JP2001248879A - Building skeleton heat storage type air conditioning system - Google Patents

Building skeleton heat storage type air conditioning system

Info

Publication number
JP2001248879A
JP2001248879A JP2000178613A JP2000178613A JP2001248879A JP 2001248879 A JP2001248879 A JP 2001248879A JP 2000178613 A JP2000178613 A JP 2000178613A JP 2000178613 A JP2000178613 A JP 2000178613A JP 2001248879 A JP2001248879 A JP 2001248879A
Authority
JP
Japan
Prior art keywords
heat storage
air
conditioning load
air conditioning
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000178613A
Other languages
Japanese (ja)
Inventor
Yoshinori Inoue
良則 井上
Nozomi Kusumoto
望 楠本
Yuji Yoshitake
裕二 吉竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2000178613A priority Critical patent/JP2001248879A/en
Publication of JP2001248879A publication Critical patent/JP2001248879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce running cost by storing required quantity of heat in the building skeleton for each room. SOLUTION: A building skeleton heat storage unit arranged to serve as an indoor air conditioner performing cooling and heating is provided in each of a plurality of rooms. Daily air conditioning load of the building skeleton heat storage unit is measured and when it is measured, a building skeleton heat storage quantity corresponding to the measured air conditioning load is added with the building skeleton heat storage quantity of previous day to determine a required building skeleton heat storage quantity. When the air conditioning load is not measured, a specified quantity is subtracted from the building skeleton heat storage quantity of previous day to determine a required building skeleton heat storage quantity. The air conditioning system is controlled to drive the building skeleton heat storage units such that the required building skeleton heat storage quantities thus calculated are stored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、夜間(例えば、午
後10時〜午前8時など)において、躯体蓄熱装置によ
り温調空気(温風または冷風)を床スラブに吹き付けて
温熱または冷熱を床スラブに蓄え、昼間に、蓄えた熱を
室内側に取り出すように構成した躯体蓄熱型空気調和シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of blowing warm or cold heat to a floor slab at night (for example, from 10:00 pm to 8:00 am) by blowing temperature-regulated air (warm air or cold air) to a floor slab by a frame heat storage device. The present invention relates to a skeleton heat storage type air conditioning system configured to store heat in a slab and take out the stored heat to the indoor side in the daytime.

【0002】[0002]

【従来の技術】この種の躯体蓄熱型空気調和システムに
おいて蓄熱する場合、従来一般に、翌日が休日であるよ
うな場合は別として、ほぼ毎日、躯体に保有可能な最大
限の熱を蓄えるようにしている。
2. Description of the Related Art When heat is stored in this type of frame heat storage type air conditioning system, generally, the maximum amount of heat that can be stored in the frame is stored almost every day except when the next day is a holiday. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、1フロ
アーが多くの被空調ゾーンとしての部屋などに仕切られ
ているような建物では、部屋に窓があるか無いか、部屋
の位置が南側か北側か、更にはOA機器の放熱量が多い
部屋かどうかなどによって、各部屋ごとの空調負荷に違
いがある。
However, in a building where one floor is divided into many rooms as zones to be air-conditioned, whether the room has windows or not, is the room located on the south or north side? Furthermore, there is a difference in the air-conditioning load of each room depending on whether or not the room has a large heat radiation amount of the OA equipment.

【0004】すなわち、冷房の場合に、日当たりの良い
部屋では空調負荷が高いが、北側の窓の無いような部屋
では空調負荷が低い。また、暖房の場合は、逆に、日当
たりの良い部屋では空調負荷が低いが、北側の窓の無い
ような部屋では空調負荷が高い。
That is, in the case of cooling, the air conditioning load is high in a sunny room, but low in a room without a window on the north side. Conversely, in the case of heating, the air conditioning load is low in a sunny room, but high in a room without a window on the north side.

【0005】このような空調負荷の違いにかかわらず、
従来では一律に最大限の熱を蓄えるようにしているた
め、空調負荷が低いにもかかわらず、必要以上に蓄熱を
行い、ランニングコストが増大する欠点があった。殊に
中間期においては、部屋によって空調負荷がほとんど無
くて蓄熱が不要なことすらあるにもかかわらず、蓄熱を
行っているといった不都合があった。
[0005] Regardless of such a difference in air conditioning load,
Conventionally, since the maximum heat is uniformly stored, there is a disadvantage that the heat is stored more than necessary and the running cost is increased despite the low air conditioning load. In particular, in the interim period, there is a disadvantage that heat is stored even though there is little air conditioning load in some rooms and heat storage may not be necessary.

【0006】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の躯体蓄熱型空気
調和システムは、被空調ゾーンごとに必要な量の躯体蓄
熱を行ってランニングコストを低減できるようにするこ
とを目的とし、請求項2、請求項3および請求項4それ
ぞれに係る発明の躯体蓄熱型空気調和システムは、空調
負荷を良好に計測できるようにすることを目的とし、ま
た、請求項5に係る発明の躯体蓄熱型空気調和システム
は、当日の実際の空調負荷が前日の実際の空調負荷より
低いときでも当日の実際の空調負荷を良好に求め、一層
躯体蓄熱に要するランニングコストを低減できるように
することを目的とし、また、請求項6に係る発明の躯体
蓄熱型空気調和システムは、汎用性大にして当日の実際
の空調負荷を良好に求めることができるようにすること
を目的とする。そして、請求項7に係る発明の躯体蓄熱
型空気調和システムは、天候の変化に良好に対応できる
ようにすることを目的とし、また、請求項8に係る発明
の躯体蓄熱型空気調和システムは、より良好に天候の変
化に対応できるようにすることを目的とする。
The present invention has been made in view of such circumstances, and a frame heat storage type air conditioning system according to the first aspect of the present invention stores a required amount of frame heat for each zone to be air-conditioned. It is an object of the present invention to reduce the running cost, and it is an object of the frame heat storage type air conditioning system according to the second, third and fourth aspects of the present invention to enable the air conditioning load to be measured well. In addition, the skeleton thermal storage type air conditioning system according to the fifth aspect of the present invention is capable of satisfactorily determining the actual air conditioning load of the day even when the actual air conditioning load of the day is lower than the actual air conditioning load of the previous day. It is an object of the present invention to reduce the running cost required for the air conditioning system of the present invention. And an object thereof is to be able to determine. The skeleton thermal storage type air conditioning system of the invention according to claim 7 aims to be able to cope with a change in weather satisfactorily, and the skeleton thermal storage type air conditioning system of the invention according to claim 8 is: It is an object of the present invention to be able to better respond to changes in weather.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明の躯
体蓄熱型空気調和システムは、上述のような目的を達成
するために、複数の被空調ゾーンそれぞれに設けられ
て、対応する被空調ゾーン内の空調を行う室内側空気調
和機と、前記被空調ゾーンそれぞれに対応する躯体に通
常の空調時間外において蓄熱する躯体蓄熱装置と、前記
室内側空気調和機に付設されて1日の空調負荷を計測す
る空調負荷計測手段と、前記空調負荷計測手段によって
計測された空調負荷と前記躯体蓄熱装置による前日の躯
体蓄熱量とに基づいて前記躯体蓄熱装置による必要躯体
蓄熱量を算出する必要躯体蓄熱量算出手段と、前記必要
躯体蓄熱量算出手段によって算出された必要躯体蓄熱量
を蓄熱するように前記躯体蓄熱装置を駆動する蓄熱制御
手段とを備え、前記必要躯体蓄熱量算出手段が、前記空
調負荷計測手段によって空調負荷が計測された時には計
測された空調負荷に対応した躯体蓄熱量に前日の躯体蓄
熱量を加算したものを必要躯体蓄熱量として算出し、か
つ、前記空調負荷計測手段によって空調負荷が計測され
なかった時には前日の躯体蓄熱量から所定量割り引いた
ものを必要躯体蓄熱量として算出するように構成する。
According to a first aspect of the present invention, there is provided a body heat storage type air conditioning system provided in a plurality of zones to be air-conditioned to achieve the above-mentioned object. An indoor air conditioner that performs air conditioning in the zone, a frame heat storage device that stores heat outside the normal air conditioning time in a frame corresponding to each of the zones to be air-conditioned, and a one-day air conditioner attached to the indoor air conditioner An air conditioning load measuring means for measuring a load, and a necessary skeleton for calculating a required skeleton heat storage amount by the skeleton heat storage device based on the air conditioning load measured by the air conditioning load measurement device and the skeleton heat storage amount of the previous day by the skeleton heat storage device. Heat storage amount calculation means, and heat storage control means for driving the skeleton heat storage device to store the required skeleton heat storage amount calculated by the required skeleton heat storage amount calculation means, When the air-conditioning load is measured by the air-conditioning load measuring means, the main body heat storage amount calculating means calculates, as a required body heat storage amount, a value obtained by adding the previous day's heat storage amount to the main body heat storage amount corresponding to the measured air-conditioning load. When the air-conditioning load is not measured by the air-conditioning load measuring means, the required amount of heat stored in the frame is calculated by subtracting a predetermined amount from the amount of heat stored in the frame on the previous day.

【0008】また、請求項2に係る発明は、前述のよう
な目的を達成するために、請求項1に係る発明の室内側
空気調和機の熱交換器と圧縮機と外部熱交換器とを冷媒
配管を介して連通接続し、空調負荷計測手段を、前記圧
縮機の運転時間を計測して運転時間に対応した空調負荷
を計測するように構成する。
According to a second aspect of the present invention, in order to achieve the above-described object, the heat exchanger, compressor and external heat exchanger of the indoor air conditioner according to the first aspect of the present invention are provided. The air-conditioning load measuring means is connected so as to communicate with the refrigerant pipe, and measures an operation time of the compressor to measure an air-conditioning load corresponding to the operation time.

【0009】また、請求項3に係る発明は、前述のよう
な目的を達成するために、請求項1に係る発明の躯体蓄
熱型空気調和システムにおける室内側空気調和機の熱交
換器と熱源とを、気体と液体とに相変化する冷媒を自然
循環流動させる冷媒配管を介して連通接続するととも
に、前記冷媒配管に開閉弁を付設し、空調負荷計測手段
を、前記開閉弁の開き時間を計測して運転時間に対応し
た空調負荷を計測するように構成する。
According to a third aspect of the present invention, a heat exchanger and a heat source for an indoor air conditioner in a frame heat storage type air conditioning system according to the first aspect of the present invention are provided to achieve the above object. Are connected to each other through a refrigerant pipe that allows the refrigerant that changes phase into gas and liquid to naturally circulate and flow, and an on-off valve is attached to the refrigerant pipe, and an air-conditioning load measuring unit measures the opening time of the on-off valve. And measures the air conditioning load corresponding to the operation time.

【0010】また、請求項4に係る発明は、前述のよう
な目的を達成するために、請求項1に係る発明の躯体蓄
熱型空気調和システムにおける室内側空気調和機の熱交
換器と熱源とを、気体と液体とに相変化する冷媒を自然
循環流動させる冷媒配管を介して連通接続するととも
に、前記冷媒配管に、開度調整によって冷媒の供給量を
調整可能な流量調整弁を設け、前記流量調整弁の開度を
検出する開度センサを設け、空調負荷計測手段を、前記
開度センサによって検出された開度を積算し、その積算
開度に基づいて空調負荷を計測するように構成する。
According to a fourth aspect of the present invention, a heat exchanger and a heat source of an indoor air conditioner in a frame heat storage type air conditioning system according to the first aspect of the present invention are provided to achieve the above object. While communicating and connecting via a refrigerant pipe that allows the refrigerant that changes phase into a gas and a liquid to naturally circulate and flow, the refrigerant pipe is provided with a flow rate adjustment valve capable of adjusting the supply amount of the refrigerant by adjusting the opening degree, An opening sensor for detecting the opening of the flow control valve is provided, and the air conditioning load measuring means is configured to integrate the opening detected by the opening sensor and measure the air conditioning load based on the integrated opening. I do.

【0011】また、請求項5に係る発明は、前述のよう
な目的を達成するために、複数の被空調ゾーンそれぞれ
に設けられて、対応する被空調ゾーン内の空調を行う室
内側空気調和機と、前記被空調ゾーンそれぞれに対応す
る躯体に通常の空調時間外において蓄熱する躯体蓄熱装
置と、前記被空調ゾーンそれぞれ内で通常の空調時間内
に実際に要した1日の実空調負荷を計測する実空調負荷
計測手段と、前記実空調負荷計測手段によって計測され
た当日の実空調負荷と前日の実空調負荷とに基づいて前
記躯体蓄熱装置による必要躯体蓄熱量を算出する必要躯
体蓄熱量算出手段と、前記必要躯体蓄熱量算出手段によ
って算出された必要躯体蓄熱量を蓄熱するように前記躯
体蓄熱装置を駆動する蓄熱制御手段とを備え、かつ、前
記必要躯体蓄熱量算出手段を、当日の実空調負荷が前日
の実空調負荷よりも低いときには、前日の実空調負荷か
ら当日の実空調負荷を差し引いた分を余剰躯体蓄熱量と
してその余剰躯体蓄熱量を当日の実空調負荷に対応する
躯体蓄熱量から引いたものを必要躯体蓄熱量とし、当日
の実空調負荷が前日の実空調負荷よりも高いときには、
当日の実空調負荷に対応する躯体蓄熱量を必要躯体蓄熱
量としてそれぞれ算出するように構成する。
According to a fifth aspect of the present invention, there is provided an indoor air conditioner provided in each of a plurality of air-conditioned zones to perform air conditioning in the corresponding air-conditioned zones in order to achieve the above-mentioned object. And a skeleton heat storage device that stores heat outside the normal air-conditioning time in the skeleton corresponding to each of the air-conditioned zones, and measures an actual air-conditioning load of the day actually required within the normal air-conditioning time in each of the air-conditioned zones. A required skeleton heat storage amount calculation unit that calculates a required skeleton heat storage amount by the skeleton heat storage device based on the actual air conditioning load of the day measured by the actual air conditioning load measurement unit and the actual air conditioning load of the previous day measured by the actual air conditioning load measurement unit. Means, and heat storage control means for driving the skeleton heat storage device to store the required skeleton heat storage amount calculated by the required skeleton heat storage amount calculation means, and the required skeleton heat storage amount When the actual air-conditioning load of the day is lower than the actual air-conditioning load of the previous day, the amount obtained by subtracting the actual air-conditioning load of the day from the actual air-conditioning load of the previous day is regarded as the surplus body heat storage amount, and the surplus frame heat storage amount is calculated as the surplus body heat amount of the day. If the actual heat storage load on the day is higher than the previous day's actual air conditioning load,
The heat storage amount corresponding to the actual air conditioning load on the day is calculated as the required heat storage amount.

【0012】また、請求項6に係る発明は、前述のよう
な目的を達成するために、請求項5に記載の躯体蓄熱型
空気調和システムにおいて、被空調ゾーンから室内側空
気調和機に戻される被温調空気の温度を測定する第1の
温度センサと、前記室内側空気調和機から被空調ゾーン
に供給される温調空気の温度を測定する第2の温度セン
サとを備え、実空調負荷計測手段を、前記第1の温度セ
ンサで測定された被温調空気の温度と前記第2の温度セ
ンサで測定された温調空気の温度との温度差の絶対値を
算出する温度差算出手段と、前記温度差算出手段で算出
された温度差の絶対値を入力して所定値と比較し、温度
差の絶対値が所定値よりも大きいときに比較出力を出す
比較手段と、前記比較手段からの比較出力に応答して前
記室内側空気調和機に設けられている送風機の設定風量
と温度差と時間と比熱とに基づいて求めた空調負荷を通
常の空調時間内で積算して実空調負荷を算出する空調負
荷算出手段とから構成する。
According to a sixth aspect of the present invention, in order to achieve the above object, in the frame heat storage type air conditioning system according to the fifth aspect, the air conditioner is returned from the air-conditioned zone to the indoor air conditioner. A first temperature sensor for measuring the temperature of the temperature-controlled air, and a second temperature sensor for measuring the temperature of the temperature-controlled air supplied from the indoor air conditioner to the air-conditioned zone; Temperature difference calculating means for calculating an absolute value of a temperature difference between the temperature of the temperature-controlled air measured by the first temperature sensor and the temperature of the temperature-controlled air measured by the second temperature sensor; Comparing means for inputting the absolute value of the temperature difference calculated by the temperature difference calculating means, comparing the absolute value with the predetermined value, and outputting a comparison output when the absolute value of the temperature difference is larger than the predetermined value; Air conditioning in response to the comparison output from It consists with the air conditioning load calculating means for calculating the actual air conditioning load by integrating obtained the air conditioning load in the normal air conditioning time based on the set air volume of the blower which is provided with a temperature difference between time and specific heat.

【0013】また、請求項7に係る発明は、前述のよう
な目的を達成するために、請求項1、請求項2、請求項
3、請求項4、請求項5、請求項6のいずれかに記載の
躯体蓄熱型空気調和システムにおいて、当日の天候状況
を入力して天候状況に基づいて予め設定した当日天候状
況信号を出力する当日天候状況入力手段と、翌日の予想
天候状況を入力して予想天候状況に基づいて予め設定し
た予想天候状況信号を出力する予想天候状況入力手段
と、前記当日天候状況入力手段から出力される当日天候
状況信号と前記予想天候状況入力手段から出力される予
想天候状況信号とを比較して補正係数を算出する補正係
数算出手段と、を備え、必要躯体蓄熱量算出手段に、被
空調ゾーンそれぞれでの天候状況による影響度と前記補
正係数算出手段で算出された補正係数とに基づいて必要
躯体蓄熱量を補正する補正値信号を出力する補正手段を
備えて構成する。
[0013] The invention according to claim 7 achieves the above-mentioned object by providing any one of claims 1, 2, 3, 4, 5, and 6. In the skeleton thermal storage type air conditioning system described in the above, by inputting the weather condition of the day and outputting a preset weather condition signal based on the weather condition based on the weather condition, and inputting the expected weather condition of the next day. Predicted weather condition input means for outputting a predicted weather condition signal set in advance based on the predicted weather condition; a current day weather condition signal output from the current day weather condition input device; and a predicted weather output from the predicted weather condition input device. A correction coefficient calculating means for calculating a correction coefficient by comparing with a situation signal, wherein the required skeleton heat storage amount calculating means calculates the degree of influence of the weather condition in each zone to be air-conditioned and the correction coefficient calculating means. Configure a correction means for outputting a correction value signal for correcting the required building frame heat storage amount based on the correction factors.

【0014】また、請求項8に係る発明は、前述のよう
な目的を達成するために、請求項5に係る発明の躯体蓄
熱型空気調和システムにおける天候状況および予想天候
状況を日射の度合いとするように構成する。
In order to achieve the above object, the invention according to claim 8 sets the weather condition and the expected weather condition in the frame heat storage type air conditioning system according to claim 5 as the degree of solar radiation. The configuration is as follows.

【0015】[0015]

【作用】請求項1に係る発明の躯体蓄熱型空気調和シス
テムの構成によれば、複数の被空調ゾーンごとに躯体蓄
熱を行うとともに、被空調ゾーンごとに空調負荷を計測
し、その日に空調負荷が計測されたかどうかを判別する
ことによって、前日の躯体蓄熱量で足りたかどうかを判
断し、その判断結果に基づいてその日の躯体蓄熱量を決
める。すなわち、空調負荷が計測されたときには、計測
した空調負荷分だけ前日の躯体蓄熱量では不足していた
ために、その空調負荷分だけ前日の躯体蓄熱量に加えた
ものを必要躯体蓄熱量として躯体蓄熱を行う。空調負荷
が計測されなかったときには、前日の躯体蓄熱量で足り
ているために、躯体蓄熱量に余剰分があると見なし、前
日の躯体蓄熱量から所定量割り引いたものを必要躯体蓄
熱量として躯体蓄熱を行う。
According to the structure of the skeleton heat storage type air conditioning system according to the first aspect of the present invention, the skeleton heat storage is performed for each of the plurality of air-conditioned zones, and the air-conditioning load is measured for each of the air-conditioned zones. By determining whether or not is measured, it is determined whether or not the amount of heat stored in the skeleton of the previous day is sufficient, and the amount of heat stored in the skeleton is determined based on the determination result. In other words, when the air-conditioning load was measured, the measured amount of air-conditioning load was insufficient for the previous day's skeleton heat storage. I do. When the air conditioning load was not measured, the amount of heat stored in the skeleton was sufficient for the previous day, so it was assumed that there was a surplus in the amount of heat stored in the skeleton. Perform heat storage.

【0016】また、請求項2に係る発明の躯体蓄熱型空
気調和システムの構成によれば、躯体蓄熱量が不足した
分を、圧縮機の運転に伴う強制循環により冷媒を熱交換
器に供給して補う場合に、圧縮機の運転時間の計測によ
って不足分に相当する空調負荷を計測する。
Further, according to the structure of the skeleton heat storage type air conditioning system according to the second aspect of the present invention, the shortage of the skeleton heat storage is supplied to the heat exchanger by forced circulation accompanying the operation of the compressor. In the case where the air conditioning load is compensated, the air conditioning load corresponding to the shortage is measured by measuring the operation time of the compressor.

【0017】また、請求項3に係る発明の躯体蓄熱型空
気調和システムの構成によれば、躯体蓄熱量が不足した
分を、開閉弁の開き動作に伴う自然循環流動により冷媒
を熱交換器に供給して補う場合に、開閉弁の開き時間の
計測によって不足分に相当する空調負荷を計測する。
Further, according to the structure of the skeleton heat storage type air conditioning system of the invention according to claim 3, the shortage of the skeleton heat storage amount is transferred to the heat exchanger by natural circulation flow accompanying the opening operation of the on-off valve. When supplying and supplementing, the air conditioning load corresponding to the shortage is measured by measuring the opening time of the on-off valve.

【0018】また、請求項4に係る発明の躯体蓄熱型空
気調和システムの構成によれば、躯体蓄熱量が不足した
分を、流量調整弁の開度調整に伴う自然循環流動により
冷媒を熱交換器に供給して補う場合に、例えば、3分ご
とに検出した開度を積算するなど、流量調整弁の積算開
度、すなわち、空調のために実際に流入した冷媒量によ
って不足分に相当する空調負荷を計測する。
Further, according to the structure of the skeleton heat storage type air conditioning system of the invention according to claim 4, the shortage of the skeleton heat storage is exchanged with the refrigerant by natural circulation flow accompanying the adjustment of the opening of the flow control valve. In the case where the air supply is supplied to the air conditioner, for example, the opening degree detected every three minutes is integrated. Measure the air conditioning load.

【0019】また、請求項5に係る発明の躯体蓄熱型空
気調和システムの構成によれば、複数の被空調ゾーンご
とに躯体蓄熱を行うとともに、被空調ゾーンごとに通常
の空調時間内に実際に要した1日の実空調負荷を計測
し、当日の実空調負荷と前日の実空調負荷とを比較する
ことによって、余剰の躯体蓄熱量が有るかどうかを判断
し、その判断結果に基づいてその日の躯体蓄熱量を決め
る。すなわち、当日の実空調負荷が前日の実空調負荷よ
りも低いときには、前日の躯体蓄熱量で足りているため
に、躯体蓄熱量に余剰分があると見なし、前日の実空調
負荷から当日の実空調負荷を差し引いた分を余剰躯体蓄
熱量としてその余剰躯体蓄熱量を当日の実空調負荷に対
応する躯体蓄熱量から引いたものを必要躯体蓄熱量とし
て躯体蓄熱を行う。当日の実空調負荷が前日の実空調負
荷よりも高いときには、前日の躯体蓄熱量では不足して
いたために、当日の実空調負荷に対応する躯体蓄熱量を
必要躯体蓄熱量として躯体蓄熱を行う。
Further, according to the structure of the skeleton heat storage type air conditioning system according to the fifth aspect of the present invention, the skeleton heat storage is performed for each of the plurality of air-conditioned zones, and the heat is actually stored for each of the air-conditioned zones within the normal air conditioning time. By measuring the actual air-conditioning load of the day required and comparing the actual air-conditioning load of the day with the actual air-conditioning load of the previous day, it is determined whether or not there is an excess amount of heat stored in the frame. Determine the amount of heat stored in the building. That is, when the actual air-conditioning load of the day is lower than the actual air-conditioning load of the previous day, it is considered that there is a surplus in the heat storage amount of the frame of the previous day because the amount of heat stored in the frame of the previous day is sufficient. The frame heat storage is performed by subtracting the air-conditioning load as the surplus frame heat storage amount and subtracting the surplus frame heat storage amount from the frame heat storage amount corresponding to the actual air-conditioning load of the day as a necessary frame heat storage amount. When the actual air-conditioning load of the day is higher than the actual air-conditioning load of the previous day, the heat storage of the frame corresponding to the actual air-conditioning load of the day is performed as the necessary heat storage of the frame because the heat storage of the frame of the previous day was insufficient.

【0020】また、請求項6に係る発明の躯体蓄熱型空
気調和システムの構成によれば、躯体蓄熱分の放熱によ
る空調、ならびに、躯体蓄熱分の不足時の追いかけ運転
などによる追加の空調のいずれの場合であっても、室内
側空気調和機の送風機が駆動状態にあること、また、送
風機が駆動状態でも、例えば、室内側空気調和機からの
吹き出し空気の温度と室内側空気調和機への戻り空気の
温度との差が±0.5 ℃などの所定温度範囲にあるときに
は、空調負荷がかかっていない状態での運転であること
を考慮し、上述温度差の絶対値が所定値を越えたとき
に、送風機の設定風量と温度差と時間と比熱とに基づい
て空調負荷を求め、その空調負荷を通常の空調時間内で
積算して実空調負荷を算出することによって実空調負荷
を精度良く求める。
Further, according to the structure of the air conditioner of the present invention, the air conditioner is constructed by radiating heat of the heat stored in the frame, and additional air conditioning is performed by a chase operation when the heat stored in the frame is insufficient. Even in the case of, the blower of the indoor air conditioner is in the driving state, and even when the blower is in the driving state, for example, the temperature of the air blown out from the indoor air conditioner and the When the difference from the return air temperature is within a predetermined temperature range, such as ± 0.5 ° C, when the absolute value of the above-mentioned temperature difference exceeds the predetermined value, considering that the operation is performed with no air conditioning load applied. Then, the air conditioning load is obtained based on the set air volume, the temperature difference, the time, and the specific heat of the blower, and the actual air conditioning load is accurately obtained by integrating the air conditioning load within a normal air conditioning time to calculate the actual air conditioning load. .

【0021】また、請求項7に係る発明の躯体蓄熱型空
気調和システムの構成によれば、例えば、晴れ、曇り、
雨とか、温度などといった天候状況に着目し、当日の天
候状況と翌日の予想天候状況とを比較し、当日よりも翌
日の方が温度が低くなると予想されるようなときに、冷
房の場合であれば、必要躯体蓄熱量を減らすといったよ
うにして補正係数を求める。更に、窓の有無や北向きか
南向きかなど被空調ゾーン個々の天候状況による影響度
をも加味し、空調負荷に基づいて算出した必要躯体蓄熱
量を補正し、被空調ゾーンそれぞれにおいて、補正した
必要躯体蓄熱量が得られるように躯体蓄熱を行う。
Further, according to the structure of the air conditioner system of the heat storage type according to the seventh aspect of the present invention, for example, when the air conditioner is sunny, cloudy,
Focusing on weather conditions such as rain and temperature, comparing the weather condition of the day with the expected weather condition of the next day, when it is expected that the temperature will be lower on the next day than on the day, in the case of cooling If so, the correction coefficient is obtained by reducing the required heat storage amount of the frame. In addition, taking into account the influence of the weather conditions of each zone to be air-conditioned, such as the presence or absence of windows and whether facing north or south, the required amount of heat stored in the building calculated based on the air-conditioning load is corrected. The skeleton heat is stored so that the required required amount of heat storage can be obtained.

【0022】また、請求項8に係る発明の躯体蓄熱型空
気調和システムの構成によれば、例えば、窓のある部屋
では、晴れの日は日射の度合いが高いために冷房負荷が
高くなるが暖房負荷は低くなり、曇りの日には冷房負荷
および暖房負荷のいずれも変動が少ない傾向にあるとい
ったように、日射の度合いが必要躯体蓄熱量に大きな影
響を与えることに着目し、その日射の度合いにより、空
調負荷に基づいて算出した必要躯体蓄熱量を補正し、被
空調ゾーンそれぞれにおいて、補正した必要躯体蓄熱量
が得られるように躯体蓄熱を行う。
According to the construction of the air conditioner system of the present invention, for example, in a room with windows, the cooling load becomes high on a sunny day due to a high degree of insolation on a sunny day. Paying attention to the fact that the degree of solar radiation has a large effect on the required amount of heat stored in the frame, as in the case where the load is low and the cooling load and heating load tend to be small on cloudy days. Thus, the required heat storage amount of the skeleton calculated based on the air conditioning load is corrected, and the skeleton heat storage is performed in each of the air-conditioned zones so that the corrected required heat storage of the skeleton is obtained.

【0023】[0023]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0024】図1は、本発明に係る実施例の躯体蓄熱型
空気調和システムを備えた建物を示す全体概略縦断面
図、図2は図1の全体概略平面図であり、建物1の各フ
ロアーそれぞれにおいて、縦壁1aにより仕切られ、6
室の被空調ゾーンとしての第1ないし6の部屋R1,R
2,R3,R4,R5,R6が形成されている。
FIG. 1 is an overall schematic longitudinal sectional view showing a building provided with a frame heat storage type air conditioning system according to an embodiment of the present invention. FIG. 2 is an overall schematic plan view of FIG. In each case, a vertical wall 1a separates
First to sixth rooms R1, R as air-conditioned zones of the rooms
2, R3, R4, R5, and R6 are formed.

【0025】第1の部屋R1には2面に窓2が設けら
れ、第2〜4の部屋R2,R3,R4には1面にのみ窓
2が設けられ、そして、第5および第6の部屋R5,R
6は窓の無い部屋となっている。
The first room R1 is provided with windows 2 on two sides, the second to fourth rooms R2, R3, R4 are provided with windows 2 only on one side, and the fifth and sixth windows are provided. Rooms R5, R
6 is a room without a window.

【0026】第1ないし6の部屋R1,R2,R3,R
4,R5,R6それぞれの天井板3とその上方の床スラ
ブWの下面との間に閉空間Sが形成されるとともに、閉
空間S内に、室内側空気調和機と兼用構成した躯体蓄熱
装置4が設けられている。
First to sixth rooms R1, R2, R3, R
A closed space S is formed between the ceiling plate 3 of each of R4, R5, and R6 and the lower surface of the floor slab W thereabove, and a skeleton heat storage device configured to also serve as an indoor air conditioner in the closed space S. 4 are provided.

【0027】建物1の屋上に熱源5が設置されている。
熱源5は、微細な氷を製造する製氷機6とその製氷機6
で得られた微細な氷を供給して蓄える氷蓄熱槽7とから
構成されている。
A heat source 5 is installed on the roof of the building 1.
The heat source 5 includes an ice maker 6 for producing fine ice and the ice maker 6
And an ice heat storage tank 7 for supplying and storing the fine ice obtained in step (1).

【0028】また、建物1の屋上に冷房用の熱源として
の冷房用凝縮器8が設置され、氷蓄熱槽7の下部側と冷
房用凝縮器8とが第1のポンプ9を介装した取り出し管
10を介して連通接続されるとともに、氷蓄熱槽7の上
部に設けたノズル11と冷房用凝縮器8とが返送管12
を介して連通接続され、氷蓄熱槽7に蓄えられている氷
を含有した液体を冷房用凝縮器8に循環供給するように
構成されている。
A cooling condenser 8 as a heat source for cooling is installed on the roof of the building 1, and the lower part of the ice heat storage tank 7 and the cooling condenser 8 are taken out through a first pump 9. A nozzle 11 provided above the ice heat storage tank 7 and a cooling condenser 8 are connected to each other through a pipe
And is configured to circulate and supply the ice-containing liquid stored in the ice heat storage tank 7 to the cooling condenser 8.

【0029】また、建物1の地下室に温水槽(図示せ
ず)が設置されるとともにその温水槽に暖房用の熱源と
しての暖房用蒸発器13が付設され、温水槽と製氷機6
とが第2のポンプ14を介装した温水供給管15と温水
返送管16とを介して連通接続され、製氷機6で発生す
る排熱によって得られた温水を温水槽を通じて暖房用蒸
発器13に供給できるように構成されている。
Further, a hot water tank (not shown) is installed in the basement of the building 1, and a heating evaporator 13 as a heat source for heating is attached to the hot water tank.
Are connected to each other through a hot water supply pipe 15 provided with a second pump 14 and a hot water return pipe 16, and the hot water obtained by the exhaust heat generated in the ice making machine 6 is supplied to the heating evaporator 13 through a hot water tank. It is configured so that it can be supplied to

【0030】躯体蓄熱装置4は、送風機としての送風フ
ァン17と冷房用熱交換器18と暖房用熱交換器19と
を備えて構成されている。また、躯体蓄熱装置4には送
風ダクト20が備えられ、その送風ダクト20内にダン
パー21が設けられ、温風または冷風を床スラブWに吹
き付ける躯体蓄熱状態と、温風または冷風を室内側に供
給する状態とに切り換えるように構成されている。送風
機としては、冷房用熱交換器18および暖房用熱交換器
19の上流側に配置する吹き出し型の送風ファン17で
も、下流側に配置する吸い込み型の送風ファンのいずれ
でも良く、その他各種のものが適用できる。
The frame heat storage device 4 includes a blower fan 17 as a blower, a cooling heat exchanger 18, and a heating heat exchanger 19. Further, the skeleton heat storage device 4 is provided with an air duct 20, and a damper 21 is provided in the air duct 20, and a skeleton heat storage state in which hot air or cold air is blown to the floor slab W, and hot air or cold air is supplied to the indoor side. It is configured to switch to a supply state. The blower may be a blow-off type blower fan 17 arranged on the upstream side of the cooling heat exchanger 18 and the heating heat exchanger 19, or a suction type blower fan arranged on the downstream side, and various other types. Can be applied.

【0031】図3のシステム構成図に示すように、冷房
用凝縮器8と冷房用熱交換器18…それぞれとが、冷房
用受液器22と冷房用ヘッダー23を介装した冷房用冷
媒配管24を介して連通接続されるとともに、冷房用凝
縮器8、冷房用熱交換器18…および冷房用冷媒配管2
4にわたり、冷房用熱交換器18での熱交換に伴って液
体から蒸気に相変化するとともに、冷房用凝縮器8での
凝縮により蒸気から液体に相変化する冷房用冷媒が密閉
状態で封入されている。
As shown in the system configuration diagram of FIG. 3, a cooling condenser 8 and a cooling heat exchanger 18 are each provided with a cooling refrigerant pipe having a cooling receiver 22 and a cooling header 23 interposed therebetween. 24, the cooling condenser 8, the cooling heat exchanger 18, and the cooling refrigerant pipe 2.
4, a cooling medium that changes phase from liquid to vapor with heat exchange in the cooling heat exchanger 18 and changes phase from vapor to liquid by condensation in the cooling condenser 8 is hermetically sealed. ing.

【0032】冷房用受液器22は、冷房用熱交換器18
…それぞれよりも高い位置に設置され、冷房用凝縮器8
での凝縮により蒸気から液体に相変化された冷房用冷媒
が冷房用熱交換器18に流下供給されるとともに、冷房
用熱交換器18での熱交換に伴って液体から蒸気に相変
化された冷房用冷媒が上昇して冷房用凝縮器8に戻され
るに足るヘッド差が備えられ、冷房運転に際して、蒸気
と液体との相変化により、冷房用冷媒が冷房用凝縮器8
と冷房用熱交換器18との間で自然的に循環流動するよ
うに構成されている。
The cooling liquid receiver 22 is provided with the cooling heat exchanger 18.
… Cooling condenser 8 installed at a higher position than each
The cooling refrigerant phase-changed from vapor to liquid by the condensation in the cooling water is supplied to the cooling heat exchanger 18 while being phase-changed from liquid to vapor with the heat exchange in the cooling heat exchanger 18. There is provided a head difference sufficient for the cooling refrigerant to rise and return to the cooling condenser 8. During the cooling operation, the cooling refrigerant is cooled by the phase change between the vapor and the liquid.
It is configured to naturally circulate and flow between the heat exchanger 18 and the cooling heat exchanger 18.

【0033】暖房用蒸発器13と暖房用熱交換器19…
それぞれとが、暖房用受液器25と暖房用ヘッダー26
を介装した暖房用冷媒配管27を介して連通接続される
とともに、暖房用蒸発器13、暖房用熱交換器19…お
よび暖房用冷媒配管27にわたり、暖房用蒸発器13で
の熱交換に伴って液体から蒸気に相変化するとともに、
暖房用熱交換器19…での凝縮により蒸気から液体に相
変化する暖房用冷媒が密閉状態で封入されている。
The heating evaporator 13 and the heating heat exchanger 19 ...
Each is a heating receiver 25 and a heating header 26
Are connected to each other through a heating refrigerant pipe 27 interposed therebetween, and extend through the heating evaporator 13, the heating heat exchanger 19, and the heating refrigerant pipe 27. Phase change from liquid to vapor
A heating refrigerant, which changes its phase from vapor to liquid by condensation in the heating heat exchangers 19, is sealed in a sealed state.

【0034】暖房用受液器25は、暖房用熱交換器19
…よりも低い位置に設置され、暖房用熱交換器19…で
の凝縮により蒸気から液体に相変化された暖房用冷媒が
暖房用蒸発器13に流下供給されるとともに、暖房用蒸
発器13での熱交換に伴って液体から蒸気に相変化され
た暖房用冷媒が上昇して暖房用熱交換器19…に戻され
るに足るヘッド差が備えられ、暖房運転に際して、蒸気
と液体との相変化により、暖房用冷媒が暖房用熱交換器
19…と暖房用蒸発器13との間で自然的に循環流動す
るように構成されている。
The heating liquid receiver 25 includes a heating heat exchanger 19.
The heating refrigerant, which is installed at a position lower than that of the heating heat exchanger 19 and has been phase-changed from vapor to liquid by condensation in the heating heat exchanger 19, is supplied to the heating evaporator 13 while flowing down. There is provided a head difference sufficient for the heating refrigerant, which has undergone a phase change from liquid to vapor, following the heat exchange, to return to the heating heat exchangers 19. Thus, the heating refrigerant naturally circulates and flows between the heating heat exchangers 19 and the heating evaporator 13.

【0035】前記冷房用冷媒および暖房用冷媒それぞれ
としてはフロンガスR−22などが用いられる。これ
は、水素、塩素を含んでいて対流圈で分解するために、
オゾン層を破壊する虞の無い利点を有している。
As the cooling and heating refrigerants, Freon gas R-22 and the like are used. This is because it contains hydrogen and chlorine and decomposes in the convection zone,
It has the advantage of not destroying the ozone layer.

【0036】冷房用冷媒配管24の冷房用熱交換器18
…それぞれへの入口箇所には、冷媒液の流入量を調節す
る冷房用流量制御弁(電子膨張弁)28が設けられてい
る。また、暖房用冷媒配管27の暖房用熱交換器19…
それぞれへの暖房用冷媒蒸気の流入箇所に、冷媒蒸気流
入量を調節する暖房用流量制御弁(電子膨張弁)29が
付設されるとともに、冷媒液の出口側に逆流防止用のチ
ャッキバルブ30が付設されている。冷房用流量制御弁
28および暖房用流量制御弁29それぞれには、開度を
検出する冷房用開度センサ31、暖房用開度センサ32
が設けられている(図4参照)。
The cooling heat exchanger 18 of the cooling refrigerant pipe 24
.. A cooling flow rate control valve (electronic expansion valve) 28 for adjusting the inflow amount of the refrigerant liquid is provided at each inlet. In addition, the heating heat exchangers 19 of the heating refrigerant pipes 27 ...
A heating flow control valve (electronic expansion valve) 29 for adjusting the flow rate of the refrigerant vapor is attached to each of the points where the refrigerant vapor flows into each, and a check valve 30 for preventing backflow is provided at the refrigerant liquid outlet side. It is attached. Each of the cooling flow control valve 28 and the heating flow control valve 29 has a cooling opening sensor 31 and a heating opening sensor 32 for detecting an opening.
(See FIG. 4).

【0037】上述構成により、冷媒を液体と気体とに相
変化させ、自然的に循環流動して、各部屋ごとに躯体蓄
熱装置4によって躯体蓄熱を行うとともに、冷房および
暖房を行うことができるようになっている。
With the above structure, the refrigerant changes its phase into a liquid and a gas, and naturally circulates and flows, so that the skeleton heat storage device 4 can store heat in the skeleton in each room and perform cooling and heating. It has become.

【0038】第1ないし6の部屋R1,R2,R3,R
4,R5,R6それぞれには、図4のブロック図に示す
ように、マイクロコンピュータ33が設けられ、そのマ
イクロコンピュータ33に、管理人室などに設けられた
当日天候状況入力手段34aおよび予想天候状況入力手
段34bと、前記冷房用開度センサ31および暖房用開
度センサ32とが接続されている。また、マイクロコン
ピュータ33には、午前8時から午後8時までは、通常
の運転時間における冷房運転モードあるいは暖房運転モ
ードで所定の動作を行わせ、午後10時などに起動信号
を出力するタイマ35と製氷機6と送風ファン17とが
接続されている。
First to sixth rooms R1, R2, R3, R
As shown in the block diagram of FIG. 4, a microcomputer 33 is provided in each of the R4, R5 and R6. The input means 34b is connected to the cooling opening sensor 31 and the heating opening sensor 32. Further, the microcomputer 33 causes the microcomputer 33 to perform a predetermined operation in the cooling operation mode or the heating operation mode during the normal operation time from 8:00 am to 8:00 pm, and outputs a start signal at 10:00 pm or the like. And the ice making machine 6 and the blower fan 17 are connected.

【0039】冷房用開度センサ31および暖房用開度セ
ンサ32には、例えば、3分ごとなど設定時間ごとにパ
ルス信号を発振するパルス発振器36が接続され、この
パルス信号に応答して、冷房用開度センサ31および暖
房用開度センサ32からマイクロコンピュータ33に検
出開度を出力するようになっている。
The cooling opening sensor 31 and the heating opening sensor 32 are connected to a pulse oscillator 36 which oscillates a pulse signal at predetermined time intervals, for example, every three minutes. The detected opening degree is output from the opening degree sensor 31 and the opening degree sensor 32 for heating to the microcomputer 33.

【0040】マイクロコンピュータ31には、空調負荷
計測手段37と必要躯体蓄熱量算出手段38と補正係数
算出手段39と補正手段40と蓄熱制御手段41とが備
えられている。
The microcomputer 31 includes an air-conditioning load measuring unit 37, a required heat storage amount calculating unit 38, a correction coefficient calculating unit 39, a correcting unit 40, and a heat storage control unit 41.

【0041】空調負荷計測手段37では、タイマ35で
設定されている通常の運転時間の間(例えば、午前8時
から午後8時など)、冷房用開度センサ31または暖房
用開度センサ32で設定時間ごとに検出された開度を積
算し、その積算開度、すなわち、空調のために実際に流
入した冷媒量によって、後述する躯体蓄熱で不足した分
に相当する空調負荷を計測するようになっている。
In the air-conditioning load measuring means 37, during the normal operation time set by the timer 35 (for example, from 8:00 am to 8:00 pm), the cooling opening sensor 31 or the heating opening sensor 32 is used. The opening degree detected at each set time is integrated, and the integrated opening degree, that is, the air-conditioning load corresponding to the shortage in the skeleton heat storage described later is measured by the amount of refrigerant actually flowing in for air conditioning. Has become.

【0042】詳述すれば、図5の開度(%)と時間との
関係のグラフに示すように、3分など設定時間ごとに検
出した開度を入力し、その開度が、次の開度が入力され
る設定時間後(3分後)までは継続したとみなして開度
を積算するのである。
More specifically, as shown in the graph of the relationship between the opening degree (%) and the time in FIG. 5, the opening degree detected at every set time such as 3 minutes is input, and the opening degree is calculated as follows. The opening is integrated assuming that the opening is continued until after the set time (3 minutes) after the opening is input.

【0043】当日天候状況入力手段34aおよび予想天
候状況入力手段34bでは、予め、冷房運転モードおよ
び暖房運転モードそれぞれに応じ、天候状況として、
「晴れ」「曇り」「雨」「雪」に対応して日射の度合い
が数値化設定されていて、例えば、午後7時などに、管
理人が、当日天候状況および予想天候状況(天気予報に
基づけば良い)それぞれとして、「晴れ」「曇り」
「雨」「雪」と記したボタンを押すなどにより、数値化
された当日天候状況信号および予想天候状況信号を出力
するようになっている。この当日天候状況および予想天
候状況の入力としては、例えば、電話を通じて行うと
か、あるいは、天気予報の音声を取り込んで自動的に入
力できるように構成するなどしても良い。
On the day's weather condition input means 34a and the predicted weather condition input means 34b, the weather condition is set in advance according to each of the cooling operation mode and the heating operation mode.
The degree of insolation is numerically set in accordance with “sunny”, “cloudy”, “rain”, and “snow”. For example, at 7:00 pm, the manager checks the weather condition on the day and the expected weather condition (for the weather forecast). It is fine, cloudy)
By pressing a button such as "rain" or "snow", a digitized weather condition signal and a predicted weather condition signal are output. The input of the weather condition on the day and the predicted weather condition may be performed, for example, through a telephone, or it may be configured to automatically input by taking in the sound of a weather forecast.

【0044】一例を示せば、冷房運転モードでは、「晴
れ」では1.3、「曇り」では1.0、「雨」では0.
9がそれぞれ出力される。「雪」の場合は無い。一方、
暖房運転モードでは、「晴れ」では0.9、「曇り」で
は1.0、「雨」では1.1、「雪」では1.3がそれ
ぞれ出力される。なお、「晴れのち曇り」とか「曇り時
々雨」といったときには、複数のボタンを押すようにな
っている。それに応じて、冷房運転モードでは日射の度
合いの高い方のものが、暖房運転モードでは日射の度合
いの高い方のものが、それぞれ選択されるようになって
いる。すなわち、「晴れのち曇り」で「晴れ」と「曇
り」のボタンを押したときに、冷房運転モードでは「晴
れ」が選択され、一方、暖房運転モードでは「曇り」が
選択される。これによって、躯体蓄熱量の不足を極力回
避できるように構成されている。
As an example, in the cooling operation mode, 1.3 in "clear", 1.0 in "cloudy", and 0. 0 in "rain".
9 are output. There is no case of "snow". on the other hand,
In the heating operation mode, 0.9 is output for "sunny", 1.0 for "cloudy", 1.1 for "rain", and 1.3 for "snow". It should be noted that a plurality of buttons are pressed in the case of "sunny and cloudy" or "cloudy and sometimes rainy". Accordingly, in the cooling operation mode, the one with a higher degree of solar radiation is selected, and in the heating operation mode, the one with a higher degree of solar radiation is selected. That is, when the buttons “clear” and “cloudy” are pressed in “clear after cloudy”, “clear” is selected in the cooling operation mode, and “cloudy” is selected in the heating operation mode. In this way, the configuration is such that shortage of the body heat storage can be avoided as much as possible.

【0045】補正係数算出手段39では、上述のように
数値化された当日天候状況信号と予想天候状況信号とを
比較し、除算法により、当日天候状況信号を分母にする
とともに予想天候状況信号を分子として補正係数を算出
するようになっている。すなわち、当日と翌日の予想天
候が同じであれば、補正係数として「1」が算出され、
当日の「晴れ」に対して翌日の予想天候が「曇り」であ
れば、冷房運転モードでは「1/1.3(約0.77)」が算出さ
れ、一方、暖房運転モードでは「1/0.9(約1.11)」が算
出される。
The correction coefficient calculating means 39 compares the weather condition signal of the day and the expected weather condition signal quantified as described above, converts the weather condition signal of the current day into a denominator and calculates the predicted weather condition signal by a division method. A correction coefficient is calculated as a numerator. That is, if the expected weather on the day and the next day is the same, “1” is calculated as the correction coefficient,
If the expected weather of the next day is "cloudy" with respect to "sunny" of the day, "1 / 1.3 (about 0.77)" is calculated in the cooling operation mode, while "1 / 0.9 (about 1.11)" is calculated in the heating operation mode. ) "Is calculated.

【0046】補正手段40では、被空調ゾーンである第
1ないし6の部屋R1,R2,R3,R4,R5,R6
それぞれに対応して、冷房運転モードおよび暖房運転モ
ードそれぞれにおける天候状況による影響度が百分率で
予め数値化設定されていて、その百分率を、補正係数算
出手段39から入力される補正係数に乗算して補正値信
号を算出し、その補正値信号を必要躯体蓄熱量算出手段
38に出力するようになっている。
In the correcting means 40, the first to sixth rooms R1, R2, R3, R4, R5, R6
Corresponding to each, the degree of influence of the weather condition in each of the cooling operation mode and the heating operation mode is numerically set as a percentage in advance, and the percentage is multiplied by the correction coefficient input from the correction coefficient calculation unit 39. The correction value signal is calculated, and the correction value signal is output to the required skeleton heat storage amount calculating means 38.

【0047】冷房運転モードの場合における一例を示せ
ば、二面が窓である第1の部屋R1では 120%にし、一
面が窓である第2ないし第4の部屋R2,R3,R4で
は 100%にし、そして、窓の無い第5および第6の部屋
R5,R6では80%にするといった具合である。暖房運
転モードの場合には、冷房運転モードの場合とは逆に、
二面が窓である第1の部屋R1では80%にし、一面が窓
である第2ないし第4の部屋R2,R3,R4では 100
%にし、そして、窓の無い第5および第6の部屋R5,
R6では120%にするといった具合になる。被空調ゾー
ンそれぞれに応じた天候状況による影響度としては、更
に、北向きか南向きかなどを加味するなどしても良い。
An example in the case of the cooling operation mode is as follows. In the first room R1 having two windows, 120%, and in the second to fourth rooms R2, R3, R4 having one window, 100%. Then, in the fifth and sixth rooms R5 and R6 without windows, the ratio is set to 80%. In the case of the heating operation mode, contrary to the case of the cooling operation mode,
80% in the first room R1 having two windows, and 100% in the second to fourth rooms R2, R3 and R4 having one window.
% And the fifth and sixth rooms R5 without windows
In R6, it becomes 120%. As the degree of influence by the weather condition according to each air-conditioned zone, northward or southward may be further taken into account.

【0048】必要躯体蓄熱量算出手段38では、前日に
算出された必要躯体蓄熱量が前日の躯体蓄熱量として記
憶されており、空調負荷計測手段37から空調負荷が入
力されたときには、その空調負荷に対応した躯体蓄熱量
を導出し、導出された躯体蓄熱量に前日の躯体蓄熱量に
加えたものを必要躯体蓄熱量として算出し、更に、算出
された必要躯体蓄熱量に補正手段40からの補正値信号
に応じて補正を加え、最終的な必要躯体蓄熱量を算出す
るようになっている。
The required skeleton heat storage amount calculating means 38 stores the required skeleton heat storage amount calculated the day before as the skeleton heat storage amount of the previous day, and when the air conditioning load is input from the air conditioning load measuring means 37, the air conditioning load is calculated. Calculate the required skeleton heat storage amount by adding the derived skeleton heat storage amount to the skeleton heat storage amount of the previous day to the derived skeleton heat storage amount, and further, from the correction means 40 to the calculated required skeleton heat storage amount. Correction is made in accordance with the correction value signal to calculate the final required heat storage amount of the skeleton.

【0049】一方、空調負荷計測手段37から、タイマ
35で設定されている通常の運転時間の間(例えば、午
前8時から午後8時など)空調負荷が入力されなかった
とき、すなわち、空調負荷が計測されなかったときに
は、前日の躯体蓄熱量で足りているために、躯体蓄熱量
に余剰分があると見なし、例えば、5%減にするなど、
前日の躯体蓄熱量から所定量割り引いたものを必要躯体
蓄熱量とし、更に、算出された必要躯体蓄熱量に補正手
段40からの補正値信号に応じて補正を加え、最終的な
必要躯体蓄熱量を算出するようになっている。
On the other hand, when no air conditioning load is input from the air conditioning load measuring means 37 during the normal operation time set by the timer 35 (for example, from 8:00 am to 8:00 pm), Is not measured, it is considered that there is a surplus in the skeleton heat storage amount because the previous day's skeleton heat storage amount is sufficient.
The required amount of heat stored in the skeleton is obtained by subtracting a predetermined amount from the amount of heat stored in the previous day, and the calculated required amount of heat is added to the calculated required amount of heat according to the correction value signal from the correction means 40. Is calculated.

【0050】蓄熱制御手段41では、必要躯体蓄熱量算
出手段38で算出された必要躯体蓄熱量に基づき、製氷
機6および送風ファン17の駆動時間を算出し、算出さ
れた駆動時間だけ駆動信号を出力して、ダンパー21を
蓄熱運転状態に切り換えて製氷機6および送風ファン1
7を駆動し、必要躯体蓄熱量の躯体蓄熱を行うようにな
っている。
The heat storage control means 41 calculates the drive time of the ice making machine 6 and the blower fan 17 based on the required heat storage amount of the frame calculated by the required heat storage amount calculation means 38, and outputs a drive signal for the calculated drive time. Output to the ice making machine 6 and the blower fan 1 by switching the damper 21 to the heat storage operation state.
7 is driven to store the required amount of heat stored in the skeleton.

【0051】次に、上記マイクロコンピュータ33によ
る制御動作につき、図6のフローチャートを用いて詳述
する。
Next, the control operation of the microcomputer 33 will be described in detail with reference to the flowchart of FIG.

【0052】図6のフローチャートに示すように、先
ず、運転スイッチ(図示せず)の操作状態に基づいて冷
房運転かどうかを判別し(S1)、冷房運転と判断すれ
ば、ステップS2に移行し、当日天候状況入力手段34
a、予想天候状況入力手段34bおよび補正手段40そ
れぞれを冷房運転モードに設定するとともに、冷房用開
度センサ31からのみ所定時間ごとの検出開度を空調負
荷計測手段37に出力する。
As shown in the flowchart of FIG. 6, first, it is determined whether or not the cooling operation is performed based on the operation state of the operation switch (not shown) (S1). If it is determined that the cooling operation is performed, the process proceeds to step S2. , The day's weather condition input means 34
a, the predicted weather condition input means 34b and the correction means 40 are each set to the cooling operation mode, and the detected opening degree at predetermined time intervals is output only from the cooling opening degree sensor 31 to the air conditioning load measuring means 37.

【0053】ステップS1において冷房運転でなけれ
ば、暖房運転と判断し、ステップS3に移行し、当日天
候状況入力手段34a、予想天候状況入力手段34bお
よび補正手段40それぞれを暖房運転モードに設定する
とともに、暖房用開度センサ32からのみ所定時間(3
分)ごとの検出開度を空調負荷計測手段37に出力す
る。
If it is not the cooling operation in step S1, it is determined that the operation is heating operation, and the process shifts to step S3 to set each of the weather condition input means 34a, predicted weather condition input means 34b and correction means 40 on the day to the heating operation mode. , For a predetermined time (3
The detected opening degree for each minute is output to the air conditioning load measuring means 37.

【0054】タイマ35は、冷房運転モードまたは暖房
運転モードのいずれに設定されていようとも、通常の運
転時間の間、空調負荷計測手段37および必要躯体蓄熱
量算出手段38に作動信号を出力し、通常の運転時間の
終了後には、蓄熱制御手段41に最終的な必要躯体蓄熱
量を出力させるようになっている。
The timer 35 outputs an operation signal to the air-conditioning load measuring means 37 and the necessary frame heat storage amount calculating means 38 during a normal operation time, regardless of whether the timer is set to the cooling operation mode or the heating operation mode. After the end of the normal operation time, the heat storage control means 41 is caused to output the final required frame heat storage amount.

【0055】ステップS2またはステップS3を経た後
に、ステップS4に移行して前日の躯体蓄熱量QAを入
力し、その後に、冷房用開度センサ31または暖房用開
度センサ32の開度を入力して(S5)、空調負荷を積
算する(S6)。
After step S2 or step S3, the process proceeds to step S4 to input the heat storage amount QA of the previous day, and then input the opening of the cooling opening sensor 31 or the heating opening sensor 32. (S5), the air conditioning load is integrated (S6).

【0056】その後、ステップS7に移行して、午後8
時を経過したかどうかを判別し、午後8時を経過するま
ではステップS8に移行してフラグが立っている(F=
1)かどうかを判別する。
Thereafter, the flow shifts to step S7, where
It is determined whether or not the time has elapsed. Until 8:00 pm, the process proceeds to step S8 and the flag is set (F =
1) It is determined whether or not.

【0057】その後、例えば、午後7時など、夕方の午
後8時迄の所定時刻に、当日天候状況入力手段34aお
よび予想天候状況入力手段34bに管理人が入力操作す
るなどによって得られる当日天候状況信号および予想天
候状況信号を補正係数算出手段39に入力し(S9、S
10)、両信号を比較して補正係数を算出する(S1
1)。
Thereafter, at a predetermined time such as 8:00 pm in the evening, for example, at 7:00 pm, the day-of-day weather condition obtained by the manager inputting the day-time weather condition input means 34a and the expected weather condition input means 34b. The signal and the predicted weather condition signal are input to the correction coefficient calculating means 39 (S9, S9).
10) Compute the correction coefficient by comparing the two signals (S1).
1).

【0058】次いで、算出された補正係数に、予め部屋
ごとに設定されている天候状況による影響度の百分率を
乗算して補正値信号を算出して(S12)からステップ
S13に移行する。補正値信号を算出するまでは、ステ
ップS9からステップS13までが素通り状態でステッ
プS5に移行し、補正値信号の算出後にはステップS1
4に移行してフラグを立てて(F=0→1)からステッ
プS5に移行する。
Next, the calculated correction coefficient is multiplied by a percentage of the degree of influence of the weather condition set in advance for each room to calculate a correction value signal (S12), and the flow shifts to step S13. Until the correction value signal is calculated, the process proceeds from step S9 to step S13 without any change to step S5. After the correction value signal is calculated, step S1 is performed.
Then, the process proceeds to step S5, where a flag is set (F = 0 → 1), and the process proceeds to step S5.

【0059】上述の補正値信号の算出後、午後8時を経
過するまではステップS5からステップS8を循環して
検出開度を入力して空調負荷を積算する。タイマ35で
設定された午後8時を経過すると、ステップS7からス
テップS15に移行してフラグを降ろして(F=1→
0)からステップS16に移行し、空調負荷の入力が有
ったかどうか、すなわち、空調負荷計測手段37から必
要躯体蓄熱量算出手段38に空調負荷が入力されたかど
うかを判別する。
After the above-described correction value signal is calculated, the process proceeds from step S5 to step S8 until 8:00 pm has elapsed, and the detected opening is input to integrate the air conditioning load. After 8:00 pm set by the timer 35 has elapsed, the process proceeds from step S7 to step S15, where the flag is lowered (F = 1 →
From step 0), the process proceeds to step S16, and it is determined whether or not an air conditioning load has been input, that is, whether or not an air conditioning load has been input from the air conditioning load measuring means 37 to the necessary frame heat storage amount calculating means.

【0060】空調負荷の入力が有った場合、すなわち、
前日の躯体蓄熱量QAでは不足して当日の冷房または暖
房を賄いきれず、冷房用流量制御弁28または暖房用流
量制御弁29が開き、冷媒の自然循環によって、氷蓄熱
槽7あるいは温水槽に蓄えられた冷熱あるいは温熱が消
費されたと判断した場合、ステップS17に移行し、空
調負荷計測手段37により積算された空調負荷(ステッ
プS6)に対応した躯体蓄熱量QBを導出し、次いで、
その躯体蓄熱量QBに前日の躯体蓄熱量QAを加えたも
のを必要躯体蓄熱量QCとして算出する(QA+QB→
QC)。
When an air conditioning load is input, that is,
The heat storage amount QA of the previous day was insufficient to cover cooling or heating on the day because the cooling flow control valve 28 or the heating flow control valve 29 was opened, and the natural circulation of the refrigerant caused the ice heat storage tank 7 or the hot water tank to open. When it is determined that the stored cold or warm heat has been consumed, the process proceeds to step S17, in which the frame heat storage amount QB corresponding to the air-conditioning load (step S6) integrated by the air-conditioning load measuring means 37 is derived.
The sum of the heat storage amount QB of the previous day and the heat storage amount QA of the previous day is calculated as the required heat storage amount QC (QA + QB →
QC).

【0061】ステップS16において空調負荷の入力が
無かった場合、すなわち、空調負荷が計測されず、前日
の躯体蓄熱量QAで足りていて躯体蓄熱量に余剰分が有
ると判断した場合、ステップS19に移行し、前日の躯
体蓄熱量QAを5%減にしたものを必要躯体蓄熱量QC
として算出する(QA×0.95→QC)。
If there is no input of the air-conditioning load in step S16, that is, if the air-conditioning load is not measured and it is determined that the heat storage amount QA of the previous day is sufficient and there is a surplus in the heat storage amount of the frame, the process proceeds to step S19. It is necessary to reduce the body heat storage QA on the previous day by 5%
(QA × 0.95 → QC).

【0062】必要躯体蓄熱量QCを算出した後、その必
要躯体蓄熱量QCを前日の躯体蓄熱量QAに置換する
(S20)とともに、必要躯体蓄熱量QCに補正手段4
0からの補正値信号に応じて補正を加え、最終的な必要
躯体蓄熱量Qを算出する(S21)。
After calculating the required frame heat storage amount QC, the required frame heat storage amount QC is replaced with the frame heat storage amount QA of the previous day (S20), and the necessary frame heat storage amount QC is corrected by the correction means 4.
Correction is made in accordance with the correction value signal from 0 to calculate the final required body heat storage Q (S21).

【0063】次いで、ステップS22に移行して、上記
最終的な必要躯体蓄熱量Qを得るのに必要な、製氷機6
および送風ファン17の駆動時間Tを算出し、算出され
た駆動時間Tだけ駆動信号を出力し、ダンパー21を躯
体蓄熱状態に切り換えるとともに製氷機6および送風フ
ァン17を駆動し、翌日に必要と予測される量の躯体蓄
熱を行う。
Next, the process proceeds to step S22, in which the ice making machine 6 necessary to obtain the final required frame heat storage amount Q is prepared.
And the drive time T of the blower fan 17 is calculated, a drive signal is output for the calculated drive time T, the damper 21 is switched to the heat storage state, and the ice making machine 6 and the blower fan 17 are driven. The required amount of heat is stored in the body.

【0064】上記構成により、翌日の予想天候に応じ
て、各部屋R1〜R6それぞれに応じて適切な躯体蓄熱
を行うことができ、必要以上の躯体蓄熱をせずに済んで
ランニングコストを低減できるようになった。
According to the above configuration, it is possible to perform appropriate heat storage of the frames R1 to R6 according to the expected weather of the next day, and it is not necessary to store the heat more than necessary, thereby reducing the running cost. It became so.

【0065】次に、天候の変化に応じて得られる第1〜
第6の部屋R1,R2,R3,R4,R5,R6での最
終的な必要躯体蓄熱量Qの算出例について説明する。空
調負荷に基づく必要躯体蓄熱量QCは、前日分で不足し
た場合は、必要躯体蓄熱量QC=前日躯体蓄熱量QA+
当日躯体蓄熱量QB足りている場合は、 必要躯体蓄熱量QC=前日躯体蓄熱量QA×0.95 となるが、ここの説明ではいずれの場合でも良く、その
必要躯体蓄熱量QCに対して補正したものを示すことと
する。
Next, the first to the first obtained according to the change of the weather.
A calculation example of the final required body heat storage amount Q in the sixth rooms R1, R2, R3, R4, R5, and R6 will be described. If the required skeleton heat storage amount QC based on the air conditioning load is insufficient for the previous day, the required skeleton heat storage amount QC = the previous day skeleton heat storage amount QA +
If the body heat storage QB on the day is sufficient, the required body heat storage QC = the previous day's body heat storage QA x 0.95, but in this description any case may be used, and the necessary body heat storage QC is corrected. Is shown.

【0066】(1)当日の天候が晴れで翌日の予想天候
が曇りの予報のとき a.冷房の場合 補正係数=(曇り:1)/(晴れ:1.3)≒0.77 第1の部屋R1: Q=QC×0.77×
1.2≒0.92×QC 第2〜第4の部屋R2,R3,R4:Q=QC×0.77×
1.0=0.77×QC 第5および第6の部屋R5,R6 :Q=QC×0.77×
0.8≒0.62×QC b.暖房の場合 補正係数=(曇り:1)/(晴れ:0.9)≒1.11 第1の部屋R1: Q=QC×1.11×
0.8≒0.89×QC 第2〜第4の部屋R2,R3,R4:Q=QC×1.11×
1.0=1.11×QC 第5および第6の部屋R5,R6 :Q=QC×1.11×
1.2≒1.33×QC
(1) When the weather of the day is fine and the forecast of the next day is a cloudy forecast a. In the case of cooling, correction coefficient = (cloudy: 1) / (sunny: 1.3) ≒ 0.77 First room R1: Q = QC × 0.77 ×
1.2 ≒ 0.92 × QC 2nd to 4th rooms R2, R3, R4: Q = QC × 0.77 ×
1.0 = 0.77 × QC Fifth and sixth rooms R5, R6: Q = QC × 0.77 ×
0.8 ≒ 0.62 × QC b. In the case of heating Correction coefficient = (cloudy: 1) / (sunny: 0.9) ≒ 1.11 First room R1: Q = QC × 1.11 ×
0.8 ≒ 0.89 × QC Second to fourth rooms R2, R3, R4: Q = QC × 1.11 ×
1.0 = 1.11 × QC Fifth and sixth rooms R5, R6: Q = QC × 1.11 ×
1.2 ≒ 1.33 × QC

【0067】(2)当日の天候が晴れで翌日の予想天候
が雨の予報のとき a.冷房の場合 補正係数=(雨:0.9)/(晴れ:1.3)≒0.69 第1の部屋R1: Q=QC×0.69×
1.2≒0.83×QC 第2〜第4の部屋R2,R3,R4:Q=QC×0.69×
1.0=0.69×QC 第5および第6の部屋R5,R6 :Q=QC×0.69×
0.8≒0.55×QC b.暖房の場合 補正係数=(雨:1.1)/(晴れ:0.9)≒1.22 第1の部屋R1: Q=QC×1.22×
0.8≒0.98×QC 第2〜第4の部屋R2,R3,R4:Q=QC×1.22×
1.0=1.22×QC 第5および第6の部屋R5,R6 :Q=QC×1.22×
1.2≒1.46×QC
(2) When the weather of the day is fine and the expected weather of the next day is a rainy forecast a. In the case of air conditioning Correction coefficient = (rain: 0.9) / (sunny: 1.3) ≒ 0.69 First room R1: Q = QC × 0.69 ×
1.2 ≒ 0.83 × QC Second to fourth rooms R2, R3, R4: Q = QC × 0.69 ×
1.0 = 0.69 × QC Fifth and sixth rooms R5, R6: Q = QC × 0.69 ×
0.8 ≒ 0.55 × QC b. In the case of heating Correction coefficient = (rain: 1.1) / (sunny: 0.9) ≒ 1.22 First room R1: Q = QC × 1.22 ×
0.8 ≒ 0.98 × QC 2nd to 4th rooms R2, R3, R4: Q = QC × 1.22 ×
1.0 = 1.22 × QC Fifth and sixth rooms R5, R6: Q = QC × 1.22 ×
1.2 ≒ 1.46 × QC

【0068】(3)当日の天候が曇りで翌日の予想天候
が晴れの予報のとき a.冷房の場合 補正係数=(晴れ:1.3)/(曇り:1)= 1.3 第1の部屋R1: Q=QC× 1.3×
1.2=1.56×QC 第2〜第4の部屋R2,R3,R4:Q=QC× 1.3×
1.0=1.30×QC 第5および第6の部屋R5,R6 :Q=QC× 1.3×
0.8=1.04×QC b.暖房の場合 補正係数=(晴れ:0.9)/(曇り:1)= 0.9 第1の部屋R1: Q=QC× 0.9×
0.8=0.72×QC 第2〜第4の部屋R2,R3,R4:Q=QC× 0.9×
1.0=0.90×QC 第5および第6の部屋R5,R6 :Q=QC× 0.9×
1.2=1.08×QC
(3) When the weather on that day is cloudy and the forecasted weather on the next day is a sunny forecast: a. In the case of air conditioning Correction coefficient = (sunny: 1.3) / (cloudy: 1) = 1.3 First room R1: Q = QC × 1.3 ×
1.2 = 1.56 × QC Second to fourth rooms R2, R3, R4: Q = QC × 1.3 ×
1.0 = 1.30 × QC Fifth and sixth rooms R5, R6: Q = QC × 1.3 ×
0.8 = 1.04 × QC b. In the case of heating Correction coefficient = (sunny: 0.9) / (cloudy: 1) = 0.9 First room R1: Q = QC × 0.9 ×
0.8 = 0.72 × QC Second to fourth rooms R2, R3, R4: Q = QC × 0.9 ×
1.0 = 0.90 × QC Fifth and sixth rooms R5, R6: Q = QC × 0.9 ×
1.2 = 1.08 × QC

【0069】(4)当日の天候が曇りで翌日の予想天候
が雨の予報のとき a.冷房の場合 補正係数=(雨:0.9)/(曇り:1)=0.90 第1の部屋R1: Q=QC×0.90×
1.2=1.08×QC 第2〜第4の部屋R2,R3,R4:Q=QC×0.90×
1.0=0.90×QC 第5および第6の部屋R5,R6 :Q=QC×0.90×
0.8=0.72×QC b.暖房の場合 補正係数=(雨:1.1)/(曇り:1)=1.10 第1の部屋R1: Q=QC×1.10×
0.8=0.88×QC 第2〜第4の部屋R2,R3,R4:Q=QC×1.10×
1.0=1.10×QC 第5および第6の部屋R5,R6 :Q=QC×1.10×
1.2=1.32×QC
(4) When the weather of the day is cloudy and the expected weather of the next day is a rainy forecast a. In the case of air conditioning Correction coefficient = (rain: 0.9) / (cloudy: 1) = 0.90 First room R1: Q = QC × 0.90 ×
1.2 = 1.08 × QC Second to fourth rooms R2, R3, R4: Q = QC × 0.90 ×
1.0 = 0.90 × QC Fifth and sixth rooms R5, R6: Q = QC × 0.90 ×
0.8 = 0.72 × QC b. In the case of heating Correction coefficient = (rain: 1.1) / (cloudy: 1) = 1.10 First room R1: Q = QC × 1.10 ×
0.8 = 0.88 × QC Second to fourth rooms R2, R3, R4: Q = QC × 1.10 ×
1.0 = 1.10 × QC Fifth and sixth rooms R5, R6: Q = QC × 1.10 ×
1.2 = 1.32 × QC

【0070】このようにして、前日の躯体蓄熱量と、当
日の空調負荷と、当日の天候および翌日の予想天候とに
よって、翌日に必要な躯体蓄熱量を算出し、その分の躯
体蓄熱を行うことができるのである。
As described above, the necessary amount of heat stored in the skeleton is calculated based on the heat storage amount of the previous day, the air conditioning load of the day, the weather of the day, and the expected weather of the next day. You can do it.

【0071】上記実施例では、冷房や暖房を行うときに
冷房用流量制御弁28および暖房用流量制御弁29それ
ぞれの開度調整によって冷媒の流量を制御できるように
しているものを示したが、本発明としては、開閉弁を用
いて、単に開き状態と閉じ状態とに切り換えることによ
って冷媒の流量を制御するものにも適用できる。その場
合には、空調負荷計測手段を、開閉弁の開き時間を計測
して運転時間に対応した空調負荷を計測するように構成
すれば良い(請求項3)。
In the above embodiment, the cooling flow rate and the heating flow rate control valve 29 are controlled by controlling the opening of the cooling flow rate control valve 28 and the heating flow rate control valve 29 when cooling or heating is performed. The present invention can also be applied to a system that controls the flow rate of refrigerant by simply switching between an open state and a closed state using an on-off valve. In that case, the air conditioning load measuring means may be configured to measure the opening time of the on-off valve and measure the air conditioning load corresponding to the operation time.

【0072】また、上記実施例では、躯体蓄熱を行う躯
体蓄熱装置4を、ダンパー21の切り換えにより室内側
の空調である冷房や暖房を行う室内側空気調和機に兼用
構成しているが、本発明としては、躯体蓄熱を行う躯体
蓄熱装置4と、室内側空気調和機とをそれぞれ専用に構
成するものでも良い。また、その専用の室内側空気調和
機の熱交換器と圧縮機と外部熱交換器とを冷媒配管を介
して連通接続し、冷媒を強制循環流動するように構成し
ても良く、その場合には、空調負荷計測手段を、圧縮機
の運転時間を計測して運転時間に対応した空調負荷を計
測するように構成すれば良い(請求項2)。
Further, in the above-described embodiment, the frame heat storage device 4 for storing the frame heat is also used as the indoor air conditioner for performing the cooling and heating as the indoor air conditioning by switching the damper 21. As the invention, the frame heat storage device 4 for performing frame heat storage and the indoor-side air conditioner may be respectively configured exclusively. Further, the heat exchanger of the dedicated indoor air conditioner, the compressor and the external heat exchanger may be connected to each other through a refrigerant pipe, and the refrigerant may be forcedly circulated and flown. May be configured such that the air conditioning load measuring means measures the operating time of the compressor and measures the air conditioning load corresponding to the operating time.

【0073】また、上記実施例では、当日の天候状況お
よび翌日の予想天候状況として、日射の度合いである
「晴れ」「曇り」「雨」「雪」を用いているが、それら
に加えてあるいはそれらに代えて、例えば、午前10時
から午後4時までの当日の平均温度と翌日の予想平均温
度を用いるなど、各種の天候状況が適用できる。
Further, in the above embodiment, the degree of insolation “sunny”, “cloudy”, “rain” and “snow” are used as the weather condition of the day and the expected weather condition of the next day. Instead, various weather conditions can be applied, for example, using the average temperature of the day from 10 am to 4 pm and the expected average temperature of the next day.

【0074】図7は、別実施例に係る躯体蓄熱型空気調
和システムの説明に供する要部の概略縦断面図であり、
前述実施例と異なるところは次の通りである。すなわ
ち、送風ファン17の吸い込み口に被空調ゾーンとして
の室内から戻される被温調空気の温度RAを測定する第
1の温度センサ51が設けられ、一方、室内への吹き出
しダクト52に室内に供給される温調空気の温度SAを
測定する第2の温度センサ53が設けられている。
FIG. 7 is a schematic vertical sectional view of a main part for explaining a frame heat storage type air conditioning system according to another embodiment.
The difference from the above embodiment is as follows. That is, the first temperature sensor 51 for measuring the temperature RA of the temperature-controlled air returned from the room as the air-conditioned zone is provided at the suction port of the blower fan 17, while the first temperature sensor 51 is supplied to the room through the air outlet duct 52. A second temperature sensor 53 for measuring the temperature SA of the temperature-controlled air to be controlled is provided.

【0075】図8の別実施例の制御構成のブロック図に
示すように、第1の温度センサ51と第2の温度センサ
53と、前述実施例と同じ当日天候状況入力手段34a
および予想天候状況入力手段34bがマイクロコンピュ
ータ33Aに接続され、そのマイクロコンピュータ33
Aと、前述実施例と同じ製氷機6および送風ファン17
が接続されている。
As shown in the block diagram of the control configuration of another embodiment of FIG. 8, a first temperature sensor 51, a second temperature sensor 53, and the same day weather condition input means 34a as in the above-described embodiment.
And the expected weather condition input means 34b are connected to the microcomputer 33A.
A, the ice making machine 6 and the blowing fan 17 which are the same as those in the above-described embodiment.
Is connected.

【0076】マイクロコンピュータ33Aには、実空調
負荷計測手段54および必要躯体蓄熱量算出手段38A
と、前述実施例と同じ補正係数算出手段39と補正手段
40と蓄熱制御手段41とが備えられている。実空調負
荷計測手段54には、温度差算出手段55と比較手段5
6と空調負荷計測手段57とが備えられている。
The microcomputer 33A includes an actual air-conditioning load measuring means 54 and a necessary frame heat storage amount calculating means 38A.
And the same correction coefficient calculation means 39, correction means 40, and heat storage control means 41 as in the previous embodiment. The actual air conditioning load measuring means 54 includes a temperature difference calculating means 55 and a comparing means 5
6 and an air conditioning load measuring means 57.

【0077】温度差算出手段55では、第1の温度セン
サ51で測定された被温調空気の温度RAと第2の温度
センサ53で測定された温調空気の温度SAとの温度差
の絶対値|RA−SA|を算出するようになっている。
The temperature difference calculating means 55 calculates the absolute difference between the temperature RA of the temperature-controlled air measured by the first temperature sensor 51 and the temperature SA of the temperature-controlled air measured by the second temperature sensor 53. The value | RA-SA | is calculated.

【0078】比較手段56では、温度差算出手段55で
算出された温度差の絶対値を入力して所定値(例えば、
0.5℃)と比較し、温度差の絶対値が所定値よりも大き
いときに温度差とともに比較出力を出すようになってい
る。
In the comparing means 56, the absolute value of the temperature difference calculated by the temperature difference calculating means 55 is inputted and a predetermined value (for example,
(0.5 ° C.), when the absolute value of the temperature difference is larger than a predetermined value, a comparative output is output together with the temperature difference.

【0079】空調負荷計測手段57では、比較手段56
からの比較出力に応答して、送風ファン17の設定風量
(通常、設置箇所の広さなどに応じて予め設定されてい
る)と温度差と時間と比熱とに基づいて求めた空調負荷
を通常の空調時間内で積算して実空調負荷を算出するよ
うになっている。
In the air conditioning load measuring means 57, the comparing means 56
In response to the comparison output from the air conditioner, the air-conditioning load obtained based on the set air volume of the blower fan 17 (usually preset in accordance with the size of the installation location, etc.), the temperature difference, the time, and the specific heat is usually calculated. The actual air-conditioning load is calculated by integrating within the air-conditioning time.

【0080】例えば、第1および第2の温度センサ5
1,53から温度差算出手段55への温度入力タイミン
グが1分間毎であるとした場合に、温度差算出手段55
からの比較出力に応答して、その1回の比較出力毎の空
調負荷Rを、前述温度差の絶対値|RA−SA|と1分
間当たりの風量QWと比熱(通常0.29)とから、R=|
RA−SA|×QW×1×0.29として求め、タイマ35
Aで設定されている通常の運転時間の間(例えば、午前
8時から午後8時など)、比較出力に応答して求めた空
調負荷Rを積算し、通常の空調時間内での1日の実空調
負荷を算出して計測するのである。
For example, the first and second temperature sensors 5
If it is assumed that the temperature input timing from the first and the third to the temperature difference calculating means 55 is every one minute, the temperature difference calculating means 55
In response to the comparison output from the air conditioner, the air-conditioning load R for each comparison output is calculated from the absolute value | RA-SA | of the temperature difference, the air volume QW per minute, and the specific heat (normally 0.29). = |
RA-SA | × QW × 1 × 0.29
During the normal operation time set in A (for example, from 8:00 am to 8:00 pm), the air-conditioning load R obtained in response to the comparison output is integrated, and one day during the normal air-conditioning time is calculated. The actual air conditioning load is calculated and measured.

【0081】必要躯体蓄熱量算出手段38Aでは、前日
に算出された実空調負荷が記憶されており、実空調負荷
計測手段54から入力される当日の実空調負荷と前日の
実空調負荷とに基づき、当日の実空調負荷が前日の実空
調負荷よりも低いときには、前日の実空調負荷から当日
の実空調負荷を差し引いた分を余剰躯体蓄熱量としてそ
の余剰躯体蓄熱量を当日の実空調負荷に対応する躯体蓄
熱量から引いたものを必要躯体蓄熱量とし、当日の実空
調負荷が前日の実空調負荷よりも高いときには、当日の
実空調負荷に対応する躯体蓄熱量を必要躯体蓄熱量とし
てそれぞれ算出し、更に、算出された必要躯体蓄熱量に
補正手段40からの補正値信号に応じて補正を加え、最
終的な必要躯体蓄熱量を算出するようになっている。
The necessary frame heat storage amount calculating means 38A stores the actual air conditioning load calculated on the previous day and is based on the actual air conditioning load of the current day inputted from the actual air conditioning load measuring means 54 and the actual air conditioning load of the previous day. When the actual air-conditioning load of the day is lower than the actual air-conditioning load of the previous day, the amount obtained by subtracting the actual air-conditioning load of the day from the actual air-conditioning load of the previous day is regarded as the surplus heat storage amount, and the surplus frame heat storage amount is used as the actual air conditioning load of the day. The required frame heat storage amount is calculated by subtracting the corresponding frame heat storage amount.If the actual air conditioning load of the day is higher than the previous day's actual air conditioning load, the frame heat storage amount corresponding to the actual air conditioning load of the day is determined as the required frame heat storage amount. After the calculation, the necessary required heat storage amount is corrected in accordance with the correction value signal from the correction means 40 to calculate the final required heat storage amount.

【0082】補正係数算出手段39、補正手段40およ
び蓄熱制御手段41の作用については前述実施例と同じ
であり、その説明は省略する。
The operations of the correction coefficient calculating means 39, the correcting means 40 and the heat storage control means 41 are the same as those of the above-described embodiment, and the description thereof will be omitted.

【0083】この別実施例によれば、被空調ゾーンごと
に通常の空調時間内に実際に要した1日の実空調負荷を
計測し、当日の実空調負荷と前日の実空調負荷とを比較
することによって、余剰の躯体蓄熱量が有るかどうかを
判断し、その判断結果に基づいてその日の躯体蓄熱量を
決める。
According to this embodiment, the actual air-conditioning load of the day actually required within the normal air-conditioning time for each zone to be air-conditioned is measured, and the actual air-conditioning load of the day is compared with the actual air-conditioning load of the previous day. By doing so, it is determined whether or not there is an excess amount of heat stored in the skeleton, and the amount of heat stored in the skeleton is determined based on the determination result.

【0084】すなわち、当日の実空調負荷が前日の実空
調負荷よりも低いときには、前日の躯体蓄熱量で足りて
いるために、躯体蓄熱量に余剰分があると見なし、前日
の実空調負荷から当日の実空調負荷を差し引いた分を余
剰躯体蓄熱量としてその余剰躯体蓄熱量を当日の実空調
負荷に対応する躯体蓄熱量から引いたものを必要躯体蓄
熱量として躯体蓄熱を行う。当日の実空調負荷が前日の
実空調負荷よりも高いときには、前日の躯体蓄熱量では
不足していたために、当日の実空調負荷に対応する躯体
蓄熱量を必要躯体蓄熱量として躯体蓄熱を行うのであ
る。
That is, when the actual air-conditioning load of the current day is lower than the actual air-conditioning load of the previous day, it is considered that there is a surplus in the heat storage of the skeleton because the amount of heat stored in the skeleton of the previous day is sufficient. Frame heat storage is performed by subtracting the actual air-conditioning load of the day from the frame heat storage amount corresponding to the actual air-conditioning load of the day as the surplus frame heat storage amount as the necessary frame heat storage amount. When the actual air-conditioning load of the day is higher than the actual air-conditioning load of the previous day, the frame heat storage corresponding to the actual air-conditioning load of the day is performed as the necessary frame heat storage because the heat storage of the frame of the previous day was insufficient. is there.

【0085】室内側空気調和機4の冷房用熱交換器18
および暖房用熱交換器19が、水−水などの液体による
熱交換器で構成される場合には、次のような構成を採用
すれば良い。
The cooling heat exchanger 18 of the indoor air conditioner 4
When the heating heat exchanger 19 is configured by a heat exchanger using a liquid such as water-water, the following configuration may be employed.

【0086】熱交換器に送液ポンプで供給される温調用
液体の入口側温度を測定する第1の液温センサと、熱交
換器から出される温調用液体の出口側温度を測定する第
2の液温センサとを備える。そして、実空調負荷計測手
段として、第1の液温センサで測定された温調用液体の
入口側温度と前記第2の液温センサで測定された温調用
液体の出口側温度との温度差の絶対値を算出する温度差
算出手段と、その温度差算出手段で算出された温度差の
絶対値を入力して所定値と比較し、温度差の絶対値が所
定値よりも大きいときに比較出力を出す比較手段と、比
較手段からの比較出力に応答して送液ポンプの通常の空
調時間内における駆動時間を積算して合計駆動時間を算
出し、この合計駆動時間を実空調負荷として算出する。
A first liquid temperature sensor for measuring the inlet side temperature of the temperature control liquid supplied to the heat exchanger by the liquid sending pump, and a second liquid temperature sensor for measuring the outlet side temperature of the temperature control liquid discharged from the heat exchanger. Liquid temperature sensor. Then, as an actual air conditioning load measuring means, a temperature difference between an inlet side temperature of the temperature control liquid measured by the first liquid temperature sensor and an outlet side temperature of the temperature control liquid measured by the second liquid temperature sensor is measured. A temperature difference calculating means for calculating an absolute value, and an absolute value of the temperature difference calculated by the temperature difference calculating means is inputted and compared with a predetermined value. When the absolute value of the temperature difference is larger than the predetermined value, the comparison output is output. The total driving time is calculated by integrating the driving times of the liquid feed pumps within the normal air conditioning time in response to the comparison output from the comparing means, and the total driving time is calculated as the actual air conditioning load. .

【0087】本発明としては、当日天候状況入力手段3
4a、予想天候状況入力手段34b、補正係数算出手段
39、補正手段40それぞれを備えずに、当日の空調負
荷に基づいて躯体蓄熱量を求めるように構成するもので
も良い。
As the present invention, the weather condition input means 3 on the day
4a, the predicted weather condition input means 34b, the correction coefficient calculation means 39, and the correction means 40 may not be provided, and the heat storage amount of the skeleton may be obtained based on the air conditioning load of the day.

【0088】[0088]

【発明の効果】以上説明したように、請求項1に係る発
明の躯体蓄熱型空気調和システムによれば、複数の被空
調ゾーンごとに必要躯体蓄熱量を求めて躯体蓄熱を行う
から、被空調ゾーンそれぞれに応じた適量の躯体蓄熱を
行うことができ、必要以上の躯体蓄熱を抑制できて電力
消費量少なくランニングコストを低減できる。しかも、
その日1日の空調負荷に基づいて必要躯体蓄熱量を求め
るから、空調負荷の変動が比較的滑らかであるとともに
空調負荷がピークになることが少ない春や秋などの中間
期において、必要最小限の躯体蓄熱を行うことができて
経済的である。
As described above, according to the skeleton heat storage type air conditioning system according to the first aspect of the present invention, the required amount of skeleton heat storage is obtained for each of a plurality of air-conditioned zones, and the skeleton heat storage is performed. It is possible to store an appropriate amount of frame heat according to each zone, suppress unnecessary frame heat storage, reduce power consumption, and reduce running costs. Moreover,
The required amount of heat storage is calculated based on the air-conditioning load of the day. Therefore, in the middle period such as spring and autumn when the fluctuation of the air-conditioning load is relatively smooth and the air-conditioning load does not peak, It is economical because it can store heat in the building.

【0089】また、請求項2に係る発明の躯体蓄熱型空
気調和システムによれば、圧縮機の運転に伴う強制循環
により冷媒を熱交換器に供給して、躯体蓄熱量が不足し
たときに要した空調負荷を補う場合に、その空調負荷
を、圧縮機の実際の運転時間の計測によって計測するか
ら、不足分に相当する空調負荷を良好に計測できる。
Further, according to the skeleton heat storage type air conditioning system according to the second aspect of the present invention, the refrigerant is supplied to the heat exchanger by forced circulation accompanying the operation of the compressor, and the refrigerant is required when the skeleton heat storage amount becomes insufficient. When the air-conditioning load is supplemented, the air-conditioning load is measured by measuring the actual operation time of the compressor, so that the air-conditioning load corresponding to the shortage can be satisfactorily measured.

【0090】また、請求項3に係る発明の躯体蓄熱型空
気調和システムによれば、冷媒配管に設けた開閉弁の開
き動作に伴う自然循環流動により冷媒を熱交換器に供給
して、躯体蓄熱量が不足したときに要した空調負荷を補
う場合に、その空調負荷を、開閉弁の開き時間の計測に
よって計測するから、不足分に相当する空調負荷を良好
に計測できる。
Further, according to the frame heat storage type air conditioning system of the third aspect of the present invention, the refrigerant is supplied to the heat exchanger by natural circulation flow accompanying the opening operation of the on-off valve provided in the refrigerant pipe, and the frame heat storage When the air-conditioning load required when the amount is insufficient is measured by measuring the opening time of the on-off valve, the air-conditioning load corresponding to the shortage can be satisfactorily measured.

【0091】また、請求項4に係る発明の躯体蓄熱型空
気調和システムによれば、冷媒配管に設けた流量調整弁
の開度調整に伴う自然循環流動により冷媒を熱交換器に
供給して、躯体蓄熱量が不足したときに要した空調負荷
を補う場合に、その空調負荷を、流量調整弁の開度とそ
の開度の維持時間によって計測するから、不足分に相当
する空調負荷を良好に計測できる。
According to the skeleton heat storage type air conditioning system of the fourth aspect of the present invention, the refrigerant is supplied to the heat exchanger by natural circulation flow accompanying the opening adjustment of the flow control valve provided in the refrigerant pipe. When supplementing the air-conditioning load required when the heat storage capacity of the skeleton is insufficient, the air-conditioning load is measured by the opening of the flow control valve and the maintenance time of the opening, so that the air-conditioning load corresponding to the shortage can be improved. Can be measured.

【0092】また、請求項5に係る発明の躯体蓄熱型空
気調和システムによれば、複数の被空調ゾーンごとに必
要躯体蓄熱量を求めて躯体蓄熱を行うから、被空調ゾー
ンそれぞれに応じた適量の躯体蓄熱を行うことができ、
必要以上の躯体蓄熱を抑制できて電力消費量少なくラン
ニングコストを低減できる。しかも、その日1日の実際
の実空調負荷に基づいて必要躯体蓄熱量を求めるから、
空調負荷の変動が比較的滑らかであるとともに空調負荷
がピークになることが少ない春や秋などの中間期におい
て、必要最小限の躯体蓄熱を行うことができて経済的で
ある。
[0092] According to the skeleton heat storage type air conditioning system of the fifth aspect of the present invention, the required amount of skeleton heat storage is obtained for each of the plurality of air-conditioned zones, and the skeleton heat storage is performed. Heat storage of the skeleton,
Unnecessary heat storage in the frame can be suppressed, so that power consumption is reduced and running costs can be reduced. Moreover, since the required heat storage amount of the frame is calculated based on the actual actual air-conditioning load of the day,
In the middle period such as spring and autumn when the fluctuation of the air-conditioning load is relatively smooth and the air-conditioning load does not peak, it is economical to perform the necessary minimum body heat storage.

【0093】また、請求項6に係る発明の躯体蓄熱型空
気調和システムによれば、室内側空気調和機からの吹き
出し空気の温度と室内側空気調和機への戻り空気の温度
との差が±0.5 ℃などの所定温度範囲を越えている状態
で、送風機の設定風量と温度差と時間と比熱とに基づい
て空調負荷を求め、その空調負荷を通常の空調時間内で
積算して実空調負荷を算出することによって実空調負荷
を精度良く求めるから、必要躯体蓄熱量を精度良く求め
ることができ、躯体蓄熱量を良好に必要最小限の量にで
きて一層経済的である。しかも、室内側空気調和機での
熱媒体が気体と液体とに相変化する冷媒の場合、相変化
しない水などの液体の場合のいずれであっても適用して
必要躯体蓄熱量を精度良く求めることができ、汎用性を
向上できる。
According to the air conditioner of the present invention, the difference between the temperature of the air blown out from the indoor air conditioner and the temperature of the return air to the indoor air conditioner is ± 10%. When the temperature exceeds the specified temperature range, such as 0.5 ° C, the air conditioning load is calculated based on the set air volume, temperature difference, time, and specific heat of the blower, and the air conditioning load is integrated within the normal air conditioning time to calculate the actual air conditioning load. , The actual air-conditioning load is obtained with high accuracy, so that the necessary heat storage amount of the frame can be obtained with high accuracy, and the heat storage amount of the frame can be reduced to the necessary minimum amount, which is more economical. In addition, when the heat medium in the indoor air conditioner is a refrigerant that changes phase into a gas and a liquid, or in the case of a liquid such as water that does not change in phase, the method can be applied to accurately calculate the necessary heat storage amount of the frame. Versatility can be improved.

【0094】また、請求項7に係る発明の躯体蓄熱型空
気調和システムによれば、当日の天候状況と翌日の予想
天候状況とを比較するとともに、被空調ゾーン個々の天
候状況による影響度をも加味し、空調負荷に基づいて算
出した必要躯体蓄熱量を補正して躯体蓄熱を行うから、
被空調ゾーンそれぞれにおいて、天候の変化に良好に対
応して適切な量の躯体蓄熱を行うことができ、一層経済
的である。
According to the air conditioner system of the present invention, the weather condition of the current day is compared with the expected weather condition of the next day, and the degree of influence of the weather condition of each zone to be air-conditioned is also determined. Taking into account, the required amount of skeleton heat storage calculated based on the air conditioning load is corrected and skeleton heat storage is performed.
In each of the zones to be air-conditioned, it is possible to store an appropriate amount of frame heat in a good manner in response to changes in the weather, which is more economical.

【0095】また、請求項8に係る発明の躯体蓄熱型空
気調和システムによれば、必要躯体蓄熱量に大きな影響
を与える日射の度合いに基づいて、空調負荷に基づいて
算出した必要躯体蓄熱量を補正して躯体蓄熱を行うか
ら、被空調ゾーンそれぞれにおいて、より良好に天候の
変化に対応して適切な量の躯体蓄熱を行うことができ、
より一層経済的である。
Further, according to the skeleton heat storage type air conditioning system of the invention according to claim 8, the required skeleton heat storage amount calculated based on the air conditioning load based on the degree of solar radiation which greatly affects the required skeleton heat storage amount. Since the skeleton heat storage is corrected, the appropriate amount of skeleton heat storage can be performed in each of the air-conditioned zones better in response to changes in the weather,
It is even more economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例の躯体蓄熱型空気調和シス
テムを備えた建物を示す全体概略縦断面図である。
FIG. 1 is an overall schematic longitudinal sectional view showing a building provided with a skeleton heat storage type air conditioning system according to an embodiment of the present invention.

【図2】図1の全体概略平面図である。FIG. 2 is an overall schematic plan view of FIG.

【図3】システム構成図である。FIG. 3 is a system configuration diagram.

【図4】制御構成を示すブロック図である。FIG. 4 is a block diagram illustrating a control configuration.

【図5】弁開度と時間との関係を示すグラフである。FIG. 5 is a graph showing a relationship between a valve opening and time.

【図6】制御動作を説明するフローチャートである。FIG. 6 is a flowchart illustrating a control operation.

【図7】本発明に係る別実施例の躯体蓄熱型空気調和シ
ステムの説明に供する要部の概略縦断面図である。
FIG. 7 is a schematic longitudinal sectional view of a main part used for describing a skeleton thermal storage type air conditioning system according to another embodiment of the present invention.

【図8】別実施例の制御構成を示すブロック図である。FIG. 8 is a block diagram showing a control configuration of another embodiment.

【符号の説明】[Explanation of symbols]

4…躯体蓄熱装置(室内側空気調和機) 8…冷房用の熱源としての冷房用凝縮器 13…暖房用の熱源としての暖房用蒸発器 17…送風機としての送風ファン 18…冷房用熱交換器 19…暖房用熱交換器 24…冷房用冷媒配管 27…暖房用冷媒配管 28…冷房用流量制御弁 29…暖房用流量制御弁 31…冷房用開度センサ 32…暖房用開度センサ 34a…当日天候状況入力手段 34b…予想天候状況入力手段 37…空調負荷計測手段 38,38A…必要躯体蓄熱量算出手段 39…補正係数算出手段 40…補正手段 41…蓄熱制御手段 51…第1の温度センサ 53…第2の温度センサ 54…実空調負荷計測手段 55…温度差算出手段 56…比較手段 57…空調負荷積算手段 R1〜R6…被空調ゾーンとしての第1ないし第6の部
4 Frame heat storage device (indoor air conditioner) 8 Cooling condenser as a heat source for cooling 13 Heating evaporator as a heat source for heating 17 Air blower as a blower 18 Heat exchanger for cooling 19 Heating Heat Exchanger 24 Cooling Refrigerant Pipe 27 Heating Refrigerant Pipe 28 Cooling Flow Control Valve 29 Heating Flow Control Valve 31 Cooling Openness Sensor 32 Heating Openness Sensor 34a Weather condition input means 34b Expected weather condition input means 37 Air conditioning load measurement means 38, 38A Required heat storage amount calculation means 39 Correction coefficient calculation means 40 Correction means 41 Heat storage control means 51 First temperature sensor 53 ... second temperature sensor 54 ... actual air-conditioning load measuring means 55 ... temperature difference calculating means 56 ... comparing means 57 ... air-conditioning load integrating means R1 to R6 ... first to sixth parts as zones to be air-conditioned. Shop

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉竹 裕二 大阪市中央区本町四丁目1番13号 株式会 社竹中工務店大阪本店内 Fターム(参考) 2E001 DD17 DD18 FA24 NA02 3L060 AA08 CC02 CC05 CC08 CC09 DD05 EE05 EE45  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Yoshitake 4-1-1, Honmachi, Chuo-ku, Osaka-shi F-term in Takenaka Corporation Osaka Head Office (reference) 2E001 DD17 DD18 FA24 NA02 3L060 AA08 CC02 CC05 CC08 CC09 DD05 EE05 EE45

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の被空調ゾーンそれぞれに設けられ
て、対応する被空調ゾーン内の空調を行う室内側空気調
和機と、 前記被空調ゾーンそれぞれに対応する躯体に通常の空調
時間外において蓄熱する躯体蓄熱装置と、 前記室内側空気調和機に付設されて1日の空調負荷を計
測する空調負荷計測手段と、 前記空調負荷計測手段によって計測された空調負荷と前
記躯体蓄熱装置による前日の躯体蓄熱量とに基づいて前
記躯体蓄熱装置による必要躯体蓄熱量を算出する必要躯
体蓄熱量算出手段と、 前記必要躯体蓄熱量算出手段によって算出された必要躯
体蓄熱量を蓄熱するように前記躯体蓄熱装置を駆動する
蓄熱制御手段とを備え、 前記必要躯体蓄熱量算出手段が、前記空調負荷計測手段
によって空調負荷が計測された時には計測された空調負
荷に対応した躯体蓄熱量に前日の躯体蓄熱量を加算した
ものを必要躯体蓄熱量として算出し、かつ、前記空調負
荷計測手段によって空調負荷が計測されなかった時には
前日の躯体蓄熱量から所定量割り引いたものを必要躯体
蓄熱量として算出するものであることを特徴とする躯体
蓄熱型空気調和システム。
An indoor air conditioner provided in each of a plurality of zones to be air-conditioned to perform air conditioning in the corresponding zone to be air-conditioned, and storing heat in a frame corresponding to each of the zones to be air-conditioned outside normal air-conditioning time. An air conditioning load measuring unit attached to the indoor air conditioner and measuring an air conditioning load per day; and an air conditioning load measured by the air conditioning load measuring unit and a previous day's skeleton by the skeleton heat storage device. A required skeleton heat storage amount calculating means for calculating a required skeleton heat storage amount by the skeleton heat storage device based on the heat storage amount, and the skeleton heat storage device so as to store the required skeleton heat storage amount calculated by the required skeleton heat storage amount calculation means. Heat storage control means for driving the air conditioning load, wherein the required skeleton heat storage amount calculation means is configured to measure the air conditioning load when the air conditioning load is measured by the air conditioning load measurement means. The required amount of heat stored in the skeleton is calculated by adding the amount of heat stored in the skeleton to the amount of heat stored in the previous day and the required amount of heat stored in the skeleton. A heat storage air-conditioning system characterized by calculating the required heat storage amount.
【請求項2】 請求項1に記載の室内側空気調和機の熱
交換器と圧縮機と外部熱交換器とを冷媒配管を介して連
通接続し、空調負荷計測手段を、前記圧縮機の運転時間
を計測して運転時間に対応した空調負荷を計測するよう
に構成してある躯体蓄熱型空気調和システム。
2. The indoor air conditioner according to claim 1, wherein the heat exchanger, the compressor, and the external heat exchanger are connected to each other via a refrigerant pipe, and the air conditioning load measuring unit is operated by the compressor. An air conditioning system that heats and accumulates heat by measuring the time and measuring the air conditioning load corresponding to the operation time.
【請求項3】 請求項1に記載の室内側空気調和機の熱
交換器と熱源とを、気体と液体とに相変化する冷媒を自
然循環流動させる冷媒配管を介して連通接続するととも
に、前記冷媒配管に開閉弁を付設し、空調負荷計測手段
を、前記開閉弁の開き時間を計測して運転時間に対応し
た空調負荷を計測するように構成してある躯体蓄熱型空
気調和システム。
3. The heat exchanger and the heat source of the indoor air conditioner according to claim 1, wherein the heat exchanger and the heat source are connected to each other through a refrigerant pipe that naturally circulates and flows a refrigerant that changes into a gas and a liquid. An air conditioning system for a building heat storage type, wherein an on-off valve is attached to a refrigerant pipe, and an air conditioning load measuring means is configured to measure an opening time of the on-off valve to measure an air conditioning load corresponding to an operation time.
【請求項4】 請求項1に記載の室内側空気調和機の熱
交換器と熱源とを、気体と液体とに相変化する冷媒を自
然循環流動させる冷媒配管を介して連通接続するととも
に、前記冷媒配管に、開度調整によって冷媒の供給量を
調整可能な流量調整弁を設け、前記流量調整弁の開度を
検出する開度センサを設け、空調負荷計測手段を、前記
開度センサによって検出された開度を積算し、その積算
開度に基づいて空調負荷を計測するように構成してある
躯体蓄熱型空気調和システム。
4. The heat exchanger and the heat source of the indoor air conditioner according to claim 1, wherein the heat exchanger and the heat source are connected to each other through a refrigerant pipe that naturally circulates and flows a refrigerant that changes into a gas and a liquid. In the refrigerant pipe, a flow regulating valve capable of adjusting the supply amount of the refrigerant by adjusting the opening is provided, an opening sensor for detecting the opening of the flow regulating valve is provided, and the air conditioning load measuring means is detected by the opening sensor. The air-conditioning system that accumulates the measured openings and measures the air-conditioning load based on the accumulated openings.
【請求項5】 複数の被空調ゾーンそれぞれに設けられ
て、対応する被空調ゾーン内の空調を行う室内側空気調
和機と、 前記被空調ゾーンそれぞれに対応する躯体に通常の空調
時間外において蓄熱する躯体蓄熱装置と、 前記被空調ゾーンそれぞれ内で通常の空調時間内に実際
に要した1日の実空調負荷を計測する実空調負荷計測手
段と、 前記実空調負荷計測手段によって計測された当日の実空
調負荷と前日の実空調負荷とに基づいて前記躯体蓄熱装
置による必要躯体蓄熱量を算出する必要躯体蓄熱量算出
手段と、 前記必要躯体蓄熱量算出手段によって算出された必要躯
体蓄熱量を蓄熱するように前記躯体蓄熱装置を駆動する
蓄熱制御手段とを備え、 かつ、前記必要躯体蓄熱量算出手段が、当日の実空調負
荷が前日の実空調負荷よりも低いときには、前日の実空
調負荷から当日の実空調負荷を差し引いた分を余剰躯体
蓄熱量としてその余剰躯体蓄熱量を当日の実空調負荷に
対応する躯体蓄熱量から引いたものを必要躯体蓄熱量と
し、当日の実空調負荷が前日の実空調負荷よりも高いと
きには、当日の実空調負荷に対応する躯体蓄熱量を必要
躯体蓄熱量としてそれぞれ算出するものであることを特
徴とする躯体蓄熱型空気調和システム。
5. An indoor air conditioner provided in each of a plurality of air-conditioned zones and performing air conditioning in the corresponding air-conditioned zones, and heat storage in a frame corresponding to each of the air-conditioned zones outside normal air conditioning time. A frame heat storage device, an actual air conditioning load measuring means for measuring an actual air conditioning load of a day actually required within a normal air conditioning time in each of the air-conditioned zones, and a current day measured by the actual air conditioning load measuring means. The required skeleton heat storage amount calculation means for calculating the required skeleton heat storage amount by the skeleton heat storage device based on the actual air conditioning load of the previous day and the actual air conditioning load of the previous day, and the required skeleton heat storage amount calculated by the required skeleton heat storage amount calculation means Heat storage control means for driving the skeleton heat storage device so as to store heat, and the necessary skeleton heat storage amount calculating means, when the actual air conditioning load of the day is lower than the actual air conditioning load of the previous day. The required frame heat storage amount is calculated by subtracting the actual air conditioning load of the day from the actual air conditioning load of the previous day and the actual air conditioning load of the day as the surplus frame heat storage amount and subtracting the surplus frame heat storage amount from the frame heat storage amount corresponding to the actual air conditioning load of the day. When the actual air-conditioning load of the day is higher than the actual air-conditioning load of the previous day, the skeleton heat storage amount corresponding to the actual air-conditioning load of the day is calculated as the required skeleton heat storage amount, respectively. Harmony system.
【請求項6】 請求項5に記載の躯体蓄熱型空気調和シ
ステムにおいて、 被空調ゾーンから室内側空気調和機に戻される被温調空
気の温度を測定する第1の温度センサと、 前記室内側空気調和機から被空調ゾーンに供給される温
調空気の温度を測定する第2の温度センサとを備え、 実空調負荷計測手段が、 前記第1の温度センサで測定された被温調空気の温度と
前記第2の温度センサで測定された温調空気の温度との
温度差の絶対値を算出する温度差算出手段と、 前記温度差算出手段で算出された温度差の絶対値を入力
して所定値と比較し、温度差の絶対値が所定値よりも大
きいときに比較出力を出す比較手段と、 前記比較手段からの比較出力に応答して前記室内側空気
調和機に設けられている送風機の設定風量と温度差と時
間と比熱とに基づいて求めた空調負荷を通常の空調時間
内で積算して実空調負荷を算出する空調負荷算出手段と
から構成されている躯体蓄熱型空気調和システム。
6. The air conditioning system according to claim 5, wherein the first temperature sensor measures the temperature of the temperature-controlled air returned from the air-conditioned zone to the indoor air conditioner; A second temperature sensor for measuring the temperature of the temperature-controlled air supplied from the air conditioner to the zone to be air-conditioned, wherein the actual air-conditioning load measuring means is provided for measuring the temperature of the temperature-controlled air measured by the first temperature sensor. Temperature difference calculating means for calculating the absolute value of the temperature difference between the temperature and the temperature of the temperature-controlled air measured by the second temperature sensor; and inputting the absolute value of the temperature difference calculated by the temperature difference calculating means. A comparison unit that compares the absolute value of the temperature difference with the predetermined value, and outputs a comparison output when the absolute value of the temperature difference is greater than the predetermined value. The indoor air conditioner is provided in response to the comparison output from the comparison unit. Set air volume, temperature difference, time and specific heat of blower An air-conditioning load calculating means for calculating an actual air-conditioning load by integrating the air-conditioning load obtained based on the air-conditioning load within a normal air-conditioning time.
【請求項7】 請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6のいずれかに記載の躯体蓄熱型
空気調和システムにおいて、 当日の天候状況を入力して天候状況に基づいて予め設定
した当日天候状況信号を出力する当日天候状況入力手段
と、 翌日の予想天候状況を入力して予想天候状況に基づいて
予め設定した予想天候状況信号を出力する予想天候状況
入力手段と、 前記当日天候状況入力手段から出力される当日天候状況
信号と前記予想天候状況入力手段から出力される予想天
候状況信号とを比較して補正係数を算出する補正係数算
出手段と、 を備え、 必要躯体蓄熱量算出手段に、被空調ゾーンそれぞれでの
天候状況による影響度と前記補正係数算出手段で算出さ
れた補正係数とに基づいて必要躯体蓄熱量を補正する補
正値信号を出力する補正手段を備えるものである躯体蓄
熱型空気調和システム。
7. The building thermal storage type air conditioning system according to any one of claims 1, 2, 3, 4, 5, and 6, wherein a weather condition of the day is inputted. A current day weather condition input means for outputting a preset day weather condition signal based on the weather condition, and a predicted weather condition for inputting a predicted weather condition of the next day and outputting a preset weather condition signal based on the predicted weather condition Input means, a correction coefficient calculating means for calculating a correction coefficient by comparing the current day weather state signal output from the current day weather state input means and the expected weather state signal output from the expected weather state input means, A correction value for correcting the required skeleton heat storage amount based on the degree of influence of the weather condition in each zone to be air-conditioned and the correction coefficient calculated by the correction coefficient calculation unit. Skeleton heat storage type air conditioner system in which includes a correcting means for outputting a degree.
【請求項8】 請求項7に記載の天候状況および予想天
候状況が日射の度合いである躯体蓄熱型空気調和システ
ム。
8. A heat storage type air conditioning system according to claim 7, wherein the weather condition and the predicted weather condition according to claim 7 are a degree of solar radiation.
JP2000178613A 1999-12-27 2000-06-14 Building skeleton heat storage type air conditioning system Pending JP2001248879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000178613A JP2001248879A (en) 1999-12-27 2000-06-14 Building skeleton heat storage type air conditioning system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-370272 1999-12-27
JP37027299 1999-12-27
JP2000178613A JP2001248879A (en) 1999-12-27 2000-06-14 Building skeleton heat storage type air conditioning system

Publications (1)

Publication Number Publication Date
JP2001248879A true JP2001248879A (en) 2001-09-14

Family

ID=26582212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000178613A Pending JP2001248879A (en) 1999-12-27 2000-06-14 Building skeleton heat storage type air conditioning system

Country Status (1)

Country Link
JP (1) JP2001248879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052766A (en) * 2007-08-23 2009-03-12 Kansai Electric Power Co Inc:The Underfloor heating system
JP2009052765A (en) * 2007-08-23 2009-03-12 Kansai Electric Power Co Inc:The Underfloor heating system
JP5579956B1 (en) * 2013-05-02 2014-08-27 中国電力株式会社 Heat storage amount prediction device, heat storage amount prediction method and program
JP7374838B2 (en) 2020-04-14 2023-11-07 清水建設株式会社 Air conditioning control device, air conditioning control method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052766A (en) * 2007-08-23 2009-03-12 Kansai Electric Power Co Inc:The Underfloor heating system
JP2009052765A (en) * 2007-08-23 2009-03-12 Kansai Electric Power Co Inc:The Underfloor heating system
JP5579956B1 (en) * 2013-05-02 2014-08-27 中国電力株式会社 Heat storage amount prediction device, heat storage amount prediction method and program
WO2014178145A1 (en) * 2013-05-02 2014-11-06 中国電力株式会社 Heat storage amount prediction device and heat storage amount prediction method and program
JP7374838B2 (en) 2020-04-14 2023-11-07 清水建設株式会社 Air conditioning control device, air conditioning control method, and program

Similar Documents

Publication Publication Date Title
EP1091178B1 (en) Multiroom air conditioner and control method therefor
US7099748B2 (en) HVAC start-up control system and method
US8091375B2 (en) Humidity control for air conditioning system
AU602075B2 (en) Refrigerating circuit device for air conditioning apparatus and control method thereof
JPH06241595A (en) Heat pump system and control method of operation thereof
CN113366266B (en) Air conditioner management device, air conditioner management system, air conditioner management method, and program
JP2001248937A (en) Heat pump hot water supply air conditioner
US9696067B2 (en) Apparatus and method for controlling indoor airflow for heat pumps
JP2001248879A (en) Building skeleton heat storage type air conditioning system
JPH0814628A (en) Air conditioner
JP5677198B2 (en) Air cooling heat pump chiller
JPS629137A (en) Air conditioner
US11953217B2 (en) Humidification apparatus and method
JP3213662B2 (en) Air conditioner
JP4337391B2 (en) Air conditioning control device, air conditioning control program, air conditioning control method, and air conditioning control system
JP2002277000A (en) Air conditioning system
JPH02101337A (en) Air conditioning system
WO2020035909A1 (en) Air-conditioning device, control device, air-conditioning method, and program
JPH0395343A (en) Operating controller for air conditioner
KR100461653B1 (en) Method for calculating power consumption in multi-airconditioner
JP2001304659A (en) Air-conditioning system for building capable of controlling amount of heat storage
JP2518412B2 (en) Air conditioner
KR100544707B1 (en) Water Cooling Type Air Conditioner And Method Of Controlling The Same
JP2801711B2 (en) Refrigerant natural circulation cooling system
JP2719456B2 (en) Air conditioner