JP2001254120A - Lining in rh furnace - Google Patents

Lining in rh furnace

Info

Publication number
JP2001254120A
JP2001254120A JP2000065518A JP2000065518A JP2001254120A JP 2001254120 A JP2001254120 A JP 2001254120A JP 2000065518 A JP2000065518 A JP 2000065518A JP 2000065518 A JP2000065518 A JP 2000065518A JP 2001254120 A JP2001254120 A JP 2001254120A
Authority
JP
Japan
Prior art keywords
brick
furnace
magnesia
rare earth
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000065518A
Other languages
Japanese (ja)
Inventor
Koichi Shimizu
公一 清水
Masahiko Uchida
政彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp, Sumitomo Metal Industries Ltd filed Critical Krosaki Harima Corp
Priority to JP2000065518A priority Critical patent/JP2001254120A/en
Publication of JP2001254120A publication Critical patent/JP2001254120A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Abstract

PROBLEM TO BE SOLVED: To provide a lining structure in an RH furnace using dechromium brick excellent in erosion resistance to slag having low CaO/SiO2. SOLUTION: The brick having complex oxides of magnesia with rare earth metal oxides, such as yttria, latnia, is used for a circulating tube and a vessel bottom at the lower layer of the RH furnace, and an MgO-C brick is used for a side wall thereof. The complex oxide brick of the magnesia with the rare earth metal oxide can be formed from the blended material containing 80-99.8 wt.% magnesia raw material and 0.2-20 wt.% rare earth metal oxide raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼の二次精錬炉
として使用されるRH炉のライニングの組合せ構成に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combination configuration of a lining of an RH furnace used as a secondary smelting furnace for steel.

【0002】[0002]

【従来の技術】RH炉は、鉄鋼の二次精錬炉として脱ガ
スのために広く使用されている。このRH炉の内張り耐
火物としては、マグネシア−クロム質れんが(以下マグ
クロれんがと記す)が使用される場合が多い。マグクロ
れんがは、マグネシアとクロム鉱を主原料としたれんが
であり、通常10%以上のCrを含有する。
2. Description of the Related Art An RH furnace is widely used for degassing as a secondary smelting furnace for steel. Magnesia-chrome brick (hereinafter referred to as "magcro brick") is often used as the refractory lining of the RH furnace. Magcro brick is a brick mainly composed of magnesia and chromite ore, and usually contains 10% or more of Cr 2 O 3 .

【0003】そして、このCrを主成分とするス
ピネル族鉱物(MgR;R=Cr,Fe,Al)
が、れんが焼成中にマトリックスに二次スピネルとして
析出し、マグネシアを主体とする骨材を結合して、これ
が、マトリックス部のスラグ浸潤に対する抵抗性を高め
るという特性をもたらす。
[0003] Then, spinel group minerals mainly the Cr 2 O 3 (MgR 2 O 4; R = Cr, Fe, Al)
However, during the firing of the brick, it precipitates as a secondary spinel in the matrix and binds the aggregate mainly composed of magnesia, which provides the property of increasing the resistance of the matrix portion to slag infiltration.

【0004】しかし、このマグクロれんがは、使用後の
廃棄処分に際しては、れんが中に微量含まれる6価クロ
ムが水に溶出しないように特別の処理が必要であり、そ
の分、費用が多く掛かるという問題を有している。
However, when disposing of this magcro brick after use, a special treatment is required to prevent hexavalent chromium contained in the brick from being eluted into water, and the cost is increased accordingly. Have a problem.

【0005】このため、マグクロれんがと同等の特性を
もちながら、廃棄処分に際して問題のないマグクロれん
がに代わる耐火物として、例えば特開平9−30976
2号公報には、低カーボン質MgO−Cれんがが、ま
た、特公平7−51458号公報には、マグネシア−ス
ピネル質れんが(以下マグスピネルれんがと記す)が開
示されている。
[0005] For this reason, as a refractory material which has the same properties as magcro brick but has no problem in disposal, it is a substitute for magcro brick, for example, as disclosed in JP-A-9-30976.
No. 2 discloses low carbon MgO-C bricks, and Japanese Patent Publication No. 7-51458 discloses magnesia-spinel bricks (hereinafter referred to as mag spinel bricks).

【0006】前記のMgO−Cれんがは、マグネシアを
主体とし、マトリックス部にスラグに濡れにくい鱗状黒
鉛を配置することによって、スラグ浸潤を強力に抑制す
るものである。しかしながら、MgO−Cれんがはマト
リックスに鱗状黒鉛を含有するため、黒鉛が鋼中に溶出
するカーボンピックアップの原因となり、また、酸化鉄
を含む溶鋼の精錬中に、スラグによって黒鉛が酸化され
て、マトリックスが粗となるために、れんがの損耗が増
大するという問題を抱えている。
[0006] The MgO-C brick is mainly composed of magnesia, and has slag infiltration that is hardly wetted by slag in a matrix portion, thereby strongly suppressing slag infiltration. However, since MgO-C bricks contain scale graphite in the matrix, the graphite causes carbon pickup to elute in the steel, and during refining of molten steel containing iron oxide, the graphite is oxidized by slag, and Has a problem that the wear of the brick increases due to the roughness.

【0007】また、前記マグスピネルれんがは、マグク
ロれんがの二次スピネルをコモンスピネル(MgAl
)とすることによって、クロムを含有しない組成と
したもので、将来、脱クロムれんがの主流になると考え
られている。ところが、コモンスピネルは、特に低Ca
O/SiOスラグに対する耐食性が劣るため、マグス
ピネルれんがはマトリックスが先行溶損し、耐用性は不
十分となる欠点がある。
Further, the mag spinel brick is a common spinel (MgAl 2
O 4 ) is a composition that does not contain chromium, and is considered to become the mainstream of dechromed bricks in the future. However, the common spinel has a particularly low Ca
Since the corrosion resistance to O / SiO 2 slag is inferior, the mag spinel brick has a disadvantage that the matrix is preliminarily eroded and the durability is insufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来の
脱クロムれんがの欠点を解消するもので、低CaO/S
iOスラグに対する耐食性にも優れたRH炉のライニ
ング構造を提供する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional dechromed brick, and has a low CaO / S content.
Provided is a lining structure of an RH furnace having excellent corrosion resistance to iO 2 slag.

【0009】[0009]

【課題を解決するための手段】本願出願人は、先に、特
願平10−311195号公報において、イットリアを
主体とする希土類酸化物を0.2〜20重量%含有する
マグネシアイットリアれんがを開示した。本願発明は、
このマグネシアと希土類酸化物との複合酸化物れんが
は、Crを使用せずかつ耐用性も従来のマグクロ
れんがと同等以上のものであることを確認し、RH炉へ
の適用を思いついた。
The applicant of the present application has previously disclosed in Japanese Patent Application No. 10-31195 a magnesia yttria brick containing 0.2 to 20% by weight of a rare earth oxide mainly composed of yttria. did. The present invention is
This composite oxide brick of magnesia and rare earth oxide was confirmed not to use Cr 2 O 3 and to have a durability equal to or higher than that of a conventional magcro brick, and came up with an application to an RH furnace. .

【0010】すなわち、本発明に係るRH炉のライニン
グは、RH炉下部層の環流管と槽底にマグネシアと希土
類酸化物との複合酸化物からなるれんがを使用し、側壁
にMgO−Cれんがを使用した点に特徴を有する。
That is, the lining of the RH furnace according to the present invention uses a brick made of a composite oxide of magnesia and a rare earth oxide on the reflux tube and the bottom of the RH furnace lower layer, and a MgO-C brick on the side wall. The feature is in the point used.

【0011】希土類酸化物としては、Yに限ら
ず、La、あるいはそれ以外の希土類酸化物も類
似した化学的特性を有することから、同様の効果が期待
できる。
The rare earth oxide is not limited to Y 2 O 3 , but La 2 O 3 and other rare earth oxides have similar chemical properties, and therefore, the same effect can be expected.

【0012】本発明において、RH炉の下部層の環流管
と槽底に使用されるマグネシア−希土類酸化物との複合
酸化物れんがとしては、マグネシア原料80〜99.8
重量%と希土類酸化物原料0.2〜20重量%とを含有
する配合物を使用することができ、マグネシア原料と希
土類酸化物原料を混合し、成形後所定の温度で焼成する
という通常のマグクロれんがと同様な方法で得ることが
できる。希土類酸化物原料としては、Y、La
、あるいはそれ以外の希土類酸化物を合量として、
50重量%以上含有する原料を使用し、例えば精製した
純度の高い原料、あるいはゼノタイム、バストネサイト
などの鉱物から得られる希土類酸化物の混合物等も使用
できる。マグネシア原料としてはMgO−Cれんがやマ
グクロれんがの原料として一般的に使用されているもの
であれば良く、特に制約なく使用することができる。マ
グネシア原料の配合量は80〜99.8重量%が好まし
く、80重量%未満ではスラグに対する耐食性が不十分
である。
In the present invention, the magnesia-rare earth oxide composite oxide brick used for the reflux tube in the lower layer of the RH furnace and the tank bottom is a magnesia raw material of 80 to 99.8.
In general, it is possible to use a mixture containing 0.2% by weight of a rare earth oxide raw material and 0.2 to 20% by weight of a rare earth oxide raw material. Can be obtained in a similar manner to bricks. Rare earth oxide raw materials include Y 2 O 3 , La 2
O 3 or other rare earth oxides as a total amount,
A raw material containing 50% by weight or more is used. For example, a purified high-purity raw material or a mixture of rare earth oxides obtained from minerals such as xenotime and bastnaesite can be used. The magnesia raw material may be any material that is generally used as a raw material for MgO-C brick or magcro brick, and may be used without any particular limitation. The amount of the magnesia raw material is preferably from 80 to 99.8% by weight, and if it is less than 80% by weight, the corrosion resistance to slag is insufficient.

【0013】本発明に使用するマグネシア−希土類酸化
物との複合酸化物れんがの組織を調査すると、希土類酸
化物は組織中のマトリックス部に主に存在している。こ
れがどのようなメカニズムでスラグの浸透を抑制し、耐
食性を向上させるかは十分には明らかでないが、希土類
酸化物がスラグ中のSiOと反応し、スラグの融点を
上昇させて、浸透を抑制するというメカニズムが考えら
れる。
When investigating the structure of the magnesia-rare earth oxide composite oxide brick used in the present invention, the rare earth oxide is mainly present in the matrix portion in the structure. It is not sufficiently clear how this suppresses slag permeation and improves corrosion resistance, but rare earth oxides react with SiO 2 in the slag to increase the melting point of the slag and suppress permeation. There is a mechanism to do this.

【0014】また、RH炉の側壁に使用するMgO−C
れんがとしては、従来から、転炉、取鍋またはRH炉に
使用されているMgO−Cれんがを使用することができ
る。
Further, MgO-C used for the side wall of the RH furnace
As the brick, MgO-C brick conventionally used in a converter, a ladle or an RH furnace can be used.

【0015】従来から、二次精錬炉用炉材として使用さ
れているマグクロれんがは、温度や雰囲気の変化に弱い
一面がある。これは、マグクロれんがの原料であるクロ
ム鉱に含まれる鉄分が、温度や雰囲気の変化によって2
価の正イオンと3価の正イオンとの変化を繰り返すため
に、体積変化を伴い組織が劣化するいわゆる「バーステ
ィング」が発生するためである。また、強い還元雰囲気
に曝さらされると、主成分であるCr自体が還元
され、CrOガスとして揮発したり、Crの金属相とし
て組織内に残存する。これによって耐食性が損なわれ
る。それでもマグクロれんがが二次精錬炉用耐大物とし
て幅広く利用されている理由は、従来の脱クロムれん
が、例えばマグスピネルれんがと比べて、マグクロれん
がの耐食性が、上記の欠点を補って余りあるほど強いた
めである。
[0015] Magcro bricks conventionally used as furnace materials for secondary refining furnaces have one aspect that they are vulnerable to changes in temperature and atmosphere. This is because the iron content in the chromium ore, which is the raw material of the magcro brick, depends on changes in temperature and atmosphere.
This is because a so-called "bursting" in which the tissue is deteriorated with a change in volume occurs due to the repetition of the change between the valence positive ion and the trivalent positive ion. When exposed to a strong reducing atmosphere, Cr 2 O 3 itself, which is a main component, is reduced and volatilized as CrO gas, or remains in the structure as a Cr metal phase. This impairs corrosion resistance. Nevertheless, the reason why magcro brick is widely used as a large refractory furnace for secondary smelting furnaces is that, compared to conventional dechromed brick, for example, mag spinel brick, the corrosion resistance of magcro brick is so strong that it compensates for the above-mentioned disadvantages. It is.

【0016】一方、本発明に使用されるマグネシアイッ
トリアれんがに代表されるマグネシア−希土類酸化物と
の複合酸化物れんがは、耐食性において、マグクロれん
がと同等以上であり、かつ、れんが中に含有される希土
類酸化物は、高温でも酸化物として安定であるために、
温度や雰囲気の変化による耐食性劣化が発生しない。
On the other hand, the composite oxide brick with magnesia-rare earth oxide typified by magnesia yttria brick used in the present invention has a corrosion resistance equal to or higher than that of magcro brick and is contained in the brick. Since rare earth oxides are stable as oxides even at high temperatures,
Corrosion resistance does not deteriorate due to changes in temperature or atmosphere.

【0017】例えば、代表的な希土類酸化物であるY
は、FeO、Fe、Cr よりも酸化物
として安定している。このために、雰囲気変化の激しい
二次精錬用窯炉、特にRH炉のAlのような脱酸剤によ
って形成される強還元雰囲気に曝さらされやすい槽底、
環流管、浸漬管において優れた耐用を示す。
For example, a typical rare earth oxide, Y2
O3Are FeO, Fe2O3, Cr 2O3Oxide than
As stable as. Because of this, the atmosphere changes drastically
Kiln furnace for secondary refining, especially with deoxidizer such as Al in RH furnace
The bottom of the tank is easily exposed to the strong reducing atmosphere
Excellent durability in reflux and immersion tubes.

【0018】[0018]

【発明の実施の形態】以下、実施例によって本発明の実
施の形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to examples.

【0019】[0019]

【実施例】本発明の実施例であるRH炉の下部槽の垂直
断直図を示す図1と、図1を上から見た平面図である図
2において、下部槽1は図示しない浸漬管に下部フラン
ジ部2で連結する環流管3と、環流管3を囲むようにし
て炉底を形成する槽底4と槽底4から上の壁を形成する
側壁5とからなり、この側壁5の最上段は上部フランジ
部6で中間槽に連結されている。環流管3はマグネシア
イットリアれんがにより上下2段になった円筒を形成し
ている、還流管3の下段れんがの外周で鉄皮7との間に
は流し込み材8が充填されている。環流管3の上段れん
がの上部端面とほぼ同じレベルで下部槽の槽底4にマグ
ネシアイットリアれんががライニングされている。この
槽底より上の側壁5にMgO−Cれんがをライニング
し、この外周にはマグネシア材質のパーマれんが9が鉄
皮との間にライニングされている。
1 is a vertical sectional view of a lower tank of an RH furnace according to an embodiment of the present invention, and FIG. 2 is a plan view of FIG. 1 as viewed from above. And a bottom wall 4 forming a furnace bottom so as to surround the reflux tube 3 and a side wall 5 forming an upper wall from the bottom 4. Is connected to the intermediate tank by an upper flange portion 6. The recirculation tube 3 forms a cylinder formed by magnesia rear brick in two upper and lower stages. A casting material 8 is filled between the lower tube and the outer shell 7 of the reflux tube 3. A magnesia rear brick is lined on the bottom 4 of the lower tank at substantially the same level as the upper end surface of the upper brick of the reflux pipe 3. A MgO-C brick is lined on a side wall 5 above the bottom of the tank, and a perm brick 9 made of magnesia is lined around the outer periphery with a steel shell.

【0020】使用時には2つの環流管のうち一方から溶
鋼を吸い上げ、一方から排出する溶鋼の流れが発生し、
ちょうど側壁5には溶鋼の表面部が接触する。溶鋼の表
面には比重の軽いスラグが浮いているため、この側壁5
はスラグによる化学侵食を受けることになる。
In use, molten steel is sucked up from one of the two reflux tubes, and the flow of molten steel discharged from one is generated.
The surface of the molten steel just contacts the side wall 5. Since slag with a low specific gravity is floating on the surface of the molten steel,
Will be chemically attacked by slag.

【0021】マグネシアイットリアれんがをこの下部槽
全体に使用してテストを繰り返したところ、環流管や槽
底よりも側壁5の損傷が早いことがわかった。そこで、
側壁5に、マグネシアイットリアれんがよりも耐スラグ
浸潤性に優れるMgO−Cれんがを組み合わせたとこ
ろ、さらに炉全体の寿命を延ばすことができた。
When the test was repeated using magnesia-it rear brick for the entire lower tank, it was found that the side wall 5 was damaged earlier than the reflux tube or the tank bottom. Therefore,
When the side wall 5 was combined with MgO-C brick having better slag infiltration resistance than magnesia yttria brick, the life of the entire furnace could be further extended.

【0022】つまり、この側壁は溶鋼のスラグとしてC
aO−Al−SiO−FeO系のスラグがアタ
ックする。このためマグネシアイットリアれんがの稼働
面にこのスラグが浸潤し構造スポールが発生し損傷する
のである。これに対してMgO−Cれんがは、鱗状黒鉛
によりスラグの浸透を抑制できるので、構造スポールが
発生しにくい。従って、全体の炉寿命はマグネシアイッ
トリアれんがのみを使用した時よりも延ばすことができ
る。
That is, this side wall is formed of molten steel slag as C
aO-Al 2 O 3 -SiO 2 -FeO system of slag attack. As a result, the slag infiltrates the working surface of the magnesia yttria brick, generating structural spalls and causing damage. On the other hand, MgO-C bricks can suppress the penetration of slag by the scale-like graphite, so that structural spall hardly occurs. Thus, the overall furnace life can be extended over using magnesia yttria brick alone.

【0023】図1及び図2のRH炉下部槽において、実
施例1が槽底と環流管をマグネシアイットリアれんが、
壁をMgO−Cれんがでライニングしたもの、比較例1
として下部槽すべてをマグネシアイットリアれんがでラ
イニングしたものをそれぞれ施工し、各炉の耐用を比較
した。中間槽と浸漬管はマグクロれんがでライニングし
た。
In the lower vessel of the RH furnace shown in FIGS. 1 and 2, the first embodiment uses a magnesia rear brick to separate the vessel bottom and the reflux tube from each other.
Wall lining with MgO-C brick, Comparative Example 1
All the lower tanks were lined with magnesia-it rear bricks and constructed, and the durability of each furnace was compared. The intermediate tank and dip tube were lined with magcro brick.

【0024】本発明の実施例の炉は目標の1000チャ
ージに達したが、比較例炉は850チャージで側壁6段
目付近のれんがの残寸が小さくなり、鉄皮温度が上昇し
たため、この時点で使用を中止した。
In the furnace of the embodiment of the present invention, the target 1000 charge was reached, but in the furnace of the comparative example, the remaining size of the brick near the sixth side wall became small at 850 charges, and the temperature of the steel shell increased. The use was discontinued.

【0025】使用後に各炉の内部を点検し、れんがの損
耗状況を調査した。その結果、実施例の炉では、各部位
が均等に損耗しているのに対して、比較例の炉では壁の
損耗が大きく、槽底と環流管の損耗は小さい。
After use, the inside of each furnace was inspected to examine the state of brick wear. As a result, in the furnace of the example, each part is evenly worn, whereas in the furnace of the comparative example, the wall is greatly worn and the tank bottom and the reflux pipe are little worn.

【0026】そこで側壁、槽底中央部のれんがを回収し
切断して、損耗状況の調査を行った。その結果、側壁れ
んがでは、実施例(MgO−Cれんが)は稼働面付近は
ほとんど脱炭されておらず、スラグの浸潤は全く見られ
なかった。損耗速度は側壁6段目で約0.25mm/チ
ャージであった。一方、比較例炉(マグネシアイットリ
アれんが)はスラグが稼働面から約30mmの深さまで
浸潤しており、稼働面から約50mm背面側に稼働面に
平行な亀裂が見られた。このことから、比較例の側壁は
主として構造的スポーリングによって損耗したと考えら
れる。なお、損耗速度は側壁6段目で約0.39mm/
チャージであった。
Then, the bricks on the side wall and the central part of the tank bottom were collected and cut, and the state of wear was investigated. As a result, in the side wall brick, in the example (MgO-C brick), the vicinity of the operating surface was hardly decarburized, and no slag infiltration was observed. The wear rate was about 0.25 mm / charge at the sixth side wall. On the other hand, in the comparative example furnace (magnesia yttria brick), the slag was infiltrated to a depth of about 30 mm from the working surface, and a crack parallel to the working surface was found on the back side of about 50 mm from the working surface. From this, it is considered that the side wall of the comparative example was mainly worn by structural spalling. The wear rate was about 0.39 mm /
It was a charge.

【0027】一方、槽底中央部のれんがは実施例、比較
例(いずれもマグネシアイットリアれんが)とも、スラ
グ浸潤厚みは約5mmであり、構造的スポーリングの形
跡は見られなかった。損耗速度はいずれの炉も約0.2
2mm/チャージであった。
On the other hand, the brick at the center of the bottom of the tank had a slag infiltration thickness of about 5 mm and no evidence of structural spalling in both the example and the comparative example (both are magnesia rear bricks). The wear rate was about 0.2 for both furnaces.
It was 2 mm / charge.

【0028】[0028]

【発明の効果】本発明は、RH炉の下部槽にマグネシア
イットリアれんがとMgO−Cれんがとで適切にライニ
ングすることで、マグネシアイットリアれんがのみを使
用した場合より耐用性を向上することができる。
According to the present invention, by properly lining the lower tank of the RH furnace with the magnesium rear brick and the MgO-C brick, the durability can be improved as compared with the case where only the magnesium rear brick is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるRH炉の下部槽の垂直断
面図である。
FIG. 1 is a vertical sectional view of a lower tank of an RH furnace according to an embodiment of the present invention.

【図2】図1を上から見た平面図である。FIG. 2 is a plan view of FIG. 1 as viewed from above.

【符号の説明】[Explanation of symbols]

1 下部槽 2 下部フランジ部 3 環流管 4 槽底 5 側壁 6 上部フランジ部 7 鉄皮 8 流し込み材 9 パーマれんが DESCRIPTION OF SYMBOLS 1 Lower tank 2 Lower flange part 3 Recirculation pipe 4 Tank bottom 5 Side wall 6 Upper flange part 7 Iron shell 8 Casting material 9 Perm brick

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 政彦 茨城県鹿嶋市光3番地 住友金属工業株式 会社鹿島製鉄所製鋼部内 Fターム(参考) 4G030 AA07 AA11 AA12 AA13 BA26 GA09 4K013 CE01 CE09 CF18 CF19  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahiko Uchida 3, Hikari, Kashima-shi, Ibaraki Sumitomo Metal Industries Co., Ltd. Steelworks Dept., Kashima Works F-term (reference) 4G030 AA07 AA11 AA12 AA13 BA26 GA09 4K013 CE01 CE09 CF18 CF19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RH炉下部層の環流管と槽底にマグネシ
ア−希土類酸化物との複合酸化物れんがを使用し、側壁
にMgO−Cれんがを使用したRH炉のライニング。
1. A lining of an RH furnace using a composite oxide brick of magnesia-rare earth oxide for a reflux tube and a tank bottom of a lower layer of the RH furnace and MgO-C brick for a side wall.
【請求項2】 マグネシア−希土類酸化物との複合酸化
物れんがが、マグネシア原料80〜99.8重量%と希
土類酸化物原料0.2〜20重量%とを含有する配合物
からなる請求項1に記載のRH炉のライニング。
2. The magnesia-rare earth oxide composite oxide brick comprises a blend containing 80 to 99.8% by weight of a magnesia raw material and 0.2 to 20% by weight of a rare earth oxide raw material. 3. The lining of an RH furnace according to item 1.
JP2000065518A 2000-03-09 2000-03-09 Lining in rh furnace Pending JP2001254120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065518A JP2001254120A (en) 2000-03-09 2000-03-09 Lining in rh furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065518A JP2001254120A (en) 2000-03-09 2000-03-09 Lining in rh furnace

Publications (1)

Publication Number Publication Date
JP2001254120A true JP2001254120A (en) 2001-09-18

Family

ID=18585026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065518A Pending JP2001254120A (en) 2000-03-09 2000-03-09 Lining in rh furnace

Country Status (1)

Country Link
JP (1) JP2001254120A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314144A (en) * 2004-04-27 2005-11-10 Kurosaki Harima Corp Chromium-free monolithic refractory for waste material melting furnace and waste material melting furnace lined with the same
JP7303781B2 (en) 2020-07-28 2023-07-05 東京窯業株式会社 reflux tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314144A (en) * 2004-04-27 2005-11-10 Kurosaki Harima Corp Chromium-free monolithic refractory for waste material melting furnace and waste material melting furnace lined with the same
JP7303781B2 (en) 2020-07-28 2023-07-05 東京窯業株式会社 reflux tube

Similar Documents

Publication Publication Date Title
JPH0737344B2 (en) Irregular refractory with basic properties
Xu et al. Chemical wear mechanism of magnesia-chromite refractory for an oxygen bottom-blown copper-smelting furnace: A post-mortem analysis
Guo et al. Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum
Smets et al. Behaviour of magnesia–carbon refractories in vacuum–oxygen decarburisation ladle linings
JP2001254120A (en) Lining in rh furnace
JP4328053B2 (en) Magnesia-spinel brick
Ertuğ Classification and characteristics of predominant refractories used in metallurgy
JP3845160B2 (en) Slag coating method
Biswas et al. Modern refractory practice for clean steel
JP4373509B2 (en) Basic refractory
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JP5742105B2 (en) Operating method of hot metal holding furnace
JP7469667B2 (en) Spinel-alumina-carbon bricks for vacuum degassing equipment and vacuum degassing equipment
JPH11147755A (en) Shaped refractory material
JPH11335181A (en) Basic monolithic refractory having spalling resistance
JP2501155B2 (en) Magnesia chrome brick
KR0135317B1 (en) Magnesia chrome based refractory
JP2599870B2 (en) Amorphous refractory composition
JP3795933B2 (en) Magnesia-chromic fired brick
Biswas et al. Refractory for Secondary Refining of Steel
JP2000001363A (en) Refractory lining
JP2001010870A (en) Basic amorphous refractory using magnesia.calcia clinker
Naruse et al. Progress on Carbon‐Bearing Refractories for the BOF
JP2022158501A (en) Magnesia-spinel brick for vacuum degassing device, and vacuum degassing device
JPH05186275A (en) Basic amorphous refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040604