JP2001253833A - Method for inducing cell-mediated immunity of live vaccine even in inactivated vaccine, and combined vaccine obtained by the method - Google Patents

Method for inducing cell-mediated immunity of live vaccine even in inactivated vaccine, and combined vaccine obtained by the method

Info

Publication number
JP2001253833A
JP2001253833A JP2000114421A JP2000114421A JP2001253833A JP 2001253833 A JP2001253833 A JP 2001253833A JP 2000114421 A JP2000114421 A JP 2000114421A JP 2000114421 A JP2000114421 A JP 2000114421A JP 2001253833 A JP2001253833 A JP 2001253833A
Authority
JP
Japan
Prior art keywords
vaccine
live
inactivated
antigen
mediated immunity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000114421A
Other languages
Japanese (ja)
Other versions
JP4540795B2 (en
Inventor
Kimiyasu Shiraki
公康 白木
Masaaki Takahashi
理明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANDAI BISEIBUTSUBIYOU KENKYUKAI
Osaka University NUC
Original Assignee
HANDAI BISEIBUTSUBIYOU KENKYUKAI
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANDAI BISEIBUTSUBIYOU KENKYUKAI, Osaka University NUC filed Critical HANDAI BISEIBUTSUBIYOU KENKYUKAI
Priority to JP2000114421A priority Critical patent/JP4540795B2/en
Publication of JP2001253833A publication Critical patent/JP2001253833A/en
Application granted granted Critical
Publication of JP4540795B2 publication Critical patent/JP4540795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

PROBLEM TO BE SOLVED: To overcome the shortcoming that the conventional inactivated vaccine does not induce cell-mediated immunity, and at the same time, to achieve the simplification, labor saving and cost reduction of preventive inoculation. SOLUTION: A method of inducing cell-mediated immunity of a live vaccine even in an inactivated vaccine, and a combined vaccine of the inactivated vaccine obtained by the method and a live vaccine. The inoculation of the combined vaccine induces not only humoral immunity but also cell-mediated immunity against an antigen of the inactivated vaccine accompanied by the induction of the cell-mediated immunity due to the live vaccine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、生ワクチンの細胞性
免疫活性を不活化ワクチンにも起こさせる方法、及びか
かる方法に得られる不活化ワクチンと生ワクチンとの混
合ワクチンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inducing the cell-mediated immunity of a live vaccine to an inactivated vaccine, and to a mixed vaccine of an inactivated vaccine and a live vaccine obtained by such a method.

【0002】[0002]

【従来の技術】混合ワクチンに係る技術は約半世紀前か
ら実用に供されており、次の3つに大別される:(1)
異種抗原の複雑混合により調製された混合ワクチン、例
えば、百日せきジフテリア破傷風混合ワクチン(DPT
不活化ワクチン)、麻しんおたふくかぜ風しん混合ワク
チン(MMR生ワクチン)等;(2)同種内の異なる血
清型抗原の単純混合により調製された多価ワクチン、例
えば、経口生ポリオワクチン(I型、II型及びIII
型弱毒生ポリオウイルスからなる3価ワクチン)、イン
フルエンザHAワクチン(通常、A型2株とB型1株に
由来の不活化インフルエンザウイルスHA抗原からなる
3価ワクチン)等;及び(3)異種ワクチンの同時接
種、例えば、2者(上記MMR及び弱毒生水痘ワクチ
ン)、3者[上記DPT、ヘモフィリス・インフルエン
ザb型(Hib)不活化ワクチン及びA型肝炎不活化ワ
クチン]等の同時接種(“New Generatio
n Vacines”、第619−629頁,M.M.
Levineら編,MarcelDekker,ln
c.,1997年発行)。ところで、弱毒生ワクチンは
体液性免疫と細胞性免疫の両者を誘導する。しかし、不
活化ワクチンでは、体液性免疫は誘導されるが通常、細
胞性免疫が誘導されないという欠陥が知られている.か
かる欠陥を解消するため、不活化ワクチン用の抗原をコ
ードする遺伝子を生ワクチン用の弱毒ウイルスのゲノム
に挿入連係することにより構築した弱毒組換えウイルス
が作出されている。例えば、水痘ウイルス(VZV)と
B型肝炎表面(HBs)両抗原を同時に産生する組換え
弱毒VZV(日本特許第3,026,029号、米国特
許第5,653,976号、欧州特許第0,510,9
96号等)、VZV抗原とヒト免疫不全ウイルス(HI
V)のV3抗原領域を同時に産生する組換え弱毒VZV
(日本国特許願H11−104337号)等が既に作出
されている。これ等の組換え弱毒VZVはいずれも、2
種混合生ワクチンの有効成分としての機能と効果、即
ち、相異なる2種の抗原に対する体液性免疫と細胞性免
疫の両者を誘導することが前臨床試験により確認されて
いる。しかし、ヒトに対する安全性は未確認の状態にあ
る。
2. Description of the Related Art Combination vaccine technology has been in practical use for about half a century, and can be roughly classified into the following three types: (1)
Combination vaccines prepared by complex mixing of heterologous antigens, such as diphtheria pertussis tetanus combination vaccine (DPT
(2) a multivalent vaccine prepared by simple mixing of different serotype antigens within the same species, such as an oral live polio vaccine (type I, type II) And III
A trivalent vaccine comprising a live attenuated poliovirus), an influenza HA vaccine (generally a trivalent vaccine comprising an inactivated influenza virus HA antigen derived from two A strains and one B strain), and (3) a heterologous vaccine , For example, two (the above-mentioned MMR and live attenuated varicella vaccine) and three (the above-mentioned DPT, hemophilis influenza b type (Hib) inactivated vaccine and hepatitis A inactivated vaccine) etc. (“New” Generatio
n Vacines ", pp. 619-629, MM.
Ed., Levine et al., Marcel Dekker, ln
c. , 1997). By the way, a live attenuated vaccine induces both humoral immunity and cellular immunity. However, it has been known that inactivated vaccines induce humoral immunity but usually do not induce cellular immunity. In order to solve such a defect, an attenuated recombinant virus constructed by inserting and linking a gene encoding an antigen for an inactivated vaccine to the genome of an attenuated virus for a live vaccine has been produced. For example, a recombinant attenuated VZV that simultaneously produces both varicella virus (VZV) and hepatitis B surface (HBs) antigens (Japanese Patent No. 3,026,029, US Pat. No. 5,653,976, European Patent No. 0) , 510,9
96), VZV antigen and human immunodeficiency virus (HI
V) Recombinant attenuated VZV simultaneously producing V3 antigen region of V)
(Japanese Patent Application H11-104337) and the like have already been created. All of these recombinant attenuated VZVs have 2
It has been confirmed by preclinical studies that the function and effect as an active ingredient of the mixed live vaccine, that is, both humoral immunity and cellular immunity against two different antigens are induced. However, safety for humans has not been confirmed.

【0003】[0003]

【発明が解決しようとする課題】この発明は、前述した
細胞性免疫を誘導しないという不活化ワクチンの欠陥を
解消すると共に、上述の組換え弱毒VZVの安全性に係
る臨床試験を実施する上での困難な条件の回避を目的と
して、新たに着想され完成された。更に、予防接種にお
いては、被接種者は地理的、時間的、及び経済的に制約
を受け、一方、接種する側は、それを実施するための要
員や場所等の確保・配備を要する。従って、予防接種の
簡素化、省力化及びコスト低減は公衆保健上、重要課題
であり、この発明は、かかる課題の解決にも寄与する。
The present invention solves the above-mentioned deficiencies of inactivated vaccines that do not induce cell-mediated immunity, and implements the above-mentioned clinical tests on the safety of recombinant attenuated VZV. It was newly conceived and completed with the aim of avoiding difficult conditions. In addition, in vaccination, the recipient is geographically, temporally, and economically restricted, while the recipient needs to secure and deploy personnel and places to perform it. Therefore, simplification of vaccination, labor saving and cost reduction are important issues in public health, and the present invention also contributes to solving such issues.

【0004】[0004]

【課題を解決するための手段】この発明は、不活化ワク
チンと生ワクチンとを混合ワクチンとして接種すると、
生ワクチンと同様に不活化ワクチンが体液性免疫と細胞
性免疫の両者を誘導するという驚くべき発見に基づいて
おり、その構成は、生ワクチンにより生じる感染型の細
胞性免疫、あるいは生ワクチンが誘導する細胞性免疫と
同等の活性を不活化ワクチンにも起こさせることにあ
る。換言すれば、不活化ワクチンの有効成分と生ワクチ
ンのそれとを免疫応答時に共存させ、不活化ワクチンに
細胞性免疫を誘導させるための一種のアジュバントとし
て生ワクチンを用いることにある。この発明は、次の
(1)〜(4)の提供により、前述の諸課題を解決する
ものである: (1)不活化ワクチン及び生ワクチンの各有効成分をそ
れぞれ細胞性免疫を誘導する量、混合することにより、
生ワクチンの有効成分の感染により生じる細胞性免疫、
あるいは生ワクチンの細胞性免疫活性を、不活化ワクチ
ンにも起こさせる方法; (2)不活化ワクチン及び生ワクチンの各有効成分をそ
れぞれ細胞性免疫を誘導する量、含有する混合ワクチ
ン; (3)不活化ワクチンの有効成分が、B型肝炎、非A非
B型肝炎、HIV、ロタ、日本脳炎及びインフルエンザ
の各ウイルス並びに破傷風、百日せき及びジフテリアの
各細菌に由来の不活化された抗原群から選ばれる少なく
とも1種の抗原である上記(2)に記載の混合ワクチ
ン;及び (4)生ワクチンの有効成分が弱毒水痘ウイルスである
上記(2)又は(3)の混合ワクチン。
According to the present invention, when an inactivated vaccine and a live vaccine are inoculated as a mixed vaccine,
Based on the surprising finding that inactivated vaccines induce both humoral and cellular immunity, as well as live vaccines, the composition is based on the infectious form of cell-mediated immunity produced by live vaccines or the induction of live vaccines Inactivated vaccines have the same activity as cell-mediated immunity. In other words, the active ingredient of the inactivated vaccine and that of the live vaccine coexist during the immune response, and the live vaccine is used as a kind of adjuvant to induce the inactivated vaccine to induce cellular immunity. The present invention solves the above-mentioned problems by providing the following (1) to (4): (1) The amount of each of the active components of the inactivated vaccine and the live vaccine to induce cellular immunity. , By mixing
Cell-mediated immunity caused by infection of the active ingredient of a live vaccine,
Alternatively, a method for causing the cell-mediated immunity activity of a live vaccine to occur in an inactivated vaccine; (2) a mixed vaccine containing the active components of the inactivated vaccine and the live vaccine in amounts that induce cellular immunity, respectively; (3) Inactivated antigens derived from hepatitis B, non-A non-B hepatitis, HIV, rota, Japanese encephalitis and influenza viruses and tetanus, pertussis and diphtheria bacteria as active ingredients of the inactivated vaccine. And (4) the combination vaccine of (2) or (3), wherein the active ingredient of the live vaccine is the attenuated varicella virus.

【0005】[0005]

【発明の実施の形態】[ワクチン混合における留意点]
不活化ワクチンと生ワクチンとの混合に際しては、
(a)混合による効果、即ち、不活化ワクチンによる細
胞性免疫の誘導を確認することが先決ではある。しか
し、更に次の(b)〜(e)を確認し、これ等に該当す
る場合には、その混合を避けることが重要である。即
ち、かかる混合又は共存により、(b)生ワクチンの有
効成分、例えば、弱毒ウイルスや弱毒細菌等の増殖が阻
害されない;(c)混合後の各有効成分の免疫原性が混
合前に比べ低下しない;(d)混合ワクチンの接種に起
因する副反応とその頻度が混合前に比べ増強されず、ま
た、多様化しない;及び(e)混合後の各有効成分の保
存性が混合前に比べ損なわれない。
BEST MODE FOR CARRYING OUT THE INVENTION [Points to keep in mind when mixing vaccines]
When mixing the inactivated vaccine and the live vaccine,
(A) It is the first decision to confirm the effect of mixing, that is, the induction of cellular immunity by the inactivated vaccine. However, it is important to further confirm the following (b) to (e), and to avoid mixing if these correspond. That is, such mixing or coexistence does not inhibit (b) the growth of the active ingredient of the live vaccine, for example, an attenuated virus or attenuated bacterium; (c) the immunogenicity of each active ingredient after mixing is lower than that before mixing. No; (d) the side reaction and frequency of inoculation of the combined vaccine are not enhanced and diversified as compared to before the mixing; and (e) the preservation of each active ingredient after the mixing is higher than that before the mixing. It is not spoiled.

【0006】[不活化ワクチンとその有効成分]人体
用、獣疫用、魚類用等の不活化ワクチンを用いることが
できる。尚、かかる不活化ワクチンの有効成分として、
既知の抗原、あるいは将来開発される種々の抗原を随意
に用いることができる。例えば、A型肝炎、B型肝炎、
ポリオ、ロタ、インフルエンザ、日本脳炎、デング、狂
犬病等のウイルスに由来の抗原、また、非A非B型肝炎
ウイルス(NANBV)、HIV Hib、肺炎球菌、
髄膜炎菌、ジフテリア菌、破傷風菌、百日せき菌等に由
来の抗原、更に詳しくは、例えば、HBs、日本脳炎ウ
イルスの全粒子、ロタウイルスの全粒子、VP4、VP
7等、NANBVのE、C、M等、HIVのGag、P
ol、Env、Nef、及びその他アクセサリーに係る
タンパク、肺炎球菌の多糖体、DPT、破傷風毒素B−
C断片等々の抗原を上げることができる。尚、この発明
では不活化ワクチンの有効成分として、例えば、ホルマ
リン、エチレンオキサイド、β−プロピオラクトン、グ
ルタルジアルデヒド等の不活化剤ないしは変性剤、紫外
線等を用いる常法によりその増殖性や毒性を失活あるい
は無毒化することにより調製された抗原だけではなく、
その立体構造を固定化し安定化することにより調製され
た抗原をも用いる。但し、かかる抗原の免疫原性及び抗
原性を保持するには、条件の選択設定、例えば、用いる
不活化剤あるいは変性剤の濃度、温度、pH等、更に、
不活化緩和剤、例えば、グリシン、アルギニン等の併用
等の工夫を要する。
[Inactivated Vaccine and Its Active Ingredient] Inactivated vaccines for human body, animal vegetation, fish and the like can be used. In addition, as an active ingredient of such an inactivated vaccine,
Known antigens or various antigens to be developed in the future can optionally be used. For example, hepatitis A, hepatitis B,
Antigens derived from viruses such as polio, rota, influenza, Japanese encephalitis, dengue, rabies, etc. Also, non-A non-B hepatitis virus (NANBV), HIV Hib, pneumococcus,
Antigens derived from meningococci, diphtheria, tetanus, pertussis, etc. More specifically, for example, all particles of HBs, Japanese encephalitis virus, all particles of rotavirus, VP4, VP
7 etc., NANBV E, C, M etc., HIV Gag, P
ol, Env, Nef, and other accessories, pneumococcal polysaccharide, DPT, tetanus toxin B-
Antigens such as C fragments can be raised. In the present invention, as an active ingredient of the inactivated vaccine, for example, an inactivating agent or denaturing agent such as formalin, ethylene oxide, β-propiolactone, and glutardialdehyde, and its proliferation and toxicity are determined by a conventional method using ultraviolet rays and the like. Not only antigens prepared by inactivating or detoxifying
An antigen prepared by fixing and stabilizing the three-dimensional structure is also used. However, in order to maintain the immunogenicity and antigenicity of such an antigen, selective setting of conditions, for example, the concentration, temperature, pH, etc. of the inactivating agent or denaturing agent used,
It is necessary to devise an inactivation relieving agent such as glycine or arginine.

【0007】[生ワクチンとその有効成分]人体用、獣
疫用、魚類用等の生ワクチンを用いることができる。
尚、かかる生ワクチンの有効成分として、既知の弱毒ウ
イルス、弱毒細菌等、あるいは将来、生ワクチンの有効
成分として開発される種々の弱毒病原体を随意に用いる
ことができる。例えば、水痘、ワクチニア、マレック
病、麻しん、風しん、ポリオ、インフルエンザ等の弱毒
ウイルス、また、結核菌、炭疽菌等の弱毒細菌、更に詳
しくは、例えば、弱毒VZV岡株、弱毒麻しんウイルス
田辺株、弱毒風しんウイルス松浦株、マレック病ウイル
スC2株、HVTの01株、カルメット・ゲラン菌、無
莢膜弱毒炭疽菌34F2株等を上げることができる。
[Live vaccines and their active ingredients] Live vaccines for humans, animal vegetation, fish and the like can be used.
As an active ingredient of such a live vaccine, a known attenuated virus, an attenuated bacterium, or the like, or various attenuated pathogens to be developed as an active ingredient of a live vaccine in the future can be optionally used. For example, chickenpox, vaccinia, Marek's disease, measles, rubella, polio, attenuated viruses such as influenza, and also attenuated bacteria such as Mycobacterium tuberculosis and anthrax, more specifically, for example, attenuated VZV Oka strain, attenuated measles virus Tanabe strain, Attenuated rubella virus Matsuura strain, Marek's disease virus C2 strain, 01 HVT strain, Calmette-Guerin bacteria, acapsular attenuated anthrax 34F2 strain and the like can be mentioned.

【0008】[不活化ワクチンと生ワクチンとの混合ワ
クチンの調製]ワクチンの調製及び製造、並びにその安
全性と有効性に関する品質の確保と管理は、「生物学的
製剤基準」[薬事法(昭和35年法律第145号)第4
2条第1項の規定に基づく厚生省告示(平成5年10月
1日)第217号]の規程に準拠するか、あるいはWH
O(世界保健機関)の勧告“Requirements
for Biological Substances
and othersets of recomme
ndations”(WHO Thechnical
Reports Series,No.889,pp.
105−111,1999)に従って行う。例えば、不
活化ワクチンの調製では、「沈降B型肝炎ワクチン」、
「インフルエンザHAワクチン」、「日本脳炎ワクチ
ン」、「沈降精製百日せきワクチン」等に係る上記基準
に準拠して製造かつ各種試験を行い、不活化ワクチンと
して適格性を確保する。また、生ワクチンの調製では、
「乾燥弱毒生水痘ワクチン」、「乾燥細胞培養痘そうワ
クチン」、「乾燥弱毒生麻しんワクチン」等に係る前記
基準に準拠して製造かつ各種試験を行い、生ワクチンと
しての適格性を確保する。更に、混合ワクチンの調製で
は、例えば「百日せきジフテリア破傷風」、「乾燥弱毒
生風しんおたふくかぜ麻しんワクチン」等に係る上記基
準に準拠して製造かつ各種試験を行い、混合ワクチンと
しての適格性を確保することができる。混合ワクチン1
ml中に含有される最終抗原量は、不活化ワクチンの抗
原では0.01μg〜10mg、望ましく0.1μg〜
100μg、生ワクチンでは、例えば、弱毒ウイルスの
場合、10〜10感染粒子、好ましくは10〜1
感染粒子である。また、混合ワクチンの調製に関
し、例えば、1ドーズ(0.5ml)中の最終抗原量が
不活化抗原20μg及び弱毒ウイルス10PFU(プ
ラーク形成単位)からなる混合ワクチンは、ワクチン原
液を希釈し、不活化ワクチン(抗原量80μg/ml)
及び生ワクチン(弱毒ウイルス4×10PFU/m
l)を含有する各ワクチンをそれぞれ予め個別に調製の
後、これ等の両ワクチンを等量混合することにより調製
することができる。混合するワクチンの種類に関し、こ
の発明では、少なくとも1種の不活化ワクチンと、少な
くとも1種の生ワクチンとを組合せて混合することが可
能であり、少なくとも2種混合ワクチン、更に、3種以
上のワクチンを組合せて混合した多種混合ワクチンを得
ることができる。尚、混合ワクチンの安定化剤としては
常用の物質、例えば、アルギニン、グルタミン酸ナトリ
ウム等のアミノ酸類、ラクトース、サッカロース等の糖
類、血漿アルブミン、ビタミン類等を使用できる。混合
ワクチン製剤は、例えば、0.5〜10mlのバイアル
又はアンプルに分注の後、密栓又は熔封し、液状又は乾
燥の形態で提供される。乾燥製剤は、分注後に凍結乾燥
しその容器内部に窒素ガスを充填することにより製造で
きる。かかるワクチン製剤は通常、1〜5℃で保存し、
使用に際しては、液状製剤は開封後そのまま、乾燥製剤
は開封の後、添付されている溶解液で溶解し、被接種者
当たり通常、0.5〜1.0mlずつ皮下又は筋肉内に
接種して用いる。
[Preparation of a Combination Vaccine of an Inactivated Vaccine and a Live Vaccine] The preparation and manufacture of a vaccine, and the quality assurance and control of its safety and efficacy are described in “Biological Product Standards” [Pharmaceutical Affairs Law (Showa 35th Law No. 145) No. 4
Notification of the Ministry of Health and Welfare based on Article 2, Paragraph 1 (October 1, 1993) No. 217] or WH
O (World Health Organization) recommendation "Requirements
for Biological Substances
and othersets of recommendation
ndations "(WHO Technical
Reports Series, No. 889, p.
105-111, 1999). For example, in the preparation of an inactivated vaccine, "precipitated hepatitis B vaccine"
Manufacture and various tests are performed in accordance with the above-mentioned standards for "influenza HA vaccine", "Japanese encephalitis vaccine", "precipitated purified pertussis vaccine", etc., to ensure eligibility as an inactivated vaccine. Also, in the preparation of live vaccines,
Manufacture and various tests are performed in accordance with the above-mentioned standards for "dry attenuated live varicella vaccine", "dry cell culture varicella vaccine", "dry attenuated measles vaccine", etc., to ensure eligibility as a live vaccine. Furthermore, in the preparation of a mixed vaccine, for example, production and various tests are carried out in accordance with the above-mentioned standards relating to, for example, `` pertussis diphtheria tetanus '', `` dried attenuated live shin shinobi mumps measles vaccine '', and the qualification as a mixed vaccine is ensured. can do. Mixed vaccine 1
The final amount of antigen contained in each ml is 0.01 μg to 10 mg, preferably 0.1 μg to
100 μg, for live vaccines, for example, for an attenuated virus, 10 2 to 10 7 infectious particles, preferably 10 3 to 1
0 5 is an infectious particle. Regarding the preparation of a mixed vaccine, for example, a mixed vaccine in which the final amount of antigen in one dose (0.5 ml) is composed of 20 μg of inactivated antigen and 10 4 PFU (plaque forming unit) of the attenuated virus is obtained by diluting the vaccine stock solution, Inactivated vaccine (antigen amount 80μg / ml)
And live vaccine (attenuated virus 4 × 10 4 PFU / m
Each vaccine containing 1) can be prepared by separately preparing each vaccine in advance, and then mixing these two vaccines in equal amounts. Regarding the type of vaccine to be mixed, in the present invention, at least one inactivated vaccine and at least one live vaccine can be combined and mixed, and at least two mixed vaccines, and further, three or more A multi-combination vaccine obtained by combining vaccines can be obtained. As the stabilizer for the mixed vaccine, commonly used substances such as amino acids such as arginine and sodium glutamate, sugars such as lactose and saccharose, plasma albumin, vitamins and the like can be used. The mixed vaccine preparation is dispensed into vials or ampoules of, for example, 0.5 to 10 ml, and then sealed or sealed, and provided in a liquid or dry form. A dry preparation can be produced by freeze-drying after dispensing and filling the inside of the container with nitrogen gas. Such vaccine formulations are usually stored at 1-5 ° C,
For use, the liquid preparation is directly opened after opening, the dried preparation is opened, and then dissolved in the attached dissolving solution, and usually 0.5 to 1.0 ml per inoculated patient is inoculated subcutaneously or intramuscularly. Used.

【0009】[混合ワクチンの免疫原性の検定]体液性
免疫の検定は、ワクチン接種後の血中抗体価を、免疫学
や血清診断で常用されている方法、例えば、中和反応、
蛍光抗体反応、ELISA(enzyme−linke
d immunosorbent assay),PH
A(passive hemagglutinatio
n)等により行うことができる。免疫の消長は、接種前
の抗体価を対照として経時的に比較することにより確認
できる。例えば、混合ワクチンをサル、ウサギ、モルモ
ット、マウス等の実験小動物の皮下に接種の後、これ等
の免疫動物を飼育管理する。かかる飼育の間、ウイルス
接種後、週又は月単位で一定期間毎に、例えば、モルモ
ットの場合には、その大腿部静脈から約3mlの部分採
血を行い、その血中抗体価を測定する。抗体価の測定に
は、例えば、免疫に使用した抗原を付着させた赤血球を
用いるPHA、免疫に使用した抗原と酵素で標識した抗
IgG抗体とを用いるELISA,既知の一定量の感染
ウイルスとその抗血清との間で抗原抗体反応させた後、
その感染ウイルス量を50%中和減少させる抗血清の最
高希釈倍数を、CPE法やプラークアッセイにより測定
する中和試験等を採用できる。これに対し、細胞性免疫
の検定は次の様にして行うことができる。
[Assay for Immunogenicity of Mixed Vaccine] In the assay for humoral immunity, the antibody titer in the blood after vaccination is determined by a method commonly used in immunology and serodiagnosis, for example, neutralization reaction,
Fluorescent antibody reaction, ELISA (enzyme-link)
immunosorbent assay), PH
A (passive hemagglutinatio)
n) and the like. The immunity can be confirmed by comparing the antibody titer before inoculation with time as a control. For example, after the mixed vaccine is inoculated subcutaneously into small experimental animals such as monkeys, rabbits, guinea pigs, and mice, the immunized animals are bred and managed. During the breeding, after inoculation of the virus, about 3 ml of blood is partially collected from the femoral vein of the guinea pig at regular intervals, for example, weekly or monthly, and the antibody titer in the blood is measured. The antibody titer may be measured, for example, by using PHA using erythrocytes to which the antigen used for immunization is attached, ELISA using the antigen used for immunization and an anti-IgG antibody labeled with an enzyme, a known amount of infectious virus and its After antigen-antibody reaction with antiserum,
A neutralization test or the like in which the highest dilution factor of the antiserum that reduces the amount of the infectious virus by 50% by neutralization is measured by a CPE method or a plaque assay can be employed. On the other hand, cell-mediated immunity can be assayed as follows.

【0010】[混合ワクチン及び不活化抗原による細胞
性免疫の誘導の検定]細胞性免疫は、ワクチン接種によ
り誘導される感作Tリンパ球(T細胞)の機能活性を指
標として用いる測定方法により検定できる。尚、細胞性
免疫に関与する細胞としては、ヘルパーT細胞1(Th
1)、ヘルパーT細胞2(Th2)、細胞障害性Tリン
パ球(CTL:cytotoxic T lympho
cyte、又はTc)、記憶担当T細胞(Tm)、サプ
レッサーT細胞(Ts)等が知られており、これ等の測
定方法の具体例は、“Current Protoco
ls in Immunology”[vol.1,p
p.3.0.1〜4.8.17,J.E.Coliga
nら編,1991年〜現在(加除式),JohnWil
ey & Sons(米国)発行]において詳述されて
いる。例えば、Th1の存在は遅延型過敏症(DTH:
delayed−typehypersensitis
ity)反応あるいは遅延型皮膚過敏反応を用いる方法
(“同前”,pp.4.5.1〜4.5.5)により検
出できる。これには、例えば、マウスやモルモット等で
の皮内反応を用いる。皮内反応は、予め抗原を接種する
ことにより感作した動物において、その抗原に対するT
h1が増加(細胞性免疫が成立)している場合には、同
じ抗原を皮内接種すると、接種局所に発赤あるいは硬結
が生じるので、その大きさや程度を経時的に測定するこ
とにより行う。また、CTL活性は、例えば、51Cr
で標識した標的細胞(感染細胞)を用いるクロム放出
法、[H]チミジン標識の標的細胞を用いるDNA断
片法、CTLの存在頻度を知るための限界希釈法等
(“同前”,pp.3.11.1〜3.11.20)に
より測定できる。以下、この発明の具体例につき、参考
例及び実施例を上げて説明する。但し、この発明は、こ
れ等の参考例及び実施例だけに限定されるものではな
い。
[Assay for Induction of Cellular Immunity by Mixed Vaccine and Inactivated Antigen] Cellular immunity is assayed by a measurement method using as an index the functional activity of sensitized T lymphocytes (T cells) induced by vaccination. it can. The cells involved in cell-mediated immunity include helper T cells 1 (Th
1), helper T cells 2 (Th2), cytotoxic T lymphocytes (CTL: cytotoxic T lymphocyte)
cyte or Tc), memory T cell (Tm), suppressor T cell (Ts), and the like are known. Specific examples of the measurement method thereof are described in “Current Protocol”.
ls in Immunology "[vol. 1, p
p. 3.0.1 to 4.8.17; E. FIG. Coliga
n et al., 1991-present (addition and subtraction), John Wil
ey & Sons (USA)]. For example, the presence of Th1 indicates delayed type hypersensitivity (DTH:
delayed-type hypersensitivity
ii) reaction or a method using a delayed-type skin hypersensitivity reaction (“Same as above”, pp. 4.5.1-4.5.5). For this, for example, an intradermal reaction in a mouse, a guinea pig, or the like is used. The intradermal response was determined by the T
When h1 is increased (cellular immunity is established), if the same antigen is intradermally inoculated, redness or induration occurs at the inoculated area. Therefore, the size and degree are measured over time. The CTL activity is, for example, 51 Cr
Chromium release method using target cells (infected cells) labeled with, a DNA fragment method using [ 3 H] thymidine-labeled target cells, a limiting dilution method for knowing the frequency of CTLs, etc. 3.11.1 to 3.11.20). Hereinafter, specific examples of the present invention will be described with reference to Reference Examples and Examples. However, the present invention is not limited only to these Reference Examples and Examples.

【0011】[0011]

【参考例】参考例1 [PBS(リン酸塩緩衝食塩水)の調製]NaClを
8.0g、KClを0.2g、NaHPO・12H
Oを2.9g、KHPOを0.2g、CaCl
を0.1g及びMgCl・6HOを0.1g、それ
ぞれ蒸留水に溶解して1,000mlとし、PBSを調
製した。また、2価をイオン、CaCl及びMgCl
・6HOを共に含有しないPBS(−)を別途に調
製した。
[Reference Example] Reference Example 1 [PBS Preparation of (phosphate buffered saline) and NaCl 8.0 g, the KCl 0.2g, Na 2 HPO 4 · 12H
2.9 g of 2 O, 0.2 g of KH 2 PO 4 , CaCl 2
0.1 g and 0.1 g of MgCl 2 .6H 2 O were respectively dissolved in distilled water to make 1,000 ml to prepare PBS. In addition, divalent ions, CaCl 2 and MgCl
2 · 6H 2 O together not containing PBS (-) was separately prepared.

【0012】参考例2 [不活化ワクチン及び生ワクチンの調製]不活化B型肝
炎ワクチン、及び弱毒生水痘ワクチンの調製には、前述
した「生物学的製剤基準」に係る「沈降B型肝炎ワクチ
ン」の諸規定、及び「乾燥弱毒生水痘ワクチン」の諸規
定にそれぞれ準拠し製造かつ品質管理された各ワクチン
の原液を用いた。ワクチン中の抗原量の調整は、これ等
の原液をPBS(−)で希釈することにより行った。
Reference Example 2 [Preparation of Inactivated Vaccine and Live Vaccine] For preparation of inactivated hepatitis B vaccine and live attenuated varicella vaccine, the "precipitated hepatitis B vaccine" according to the "Biological Standards" described above. , And undiluted live attenuated varicella vaccine according to the regulations of each vaccine. The amount of antigen in the vaccine was adjusted by diluting these stock solutions with PBS (-).

【0013】参考例3 [血中抗体価の測定]免疫モルモットの血清につき、P
HA試験[国際試薬(株)製]及びELISAにより行
った。尚、ELISAでは、96穴ELISA用プレー
トを用い、酵素標識抗体として、ペルオキシダーゼで標
識の抗モルモットIgGヒツジIgG抗体[Cappe
l(全分子);ICN社(米国)製]を用いた。抗原に
は、HBs及びVZV糖タンパク(gE:gl)両抗原
を用いた。HBs抗原としてB型肝炎キャリアー血清に
由来の糖鎖付加HBs抗原、及び組換え体酵母が産生の
無糖鎖HBs抗原を用いた。また、gE:gl抗原は、
弱毒生水痘ワクチンの有効成分である岡株ウイルスの感
染細胞の破砕物から、抗gEモノクローナル抗体を用い
るアフィニティーカラムにより精製し調製した(Arc
hieves of Virology,142,22
95−2301,1997;及びVaccine,1
6,1263−1269,1998)。
Reference Example 3 [Measurement of antibody titer in blood]
An HA test [manufactured by Kokusai Reagent Co., Ltd.] and ELISA were performed. In the ELISA, a 96-well ELISA plate was used, and an anti-guinea pig IgG sheep IgG antibody labeled with peroxidase [Cappe] was used as the enzyme-labeled antibody.
1 (all molecules); ICN (USA)]. As antigens, both HBs and VZV glycoprotein (gE: gl) antigens were used. As the HBs antigen, a sugar chain-added HBs antigen derived from a hepatitis B carrier serum and a sugar-free HBs antigen produced by a recombinant yeast were used. Also, the gE: gl antigen is
Purified and prepared from crushed cells of infected cells of Oka strain virus, which is the active ingredient of the live attenuated varicella vaccine, using an affinity column using an anti-gE monoclonal antibody (Arc
hives of Virology, 142, 22
95-2301, 1997; and Vaccine, 1
6, 1263-1269, 1998).

【0014】参考例4 [遅延型過敏症(DHT)反応による細胞性免疫の検
定]ワクチン接種の後、飼育管理したモルモットでの皮
内反応により行った。脱毛剤で背毛を除去したモルモッ
トの背部3か所/抗原(2抗原ではモルモット当たり合
計6か所)に実施例1で後述する抗原を0.1mlずつ
皮内接種し、その接種後、8、24及び48時間にそれ
ぞれ、生じた楕円発赤を計測し、各面積を式[面積(m
)=π×長径(mm)×短径(mm)/4]により
算出の後、その平均値を求めた。
Reference Example 4 [Assay of Cellular Immunity by Delayed Type Hypersensitivity (DHT) Reaction] After vaccination, the test was performed by intradermal reaction in guinea pigs kept and maintained. 0.1 ml of the antigen described below in Example 1 was intradermally inoculated into 3 backs / antigen (total of 6 per guinea pig for 2 antigens) of the back of the guinea pig whose back hair had been removed with a depilatory agent. , 24 and 48 hours respectively, the generated elliptic redness was measured, and each area was calculated by the formula [area (m
m 2 ) = π × major axis (mm) × minor axis (mm) / 4], and the average value was determined.

【0015】[0015]

【実施例】実施例1 [ワクチンの調製] 不活化B型肝炎ワクチン(H):参考例2に記載の通
り、該ワクチン原液をPBS(−)で希釈し、20μg
/0.1mlの不活化HBs抗原を含有する不活化ワク
チンを調製した。 弱毒生水痘ワクチン(V):参考例2に記載の通り、該
ワクチン原液をPBS(−)で希釈し、10PFU
(プラーク形成単位)/0.5mlの弱毒VZV岡株ウ
イルス含有する生ワクチン調製した。 混合ワクチン(H−V):上記のHとV両原液をPBS
(−)で希釈及び混合し、0.5ml中に20μgの不
活化HBs抗原及び10PFUの弱毒VZV岡株ウイ
ルスの両者を含有する混合ワクチンを調製した。 [比較対照の調製] 比較対照(M):参考例2に記載の「乾燥弱毒生水痘ワ
クチン」の諸規定に準拠し、VZVの培養宿主であるM
RC−5の未感染細胞培養物から、弱毒岡株ウイルスを
含有しないmockワクチン(疑似対照)の原液を調製
の後、これを上記Vの原液と同様にPBS(−)で希釈
し比較対照(M)を得た。 比較対照(加熱抗原):上記Vの原液の一部を取り、6
0℃で30分間、加熱し、比較対照[K:加熱V(10
PFU相当の加熱VZVを含有)]として用いた。 [免疫スケジュール]免疫には、1群につき5匹、合計
7群35匹のモルモット(ハートレイ種、4週齢,体重
230〜270g)を用い、各モルモットの背部の皮下
に検体を接種した。尚、接種量/モルモットは、Hが2
0μg、また、Vが10PFUであり、免疫スケジュ
ールは、次の通りであった: 上記の通り合計7群への免疫を完了後、3週目に後述す
る皮内反応を行った。また、皮内反応終了後に各モルモ
ットから採血した血清について各々血中抗体価を測定し
た。 [血中抗体価の測定]上記G1〜7、合計35匹の各モ
ルモットの血清につき、酵母由来のHBs及びVZV糖
タンパク(gE:gl)両抗原に対する血中抗体価をE
LISAによりそれぞれ測定した。先ず、96穴ELI
SA用プレートの各ウエルを1μgのHBs抗原又は
0.5μgのgE:gl抗原でコーティングした。次い
で、2%(W/V)スキムミルクを含有のPBSで10
0倍希釈した血清、及びペルオキシダーゼ標識の抗モル
モットIgGヒツジIgG抗体[Cappel(全分
子)]を順次、反応させた後、HAT−EIA[デンカ
生研(株)製]で発色させた後、96穴プレート用の吸
光光度計で波長490nmの吸光度を測定した。その結
果を表1に示す。比較対照群(G5〜G7)に比べ、特
に混合ワクチン接種群(G1)においては、HBs及び
VZV両抗原に対する血中抗体の著しい上昇が見られ
た。また、G1〜G4とG5との比較により、上記の両
抗原の混合又は同時接種が、不活化抗原HBsによる体
液性免疫を強めることが観察された。更に、これ等の両
抗原に対する各血中抗体価の差(G1>>G5〜G7)
はいずれも、t検定による有意水準p<0.0001に
おいて、有意であった。
EXAMPLES Example 1 [Preparation of vaccine] Inactivated hepatitis B vaccine (H): As described in Reference Example 2, the vaccine stock solution was diluted with PBS (-) to give 20 μg.
An inactivated vaccine containing /0.1 ml of inactivated HBs antigen was prepared. Live attenuated varicella vaccine (V): As described in Reference Example 2, the vaccine stock solution was diluted with PBS (-), and 10 4 PFU
A live vaccine containing (plaque forming units) /0.5 ml of attenuated VZV Oka strain virus was prepared. Combined vaccine (HV): Both H and V stock solutions were added to PBS
The mixture was diluted and mixed with (-) to prepare a mixed vaccine containing both 20 μg of inactivated HBs antigen and 10 4 PFU of attenuated VZV Oka strain virus in 0.5 ml. [Preparation of Comparative Control] Comparative Control (M): M, which is a culture host of VZV, conforming to the various rules of “Dry attenuated live varicella vaccine” described in Reference Example 2.
After preparing a stock solution of a mock vaccine containing no attenuated Oka strain virus (pseudo-control) from an uninfected cell culture of RC-5, the stock solution was diluted with PBS (-) in the same manner as the stock solution of V above, and a control ( M) was obtained. Comparative control (heated antigen): Take a part of the stock solution of V above,
Heat at 0 ° C. for 30 minutes and compare with [K: Heat V (10
4 PFU equivalent heated VZV)]. [Immunization schedule] For immunization, guinea pigs (Hartley species, 4 weeks old, body weight 230 to 270 g) of 5 animals per group, 7 groups in total, were used to inoculate a sample subcutaneously on the back of each guinea pig. In addition, the amount of inoculation / guinea pig
0 μg, and V was 10 4 PFU, and the immunization schedule was as follows: After completion of immunization for a total of seven groups as described above, an intradermal reaction described below was performed on the third week. After the intradermal reaction, the serum antibody titer of each serum collected from each guinea pig was measured. [Measurement of Blood Antibody Titer] The serum antibody titers for both HBs and VZV glycoprotein (gE: gl) antigens derived from yeast were determined for each of the above G1 to G7 sera of 35 guinea pigs by E.
Each was measured by LISA. First, 96-hole ELI
Each well of the SA plate was coated with 1 μg of HBs antigen or 0.5 μg of gE: gl antigen. Then 10% with PBS containing 2% (W / V) skim milk
The serum diluted 0-fold and a peroxidase-labeled anti-guinea pig IgG sheep IgG antibody [Cappel (all molecules)] were sequentially reacted, and then color-developed by HAT-EIA [Denka Seiken Co., Ltd.]. The absorbance at a wavelength of 490 nm was measured with a plate absorptiometer. Table 1 shows the results. Compared with the control group (G5 to G7), a marked increase in blood antibodies to both HBs and VZV antigens was observed, particularly in the mixed vaccination group (G1). In addition, a comparison between G1 to G4 and G5 showed that mixing or simultaneous inoculation of both antigens enhanced humoral immunity with the inactivated antigen HBs. Furthermore, the difference in each antibody titer in blood with respect to these two antigens (G1 >> G5 to G7)
Were significant at the significance level p <0.0001 by the t-test.

【0016】[0016]

【表1】 [モルモット皮内反応]各免疫モルモットの背部(3か
所/抗原;合計6か所/2抗原/モルモット)に、0.
1mlのHBs抗原(2μg)及びVZV糖タンパク
(gE:gl)抗原(1μg)をそれぞれ皮内接種し、
その8、24及び48時間後に、DTHにより生じた各
楕円発赤の長径と短径をそれぞれ計測し、各発赤の面積
を参考例4に記載の式により算出すると共に、各免疫群
の平均値を求め、これ等の免疫群間の有意差をt検定に
より推計した。その結果を表2に示す。尚、表中の数値
は、皮内接種後24時間における各免疫群の発赤面積
(mm): [π×長径(mm)×短径(mm)/4の平均値±標準
誤差] をそれぞれ示す。
[Table 1] [Guinea pig intradermal reaction] 0.1 g was added to the back of each immunized guinea pig (3 sites / antigen; 6 sites / 2 antigen / guinea pig in total).
1 ml of HBs antigen (2 μg) and VZV glycoprotein (gE: gl) antigen (1 μg) were intradermally inoculated, respectively.
At 8, 24 and 48 hours later, the major axis and minor axis of each elliptic redness generated by DTH were measured, and the area of each redness was calculated by the formula described in Reference Example 4, and the average value of each immune group was calculated. The significant differences between these immunized groups were estimated by the t-test. Table 2 shows the results. In addition, the numerical value in a table | surface shows the redness area (mm < 2 >) of each immunity group in 24 hours after an intracutaneous inoculation: [(pi) x major axis (mm) x average value of minor axis (mm) / 4 standard error] Show.

【0017】[0017]

【表2】 混合ワクチン接種群(G1)とG2〜G7各群との間の
差、即ち、G1>>G2〜G7はいずれも、有意水準p
=0.0001又は<0.0001において有意であ
り、HBs抗原(不活化抗原)により細胞性免疫が誘導
されると判定された。尚、VZVに関し、G1とG5〜
7との間ではいずれもp<0.0001で有意差があ
り、混合ワクチン接種群(G1)と同時接種群(G3)
との間においてはp=0.4703により有意差なしと
判定された。これ等の結果は、不活化ワクチンと生ワク
チンとの混合あるいは混在により、不活化ワクチン抗原
に対する細胞性免疫が生ワクチンによるそれに伴い誘導
されることを示している。
[Table 2] The difference between the mixed vaccination group (G1) and each of the G2 to G7 groups, that is, G1 >> G2 to G7, is all significant at the significance level p
= 0.0001 or <0.0001, which was significant, and it was determined that cell-mediated immunity was induced by the HBs antigen (inactivated antigen). In addition, regarding VZV, G1 and G5
7, there is a significant difference at p <0.0001, and the combined vaccination group (G1) and the simultaneous vaccination group (G3)
It was determined that there was no significant difference between p and 0.4703. These results indicate that cell immunity against the inactivated vaccine antigen is induced by the mixture of the inactivated vaccine and the live vaccine.

【0018】[0018]

【発明の効果】この発明により提供される、生ワクチン
の細胞性免疫活性を不活化ワクチンもに起こさせる方
法、及びかかる方法により得られる混合ワクチンは、生
ワクチンにより生じる感染型の細胞性免疫、あるいは生
ワクチンが誘導する細胞性免疫と同等の活性を不活化ワ
クチンが生じるという画期的な効果をもたらす共に、予
防接種の簡素化、省力化及びコスト低減に寄与する。
EFFECT OF THE INVENTION The method provided by the present invention for inducing the cell-mediated immunity of a live vaccine to an inactivated vaccine, and the combined vaccine obtained by such a method are suitable for infectious cell-mediated immunity produced by the live vaccine, Alternatively, it provides an epoch-making effect that an inactivated vaccine produces an activity equivalent to the cellular immunity induced by a live vaccine, and also contributes to simplification of vaccination, labor saving and cost reduction.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 39/145 A61K 39/145 39/21 39/21 39/25 39/25 39/29 39/29 // C12N 7/04 C12N 7/04 (C12N 7/04 (C12N 7/04 C12R 1:92) C12R 1:92) Fターム(参考) 4B065 AA95X BA14 BD10 BD13 CA45 4C085 AA04 BA10 BA12 BA17 BA55 BA62 BA69 BA79 BA89 BA92 CC07 CC08 DD88 EE03 GG04Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) A61K 39/145 A61K 39/145 39/21 39/21 39/25 39/25 39/29 39/29 // C12N 7 / 04 C12N 7/04 (C12N 7/04 (C12N 7/04 C12R 1:92) C12R 1:92) F term (reference) 4B065 AA95X BA14 BD10 BD13 CA45 4C085 AA04 BA10 BA12 BA17 BA55 BA62 BA69 BA79 BA89 BA92 CC07 CC08 DD88 EE03 GG04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不活化ワクチン及び生ワクチンの各有効
成分をそれぞれ細胞性免疫を誘導する量、混合すること
を特徴とする、生ワクチンの細胞性免疫活性を不活化ワ
クチンに起こさせる方法。
1. A method for causing an inactivated vaccine to have a cellular immune activity of a live vaccine, comprising mixing the active ingredients of the inactivated vaccine and the live vaccine in amounts that induce cellular immunity.
【請求項2】 不活化ワクチン及び生ワクチンの各有効
成分をそれぞれ細胞性免疫を誘導する量、含有すること
を特徴とする混合ワクチン。
2. A combination vaccine comprising the active ingredients of an inactivated vaccine and a live vaccine in amounts that induce cell-mediated immunity.
【請求項3】 不活化ワクチンの有効成分が、B型肝
炎、非A非B型肝炎、HIV、ロタ、日本脳炎及びイン
フルエンザの各ウイルス並びに破傷風、百日せき及びジ
フテリアの各細菌に由来の不活化された抗原群から選ば
れる少なくとも1種の抗原である請求項2に記載の混合
ワクチン。
3. The active ingredient of the inactivated vaccine is derived from hepatitis B, non-A non-B hepatitis, HIV, rota, Japanese encephalitis and influenza viruses and tetanus, pertussis and diphtheria bacteria. The combination vaccine according to claim 2, which is at least one kind of antigen selected from the group of activated antigens.
【請求項4】 生ワクチンの有効成分が弱毒水痘ウイル
スである請求項2又は3に記載の混合ワクチン。
4. The combination vaccine according to claim 2, wherein the active ingredient of the live vaccine is attenuated varicella virus.
JP2000114421A 2000-03-10 2000-03-10 Method for causing cellular immune activity of live vaccine to occur in inactivated vaccine, and mixed vaccine obtained therefrom Expired - Fee Related JP4540795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114421A JP4540795B2 (en) 2000-03-10 2000-03-10 Method for causing cellular immune activity of live vaccine to occur in inactivated vaccine, and mixed vaccine obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114421A JP4540795B2 (en) 2000-03-10 2000-03-10 Method for causing cellular immune activity of live vaccine to occur in inactivated vaccine, and mixed vaccine obtained therefrom

Publications (2)

Publication Number Publication Date
JP2001253833A true JP2001253833A (en) 2001-09-18
JP4540795B2 JP4540795B2 (en) 2010-09-08

Family

ID=18626225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114421A Expired - Fee Related JP4540795B2 (en) 2000-03-10 2000-03-10 Method for causing cellular immune activity of live vaccine to occur in inactivated vaccine, and mixed vaccine obtained therefrom

Country Status (1)

Country Link
JP (1) JP4540795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147980A1 (en) 2008-06-04 2009-12-10 財団法人化学及血清療法研究所 Use of inactivated japanese encephalitis virus particle as adjuvant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126229A (en) * 1983-12-12 1985-07-05 Green Cross Corp:The Preparation of hepatitis b vaccine
JPH02223531A (en) * 1988-11-10 1990-09-05 Takeda Chem Ind Ltd Vaccine of japanese encephalitis and production thereof
JPH03242141A (en) * 1989-09-26 1991-10-29 Rhone Merieux Portable device for vaccinating pig
JPH0585943A (en) * 1991-07-18 1993-04-06 Tonen Corp Manifestation of non-a, non-b hepatitis virus gene using recombinant vaccinia virus and non-a non-b hepatitis vaccine
JPH06234659A (en) * 1992-05-05 1994-08-23 Handai Biseibutsubiyou Kenkyukai Stabilized live vaccine
WO1998017785A1 (en) * 1996-10-18 1998-04-30 The Research Foundation For Microbial Diseases Of Osaka University Rotavirus antigens, vaccines and diagnostic drugs for infection with rotavirus, and processes for producing the same
JPH10234362A (en) * 1997-02-24 1998-09-08 Immuno Ag Inactivation of lipid envelop virus
WO2002000249A2 (en) * 2000-06-29 2002-01-03 Glaxosmithkline Biologicals S.A. Multivalent vaccine composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126229A (en) * 1983-12-12 1985-07-05 Green Cross Corp:The Preparation of hepatitis b vaccine
JPH02223531A (en) * 1988-11-10 1990-09-05 Takeda Chem Ind Ltd Vaccine of japanese encephalitis and production thereof
JPH03242141A (en) * 1989-09-26 1991-10-29 Rhone Merieux Portable device for vaccinating pig
JPH0585943A (en) * 1991-07-18 1993-04-06 Tonen Corp Manifestation of non-a, non-b hepatitis virus gene using recombinant vaccinia virus and non-a non-b hepatitis vaccine
JPH06234659A (en) * 1992-05-05 1994-08-23 Handai Biseibutsubiyou Kenkyukai Stabilized live vaccine
WO1998017785A1 (en) * 1996-10-18 1998-04-30 The Research Foundation For Microbial Diseases Of Osaka University Rotavirus antigens, vaccines and diagnostic drugs for infection with rotavirus, and processes for producing the same
JPH10234362A (en) * 1997-02-24 1998-09-08 Immuno Ag Inactivation of lipid envelop virus
WO2002000249A2 (en) * 2000-06-29 2002-01-03 Glaxosmithkline Biologicals S.A. Multivalent vaccine composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147980A1 (en) 2008-06-04 2009-12-10 財団法人化学及血清療法研究所 Use of inactivated japanese encephalitis virus particle as adjuvant
CN102112153A (en) * 2008-06-04 2011-06-29 一般财团法人化学及血清疗法研究所 Use of inactivated japanese encephalitis virus particle as adjuvant
US9114098B2 (en) 2008-06-04 2015-08-25 The Chemo-Sero-Therapeutic Research Institute Method for using inactivated Japanese encephalitis virus particles as adjuvant

Also Published As

Publication number Publication date
JP4540795B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
EP0705109B2 (en) Adjuvants for vaccines against respiratory syncytial virus
JP3530526B2 (en) Herpes simplex vaccine comprising HSV glycoprotein gD and 3 deacylated monophosphoryl lipid A
EP0363414B1 (en) Use of a viral glycoprotein subunit vaccine for intranasal immunization against viral infection
Magnani et al. Safety and efficacy of two types of influenza vaccination in heart transplant recipients: a prospective randomised controlled study
EA016417B1 (en) Method of making vaccine
CZ283910B6 (en) Combined inoculation preparation
JPH10500113A (en) Improved modified live BRSV vaccine
HU228473B1 (en) Adjuvant systems and vaccines
SK283565B6 (en) Multivalent DTP-polio vaccines
JP5712126B2 (en) Rapid response to delayed boost immunization
JP2017535602A (en) Hand-foot-and-mouth disease vaccine, and production and use thereof
CZ2002842A3 (en) Vaccination preparation
BR112020008652A2 (en) Zika vaccines and immunogenic compositions and methods of using them
Plotkin Rabies vaccine prepared in human cell cultures: progress and perspectives
US6562350B1 (en) Combined vaccine against both HAV and measles virus and method of producing it
CA2862864C (en) Compositions and methods for treating viral infections
Wiktor et al. Role of interferon in prophylaxis of rabies after exposure
TW201208698A (en) Inactivated varicella zoster virus vaccines, methods of production, and uses thereof
Kasel et al. Human influenza: aspects of the immune response to vaccination
Zhaori et al. Nasopharyngeal secretory antibody response to poliovirus type 3 virion proteins exhibit different specificities after immunization with live or inactivated poliovirus vaccines
JP2001253833A (en) Method for inducing cell-mediated immunity of live vaccine even in inactivated vaccine, and combined vaccine obtained by the method
Rehmani et al. The influence of adjuvants on oral vaccination of chickens against Newcastle disease
Miyamae Protective effects of nasal immunization in mice with various kinds of inactivated Sendai virus vaccines
KR20090016659A (en) Intranasal influenza vaccine based on virosomes
RU2750818C1 (en) Viral strain for obtaining attenuated live culture vaccine for prevention and treatment of herpes zoster for adult population

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees