113941A (en) * 2005-10-18 2007-05-10 Ohkura Industry Co Device and method for inspecting defect
JP2009128325A (en) * 2007-11-28 2009-06-11 Fuji Electric Holdings Co Ltd Defect inspection method, and device therefor
JP2012215677A (en) * 2011-03-31 2012-11-08 Hoya Corp Manufacturing method for transfer mask and manufacturing method for semiconductor device
JP2015087114A (en) * 2013-10-28 2015-05-07 凸版印刷株式会社 Inspection equipment
WO2021010181A1 (en) * 2019-07-17 2021-01-21 日立金属株式会社 Inspection device, inspection method, positioning method, and program
JP2021032816A (en) * 2019-08-28 2021-03-01 ヤマハ発動機株式会社 Inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579007B1 (en) 2018-07-10 2023-09-15 삼성전자주식회사 System and method of analyzing crystal defect

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186174B2 (en) 1992-02-26 2001-07-11 株式会社日立製作所 Pattern defect inspection method and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113941A (en) * 2005-10-18 2007-05-10 Ohkura Industry Co Device and method for inspecting defect
JP2009128325A (en) * 2007-11-28 2009-06-11 Fuji Electric Holdings Co Ltd Defect inspection method, and device therefor
JP2012215677A (en) * 2011-03-31 2012-11-08 Hoya Corp Manufacturing method for transfer mask and manufacturing method for semiconductor device
KR101929845B1 (en) 2011-03-31 2018-12-17 호야 가부시키가이샤 Method of manufacturing transfer mask and method of manufacturing semiconductor device
JP2015087114A (en) * 2013-10-28 2015-05-07 凸版印刷株式会社 Inspection equipment
WO2021010181A1 (en) * 2019-07-17 2021-01-21 日立金属株式会社 Inspection device, inspection method, positioning method, and program
JP2021032816A (en) * 2019-08-28 2021-03-01 ヤマハ発動機株式会社 Inspection device
JP7303069B2 (en) 2019-08-28 2023-07-04 ヤマハ発動機株式会社 inspection equipment

Also Published As

Publication number Publication date
JP3405338B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
CN109791897B (en) Three-dimensional imaging for semiconductor wafer inspection
US5659172A (en) Reliable defect detection using multiple perspective scanning electron microscope images
KR102235580B1 (en) Defect marking for semiconductor wafer inspection
KR100310106B1 (en) Pattern inspection method and device
JP5355294B2 (en) Particle detection on object surface
US7127098B2 (en) Image detection method and its apparatus and defect detection method and its apparatus
JP4979246B2 (en) Defect observation method and apparatus
JP2009251412A (en) Device and method for inspecting mask blank, method of manufacturing reflection type exposure mask, and method of manufacturing semiconductor integrated circuit
JP2008175686A (en) Visual examination device and visual examination method
JPH10267628A (en) Method and apparatus for detection of three-dimensional shape as well as manufacture of board
JP2009016455A (en) Substrate position detecting device and substrate position detecting method
JP2012059984A (en) Mask inspection device and exposure mask manufacturing device
US7106432B1 (en) Surface inspection system and method for using photo detector array to detect defects in inspection surface
JP2018120211A (en) Method of inspecting defect of photomask blank, method of screening, and method of manufacturing
JPH06307826A (en) Mask inspection device
JP4394631B2 (en) Defect inspection method and apparatus
JP3405338B2 (en) Pattern defect inspection method and apparatus
JP2897890B2 (en) Printing accuracy measuring method and its device
JP2012058558A (en) Mask blank inspection method and manufacturing method of mask
JP3186174B2 (en) Pattern defect inspection method and apparatus
JP2001165632A (en) Inspection device and inspection method
JP5240980B2 (en) Three-dimensional measuring device and inspection device
JP3300791B2 (en) Pattern defect detection method and apparatus
US20070019859A1 (en) Method for measuring registration
JP2000171227A (en) Apparatus and method for inspecting foreign matter on wafer with pattern

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees