JP2001250918A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2001250918A
JP2001250918A JP2000060758A JP2000060758A JP2001250918A JP 2001250918 A JP2001250918 A JP 2001250918A JP 2000060758 A JP2000060758 A JP 2000060758A JP 2000060758 A JP2000060758 A JP 2000060758A JP 2001250918 A JP2001250918 A JP 2001250918A
Authority
JP
Japan
Prior art keywords
circuit
voltage
signal
output
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000060758A
Other languages
Japanese (ja)
Other versions
JP3721924B2 (en
Inventor
Yasuaki Motoi
康朗 本井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000060758A priority Critical patent/JP3721924B2/en
Publication of JP2001250918A publication Critical patent/JP2001250918A/en
Application granted granted Critical
Publication of JP3721924B2 publication Critical patent/JP3721924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an IC for switching power supplies that has the small number of parts, low manufacturing costs, and a soft start function. SOLUTION: An input-stage circuit 2 is composed of a p-channel MOSFET 3 and a resistor R3, and the output current of the input stage circuit is narrowed with time when power is turned on, thus achieving a soft start function. In this case, the input-stage circuit that is composed of a conventional voltage follower circuit and an inverting amplification circuit is composed by one MOSFET or a two-stage current mirror circuit, thus greatly reducing the number of the parts, and hence reducing manufacturing costs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スイッチング電
源用などの半導体集積回路で、特に、スイッチング電源
などをソフトスタートさせる機能を有する半導体集積回
路に関する。
The present invention relates to a semiconductor integrated circuit for a switching power supply or the like, and more particularly to a semiconductor integrated circuit having a function of soft-starting a switching power supply or the like.

【0002】[0002]

【従来の技術】再度検討のこと図4は、ソフトスタート
機能を有するスイッチング電源回路の構成図である。こ
の構成図は、スイッチング電源用の半導体集積回路51
(以下、ICという)と、外付けのCR回路59a、5
9bと、C回路60と、FB回路57と、このIC51
で制御されるMOSFET52と、トランス53と、直
流電源58と、トランス53の出力側に接続される図示
しないダイオードと、出力電圧検出部55と、この出力
電圧検出部55からのフィードバック信号で駆動される
フォトカプラー56とで構成される。図中の54は負荷
である。また、VDDはIC51の電源電圧である。尚、
前記のCはコンデンサ、Rは抵抗、FBはフィードバッ
クを示す。
2. Description of the Related Art FIG. 4 is a block diagram of a switching power supply circuit having a soft start function. This configuration diagram shows a semiconductor integrated circuit 51 for a switching power supply.
(Hereinafter referred to as IC) and external CR circuits 59a,
9b, the C circuit 60, the FB circuit 57, and the IC 51
, A transformer 53, a DC power supply 58, a diode (not shown) connected to the output side of the transformer 53, an output voltage detector 55, and a feedback signal from the output voltage detector 55. And a photo coupler 56. Reference numeral 54 in the figure denotes a load. VDD is the power supply voltage of the IC 51. still,
C represents a capacitor, R represents a resistance, and FB represents feedback.

【0003】図4において、スイッチング電源回路が起
動した後(電源が投入された後)、IC51の電源電圧
VDDは短時間で上昇し、最終到達電圧に達するが、C5
1、C52、C53の電圧は徐々に上昇する。このと
き、IC51のOUT端子から、時間と共に、パルス幅
が広くなる矩形波電圧が出力され、この矩形波電圧がM
OSFET52のゲートに与えられると、トランス53
を介して負荷54へ供給される電力は、時間と共に増大
する。つまり、電源投入後、負荷54への電力供給をソ
フトスタートさせる。
In FIG. 4, after the switching power supply circuit is activated (after the power is turned on), the power supply voltage VDD of the IC 51 rises in a short time and reaches the ultimate voltage.
1, the voltages of C52 and C53 gradually increase. At this time, a rectangular wave voltage whose pulse width increases with time is output from the OUT terminal of the IC 51, and this rectangular wave voltage is M
When given to the gate of the OSFET 52, the transformer 53
The power supplied to the load 54 via the power supply increases with time. That is, after the power is turned on, the power supply to the load 54 is soft-started.

【0004】また、負荷54へ供給される電圧が低下し
た場合、電圧検出部55から出力される検出電圧でフォ
トカプラー56が動作し、このフォトカプラー56の出
力電流が減少する。この減少した電流をFB回路57に
入力して、FB回路57からFB端子に低い電圧が出力
される。この低い電圧をIC51が受けると、OUT端
子から広いパルス幅の矩形波電圧が出力されて、負荷5
4への供給電圧を上昇させて、電圧低下を補償し、一定
の高さの電圧が常時、負荷に供給される。
When the voltage supplied to the load 54 decreases, the photocoupler 56 operates with the detection voltage output from the voltage detector 55, and the output current of the photocoupler 56 decreases. The reduced current is input to the FB circuit 57, and a low voltage is output from the FB circuit 57 to the FB terminal. When this low voltage is received by the IC 51, a rectangular wave voltage having a wide pulse width is output from the OUT terminal, and the load 5
The supply voltage to 4 is increased to compensate for the voltage drop, and a constant voltage is constantly supplied to the load.

【0005】図5は、従来のスイッチング電源用ICの
回路図である。このIC51は、OPアンプ65(演算
増幅器)で構成されたボルテージフォロア回路63と、
OPアンプ66で構成された反転増幅回路64と、第1
バイブレータ67と、第2バイブレータ68と、ダイオ
ードD61、D62と、抵抗R61、R62、R63
と、AND回路70と、バッファ回路71と、クロック
回路69とが形成される半導体チップ61と、この半導
体チップ61とボンディングワイヤで接続される各端子
とで構成される。各端子は、外部のRC回路59a、5
9bの抵抗とコンデンサの接続点と接続するCS端子、
CR1端子、CR2端子および出力端子であるOUT端
子と、フィードバック信号をフォトカプラー56とFB
回路57を経由して半導体チップ51に伝送するFB端
子とで構成されている。
FIG. 5 is a circuit diagram of a conventional switching power supply IC. This IC 51 includes a voltage follower circuit 63 composed of an OP amplifier 65 (operational amplifier),
An inverting amplifier circuit 64 composed of an OP amplifier 66;
Vibrator 67, second vibrator 68, diodes D61, D62, resistors R61, R62, R63
And a semiconductor chip 61 on which an AND circuit 70, a buffer circuit 71, and a clock circuit 69 are formed, and terminals connected to the semiconductor chip 61 by bonding wires. Each terminal is connected to an external RC circuit 59a, 5
CS terminal connected to the connection point of the resistor and the capacitor of 9b,
A CR1 terminal, a CR2 terminal, an OUT terminal as an output terminal, and a feedback signal are supplied to the photocoupler 56 and the FB.
And an FB terminal for transmission to the semiconductor chip 51 via the circuit 57.

【0006】図6は、図5の回路の動作波形で、同図
(a)は各点の波形、同図(b)は同図(a)のf点の
波形を時間軸を長くして表したものである。図4と図5
および図6を用いて、IC51の動作と各部の波形を説
明する。電源が投入されると、a点のCS端子からボル
テージフォロア回路63に、徐々に上昇するCR回路5
9aのコンデンサC51の電圧(図6(a)のa点の波
形)が入力される。このボルテージフォロア回路63の
出力電圧であるb点の電圧(図6(a)のb点の波形)
も徐々に上昇し、この電圧が反転増幅回路64に入力さ
れ、この電圧が、基準電圧Eを超えるまでの期間は、一
定の高い電圧(VDD)が出力され、基準電圧Eを超え
た時点から、反転増幅回路64の出力電圧であるc点の
電圧は、コンデンサC51電圧の上昇に伴って、減少す
る(図6(a)のc点の波形)。
FIGS. 6A and 6B show operation waveforms of the circuit shown in FIG. 5. FIG. 6A shows the waveform at each point, and FIG. 6B shows the waveform at point f in FIG. It is a representation. 4 and 5
The operation of the IC 51 and the waveform of each part will be described with reference to FIG. 6 and FIG. When the power is turned on, the CR circuit 5 that gradually rises from the CS terminal at point a to the voltage follower circuit 63
The voltage of the capacitor C51 of 9a (the waveform at point a in FIG. 6A) is input. The voltage at point b, which is the output voltage of the voltage follower circuit 63 (waveform at point b in FIG. 6A)
Gradually rises, and this voltage is input to the inverting amplifier circuit 64. During a period until this voltage exceeds the reference voltage E, a constant high voltage (VDD) is output. The voltage at point c, which is the output voltage of the inverting amplifier circuit 64, decreases as the voltage of the capacitor C51 increases (the waveform at point c in FIG. 6A).

【0007】d点の電圧は、C53の電圧であり、クロ
ック回路69から出力されるクロック信号が第1バイブ
レータ67に入力されるまでは、VDDからR63を介
して充電されて、VDDの電圧となっている。クロック
信号が第1バイブレータ67に入力されると、第1バイ
ブレータ67が動作して、C53を放電させる。そのた
め、d点の電圧は低下する。この電圧が所定の値になっ
た時点で、第1バイブレータ67への放電は停止し、入
力段回路62からC53へ充電電流が流れてd点の電圧
は上昇し、再びVDDに戻る。このとき、負荷への供給
電圧は小さいために、FB端子からの流入電流の寄与は
極めて小さい。
The voltage at point d is the voltage of C53. Until the clock signal output from the clock circuit 69 is input to the first vibrator 67, the voltage is charged from VDD via R63, and the voltage of VDD is Has become. When the clock signal is input to the first vibrator 67, the first vibrator 67 operates to discharge C53. Therefore, the voltage at the point d decreases. When this voltage reaches a predetermined value, the discharge to the first vibrator 67 stops, a charging current flows from the input stage circuit 62 to C53, the voltage at point d rises, and returns to VDD again. At this time, since the supply voltage to the load is small, the contribution of the inflow current from the FB terminal is extremely small.

【0008】d点の電圧の上昇率は、入力段回路62か
らの電流の大きさに依存する。この電流の大きさは、c
点の電圧の高さに依存する。従って、c点の電圧が時間
と共に低下する領域では、d点の電圧の上昇率は時間と
共に低下する。従って、d点の電圧の落ち込み期間は、
時間と共に拡大する(図6(a)のd点の波形)。この
d点の電圧と、クロック回路69からのクロック信号
(図6(a)のckの波形)が、第1バイブレータ67
に入力されると、第1バイブレータ67のQ端子から、
クロック信号に同期して、c点の電圧がVDDの期間で
は、狭い一定のパルス幅の信号、c点の電圧が時間と共
に低くなる期間では、時間と共にパルス幅(W1)(c
点の落ち込み期間と一致する)が拡大する矩形波信号が
出力される(図6(a)のe1点の波形)。
The rate of rise of the voltage at point d depends on the magnitude of the current from input stage circuit 62. The magnitude of this current is c
Depends on the voltage at the point. Therefore, in a region where the voltage at the point c decreases with time, the rate of increase of the voltage at the point d decreases with time. Therefore, the voltage drop period at point d is
It expands with time (the waveform at point d in FIG. 6A). The voltage at the point d and the clock signal from the clock circuit 69 (the waveform of ck in FIG. 6A) are supplied to the first vibrator 67.
Is input to the Q terminal of the first vibrator 67,
In synchronism with the clock signal, during the period when the voltage at the point c is VDD, a signal having a narrow constant pulse width, and during the period when the voltage at the point c decreases with time, the pulse width (W1) (c
A rectangular wave signal in which the falling period of the point is enlarged is output (the waveform at point e1 in FIG. 6A).

【0009】一方、C52の電圧は、クロック信号が第
2バイブレータ68へ入力されるまでは、R52を介し
て充電され、VDDの電圧となっている。クロック信号
が入力されると、第2バイブレータ68が動作して、C
52を放電させる。そのため、C52の電圧は低下す
る。この電圧が所定の値になった時点で、第2バイブレ
ータ68への放電は停止し、R52を介して充電電流が
流れて、C52の電圧は上昇し、再びVDDに戻る。こ
のC52の電圧の上昇率はC52×R52の時定数で決
まり一定である。そのため、C52の電圧の落ち込み期
間も一定である。
On the other hand, the voltage of C52 is charged via R52 until the clock signal is input to the second vibrator 68, and becomes the voltage of VDD. When the clock signal is input, the second vibrator 68 operates, and C
52 is discharged. Therefore, the voltage of C52 decreases. When this voltage reaches a predetermined value, the discharge to the second vibrator 68 stops, a charging current flows through R52, the voltage of C52 increases, and returns to VDD again. The rate of increase of the voltage of C52 is determined by the time constant of C52 × R52 and is constant. Therefore, the voltage drop period of C52 is also constant.

【0010】このC52の電圧とクロック信号が第2バ
イブレータ68に入力されると、第2バイブレータ68
のQバー端子から、クロック信号と同期し、Q端子から
の出力信号とは逆相の信号で、パルス幅(W2)が一定
の矩形波信号が出力される(図6(a)のe2点の波
形)。前記のQ端子から出力されるパルス幅が徐々に広
がる矩形波信号と、Qバー端子から出力される一定のパ
ルス幅の矩形波信号とをAND回路70に入力すると、
AND回路70の出力信号は、Qの矩形波信号のパルス
幅がQバーの矩形波信号のパルス幅より小さい期間は、
パルス幅が零で、大きくなった時点から、パルス幅(Δ
W)が徐々に広がる矩形波信号が出力される(図6
(a)のf点の波形)。この信号をバッファ回路71に
入力し、バッファ回路71から、図4のMOSFET5
2を駆動できるゲート信号に整形して、OUT端子に出
力する。このOUT端子から、初期のバルス幅が零で、
徐々にパルス幅が広がる矩形形電圧が出力される。この
矩形波電圧でMOSFET52が駆動されると、前記し
たように、負荷54に徐々に増大する電力が供給され、
負荷54への電力供給がソフトスタートされる。
When the voltage of C52 and the clock signal are input to the second vibrator 68, the second vibrator 68
6A, a rectangular wave signal having a constant pulse width (W2) is output from the Q bar terminal in synchronization with the clock signal and having a phase opposite to that of the output signal from the Q terminal (point e2 in FIG. 6A). Waveform). When the rectangular wave signal output from the Q terminal and having a gradually widening pulse width and the rectangular wave signal output from the Q bar terminal and having a constant pulse width are input to the AND circuit 70,
The output signal of the AND circuit 70 has a period during which the pulse width of the Q rectangular wave signal is smaller than the pulse width of the Q bar rectangular wave signal.
When the pulse width becomes zero and increases, the pulse width (Δ
A rectangular wave signal whose W gradually spreads is output (FIG. 6).
(A) The waveform at point f). This signal is input to the buffer circuit 71, and from the buffer circuit 71, the MOSFET 5 in FIG.
2 is shaped into a gate signal that can be driven and output to the OUT terminal. From this OUT terminal, the initial pulse width is zero,
A rectangular voltage whose pulse width gradually increases is output. When the MOSFET 52 is driven by this rectangular wave voltage, as described above, a gradually increasing power is supplied to the load 54,
The power supply to the load 54 is soft-started.

【0011】前記したように、定常状態において、負荷
54に供給される電圧が低下した場合は、FB端子から
印加されるフィードバック電圧も低下し、そのためC5
3の電圧が低下し、OUT端子からの出力電圧のパルス
幅が拡がる。その結果、負荷54へは、低下した電圧を
補償する電圧が供給されて、負荷への供給電圧は一定の
電圧に戻る。
As described above, in the steady state, when the voltage supplied to the load 54 decreases, the feedback voltage applied from the FB terminal also decreases, so that C5
3, the pulse width of the output voltage from the OUT terminal increases. As a result, a voltage that compensates for the reduced voltage is supplied to the load 54, and the supply voltage to the load returns to a constant voltage.

【0012】[0012]

【発明が解決しようとする課題】前記の従来の半導体集
積回路では、このソフトスタート機能を、ボルテージフ
ォロア回路と反転増幅回路で構成される回路に持たせて
いた。しかし、これらの回路を構成する部品点数は数十
点と極めて多い。そのために、従来の半導体集積回路は
製造コストが高かった。
In the conventional semiconductor integrated circuit described above, the soft start function is provided in a circuit composed of a voltage follower circuit and an inverting amplifier circuit. However, the number of parts constituting these circuits is as large as several tens. Therefore, the conventional semiconductor integrated circuit has a high manufacturing cost.

【0013】この発明の目的は、前記の課題を解決し
て、部品点数が少なく、製造コストが低い、ソフトスタ
ート機能を有する半導体集積回路を提供することにあ
る。
An object of the present invention is to provide a semiconductor integrated circuit having a soft start function which has a small number of parts and a low manufacturing cost by solving the above-mentioned problems.

【0014】[0014]

【課題を解決するための手段】前記の目的を達成するた
めに、電源電圧を外部の第1CR回路と第2CR回路に
それぞれ印加し、第1CR回路を構成する第1コンデン
サ電圧を印加する入力段回路と、該入力段回路の出力電
圧とフィードバック電圧とをそれぞれ抵抗を介して外部
コンデンサに印加し、該外部コンデンサ電圧とクロック
信号に基づいて正相の第1信号を出力する第1バイブレ
ータと、前記第2CR回路を構成する第2コンデンサ電
圧とクロック信号に基づいて、前記第1信号とは逆相の
第2信号を出力する第2バイブレータと、前記第1信号
と第2信号との論理和を出力するAND回路とを具備
し、電源投入後時間とともにパルス幅が拡大し、所定時
間で所定幅のパルス信号を前記AND回路から出力する
半導体集積回路において、前記入力段回路が、pチャネ
ルMOSFETで構成され、該pチャネルMOSFET
のソースに電源電圧が印加され、前記pチャネルMOS
FETのゲートに、前記CR回路のコンデンサ電圧が印
加され、前記pチャネルMOSFETのドレインから、
入力段回路の出力信号が出力される構成とする。
In order to achieve the above-mentioned object, an input stage for applying a power supply voltage to an external first CR circuit and an external second CR circuit, respectively, and applying a first capacitor voltage constituting the first CR circuit. A circuit, a first vibrator that applies an output voltage and a feedback voltage of the input stage circuit to an external capacitor via respective resistors, and outputs a positive-phase first signal based on the external capacitor voltage and a clock signal; A second vibrator for outputting a second signal having a phase opposite to that of the first signal based on a second capacitor voltage and a clock signal constituting the second CR circuit; and a logical sum of the first signal and the second signal And an AND circuit that outputs a pulse signal having a predetermined width in a predetermined time from the AND circuit. Te, wherein the input stage circuit is composed of a p-channel MOSFET, the p-channel MOSFET
A power supply voltage is applied to the source of the p-channel MOS.
The capacitor voltage of the CR circuit is applied to the gate of the FET, and from the drain of the p-channel MOSFET,
The output signal of the input stage circuit is output.

【0015】前記入力段回路が、2段の電流ミラー回路
で構成され、前記電源電圧と前記CR回路のコンデンサ
電圧が入力される1段目の電流ミラー回路と、前記入力
段回路の出力信号を出力する2段目の電流ミラー回路と
を具備する構成とするとよい。前記入力段回路が、2段
の電流ミラー回路で構成され、前記電源電圧と前記CR
回路のコンデンサ電圧が入力される1段目の電流ミラー
回路と、前記入力段回路の出力信号を出力する2段目の
電流ミラー回路とを具備し、前記フィードバック信号
が、前記2段目の電流ミラー回路に入力される構成とす
るとよい。
The input stage circuit is constituted by a two-stage current mirror circuit, a first stage current mirror circuit to which the power supply voltage and the capacitor voltage of the CR circuit are inputted, and an output signal of the input stage circuit. It is preferable to have a configuration including a second-stage current mirror circuit for outputting. The input stage circuit includes a two-stage current mirror circuit, and includes the power supply voltage and the CR.
A first-stage current mirror circuit to which a capacitor voltage of a circuit is input; and a second-stage current mirror circuit that outputs an output signal of the input stage circuit, wherein the feedback signal is the second-stage current mirror circuit. It is preferable that the input signal be input to the mirror circuit.

【0016】[0016]

【発明の実施の形態】図1は、この発明の第1実施例の
半導体集積回路を示す図である。半導体集積回路(IC
1)は、従来の点線で示したIC51の部分に相当する
回路図を示す。また、入力段回路2は、図5の入力段回
路62に相当しており、この発明では、pチャネルMO
SFET3と抵抗R3で構成されている。VDD端子と
pチャネルMOSFET3のソースと接続し、CS端子
とpチャネルMOSFET3のゲートと接続し、pチャ
ネルMOSFET3のドレインと抵抗R3の一端と接続
し、R3の他端とCR1端子を介してコンデンサC1の
一端と接続する。この入力段回路2の機能は、図5の入
力段回路62と同じであるが、部品点数が2個と、大幅
に低減している。そのため、製造コストが大幅に低減で
きる。
FIG. 1 is a diagram showing a semiconductor integrated circuit according to a first embodiment of the present invention. Semiconductor integrated circuit (IC
1) shows a circuit diagram corresponding to a conventional IC 51 portion indicated by a dotted line. Further, the input stage circuit 2 corresponds to the input stage circuit 62 of FIG.
It is composed of SFET3 and resistor R3. The VDD terminal is connected to the source of the p-channel MOSFET 3, the CS terminal is connected to the gate of the p-channel MOSFET 3, the drain of the p-channel MOSFET 3 is connected to one end of the resistor R3, and the capacitor C1 is connected via the other end of R3 and the CR1 terminal. To one end of The function of the input stage circuit 2 is the same as that of the input stage circuit 62 in FIG. 5, but the number of components is greatly reduced to two. Therefore, the manufacturing cost can be significantly reduced.

【0017】図1において、電源が投入されたとき、コ
ンデンサC0の電圧は徐々に上昇する。そのため、pチ
ャネルMOSFET3のゲートには、VDD−C0のゲ
ート電圧が印加される。このゲート電圧は、しきい値電
圧に対して高い電圧であるため、pチャネルMOSFE
T3はオン状態となり、pチャネルMOSFETとR3
を介して流れる電流がC1に流入する。C0の電圧が時
間と共に上昇すると、ゲート電圧が低くなり、pチャネ
ルMOSFET3に流れる電流は絞られる。さらにゲー
ト電圧が低くなり、しきい値以下になるとpチャネルM
OSFET3はオフ状態となりC1に流れる電流は停止
する。
In FIG. 1, when the power is turned on, the voltage of the capacitor C0 gradually increases. Therefore, a gate voltage of VDD-C0 is applied to the gate of the p-channel MOSFET 3. Since this gate voltage is higher than the threshold voltage, the p-channel MOSFE
T3 is turned on, and the p-channel MOSFET and R3
Flows into C1. When the voltage of C0 increases with time, the gate voltage decreases and the current flowing through p-channel MOSFET 3 is reduced. When the gate voltage further decreases and falls below the threshold value, the p-channel M
OSFET3 is turned off, and the current flowing through C1 stops.

【0018】h点の電圧は、初期がVDDで、時間と共
に低下する波形となり、図6(a)のc点の電圧の一定
領域後の波形に相当する。従って、C1、第1バイブレ
ータ4の出力、第2バイブレータ5の出力およびAND
回路6の出力の各波形は、図6(a)のd点、e1、e
2おとびfの波形と同等の波形となる。そのため、バッ
ファ回路7を介してOUT端子から、初期のバルス幅が
零で、徐々にパルス幅が広がる矩形形電圧が出力され
る。この矩形波電圧でMOSFET52が駆動される
と、負荷54に徐々に増大する電力が供給され、負荷5
4への電力供給がソフトスタートされる。
The voltage at point h is initially VDD and has a waveform that decreases with time, and corresponds to the waveform after a certain area of the voltage at point c in FIG. Therefore, C1, the output of the first vibrator 4, the output of the second vibrator 5, and AND
The waveforms of the output of the circuit 6 are represented by points d, e1, and e in FIG.
The waveform is the same as the waveform of the two steps f. Therefore, a rectangular voltage having an initial pulse width of zero and a gradually increasing pulse width is output from the OUT terminal via the buffer circuit 7. When the MOSFET 52 is driven by this rectangular wave voltage, gradually increasing power is supplied to the load 54,
4 is soft-started.

【0019】尚、入力段回路2以外の箇所は図5の入力
段回路62以外の箇所に相当し、図中のD11はD6
2、R11はR62、R1はR63、4は67、5は6
8、6は70、7は71、8は69に相当する。また、
負荷へ電力供給を速く立ち上げるために、図中のR3を
削除する場合もあり得る。図2は、この発明の第2実施
例の半導体集積回路を示す図である。図1に相当する箇
所が、電流ミラー回路が2段で構成されている。VDD
端子とpチャネルMOSFET21、22、23のソー
スと接続し、CS端子とpチャネルMOSFET21の
ゲートと接続し、pチャネルMOSFET21のドレイ
ンとnチャネルMOSFET24のドレイン接続する。
nチャネルMOSFET24のドレインとnチャネルM
OSFET25のゲートと接続する。pチャネルMOS
FET22のドレインとpチャネルMOSFET23の
ゲートを接続する。pチャネルMOSFET22のドレ
インとnチャネルMOSFET25のドレインを接続す
る。nチャネルMOSFET24のソースと、nチャネ
ルMOSFET25のソースと、グランドGNDをそれ
ぞれ接続する。pチャネルMOSFET23のドレイン
と抵抗R21の一端を接続する。
The portions other than the input stage circuit 2 correspond to portions other than the input stage circuit 62 in FIG. 5, and D11 in the drawing is D6.
2, R11 is R62, R1 is R63, 4 is 67, 5 is 6
8, 6 correspond to 70, 7 to 71, and 8 to 69. Also,
In order to quickly start supplying power to the load, R3 in the figure may be deleted. FIG. 2 is a diagram showing a semiconductor integrated circuit according to a second embodiment of the present invention. A portion corresponding to FIG. 1 has a two-stage current mirror circuit. VDD
The terminal is connected to the sources of the p-channel MOSFETs 21, 22, and 23, the CS terminal is connected to the gate of the p-channel MOSFET 21, and the drain of the p-channel MOSFET 21 is connected to the drain of the n-channel MOSFET 24.
Drain of n-channel MOSFET 24 and n-channel M
Connect to the gate of OSFET 25. p-channel MOS
The drain of the FET 22 and the gate of the p-channel MOSFET 23 are connected. The drain of the p-channel MOSFET 22 and the drain of the n-channel MOSFET 25 are connected. The source of the n-channel MOSFET 24, the source of the n-channel MOSFET 25, and the ground GND are connected. The drain of the p-channel MOSFET 23 is connected to one end of the resistor R21.

【0020】1段目の電流ミラー回路は、pチャネルM
OSFET21、nチャネルMOSFET24、nチャ
ネルMOSFET25で構成され、2段目の電流ミラー
回路は、pチャネルMOSFET22、pチャネルMO
SFET23、nチャネルMOSFET25で構成され
る。pチャネルMOSFET23のドレインと抵抗R2
1を接続する。入力段回路20の入力はpチャネルMO
SFET21のゲートで、出力は抵抗R21の他端であ
る。
The first-stage current mirror circuit has a p-channel M
The second-stage current mirror circuit includes an OSFET 21, an n-channel MOSFET 24, and an n-channel MOSFET 25.
It comprises an SFET 23 and an n-channel MOSFET 25. The drain of the p-channel MOSFET 23 and the resistor R2
1 is connected. The input of the input stage circuit 20 is a p-channel MO
At the gate of SFET 21, the output is the other end of resistor R21.

【0021】図1と違って、電流ミラー回路を構成する
各MOSFETの面積を変えることで、入力段回路20
の出力電流(pチャネルMOSFET23のドレイン電
流)を任意に変えることができる。その結果、CR1端
子に接続するC1の電圧の落ち込み期間が時間と共に拡
大する割合を任意に調整できる。この回路は、図1より
は、部品点数は多いが、図5の回路に比べるとやはり大
幅に低減している。そのため、製造コストも低減でき
る。
Unlike FIG. 1, by changing the area of each MOSFET constituting the current mirror circuit, the input stage circuit 20 is changed.
(The drain current of the p-channel MOSFET 23) can be arbitrarily changed. As a result, it is possible to arbitrarily adjust the rate at which the drop period of the voltage of C1 connected to the CR1 terminal increases with time. This circuit has a larger number of components than FIG. 1, but is also greatly reduced as compared with the circuit of FIG. Therefore, the manufacturing cost can be reduced.

【0022】尚、負荷へ電力供給を速く立ち上げるため
に、図中のR21を削除する場合もあり得る。図3は、
この発明の第3実施例の半導体集積回路を示す図であ
る。図1の回路のFB端子と接続するFB回路10とフ
ォトカプラー11を除去し、図2の回路のpチャネルM
OSFET22に相当するpチャネルMOSFET32
のドレインに、FB信号伝送の回路であるフォトカプー
37とFB回路38を追加し、接続した回路である。
尚、図中の31、33、34、35およびR31は、図
2の21、23、24、25およびR21にそれぞれ相
当する。
Incidentally, R21 in the figure may be deleted in order to quickly start supplying power to the load. FIG.
FIG. 10 is a diagram illustrating a semiconductor integrated circuit according to a third embodiment of the present invention. The FB circuit 10 and the photocoupler 11 connected to the FB terminal of the circuit of FIG. 1 are removed, and the p-channel M of the circuit of FIG.
P-channel MOSFET 32 corresponding to OSFET 22
This is a circuit in which a photocoupler 37 and an FB circuit 38, which are circuits for FB signal transmission, are added to and connected to the drain of FIG.
Incidentally, 31, 33, 34, 35 and R31 in the figure correspond to 21, 23, 24, 25 and R21 in FIG. 2, respectively.

【0023】電源投入時の入力段回路30の動作は、図
2の入力段回路20と同じであるので、説明は省略す
る。定常状態で、負荷に印加される電圧が低下すると、
FB回路38に流れ込む電流が小さくなり、pチャネル
MOSFET33のドレイン電流が小さくなる。これは
入力段回路30の出力電流が小さくなることを意味す
る。この入力段回路30の出力電流が小さくなると、前
記で説明したように、IC1のOUT端子から出力され
る矩形波電圧のパルス幅が拡がり、負荷に供給される電
圧は上昇する。その結果、電圧低下は補償されて一定の
電圧が負荷に供給される。この回路は、図5の回路と比
べると部品点数は大幅に低減している。そのため製造コ
ストも低減できる。
The operation of the input stage circuit 30 when the power is turned on is the same as that of the input stage circuit 20 shown in FIG. In steady state, when the voltage applied to the load decreases,
The current flowing into the FB circuit 38 decreases, and the drain current of the p-channel MOSFET 33 decreases. This means that the output current of the input stage circuit 30 decreases. As described above, when the output current of the input stage circuit 30 decreases, the pulse width of the rectangular wave voltage output from the OUT terminal of the IC 1 increases, and the voltage supplied to the load increases. As a result, the voltage drop is compensated and a constant voltage is supplied to the load. This circuit has a significantly reduced number of components compared to the circuit of FIG. Therefore, the manufacturing cost can be reduced.

【0024】[0024]

【発明の効果】この発明によれば、従来のボルテージフ
ォロワ回路と反転増幅回路で構成される入力段回路を、
MOSFET1個または2段の電流ミラー回路で構成す
ることで、大幅に部品点数を低減できる。その結果、製
造コストの低減ができる。
According to the present invention, an input stage circuit composed of a conventional voltage follower circuit and an inverting amplifier circuit is provided.
By using one MOSFET or a two-stage current mirror circuit, the number of components can be greatly reduced. As a result, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例の半導体集積回路を示す
FIG. 1 is a diagram showing a semiconductor integrated circuit according to a first embodiment of the present invention;

【図2】この発明の第2実施例の半導体集積回路を示す
FIG. 2 is a diagram showing a semiconductor integrated circuit according to a second embodiment of the present invention;

【図3】この発明の第3実施例の半導体集積回路を示す
FIG. 3 is a diagram showing a semiconductor integrated circuit according to a third embodiment of the present invention;

【図4】ソフトスタート機能を有するスイッチング電源
回路の構成図
FIG. 4 is a configuration diagram of a switching power supply circuit having a soft start function.

【図5】従来のスイッチング電源用ICの回路図FIG. 5 is a circuit diagram of a conventional switching power supply IC.

【図6】図5の回路の動作波形で、(a)は各点の波
形、(b)は(a)のf点の波形を時間軸を長くして表
した図
6A and 6B are operating waveforms of the circuit of FIG. 5, in which FIG. 6A shows the waveform at each point, and FIG. 6B shows the waveform at the point f in FIG.

【符号の説明】[Explanation of symbols]

1 IC 2 入力段回路 3 pチャネルMOSFET 4 第1バイブレータ 5 第2バイブレータ 6 AND回路 7 バッファ回路 8 クロック回路 9 半導体チップ 10、38 FB回路 11、37 フォトカプラー 21、22、23、31、32、33 pチャネルMO
SFET 24、25、34、35 nチャネルMOSFET C0、C1、C2 コンデンサ R0、R1、R2、R3、R11、R21、R31 抵
抗 D11 ダイオード
Reference Signs List 1 IC 2 input stage circuit 3 p-channel MOSFET 4 first vibrator 5 second vibrator 6 AND circuit 7 buffer circuit 8 clock circuit 9 semiconductor chip 10, 38 FB circuit 11, 37 photocoupler 21, 22, 23, 31, 32, 33 p-channel MO
SFET 24, 25, 34, 35 n-channel MOSFET C0, C1, C2 Capacitor R0, R1, R2, R3, R11, R21, R31 Resistance D11 Diode

フロントページの続き Fターム(参考) 5F038 AV06 AZ03 BB04 BG02 BG06 EZ20 5H410 CC02 DD02 EA11 EA32 EB01 EB37 FF03 FF23 KK02 5J055 AX44 AX57 AX61 AX64 CX19 DX01 EY01 EY10 EY12 EY21 EY28 EZ01 EZ04 EZ25 GX01 GX04 Continued on front page F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電源電圧を外部の第1CR回路と第2CR
回路にそれぞれ印加し、第1CR回路を構成する第1コ
ンデンサ電圧を印加する入力段回路と、該入力段回路の
出力電圧とフィードバック電圧とをそれぞれ抵抗を介し
て外部コンデンサに印加し、該外部コンデンサ電圧とク
ロック信号に基づいて正相の第1信号を出力する第1バ
イブレータと、前記第2CR回路を構成する第2コンデ
ンサ電圧とクロック信号に基づいて、前記第1信号とは
逆相の第2信号を出力する第2バイブレータと、前記第
1信号と第2信号との論理和を出力するAND回路とを
具備し、電源投入後時間とともにパルス幅が拡大し、所
定時間で所定幅のパルス信号を前記AND回路から出力
する半導体集積回路において、前記入力段回路が、pチ
ャネルMOSFETで構成され、該pチャネルMOSF
ETのソースに電源電圧が印加され、前記pチャネルM
OSFETのゲートに、前記CR回路のコンデンサ電圧
が印加され、前記pチャネルMOSFETのドレインか
ら、入力段回路の出力信号が出力されることを特徴とす
る半導体集積回路。
A power supply voltage is supplied to an external first CR circuit and a second CR circuit.
An input stage circuit for applying a first capacitor voltage constituting a first CR circuit, and an output voltage and a feedback voltage of the input stage circuit respectively applied to an external capacitor via a resistor; A first vibrator that outputs a first signal having a positive phase based on a voltage and a clock signal, and a second vibrator that has a phase opposite to the first signal based on a second capacitor voltage and a clock signal that form the second CR circuit. A second vibrator for outputting a signal, and an AND circuit for outputting a logical sum of the first signal and the second signal, wherein a pulse width increases with time after power-on, and a pulse signal having a predetermined width in a predetermined time Is output from the AND circuit, the input stage circuit is formed of a p-channel MOSFET, and the p-channel MOSF
A power supply voltage is applied to the source of ET, and the p-channel M
A semiconductor integrated circuit, wherein a capacitor voltage of the CR circuit is applied to a gate of an OSFET, and an output signal of an input stage circuit is output from a drain of the p-channel MOSFET.
【請求項2】電源電圧を外部の第1CR回路と第2CR
回路にそれぞれ印加し、第1CR回路を構成する第1コ
ンデンサ電圧を印加する入力段回路と、該入力段回路の
出力電圧とフィードバック電圧とをそれぞれ抵抗を介し
て外部コンデンサに印加し、該外部コンデンサ電圧とク
ロック信号に基づいて正相の第1信号を出力する第1バ
イブレータと、前記第2CR回路を構成する第2コンデ
ンサ電圧とクロック信号に基づいて、前記第1信号とは
逆相の第2信号を出力する第2バイブレータと、前記第
1信号と第2信号との論理和を出力するAND回路を具
備し、電源投入後時間とともにパルス幅が拡大し、所定
時間で所定幅のパルス信号を前記AND回路から出力す
る半導体集積回路において、 前記入力段回路が、2段の電流ミラー回路で構成され、
前記電源電圧と前記CR回路のコンデンサ電圧が入力さ
れる1段目の電流ミラー回路と、前記入力段回路の出力
信号を出力する2段目の電流ミラー回路とを具備するこ
とを特徴とする半導体集積回路。
2. The power supply voltage is supplied to an external first CR circuit and an external first CR circuit.
An input stage circuit for applying a first capacitor voltage constituting a first CR circuit, and an output voltage and a feedback voltage of the input stage circuit respectively applied to an external capacitor via a resistor; A first vibrator that outputs a first signal having a positive phase based on a voltage and a clock signal, and a second vibrator that has a phase opposite to the first signal based on a second capacitor voltage and a clock signal that form the second CR circuit. A second vibrator that outputs a signal; and an AND circuit that outputs a logical sum of the first signal and the second signal. The pulse width increases with time after power-on, and a pulse signal having a predetermined width is generated at a predetermined time. In the semiconductor integrated circuit outputting from the AND circuit, the input stage circuit is configured by a two-stage current mirror circuit,
A semiconductor device comprising: a first-stage current mirror circuit to which the power supply voltage and the capacitor voltage of the CR circuit are input; and a second-stage current mirror circuit that outputs an output signal of the input stage circuit. Integrated circuit.
【請求項3】電源電圧を外部の第1CR回路と第2CR
回路にそれぞれ印加し、第1CR回路を構成する第1コ
ンデンサ電圧を印加する入力段回路と、該入力段回路の
出力電圧とフィードバック電圧とをそれぞれ抵抗を介し
て外部コンデンサに印加し、該外部コンデンサ電圧とク
ロック信号に基づいて正相の第1信号を出力する第1バ
イブレータと、前記第2CR回路を構成する第2コンデ
ンサ電圧とクロック信号に基づいて、前記第1信号とは
逆相の第2信号を出力する第2バイブレータと、前記第
1信号と第2信号との論理和を出力するAND回路を具
備し、電源投入後時間とともにパルス幅が拡大し、所定
時間で所定幅のパルス信号を前記AND回路から出力す
る半導体集積回路において、 前記入力段回路が、2段の電流ミラー回路で構成され、
前記電源電圧と前記CR回路のコンデンサ電圧が入力さ
れる1段目の電流ミラー回路と、前記入力段回路の出力
信号を出力する2段目の電流ミラー回路とを具備し、前
記フィードバック信号が、前記2段目の電流ミラー回路
に入力されることを特徴とする半導体集積回路。
3. The power supply voltage is supplied to an external first CR circuit and an external first CR circuit.
An input stage circuit for applying a first capacitor voltage constituting a first CR circuit, and an output voltage and a feedback voltage of the input stage circuit respectively applied to an external capacitor via a resistor; A first vibrator that outputs a first signal having a positive phase based on a voltage and a clock signal, and a second vibrator that has a phase opposite to the first signal based on a second capacitor voltage and a clock signal that form the second CR circuit. A second vibrator that outputs a signal; and an AND circuit that outputs a logical sum of the first signal and the second signal. The pulse width increases with time after power-on, and a pulse signal having a predetermined width is generated at a predetermined time. In the semiconductor integrated circuit outputting from the AND circuit, the input stage circuit is configured by a two-stage current mirror circuit,
A first-stage current mirror circuit to which the power supply voltage and the capacitor voltage of the CR circuit are input, and a second-stage current mirror circuit to output an output signal of the input stage circuit, wherein the feedback signal is A semiconductor integrated circuit which is input to the second-stage current mirror circuit.
JP2000060758A 2000-03-06 2000-03-06 Semiconductor integrated circuit Expired - Fee Related JP3721924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060758A JP3721924B2 (en) 2000-03-06 2000-03-06 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060758A JP3721924B2 (en) 2000-03-06 2000-03-06 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2001250918A true JP2001250918A (en) 2001-09-14
JP3721924B2 JP3721924B2 (en) 2005-11-30

Family

ID=18581015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060758A Expired - Fee Related JP3721924B2 (en) 2000-03-06 2000-03-06 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3721924B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021887A (en) * 2002-09-05 2004-03-11 페어차일드코리아반도체 주식회사 A soft start device without external capacitor and a power supply having that device
US7203465B2 (en) 2002-10-11 2007-04-10 Oki Electric Industry Co., Ltd. Receiver/transmitter circuit
CN117519396A (en) * 2023-12-27 2024-02-06 中国科学院合肥物质科学研究院 Load self-adaptive high-efficiency pulse constant current source and control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021887A (en) * 2002-09-05 2004-03-11 페어차일드코리아반도체 주식회사 A soft start device without external capacitor and a power supply having that device
US7203465B2 (en) 2002-10-11 2007-04-10 Oki Electric Industry Co., Ltd. Receiver/transmitter circuit
CN117519396A (en) * 2023-12-27 2024-02-06 中国科学院合肥物质科学研究院 Load self-adaptive high-efficiency pulse constant current source and control method
CN117519396B (en) * 2023-12-27 2024-03-22 中国科学院合肥物质科学研究院 Load self-adaptive high-efficiency pulse constant current source and control method

Also Published As

Publication number Publication date
JP3721924B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP3614156B2 (en) Power circuit
JP3954198B2 (en) Output circuit, level converter circuit, logic circuit, and operational amplifier circuit
US20070211502A1 (en) Voltage step-up circuit and electric appliance therewith
US6229350B1 (en) Accurate, fast, and user programmable hysteretic comparator
KR100963310B1 (en) Control circuit for dc/dc converter
US20070139839A1 (en) Overcurrent detection circuit and switching circuit
US7400163B2 (en) Dead time control circuit capable of adjusting temperature characteristics of dead time
JP3637904B2 (en) Power circuit
US6661260B2 (en) Output circuit of semiconductor circuit with power consumption reduced
JP2022146584A (en) Step-down dc/dc converter, controller for the same, and control method of the same, and electronic apparatus
US7342463B2 (en) Timer circuits and method
JP2009022075A (en) Soft start circuit and dc-dc converter
US6822884B1 (en) Pulse width modulated charge pump
EP1884856A1 (en) Voltage/current converter circuit and method for providing a ramp current
JP2003347550A (en) Power switch device
JP4376385B2 (en) Light emitting element drive circuit
US7088151B1 (en) High voltage gate driver using a low voltage multi-level current pulse translator
JP2001250918A (en) Semiconductor integrated circuit
JP3422928B2 (en) Charge pump drive circuit
KR100736056B1 (en) Controller oscillator system and method
US6525598B1 (en) Bias start up circuit and method
JP2002271145A (en) Semiconductor integrated circuit device
JP2004318604A (en) Startup circuit for band gap type reference voltage circuit
CN114115408A (en) Semiconductor integrated circuit for regulator
JPH03232316A (en) Cmos switch driver in which spike current is reduced

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3721924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees